]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/X86/X86Subtarget.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / X86 / X86Subtarget.h
1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the X86 specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
14 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
15
16 #include "X86FrameLowering.h"
17 #include "X86ISelLowering.h"
18 #include "X86InstrInfo.h"
19 #include "X86SelectionDAGInfo.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
24 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
25 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include <climits>
30 #include <memory>
31
32 #define GET_SUBTARGETINFO_HEADER
33 #include "X86GenSubtargetInfo.inc"
34
35 namespace llvm {
36
37 class GlobalValue;
38
39 /// The X86 backend supports a number of different styles of PIC.
40 ///
41 namespace PICStyles {
42
43 enum class Style {
44   StubPIC,          // Used on i386-darwin in pic mode.
45   GOT,              // Used on 32 bit elf on when in pic mode.
46   RIPRel,           // Used on X86-64 when in pic mode.
47   None              // Set when not in pic mode.
48 };
49
50 } // end namespace PICStyles
51
52 class X86Subtarget final : public X86GenSubtargetInfo {
53 public:
54   // NOTE: Do not add anything new to this list. Coarse, CPU name based flags
55   // are not a good idea. We should be migrating away from these.
56   enum X86ProcFamilyEnum {
57     Others,
58     IntelAtom,
59     IntelSLM
60   };
61
62 protected:
63   enum X86SSEEnum {
64     NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
65   };
66
67   enum X863DNowEnum {
68     NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
69   };
70
71   /// X86 processor family: Intel Atom, and others
72   X86ProcFamilyEnum X86ProcFamily = Others;
73
74   /// Which PIC style to use
75   PICStyles::Style PICStyle;
76
77   const TargetMachine &TM;
78
79   /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
80   X86SSEEnum X86SSELevel = NoSSE;
81
82   /// MMX, 3DNow, 3DNow Athlon, or none supported.
83   X863DNowEnum X863DNowLevel = NoThreeDNow;
84
85   /// True if the processor supports X87 instructions.
86   bool HasX87 = false;
87
88   /// True if the processor supports CMPXCHG8B.
89   bool HasCmpxchg8b = false;
90
91   /// True if this processor has NOPL instruction
92   /// (generally pentium pro+).
93   bool HasNOPL = false;
94
95   /// True if this processor has conditional move instructions
96   /// (generally pentium pro+).
97   bool HasCMov = false;
98
99   /// True if the processor supports X86-64 instructions.
100   bool HasX86_64 = false;
101
102   /// True if the processor supports POPCNT.
103   bool HasPOPCNT = false;
104
105   /// True if the processor supports SSE4A instructions.
106   bool HasSSE4A = false;
107
108   /// Target has AES instructions
109   bool HasAES = false;
110   bool HasVAES = false;
111
112   /// Target has FXSAVE/FXRESTOR instructions
113   bool HasFXSR = false;
114
115   /// Target has XSAVE instructions
116   bool HasXSAVE = false;
117
118   /// Target has XSAVEOPT instructions
119   bool HasXSAVEOPT = false;
120
121   /// Target has XSAVEC instructions
122   bool HasXSAVEC = false;
123
124   /// Target has XSAVES instructions
125   bool HasXSAVES = false;
126
127   /// Target has carry-less multiplication
128   bool HasPCLMUL = false;
129   bool HasVPCLMULQDQ = false;
130
131   /// Target has Galois Field Arithmetic instructions
132   bool HasGFNI = false;
133
134   /// Target has 3-operand fused multiply-add
135   bool HasFMA = false;
136
137   /// Target has 4-operand fused multiply-add
138   bool HasFMA4 = false;
139
140   /// Target has XOP instructions
141   bool HasXOP = false;
142
143   /// Target has TBM instructions.
144   bool HasTBM = false;
145
146   /// Target has LWP instructions
147   bool HasLWP = false;
148
149   /// True if the processor has the MOVBE instruction.
150   bool HasMOVBE = false;
151
152   /// True if the processor has the RDRAND instruction.
153   bool HasRDRAND = false;
154
155   /// Processor has 16-bit floating point conversion instructions.
156   bool HasF16C = false;
157
158   /// Processor has FS/GS base insturctions.
159   bool HasFSGSBase = false;
160
161   /// Processor has LZCNT instruction.
162   bool HasLZCNT = false;
163
164   /// Processor has BMI1 instructions.
165   bool HasBMI = false;
166
167   /// Processor has BMI2 instructions.
168   bool HasBMI2 = false;
169
170   /// Processor has VBMI instructions.
171   bool HasVBMI = false;
172
173   /// Processor has VBMI2 instructions.
174   bool HasVBMI2 = false;
175
176   /// Processor has Integer Fused Multiply Add
177   bool HasIFMA = false;
178
179   /// Processor has RTM instructions.
180   bool HasRTM = false;
181
182   /// Processor has ADX instructions.
183   bool HasADX = false;
184
185   /// Processor has SHA instructions.
186   bool HasSHA = false;
187
188   /// Processor has PRFCHW instructions.
189   bool HasPRFCHW = false;
190
191   /// Processor has RDSEED instructions.
192   bool HasRDSEED = false;
193
194   /// Processor has LAHF/SAHF instructions.
195   bool HasLAHFSAHF = false;
196
197   /// Processor has MONITORX/MWAITX instructions.
198   bool HasMWAITX = false;
199
200   /// Processor has Cache Line Zero instruction
201   bool HasCLZERO = false;
202
203   /// Processor has Cache Line Demote instruction
204   bool HasCLDEMOTE = false;
205
206   /// Processor has MOVDIRI instruction (direct store integer).
207   bool HasMOVDIRI = false;
208
209   /// Processor has MOVDIR64B instruction (direct store 64 bytes).
210   bool HasMOVDIR64B = false;
211
212   /// Processor has ptwrite instruction.
213   bool HasPTWRITE = false;
214
215   /// Processor has Prefetch with intent to Write instruction
216   bool HasPREFETCHWT1 = false;
217
218   /// True if SHLD instructions are slow.
219   bool IsSHLDSlow = false;
220
221   /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
222   //  PMULUDQ.
223   bool IsPMULLDSlow = false;
224
225   /// True if the PMADDWD instruction is slow compared to PMULLD.
226   bool IsPMADDWDSlow = false;
227
228   /// True if unaligned memory accesses of 16-bytes are slow.
229   bool IsUAMem16Slow = false;
230
231   /// True if unaligned memory accesses of 32-bytes are slow.
232   bool IsUAMem32Slow = false;
233
234   /// True if SSE operations can have unaligned memory operands.
235   /// This may require setting a configuration bit in the processor.
236   bool HasSSEUnalignedMem = false;
237
238   /// True if this processor has the CMPXCHG16B instruction;
239   /// this is true for most x86-64 chips, but not the first AMD chips.
240   bool HasCmpxchg16b = false;
241
242   /// True if the LEA instruction should be used for adjusting
243   /// the stack pointer. This is an optimization for Intel Atom processors.
244   bool UseLeaForSP = false;
245
246   /// True if POPCNT instruction has a false dependency on the destination register.
247   bool HasPOPCNTFalseDeps = false;
248
249   /// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
250   bool HasLZCNTFalseDeps = false;
251
252   /// True if its preferable to combine to a single shuffle using a variable
253   /// mask over multiple fixed shuffles.
254   bool HasFastVariableShuffle = false;
255
256   /// True if vzeroupper instructions should be inserted after code that uses
257   /// ymm or zmm registers.
258   bool InsertVZEROUPPER = false;
259
260   /// True if there is no performance penalty for writing NOPs with up to
261   /// 11 bytes.
262   bool HasFast11ByteNOP = false;
263
264   /// True if there is no performance penalty for writing NOPs with up to
265   /// 15 bytes.
266   bool HasFast15ByteNOP = false;
267
268   /// True if gather is reasonably fast. This is true for Skylake client and
269   /// all AVX-512 CPUs.
270   bool HasFastGather = false;
271
272   /// True if hardware SQRTSS instruction is at least as fast (latency) as
273   /// RSQRTSS followed by a Newton-Raphson iteration.
274   bool HasFastScalarFSQRT = false;
275
276   /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
277   /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
278   bool HasFastVectorFSQRT = false;
279
280   /// True if 8-bit divisions are significantly faster than
281   /// 32-bit divisions and should be used when possible.
282   bool HasSlowDivide32 = false;
283
284   /// True if 32-bit divides are significantly faster than
285   /// 64-bit divisions and should be used when possible.
286   bool HasSlowDivide64 = false;
287
288   /// True if LZCNT instruction is fast.
289   bool HasFastLZCNT = false;
290
291   /// True if SHLD based rotate is fast.
292   bool HasFastSHLDRotate = false;
293
294   /// True if the processor supports macrofusion.
295   bool HasMacroFusion = false;
296
297   /// True if the processor supports branch fusion.
298   bool HasBranchFusion = false;
299
300   /// True if the processor has enhanced REP MOVSB/STOSB.
301   bool HasERMSB = false;
302
303   /// True if the short functions should be padded to prevent
304   /// a stall when returning too early.
305   bool PadShortFunctions = false;
306
307   /// True if two memory operand instructions should use a temporary register
308   /// instead.
309   bool SlowTwoMemOps = false;
310
311   /// True if the LEA instruction inputs have to be ready at address generation
312   /// (AG) time.
313   bool LEAUsesAG = false;
314
315   /// True if the LEA instruction with certain arguments is slow
316   bool SlowLEA = false;
317
318   /// True if the LEA instruction has all three source operands: base, index,
319   /// and offset or if the LEA instruction uses base and index registers where
320   /// the base is EBP, RBP,or R13
321   bool Slow3OpsLEA = false;
322
323   /// True if INC and DEC instructions are slow when writing to flags
324   bool SlowIncDec = false;
325
326   /// Processor has AVX-512 PreFetch Instructions
327   bool HasPFI = false;
328
329   /// Processor has AVX-512 Exponential and Reciprocal Instructions
330   bool HasERI = false;
331
332   /// Processor has AVX-512 Conflict Detection Instructions
333   bool HasCDI = false;
334
335   /// Processor has AVX-512 population count Instructions
336   bool HasVPOPCNTDQ = false;
337
338   /// Processor has AVX-512 Doubleword and Quadword instructions
339   bool HasDQI = false;
340
341   /// Processor has AVX-512 Byte and Word instructions
342   bool HasBWI = false;
343
344   /// Processor has AVX-512 Vector Length eXtenstions
345   bool HasVLX = false;
346
347   /// Processor has PKU extenstions
348   bool HasPKU = false;
349
350   /// Processor has AVX-512 Vector Neural Network Instructions
351   bool HasVNNI = false;
352
353   /// Processor has AVX-512 bfloat16 floating-point extensions
354   bool HasBF16 = false;
355
356   /// Processor supports ENQCMD instructions
357   bool HasENQCMD = false;
358
359   /// Processor has AVX-512 Bit Algorithms instructions
360   bool HasBITALG = false;
361
362   /// Processor has AVX-512 vp2intersect instructions
363   bool HasVP2INTERSECT = false;
364
365   /// Deprecated flag for MPX instructions.
366   bool DeprecatedHasMPX = false;
367
368   /// Processor supports CET SHSTK - Control-Flow Enforcement Technology
369   /// using Shadow Stack
370   bool HasSHSTK = false;
371
372   /// Processor supports Invalidate Process-Context Identifier
373   bool HasINVPCID = false;
374
375   /// Processor has Software Guard Extensions
376   bool HasSGX = false;
377
378   /// Processor supports Flush Cache Line instruction
379   bool HasCLFLUSHOPT = false;
380
381   /// Processor supports Cache Line Write Back instruction
382   bool HasCLWB = false;
383
384   /// Processor supports Write Back No Invalidate instruction
385   bool HasWBNOINVD = false;
386
387   /// Processor support RDPID instruction
388   bool HasRDPID = false;
389
390   /// Processor supports WaitPKG instructions
391   bool HasWAITPKG = false;
392
393   /// Processor supports PCONFIG instruction
394   bool HasPCONFIG = false;
395
396   /// Processor has a single uop BEXTR implementation.
397   bool HasFastBEXTR = false;
398
399   /// Try harder to combine to horizontal vector ops if they are fast.
400   bool HasFastHorizontalOps = false;
401
402   /// Prefer a left/right scalar logical shifts pair over a shift+and pair.
403   bool HasFastScalarShiftMasks = false;
404
405   /// Prefer a left/right vector logical shifts pair over a shift+and pair.
406   bool HasFastVectorShiftMasks = false;
407
408   /// Use a retpoline thunk rather than indirect calls to block speculative
409   /// execution.
410   bool UseRetpolineIndirectCalls = false;
411
412   /// Use a retpoline thunk or remove any indirect branch to block speculative
413   /// execution.
414   bool UseRetpolineIndirectBranches = false;
415
416   /// Deprecated flag, query `UseRetpolineIndirectCalls` and
417   /// `UseRetpolineIndirectBranches` instead.
418   bool DeprecatedUseRetpoline = false;
419
420   /// When using a retpoline thunk, call an externally provided thunk rather
421   /// than emitting one inside the compiler.
422   bool UseRetpolineExternalThunk = false;
423
424   /// Use software floating point for code generation.
425   bool UseSoftFloat = false;
426
427   /// Use alias analysis during code generation.
428   bool UseAA = false;
429
430   /// The minimum alignment known to hold of the stack frame on
431   /// entry to the function and which must be maintained by every function.
432   Align stackAlignment = Align(4);
433
434   /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
435   ///
436   // FIXME: this is a known good value for Yonah. How about others?
437   unsigned MaxInlineSizeThreshold = 128;
438
439   /// Indicates target prefers 128 bit instructions.
440   bool Prefer128Bit = false;
441
442   /// Indicates target prefers 256 bit instructions.
443   bool Prefer256Bit = false;
444
445   /// Indicates target prefers AVX512 mask registers.
446   bool PreferMaskRegisters = false;
447
448   /// Threeway branch is profitable in this subtarget.
449   bool ThreewayBranchProfitable = false;
450
451   /// Use Goldmont specific floating point div/sqrt costs.
452   bool UseGLMDivSqrtCosts = false;
453
454   /// What processor and OS we're targeting.
455   Triple TargetTriple;
456
457   /// GlobalISel related APIs.
458   std::unique_ptr<CallLowering> CallLoweringInfo;
459   std::unique_ptr<LegalizerInfo> Legalizer;
460   std::unique_ptr<RegisterBankInfo> RegBankInfo;
461   std::unique_ptr<InstructionSelector> InstSelector;
462
463 private:
464   /// Override the stack alignment.
465   MaybeAlign StackAlignOverride;
466
467   /// Preferred vector width from function attribute.
468   unsigned PreferVectorWidthOverride;
469
470   /// Resolved preferred vector width from function attribute and subtarget
471   /// features.
472   unsigned PreferVectorWidth = UINT32_MAX;
473
474   /// Required vector width from function attribute.
475   unsigned RequiredVectorWidth;
476
477   /// True if compiling for 64-bit, false for 16-bit or 32-bit.
478   bool In64BitMode;
479
480   /// True if compiling for 32-bit, false for 16-bit or 64-bit.
481   bool In32BitMode;
482
483   /// True if compiling for 16-bit, false for 32-bit or 64-bit.
484   bool In16BitMode;
485
486   /// Contains the Overhead of gather\scatter instructions
487   int GatherOverhead = 1024;
488   int ScatterOverhead = 1024;
489
490   X86SelectionDAGInfo TSInfo;
491   // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
492   // X86TargetLowering needs.
493   X86InstrInfo InstrInfo;
494   X86TargetLowering TLInfo;
495   X86FrameLowering FrameLowering;
496
497 public:
498   /// This constructor initializes the data members to match that
499   /// of the specified triple.
500   ///
501   X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
502                const X86TargetMachine &TM, MaybeAlign StackAlignOverride,
503                unsigned PreferVectorWidthOverride,
504                unsigned RequiredVectorWidth);
505
506   const X86TargetLowering *getTargetLowering() const override {
507     return &TLInfo;
508   }
509
510   const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
511
512   const X86FrameLowering *getFrameLowering() const override {
513     return &FrameLowering;
514   }
515
516   const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
517     return &TSInfo;
518   }
519
520   const X86RegisterInfo *getRegisterInfo() const override {
521     return &getInstrInfo()->getRegisterInfo();
522   }
523
524   /// Returns the minimum alignment known to hold of the
525   /// stack frame on entry to the function and which must be maintained by every
526   /// function for this subtarget.
527   Align getStackAlignment() const { return stackAlignment; }
528
529   /// Returns the maximum memset / memcpy size
530   /// that still makes it profitable to inline the call.
531   unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
532
533   /// ParseSubtargetFeatures - Parses features string setting specified
534   /// subtarget options.  Definition of function is auto generated by tblgen.
535   void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
536
537   /// Methods used by Global ISel
538   const CallLowering *getCallLowering() const override;
539   InstructionSelector *getInstructionSelector() const override;
540   const LegalizerInfo *getLegalizerInfo() const override;
541   const RegisterBankInfo *getRegBankInfo() const override;
542
543 private:
544   /// Initialize the full set of dependencies so we can use an initializer
545   /// list for X86Subtarget.
546   X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
547   void initSubtargetFeatures(StringRef CPU, StringRef FS);
548
549 public:
550   /// Is this x86_64? (disregarding specific ABI / programming model)
551   bool is64Bit() const {
552     return In64BitMode;
553   }
554
555   bool is32Bit() const {
556     return In32BitMode;
557   }
558
559   bool is16Bit() const {
560     return In16BitMode;
561   }
562
563   /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
564   bool isTarget64BitILP32() const {
565     return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
566                            TargetTriple.isOSNaCl());
567   }
568
569   /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
570   bool isTarget64BitLP64() const {
571     return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
572                            !TargetTriple.isOSNaCl());
573   }
574
575   PICStyles::Style getPICStyle() const { return PICStyle; }
576   void setPICStyle(PICStyles::Style Style)  { PICStyle = Style; }
577
578   bool hasX87() const { return HasX87; }
579   bool hasCmpxchg8b() const { return HasCmpxchg8b; }
580   bool hasNOPL() const { return HasNOPL; }
581   // SSE codegen depends on cmovs, and all SSE1+ processors support them.
582   // All 64-bit processors support cmov.
583   bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); }
584   bool hasSSE1() const { return X86SSELevel >= SSE1; }
585   bool hasSSE2() const { return X86SSELevel >= SSE2; }
586   bool hasSSE3() const { return X86SSELevel >= SSE3; }
587   bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
588   bool hasSSE41() const { return X86SSELevel >= SSE41; }
589   bool hasSSE42() const { return X86SSELevel >= SSE42; }
590   bool hasAVX() const { return X86SSELevel >= AVX; }
591   bool hasAVX2() const { return X86SSELevel >= AVX2; }
592   bool hasAVX512() const { return X86SSELevel >= AVX512F; }
593   bool hasInt256() const { return hasAVX2(); }
594   bool hasSSE4A() const { return HasSSE4A; }
595   bool hasMMX() const { return X863DNowLevel >= MMX; }
596   bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
597   bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
598   bool hasPOPCNT() const { return HasPOPCNT; }
599   bool hasAES() const { return HasAES; }
600   bool hasVAES() const { return HasVAES; }
601   bool hasFXSR() const { return HasFXSR; }
602   bool hasXSAVE() const { return HasXSAVE; }
603   bool hasXSAVEOPT() const { return HasXSAVEOPT; }
604   bool hasXSAVEC() const { return HasXSAVEC; }
605   bool hasXSAVES() const { return HasXSAVES; }
606   bool hasPCLMUL() const { return HasPCLMUL; }
607   bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; }
608   bool hasGFNI() const { return HasGFNI; }
609   // Prefer FMA4 to FMA - its better for commutation/memory folding and
610   // has equal or better performance on all supported targets.
611   bool hasFMA() const { return HasFMA; }
612   bool hasFMA4() const { return HasFMA4; }
613   bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
614   bool hasXOP() const { return HasXOP; }
615   bool hasTBM() const { return HasTBM; }
616   bool hasLWP() const { return HasLWP; }
617   bool hasMOVBE() const { return HasMOVBE; }
618   bool hasRDRAND() const { return HasRDRAND; }
619   bool hasF16C() const { return HasF16C; }
620   bool hasFSGSBase() const { return HasFSGSBase; }
621   bool hasLZCNT() const { return HasLZCNT; }
622   bool hasBMI() const { return HasBMI; }
623   bool hasBMI2() const { return HasBMI2; }
624   bool hasVBMI() const { return HasVBMI; }
625   bool hasVBMI2() const { return HasVBMI2; }
626   bool hasIFMA() const { return HasIFMA; }
627   bool hasRTM() const { return HasRTM; }
628   bool hasADX() const { return HasADX; }
629   bool hasSHA() const { return HasSHA; }
630   bool hasPRFCHW() const { return HasPRFCHW || HasPREFETCHWT1; }
631   bool hasPREFETCHWT1() const { return HasPREFETCHWT1; }
632   bool hasSSEPrefetch() const {
633     // We implicitly enable these when we have a write prefix supporting cache
634     // level OR if we have prfchw, but don't already have a read prefetch from
635     // 3dnow.
636     return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
637   }
638   bool hasRDSEED() const { return HasRDSEED; }
639   bool hasLAHFSAHF() const { return HasLAHFSAHF; }
640   bool hasMWAITX() const { return HasMWAITX; }
641   bool hasCLZERO() const { return HasCLZERO; }
642   bool hasCLDEMOTE() const { return HasCLDEMOTE; }
643   bool hasMOVDIRI() const { return HasMOVDIRI; }
644   bool hasMOVDIR64B() const { return HasMOVDIR64B; }
645   bool hasPTWRITE() const { return HasPTWRITE; }
646   bool isSHLDSlow() const { return IsSHLDSlow; }
647   bool isPMULLDSlow() const { return IsPMULLDSlow; }
648   bool isPMADDWDSlow() const { return IsPMADDWDSlow; }
649   bool isUnalignedMem16Slow() const { return IsUAMem16Slow; }
650   bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
651   int getGatherOverhead() const { return GatherOverhead; }
652   int getScatterOverhead() const { return ScatterOverhead; }
653   bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
654   bool hasCmpxchg16b() const { return HasCmpxchg16b && is64Bit(); }
655   bool useLeaForSP() const { return UseLeaForSP; }
656   bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; }
657   bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; }
658   bool hasFastVariableShuffle() const {
659     return HasFastVariableShuffle;
660   }
661   bool insertVZEROUPPER() const { return InsertVZEROUPPER; }
662   bool hasFastGather() const { return HasFastGather; }
663   bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
664   bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
665   bool hasFastLZCNT() const { return HasFastLZCNT; }
666   bool hasFastSHLDRotate() const { return HasFastSHLDRotate; }
667   bool hasFastBEXTR() const { return HasFastBEXTR; }
668   bool hasFastHorizontalOps() const { return HasFastHorizontalOps; }
669   bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; }
670   bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; }
671   bool hasMacroFusion() const { return HasMacroFusion; }
672   bool hasBranchFusion() const { return HasBranchFusion; }
673   bool hasERMSB() const { return HasERMSB; }
674   bool hasSlowDivide32() const { return HasSlowDivide32; }
675   bool hasSlowDivide64() const { return HasSlowDivide64; }
676   bool padShortFunctions() const { return PadShortFunctions; }
677   bool slowTwoMemOps() const { return SlowTwoMemOps; }
678   bool LEAusesAG() const { return LEAUsesAG; }
679   bool slowLEA() const { return SlowLEA; }
680   bool slow3OpsLEA() const { return Slow3OpsLEA; }
681   bool slowIncDec() const { return SlowIncDec; }
682   bool hasCDI() const { return HasCDI; }
683   bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; }
684   bool hasPFI() const { return HasPFI; }
685   bool hasERI() const { return HasERI; }
686   bool hasDQI() const { return HasDQI; }
687   bool hasBWI() const { return HasBWI; }
688   bool hasVLX() const { return HasVLX; }
689   bool hasPKU() const { return HasPKU; }
690   bool hasVNNI() const { return HasVNNI; }
691   bool hasBF16() const { return HasBF16; }
692   bool hasVP2INTERSECT() const { return HasVP2INTERSECT; }
693   bool hasBITALG() const { return HasBITALG; }
694   bool hasSHSTK() const { return HasSHSTK; }
695   bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; }
696   bool hasCLWB() const { return HasCLWB; }
697   bool hasWBNOINVD() const { return HasWBNOINVD; }
698   bool hasRDPID() const { return HasRDPID; }
699   bool hasWAITPKG() const { return HasWAITPKG; }
700   bool hasPCONFIG() const { return HasPCONFIG; }
701   bool hasSGX() const { return HasSGX; }
702   bool threewayBranchProfitable() const { return ThreewayBranchProfitable; }
703   bool hasINVPCID() const { return HasINVPCID; }
704   bool hasENQCMD() const { return HasENQCMD; }
705   bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; }
706   bool useRetpolineIndirectBranches() const {
707     return UseRetpolineIndirectBranches;
708   }
709   bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; }
710   bool preferMaskRegisters() const { return PreferMaskRegisters; }
711   bool useGLMDivSqrtCosts() const { return UseGLMDivSqrtCosts; }
712
713   unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
714   unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
715
716   // Helper functions to determine when we should allow widening to 512-bit
717   // during codegen.
718   // TODO: Currently we're always allowing widening on CPUs without VLX,
719   // because for many cases we don't have a better option.
720   bool canExtendTo512DQ() const {
721     return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
722   }
723   bool canExtendTo512BW() const  {
724     return hasBWI() && canExtendTo512DQ();
725   }
726
727   // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
728   // disable them in the legalizer.
729   bool useAVX512Regs() const {
730     return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
731   }
732
733   bool useBWIRegs() const {
734     return hasBWI() && useAVX512Regs();
735   }
736
737   bool isXRaySupported() const override { return is64Bit(); }
738
739   X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; }
740
741   /// TODO: to be removed later and replaced with suitable properties
742   bool isAtom() const { return X86ProcFamily == IntelAtom; }
743   bool isSLM() const { return X86ProcFamily == IntelSLM; }
744   bool useSoftFloat() const { return UseSoftFloat; }
745   bool useAA() const override { return UseAA; }
746
747   /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
748   /// no-sse2). There isn't any reason to disable it if the target processor
749   /// supports it.
750   bool hasMFence() const { return hasSSE2() || is64Bit(); }
751
752   const Triple &getTargetTriple() const { return TargetTriple; }
753
754   bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
755   bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
756   bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
757   bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
758   bool isTargetPS4() const { return TargetTriple.isPS4CPU(); }
759
760   bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
761   bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
762   bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
763
764   bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
765   bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
766   bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
767   bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
768   bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
769   bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
770   bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
771   bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
772   bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
773
774   bool isTargetWindowsMSVC() const {
775     return TargetTriple.isWindowsMSVCEnvironment();
776   }
777
778   bool isTargetWindowsCoreCLR() const {
779     return TargetTriple.isWindowsCoreCLREnvironment();
780   }
781
782   bool isTargetWindowsCygwin() const {
783     return TargetTriple.isWindowsCygwinEnvironment();
784   }
785
786   bool isTargetWindowsGNU() const {
787     return TargetTriple.isWindowsGNUEnvironment();
788   }
789
790   bool isTargetWindowsItanium() const {
791     return TargetTriple.isWindowsItaniumEnvironment();
792   }
793
794   bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
795
796   bool isOSWindows() const { return TargetTriple.isOSWindows(); }
797
798   bool isTargetWin64() const { return In64BitMode && isOSWindows(); }
799
800   bool isTargetWin32() const { return !In64BitMode && isOSWindows(); }
801
802   bool isPICStyleGOT() const { return PICStyle == PICStyles::Style::GOT; }
803   bool isPICStyleRIPRel() const { return PICStyle == PICStyles::Style::RIPRel; }
804
805   bool isPICStyleStubPIC() const {
806     return PICStyle == PICStyles::Style::StubPIC;
807   }
808
809   bool isPositionIndependent() const { return TM.isPositionIndependent(); }
810
811   bool isCallingConvWin64(CallingConv::ID CC) const {
812     switch (CC) {
813     // On Win64, all these conventions just use the default convention.
814     case CallingConv::C:
815     case CallingConv::Fast:
816     case CallingConv::Tail:
817     case CallingConv::Swift:
818     case CallingConv::X86_FastCall:
819     case CallingConv::X86_StdCall:
820     case CallingConv::X86_ThisCall:
821     case CallingConv::X86_VectorCall:
822     case CallingConv::Intel_OCL_BI:
823       return isTargetWin64();
824     // This convention allows using the Win64 convention on other targets.
825     case CallingConv::Win64:
826       return true;
827     // This convention allows using the SysV convention on Windows targets.
828     case CallingConv::X86_64_SysV:
829       return false;
830     // Otherwise, who knows what this is.
831     default:
832       return false;
833     }
834   }
835
836   /// Classify a global variable reference for the current subtarget according
837   /// to how we should reference it in a non-pcrel context.
838   unsigned char classifyLocalReference(const GlobalValue *GV) const;
839
840   unsigned char classifyGlobalReference(const GlobalValue *GV,
841                                         const Module &M) const;
842   unsigned char classifyGlobalReference(const GlobalValue *GV) const;
843
844   /// Classify a global function reference for the current subtarget.
845   unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
846                                                 const Module &M) const;
847   unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const;
848
849   /// Classify a blockaddress reference for the current subtarget according to
850   /// how we should reference it in a non-pcrel context.
851   unsigned char classifyBlockAddressReference() const;
852
853   /// Return true if the subtarget allows calls to immediate address.
854   bool isLegalToCallImmediateAddr() const;
855
856   /// If we are using retpolines, we need to expand indirectbr to avoid it
857   /// lowering to an actual indirect jump.
858   bool enableIndirectBrExpand() const override {
859     return useRetpolineIndirectBranches();
860   }
861
862   /// Enable the MachineScheduler pass for all X86 subtargets.
863   bool enableMachineScheduler() const override { return true; }
864
865   bool enableEarlyIfConversion() const override;
866
867   void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>>
868                               &Mutations) const override;
869
870   AntiDepBreakMode getAntiDepBreakMode() const override {
871     return TargetSubtargetInfo::ANTIDEP_CRITICAL;
872   }
873
874   bool enableAdvancedRASplitCost() const override { return true; }
875 };
876
877 } // end namespace llvm
878
879 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H