]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / X86 / X86TargetTransformInfo.cpp
1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 ///   SSE 3   - Pentium4 / Athlon64
23 ///   SSE 4.1 - Penryn
24 ///   SSE 4.2 - Nehalem
25 ///   AVX     - Sandy Bridge
26 ///   AVX2    - Haswell
27 ///   AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 ///                   divss     sqrtss          rsqrtss
30 ///   AMD K7            11-16     19              3
31 ///   Piledriver        9-24      13-15           5
32 ///   Jaguar            14        16              2
33 ///   Pentium II,III    18        30              2
34 ///   Nehalem           7-14      7-18            3
35 ///   Haswell           10-13     11              5
36 /// TODO: Develop and implement  the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
40
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "x86tti"
52
53 //===----------------------------------------------------------------------===//
54 //
55 // X86 cost model.
56 //
57 //===----------------------------------------------------------------------===//
58
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62   // TODO: Currently the __builtin_popcount() implementation using SSE3
63   //   instructions is inefficient. Once the problem is fixed, we should
64   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
65   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
66 }
67
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69   TargetTransformInfo::CacheLevel Level) const {
70   switch (Level) {
71   case TargetTransformInfo::CacheLevel::L1D:
72     //   - Penryn
73     //   - Nehalem
74     //   - Westmere
75     //   - Sandy Bridge
76     //   - Ivy Bridge
77     //   - Haswell
78     //   - Broadwell
79     //   - Skylake
80     //   - Kabylake
81     return 32 * 1024;  //  32 KByte
82   case TargetTransformInfo::CacheLevel::L2D:
83     //   - Penryn
84     //   - Nehalem
85     //   - Westmere
86     //   - Sandy Bridge
87     //   - Ivy Bridge
88     //   - Haswell
89     //   - Broadwell
90     //   - Skylake
91     //   - Kabylake
92     return 256 * 1024; // 256 KByte
93   }
94
95   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
96 }
97
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99   TargetTransformInfo::CacheLevel Level) const {
100   //   - Penryn
101   //   - Nehalem
102   //   - Westmere
103   //   - Sandy Bridge
104   //   - Ivy Bridge
105   //   - Haswell
106   //   - Broadwell
107   //   - Skylake
108   //   - Kabylake
109   switch (Level) {
110   case TargetTransformInfo::CacheLevel::L1D:
111     LLVM_FALLTHROUGH;
112   case TargetTransformInfo::CacheLevel::L2D:
113     return 8;
114   }
115
116   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
117 }
118
119 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
120   if (Vector && !ST->hasSSE1())
121     return 0;
122
123   if (ST->is64Bit()) {
124     if (Vector && ST->hasAVX512())
125       return 32;
126     return 16;
127   }
128   return 8;
129 }
130
131 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
132   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
133   if (Vector) {
134     if (ST->hasAVX512() && PreferVectorWidth >= 512)
135       return 512;
136     if (ST->hasAVX() && PreferVectorWidth >= 256)
137       return 256;
138     if (ST->hasSSE1() && PreferVectorWidth >= 128)
139       return 128;
140     return 0;
141   }
142
143   if (ST->is64Bit())
144     return 64;
145
146   return 32;
147 }
148
149 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
150   return getRegisterBitWidth(true);
151 }
152
153 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
154   // If the loop will not be vectorized, don't interleave the loop.
155   // Let regular unroll to unroll the loop, which saves the overflow
156   // check and memory check cost.
157   if (VF == 1)
158     return 1;
159
160   if (ST->isAtom())
161     return 1;
162
163   // Sandybridge and Haswell have multiple execution ports and pipelined
164   // vector units.
165   if (ST->hasAVX())
166     return 4;
167
168   return 2;
169 }
170
171 int X86TTIImpl::getArithmeticInstrCost(
172     unsigned Opcode, Type *Ty,
173     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
174     TTI::OperandValueProperties Opd1PropInfo,
175     TTI::OperandValueProperties Opd2PropInfo,
176     ArrayRef<const Value *> Args) {
177   // Legalize the type.
178   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
179
180   int ISD = TLI->InstructionOpcodeToISD(Opcode);
181   assert(ISD && "Invalid opcode");
182
183   static const CostTblEntry GLMCostTable[] = {
184     { ISD::FDIV,  MVT::f32,   18 }, // divss
185     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
186     { ISD::FDIV,  MVT::f64,   33 }, // divsd
187     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
188   };
189
190   if (ST->isGLM())
191     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
192                                             LT.second))
193       return LT.first * Entry->Cost;
194
195   static const CostTblEntry SLMCostTable[] = {
196     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
197     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
198     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
199     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
200     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
201     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
202     { ISD::FDIV,  MVT::f32,   17 }, // divss
203     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
204     { ISD::FDIV,  MVT::f64,   32 }, // divsd
205     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
206     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
207     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
208     // v2i64/v4i64 mul is custom lowered as a series of long:
209     // multiplies(3), shifts(3) and adds(2)
210     // slm muldq version throughput is 2 and addq throughput 4
211     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
212     //       3X4 (addq throughput) = 17
213     { ISD::MUL,   MVT::v2i64, 17 },
214     // slm addq\subq throughput is 4
215     { ISD::ADD,   MVT::v2i64, 4  },
216     { ISD::SUB,   MVT::v2i64, 4  },
217   };
218
219   if (ST->isSLM()) {
220     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
221       // Check if the operands can be shrinked into a smaller datatype.
222       bool Op1Signed = false;
223       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
224       bool Op2Signed = false;
225       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
226
227       bool signedMode = Op1Signed | Op2Signed;
228       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
229
230       if (OpMinSize <= 7)
231         return LT.first * 3; // pmullw/sext
232       if (!signedMode && OpMinSize <= 8)
233         return LT.first * 3; // pmullw/zext
234       if (OpMinSize <= 15)
235         return LT.first * 5; // pmullw/pmulhw/pshuf
236       if (!signedMode && OpMinSize <= 16)
237         return LT.first * 5; // pmullw/pmulhw/pshuf
238     }
239
240     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
241                                             LT.second)) {
242       return LT.first * Entry->Cost;
243     }
244   }
245
246   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
247        ISD == ISD::UREM) &&
248       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
249        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
250       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
251     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
252       // On X86, vector signed division by constants power-of-two are
253       // normally expanded to the sequence SRA + SRL + ADD + SRA.
254       // The OperandValue properties may not be the same as that of the previous
255       // operation; conservatively assume OP_None.
256       int Cost =
257           2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
258                                      TargetTransformInfo::OP_None,
259                                      TargetTransformInfo::OP_None);
260       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
261                                      TargetTransformInfo::OP_None,
262                                      TargetTransformInfo::OP_None);
263       Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
264                                      TargetTransformInfo::OP_None,
265                                      TargetTransformInfo::OP_None);
266
267       if (ISD == ISD::SREM) {
268         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
269         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info);
270         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Op1Info, Op2Info);
271       }
272
273       return Cost;
274     }
275
276     // Vector unsigned division/remainder will be simplified to shifts/masks.
277     if (ISD == ISD::UDIV)
278       return getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
279                                     TargetTransformInfo::OP_None,
280                                     TargetTransformInfo::OP_None);
281
282     if (ISD == ISD::UREM)
283       return getArithmeticInstrCost(Instruction::And, Ty, Op1Info, Op2Info,
284                                     TargetTransformInfo::OP_None,
285                                     TargetTransformInfo::OP_None);
286   }
287
288   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
289     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
290     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
291     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
292   };
293
294   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
295       ST->hasBWI()) {
296     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
297                                             LT.second))
298       return LT.first * Entry->Cost;
299   }
300
301   static const CostTblEntry AVX512UniformConstCostTable[] = {
302     { ISD::SRA,  MVT::v2i64,   1 },
303     { ISD::SRA,  MVT::v4i64,   1 },
304     { ISD::SRA,  MVT::v8i64,   1 },
305   };
306
307   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
308       ST->hasAVX512()) {
309     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
310                                             LT.second))
311       return LT.first * Entry->Cost;
312   }
313
314   static const CostTblEntry AVX2UniformConstCostTable[] = {
315     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
316     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
317     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
318
319     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
320   };
321
322   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
323       ST->hasAVX2()) {
324     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
325                                             LT.second))
326       return LT.first * Entry->Cost;
327   }
328
329   static const CostTblEntry SSE2UniformConstCostTable[] = {
330     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
331     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
332     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
333
334     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
335     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
336     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
337   };
338
339   // XOP has faster vXi8 shifts.
340   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
341       ST->hasSSE2() && !ST->hasXOP()) {
342     if (const auto *Entry =
343             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
344       return LT.first * Entry->Cost;
345   }
346
347   static const CostTblEntry AVX512BWConstCostTable[] = {
348     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
349     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
350     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
351     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
352     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
353     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
354     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
355     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
356   };
357
358   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
359        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
360       ST->hasBWI()) {
361     if (const auto *Entry =
362             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
363       return LT.first * Entry->Cost;
364   }
365
366   static const CostTblEntry AVX512ConstCostTable[] = {
367     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
368     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
369     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
370     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
371   };
372
373   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
374        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
375       ST->hasAVX512()) {
376     if (const auto *Entry =
377             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
378       return LT.first * Entry->Cost;
379   }
380
381   static const CostTblEntry AVX2ConstCostTable[] = {
382     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
383     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
384     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
385     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
386     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
387     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
388     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
389     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
390     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
391     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
392     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
393     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
394   };
395
396   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
397        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
398       ST->hasAVX2()) {
399     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
400       return LT.first * Entry->Cost;
401   }
402
403   static const CostTblEntry SSE2ConstCostTable[] = {
404     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
405     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
406     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
407     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
408     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
409     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
410     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
411     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
412     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
413     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
414     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
415     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
416     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
417     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
418     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
419     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
420     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
421     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
422     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
423     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
424     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
425     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
426     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
427     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
428   };
429
430   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
431        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
432       ST->hasSSE2()) {
433     // pmuldq sequence.
434     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
435       return LT.first * 32;
436     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
437       return LT.first * 38;
438     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
439       return LT.first * 15;
440     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
441       return LT.first * 20;
442
443     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
444       return LT.first * Entry->Cost;
445   }
446
447   static const CostTblEntry AVX2UniformCostTable[] = {
448     // Uniform splats are cheaper for the following instructions.
449     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
450     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
451     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
452   };
453
454   if (ST->hasAVX2() &&
455       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
456        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
457     if (const auto *Entry =
458             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
459       return LT.first * Entry->Cost;
460   }
461
462   static const CostTblEntry SSE2UniformCostTable[] = {
463     // Uniform splats are cheaper for the following instructions.
464     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
465     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
466     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
467
468     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
469     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
470     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
471
472     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
473     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
474   };
475
476   if (ST->hasSSE2() &&
477       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
478        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
479     if (const auto *Entry =
480             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
481       return LT.first * Entry->Cost;
482   }
483
484   static const CostTblEntry AVX512DQCostTable[] = {
485     { ISD::MUL,  MVT::v2i64, 1 },
486     { ISD::MUL,  MVT::v4i64, 1 },
487     { ISD::MUL,  MVT::v8i64, 1 }
488   };
489
490   // Look for AVX512DQ lowering tricks for custom cases.
491   if (ST->hasDQI())
492     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
493       return LT.first * Entry->Cost;
494
495   static const CostTblEntry AVX512BWCostTable[] = {
496     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
497     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
498     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
499
500     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
501     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
502     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
503
504     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
505     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
506     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
507
508     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
509     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
510     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
511
512     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
513     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
514     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
515   };
516
517   // Look for AVX512BW lowering tricks for custom cases.
518   if (ST->hasBWI())
519     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
520       return LT.first * Entry->Cost;
521
522   static const CostTblEntry AVX512CostTable[] = {
523     { ISD::SHL,     MVT::v16i32,     1 },
524     { ISD::SRL,     MVT::v16i32,     1 },
525     { ISD::SRA,     MVT::v16i32,     1 },
526
527     { ISD::SHL,     MVT::v8i64,      1 },
528     { ISD::SRL,     MVT::v8i64,      1 },
529
530     { ISD::SRA,     MVT::v2i64,      1 },
531     { ISD::SRA,     MVT::v4i64,      1 },
532     { ISD::SRA,     MVT::v8i64,      1 },
533
534     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
535     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
536     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
537     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
538     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
539     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
540
541     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
542     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
543     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
544
545     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
546     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
547     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
548   };
549
550   if (ST->hasAVX512())
551     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
552       return LT.first * Entry->Cost;
553
554   static const CostTblEntry AVX2ShiftCostTable[] = {
555     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
556     // customize them to detect the cases where shift amount is a scalar one.
557     { ISD::SHL,     MVT::v4i32,    1 },
558     { ISD::SRL,     MVT::v4i32,    1 },
559     { ISD::SRA,     MVT::v4i32,    1 },
560     { ISD::SHL,     MVT::v8i32,    1 },
561     { ISD::SRL,     MVT::v8i32,    1 },
562     { ISD::SRA,     MVT::v8i32,    1 },
563     { ISD::SHL,     MVT::v2i64,    1 },
564     { ISD::SRL,     MVT::v2i64,    1 },
565     { ISD::SHL,     MVT::v4i64,    1 },
566     { ISD::SRL,     MVT::v4i64,    1 },
567   };
568
569   // Look for AVX2 lowering tricks.
570   if (ST->hasAVX2()) {
571     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
572         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
573          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
574       // On AVX2, a packed v16i16 shift left by a constant build_vector
575       // is lowered into a vector multiply (vpmullw).
576       return getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info,
577                                     TargetTransformInfo::OP_None,
578                                     TargetTransformInfo::OP_None);
579
580     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
581       return LT.first * Entry->Cost;
582   }
583
584   static const CostTblEntry XOPShiftCostTable[] = {
585     // 128bit shifts take 1cy, but right shifts require negation beforehand.
586     { ISD::SHL,     MVT::v16i8,    1 },
587     { ISD::SRL,     MVT::v16i8,    2 },
588     { ISD::SRA,     MVT::v16i8,    2 },
589     { ISD::SHL,     MVT::v8i16,    1 },
590     { ISD::SRL,     MVT::v8i16,    2 },
591     { ISD::SRA,     MVT::v8i16,    2 },
592     { ISD::SHL,     MVT::v4i32,    1 },
593     { ISD::SRL,     MVT::v4i32,    2 },
594     { ISD::SRA,     MVT::v4i32,    2 },
595     { ISD::SHL,     MVT::v2i64,    1 },
596     { ISD::SRL,     MVT::v2i64,    2 },
597     { ISD::SRA,     MVT::v2i64,    2 },
598     // 256bit shifts require splitting if AVX2 didn't catch them above.
599     { ISD::SHL,     MVT::v32i8,  2+2 },
600     { ISD::SRL,     MVT::v32i8,  4+2 },
601     { ISD::SRA,     MVT::v32i8,  4+2 },
602     { ISD::SHL,     MVT::v16i16, 2+2 },
603     { ISD::SRL,     MVT::v16i16, 4+2 },
604     { ISD::SRA,     MVT::v16i16, 4+2 },
605     { ISD::SHL,     MVT::v8i32,  2+2 },
606     { ISD::SRL,     MVT::v8i32,  4+2 },
607     { ISD::SRA,     MVT::v8i32,  4+2 },
608     { ISD::SHL,     MVT::v4i64,  2+2 },
609     { ISD::SRL,     MVT::v4i64,  4+2 },
610     { ISD::SRA,     MVT::v4i64,  4+2 },
611   };
612
613   // Look for XOP lowering tricks.
614   if (ST->hasXOP()) {
615     // If the right shift is constant then we'll fold the negation so
616     // it's as cheap as a left shift.
617     int ShiftISD = ISD;
618     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
619         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
620          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
621       ShiftISD = ISD::SHL;
622     if (const auto *Entry =
623             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
624       return LT.first * Entry->Cost;
625   }
626
627   static const CostTblEntry SSE2UniformShiftCostTable[] = {
628     // Uniform splats are cheaper for the following instructions.
629     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
630     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
631     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
632
633     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
634     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
635     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
636
637     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
638     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
639     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
640     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
641   };
642
643   if (ST->hasSSE2() &&
644       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
645        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
646
647     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
648     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
649       return LT.first * 4; // 2*psrad + shuffle.
650
651     if (const auto *Entry =
652             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
653       return LT.first * Entry->Cost;
654   }
655
656   if (ISD == ISD::SHL &&
657       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
658     MVT VT = LT.second;
659     // Vector shift left by non uniform constant can be lowered
660     // into vector multiply.
661     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
662         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
663       ISD = ISD::MUL;
664   }
665
666   static const CostTblEntry AVX2CostTable[] = {
667     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
668     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
669
670     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
671     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
672
673     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
674     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
675     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
676     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
677
678     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
679     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
680     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
681     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
682     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
683     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
684     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
685     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
686
687     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
688     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
689     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
690     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
691     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
692
693     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
694     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
695     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
696     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
697     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
698     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
699
700     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
701     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
702     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
703     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
704     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
705     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
706   };
707
708   // Look for AVX2 lowering tricks for custom cases.
709   if (ST->hasAVX2())
710     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
711       return LT.first * Entry->Cost;
712
713   static const CostTblEntry AVX1CostTable[] = {
714     // We don't have to scalarize unsupported ops. We can issue two half-sized
715     // operations and we only need to extract the upper YMM half.
716     // Two ops + 1 extract + 1 insert = 4.
717     { ISD::MUL,     MVT::v16i16,     4 },
718     { ISD::MUL,     MVT::v8i32,      4 },
719     { ISD::SUB,     MVT::v32i8,      4 },
720     { ISD::ADD,     MVT::v32i8,      4 },
721     { ISD::SUB,     MVT::v16i16,     4 },
722     { ISD::ADD,     MVT::v16i16,     4 },
723     { ISD::SUB,     MVT::v8i32,      4 },
724     { ISD::ADD,     MVT::v8i32,      4 },
725     { ISD::SUB,     MVT::v4i64,      4 },
726     { ISD::ADD,     MVT::v4i64,      4 },
727
728     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
729     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
730     // Because we believe v4i64 to be a legal type, we must also include the
731     // extract+insert in the cost table. Therefore, the cost here is 18
732     // instead of 8.
733     { ISD::MUL,     MVT::v4i64,     18 },
734
735     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
736
737     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
738     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
739     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
740     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
741     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
742     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
743   };
744
745   if (ST->hasAVX())
746     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
747       return LT.first * Entry->Cost;
748
749   static const CostTblEntry SSE42CostTable[] = {
750     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
751     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
752     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
753     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
754
755     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
756     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
757     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
758     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
759
760     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
761     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
762     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
763     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
764
765     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
766     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
767     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
768     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
769   };
770
771   if (ST->hasSSE42())
772     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
773       return LT.first * Entry->Cost;
774
775   static const CostTblEntry SSE41CostTable[] = {
776     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
777     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
778     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
779     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
780     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
781     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
782
783     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
784     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
785     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
786     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
787     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
788     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
789
790     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
791     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
792     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
793     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
794     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
795     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
796
797     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
798   };
799
800   if (ST->hasSSE41())
801     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
802       return LT.first * Entry->Cost;
803
804   static const CostTblEntry SSE2CostTable[] = {
805     // We don't correctly identify costs of casts because they are marked as
806     // custom.
807     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
808     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
809     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
810     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
811     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
812
813     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
814     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
815     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
816     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
817     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
818
819     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
820     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
821     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
822     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
823     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
824
825     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
826     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
827     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
828     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
829
830     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
831     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
832     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
833     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
834
835     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
836     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
837
838     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
839     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
840   };
841
842   if (ST->hasSSE2())
843     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
844       return LT.first * Entry->Cost;
845
846   static const CostTblEntry SSE1CostTable[] = {
847     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
848     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
849
850     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
851     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
852
853     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
854     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
855
856     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
857     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
858     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
859
860     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
861     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
862     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
863   };
864
865   if (ST->hasSSE1())
866     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
867       return LT.first * Entry->Cost;
868
869   // It is not a good idea to vectorize division. We have to scalarize it and
870   // in the process we will often end up having to spilling regular
871   // registers. The overhead of division is going to dominate most kernels
872   // anyways so try hard to prevent vectorization of division - it is
873   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
874   // to hide "20 cycles" for each lane.
875   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
876                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
877     int ScalarCost = getArithmeticInstrCost(
878         Opcode, Ty->getScalarType(), Op1Info, Op2Info,
879         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
880     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
881   }
882
883   // Fallback to the default implementation.
884   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
885 }
886
887 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
888                                Type *SubTp) {
889   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
890   // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
891   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
892
893   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
894   if (Kind == TTI::SK_Transpose)
895     Kind = TTI::SK_PermuteTwoSrc;
896
897   // For Broadcasts we are splatting the first element from the first input
898   // register, so only need to reference that input and all the output
899   // registers are the same.
900   if (Kind == TTI::SK_Broadcast)
901     LT.first = 1;
902
903   // Subvector extractions are free if they start at the beginning of a
904   // vector and cheap if the subvectors are aligned.
905   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
906     int NumElts = LT.second.getVectorNumElements();
907     if ((Index % NumElts) == 0)
908       return 0;
909     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
910     if (SubLT.second.isVector()) {
911       int NumSubElts = SubLT.second.getVectorNumElements();
912       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
913         return SubLT.first;
914     }
915   }
916
917   // We are going to permute multiple sources and the result will be in multiple
918   // destinations. Providing an accurate cost only for splits where the element
919   // type remains the same.
920   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
921     MVT LegalVT = LT.second;
922     if (LegalVT.isVector() &&
923         LegalVT.getVectorElementType().getSizeInBits() ==
924             Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
925         LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
926
927       unsigned VecTySize = DL.getTypeStoreSize(Tp);
928       unsigned LegalVTSize = LegalVT.getStoreSize();
929       // Number of source vectors after legalization:
930       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
931       // Number of destination vectors after legalization:
932       unsigned NumOfDests = LT.first;
933
934       Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
935                                          LegalVT.getVectorNumElements());
936
937       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
938       return NumOfShuffles *
939              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
940     }
941
942     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
943   }
944
945   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
946   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
947     // We assume that source and destination have the same vector type.
948     int NumOfDests = LT.first;
949     int NumOfShufflesPerDest = LT.first * 2 - 1;
950     LT.first = NumOfDests * NumOfShufflesPerDest;
951   }
952
953   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
954       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
955       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
956
957       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
958       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
959
960       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 1}, // vpermt2b
961       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 1}, // vpermt2b
962       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}  // vpermt2b
963   };
964
965   if (ST->hasVBMI())
966     if (const auto *Entry =
967             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
968       return LT.first * Entry->Cost;
969
970   static const CostTblEntry AVX512BWShuffleTbl[] = {
971       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
972       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
973
974       {TTI::SK_Reverse, MVT::v32i16, 1}, // vpermw
975       {TTI::SK_Reverse, MVT::v16i16, 1}, // vpermw
976       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
977
978       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 1}, // vpermw
979       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 1}, // vpermw
980       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1},  // vpermw
981       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
982       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 3},  // vpermw + zext/trunc
983
984       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 1}, // vpermt2w
985       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 1}, // vpermt2w
986       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpermt2w
987       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 3},  // zext + vpermt2w + trunc
988       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
989       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}   // zext + vpermt2w + trunc
990   };
991
992   if (ST->hasBWI())
993     if (const auto *Entry =
994             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
995       return LT.first * Entry->Cost;
996
997   static const CostTblEntry AVX512ShuffleTbl[] = {
998       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
999       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1000       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
1001       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1002
1003       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
1004       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1005       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
1006       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1007
1008       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
1009       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1010       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
1011       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1012       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1013       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
1014       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
1015       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1016       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
1017       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1018       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1019       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
1020       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
1021
1022       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
1023       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1024       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
1025       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1026       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
1027       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
1028       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
1029       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
1030       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
1031       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
1032       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
1033       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1}   // vpermt2d
1034   };
1035
1036   if (ST->hasAVX512())
1037     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1038       return LT.first * Entry->Cost;
1039
1040   static const CostTblEntry AVX2ShuffleTbl[] = {
1041       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
1042       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
1043       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
1044       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
1045       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1046       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
1047
1048       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
1049       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
1050       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
1051       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
1052       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1053       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
1054
1055       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1056       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
1057
1058       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
1059       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
1060       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
1061       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
1062       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1063                                                   // + vpblendvb
1064       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
1065                                                   // + vpblendvb
1066
1067       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
1068       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
1069       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
1070       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
1071       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1072                                                // + vpblendvb
1073       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
1074                                                // + vpblendvb
1075   };
1076
1077   if (ST->hasAVX2())
1078     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1079       return LT.first * Entry->Cost;
1080
1081   static const CostTblEntry XOPShuffleTbl[] = {
1082       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
1083       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
1084       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
1085       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
1086       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1087                                                   // + vinsertf128
1088       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
1089                                                   // + vinsertf128
1090
1091       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1092                                                // + vinsertf128
1093       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
1094       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
1095                                                // + vinsertf128
1096       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
1097   };
1098
1099   if (ST->hasXOP())
1100     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1101       return LT.first * Entry->Cost;
1102
1103   static const CostTblEntry AVX1ShuffleTbl[] = {
1104       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1105       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1106       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1107       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1108       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1109       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
1110
1111       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
1112       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
1113       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
1114       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
1115       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1116                                          // + vinsertf128
1117       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
1118                                          // + vinsertf128
1119
1120       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
1121       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
1122       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
1123       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
1124       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1125       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
1126
1127       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
1128       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
1129       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
1130       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
1131       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1132                                                   // + 2*por + vinsertf128
1133       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
1134                                                   // + 2*por + vinsertf128
1135
1136       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
1137       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
1138       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
1139       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
1140       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1141                                                 // + 4*por + vinsertf128
1142       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
1143                                                 // + 4*por + vinsertf128
1144   };
1145
1146   if (ST->hasAVX())
1147     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1148       return LT.first * Entry->Cost;
1149
1150   static const CostTblEntry SSE41ShuffleTbl[] = {
1151       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1152       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1153       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1154       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1155       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1156       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
1157   };
1158
1159   if (ST->hasSSE41())
1160     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1161       return LT.first * Entry->Cost;
1162
1163   static const CostTblEntry SSSE3ShuffleTbl[] = {
1164       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1165       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1166
1167       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1168       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1169
1170       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1171       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1172
1173       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1174       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1175
1176       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1177       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1178   };
1179
1180   if (ST->hasSSSE3())
1181     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1182       return LT.first * Entry->Cost;
1183
1184   static const CostTblEntry SSE2ShuffleTbl[] = {
1185       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1186       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1187       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1188       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1189       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1190
1191       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1192       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1193       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1194       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1195       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1196                                         // + 2*pshufd + 2*unpck + packus
1197
1198       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1199       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1200       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1201       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1202       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1203
1204       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1205       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1206       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1207       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1208                                                   // + pshufd/unpck
1209     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1210                                                   // + 2*pshufd + 2*unpck + 2*packus
1211
1212     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
1213     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
1214     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
1215     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
1216     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
1217   };
1218
1219   if (ST->hasSSE2())
1220     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1221       return LT.first * Entry->Cost;
1222
1223   static const CostTblEntry SSE1ShuffleTbl[] = {
1224     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
1225     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
1226     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
1227     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1228     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
1229   };
1230
1231   if (ST->hasSSE1())
1232     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1233       return LT.first * Entry->Cost;
1234
1235   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1236 }
1237
1238 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1239                                  const Instruction *I) {
1240   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1241   assert(ISD && "Invalid opcode");
1242
1243   // FIXME: Need a better design of the cost table to handle non-simple types of
1244   // potential massive combinations (elem_num x src_type x dst_type).
1245
1246   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1247     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1248     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1249
1250     // Mask sign extend has an instruction.
1251     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
1252     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
1253     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1254     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
1255     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1256     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
1257
1258     // Mask zero extend is a load + broadcast.
1259     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
1260     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
1261     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1262     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
1263     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1264     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
1265   };
1266
1267   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1268     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1269     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1270     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1271     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1272     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1273     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1274
1275     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
1276     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
1277     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
1278     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
1279     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
1280     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
1281
1282     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
1283     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
1284     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
1285     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
1286     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
1287     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
1288
1289     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
1290     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
1291     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
1292     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
1293     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
1294     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
1295   };
1296
1297   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1298   // 256-bit wide vectors.
1299
1300   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1301     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
1302     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
1303     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
1304
1305     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
1306     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
1307     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
1308     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
1309
1310     // v16i1 -> v16i32 - load + broadcast
1311     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1312     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
1313     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1314     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
1315     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1316     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1317     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1318     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
1319     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1320     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
1321
1322     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1323     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1324     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1325     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1326     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1327     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1328     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1329     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1330
1331     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
1332     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
1333     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
1334     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
1335     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
1336     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
1337     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
1338     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
1339     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
1340     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
1341     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
1342     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
1343     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
1344     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
1345     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
1346     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
1347     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
1348     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
1349     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
1350     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
1351     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
1352     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
1353     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
1354     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
1355
1356     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
1357
1358     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
1359     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
1360     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
1361     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
1362     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  2 },
1363     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  2 },
1364     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
1365     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 2 },
1366     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 2 },
1367   };
1368
1369   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1370     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1371     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
1372     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1373     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
1374     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
1375     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
1376     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
1377     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
1378     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1379     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
1380     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1381     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1382     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1383     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
1384     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1385     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
1386
1387     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
1388     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
1389     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
1390     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
1391     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
1392     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
1393
1394     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
1395     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
1396
1397     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
1398   };
1399
1400   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1401     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
1402     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
1403     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
1404     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
1405     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
1406     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
1407     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
1408     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
1409     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1410     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1411     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
1412     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1413     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1414     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
1415     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1416     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
1417
1418     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
1419     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
1420     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
1421     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
1422     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
1423     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
1424     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
1425
1426     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
1427     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
1428     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
1429     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
1430     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
1431     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
1432     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
1433     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
1434     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1435     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
1436     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
1437     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
1438
1439     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
1440     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
1441     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
1442     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
1443     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
1444     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
1445     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
1446     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
1447     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
1448     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
1449     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
1450     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
1451     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
1452     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
1453     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
1454     // The generic code to compute the scalar overhead is currently broken.
1455     // Workaround this limitation by estimating the scalarization overhead
1456     // here. We have roughly 10 instructions per scalar element.
1457     // Multiply that by the vector width.
1458     // FIXME: remove that when PR19268 is fixed.
1459     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1460     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
1461
1462     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
1463     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
1464     // This node is expanded into scalarized operations but BasicTTI is overly
1465     // optimistic estimating its cost.  It computes 3 per element (one
1466     // vector-extract, one scalar conversion and one vector-insert).  The
1467     // problem is that the inserts form a read-modify-write chain so latency
1468     // should be factored in too.  Inflating the cost per element by 1.
1469     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
1470     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
1471
1472     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
1473     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
1474   };
1475
1476   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1477     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1478     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
1479     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1480     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
1481     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1482     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
1483
1484     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1485     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
1486     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1487     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
1488     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1489     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1490     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1491     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
1492     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1493     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
1494     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1495     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
1496     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1497     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1498     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1499     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
1500     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1501     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1502
1503     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
1504     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
1505     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
1506     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
1507     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
1508     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
1509     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
1510
1511     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
1512   };
1513
1514   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1515     // These are somewhat magic numbers justified by looking at the output of
1516     // Intel's IACA, running some kernels and making sure when we take
1517     // legalization into account the throughput will be overestimated.
1518     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1519     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1520     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1521     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1522     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1523     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1524     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1525     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1526
1527     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1528     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1529     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1530     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1531     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1532     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1533     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1534     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1535
1536     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  3 },
1537
1538     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
1539
1540     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
1541     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
1542     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
1543     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
1544     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
1545     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
1546     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
1547     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
1548     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1549     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
1550     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
1551     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
1552     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
1553     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
1554     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
1555     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
1556     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
1557     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
1558     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
1559     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
1560     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1561     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1562     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
1563     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
1564
1565     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
1566     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
1567     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
1568     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
1569     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
1570     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
1571     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
1572     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
1573     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
1574   };
1575
1576   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1577   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1578
1579   if (ST->hasSSE2() && !ST->hasAVX()) {
1580     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1581                                                    LTDest.second, LTSrc.second))
1582       return LTSrc.first * Entry->Cost;
1583   }
1584
1585   EVT SrcTy = TLI->getValueType(DL, Src);
1586   EVT DstTy = TLI->getValueType(DL, Dst);
1587
1588   // The function getSimpleVT only handles simple value types.
1589   if (!SrcTy.isSimple() || !DstTy.isSimple())
1590     return BaseT::getCastInstrCost(Opcode, Dst, Src);
1591
1592   MVT SimpleSrcTy = SrcTy.getSimpleVT();
1593   MVT SimpleDstTy = DstTy.getSimpleVT();
1594
1595   // Make sure that neither type is going to be split before using the
1596   // AVX512 tables. This handles -mprefer-vector-width=256
1597   // with -min-legal-vector-width<=256
1598   if (TLI->getTypeAction(SimpleSrcTy) != TargetLowering::TypeSplitVector &&
1599       TLI->getTypeAction(SimpleDstTy) != TargetLowering::TypeSplitVector) {
1600     if (ST->hasBWI())
1601       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1602                                                      SimpleDstTy, SimpleSrcTy))
1603         return Entry->Cost;
1604
1605     if (ST->hasDQI())
1606       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1607                                                      SimpleDstTy, SimpleSrcTy))
1608         return Entry->Cost;
1609
1610     if (ST->hasAVX512())
1611       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1612                                                      SimpleDstTy, SimpleSrcTy))
1613         return Entry->Cost;
1614   }
1615
1616   if (ST->hasAVX2()) {
1617     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1618                                                    SimpleDstTy, SimpleSrcTy))
1619       return Entry->Cost;
1620   }
1621
1622   if (ST->hasAVX()) {
1623     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1624                                                    SimpleDstTy, SimpleSrcTy))
1625       return Entry->Cost;
1626   }
1627
1628   if (ST->hasSSE41()) {
1629     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1630                                                    SimpleDstTy, SimpleSrcTy))
1631       return Entry->Cost;
1632   }
1633
1634   if (ST->hasSSE2()) {
1635     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1636                                                    SimpleDstTy, SimpleSrcTy))
1637       return Entry->Cost;
1638   }
1639
1640   return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
1641 }
1642
1643 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1644                                    const Instruction *I) {
1645   // Legalize the type.
1646   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1647
1648   MVT MTy = LT.second;
1649
1650   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1651   assert(ISD && "Invalid opcode");
1652
1653   unsigned ExtraCost = 0;
1654   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
1655     // Some vector comparison predicates cost extra instructions.
1656     if (MTy.isVector() &&
1657         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
1658           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
1659           ST->hasBWI())) {
1660       switch (cast<CmpInst>(I)->getPredicate()) {
1661       case CmpInst::Predicate::ICMP_NE:
1662         // xor(cmpeq(x,y),-1)
1663         ExtraCost = 1;
1664         break;
1665       case CmpInst::Predicate::ICMP_SGE:
1666       case CmpInst::Predicate::ICMP_SLE:
1667         // xor(cmpgt(x,y),-1)
1668         ExtraCost = 1;
1669         break;
1670       case CmpInst::Predicate::ICMP_ULT:
1671       case CmpInst::Predicate::ICMP_UGT:
1672         // cmpgt(xor(x,signbit),xor(y,signbit))
1673         // xor(cmpeq(pmaxu(x,y),x),-1)
1674         ExtraCost = 2;
1675         break;
1676       case CmpInst::Predicate::ICMP_ULE:
1677       case CmpInst::Predicate::ICMP_UGE:
1678         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
1679             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
1680           // cmpeq(psubus(x,y),0)
1681           // cmpeq(pminu(x,y),x)
1682           ExtraCost = 1;
1683         } else {
1684           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
1685           ExtraCost = 3;
1686         }
1687         break;
1688       default:
1689         break;
1690       }
1691     }
1692   }
1693
1694   static const CostTblEntry AVX512BWCostTbl[] = {
1695     { ISD::SETCC,   MVT::v32i16,  1 },
1696     { ISD::SETCC,   MVT::v64i8,   1 },
1697
1698     { ISD::SELECT,  MVT::v32i16,  1 },
1699     { ISD::SELECT,  MVT::v64i8,   1 },
1700   };
1701
1702   static const CostTblEntry AVX512CostTbl[] = {
1703     { ISD::SETCC,   MVT::v8i64,   1 },
1704     { ISD::SETCC,   MVT::v16i32,  1 },
1705     { ISD::SETCC,   MVT::v8f64,   1 },
1706     { ISD::SETCC,   MVT::v16f32,  1 },
1707
1708     { ISD::SELECT,  MVT::v8i64,   1 },
1709     { ISD::SELECT,  MVT::v16i32,  1 },
1710     { ISD::SELECT,  MVT::v8f64,   1 },
1711     { ISD::SELECT,  MVT::v16f32,  1 },
1712   };
1713
1714   static const CostTblEntry AVX2CostTbl[] = {
1715     { ISD::SETCC,   MVT::v4i64,   1 },
1716     { ISD::SETCC,   MVT::v8i32,   1 },
1717     { ISD::SETCC,   MVT::v16i16,  1 },
1718     { ISD::SETCC,   MVT::v32i8,   1 },
1719
1720     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
1721     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
1722     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
1723     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
1724   };
1725
1726   static const CostTblEntry AVX1CostTbl[] = {
1727     { ISD::SETCC,   MVT::v4f64,   1 },
1728     { ISD::SETCC,   MVT::v8f32,   1 },
1729     // AVX1 does not support 8-wide integer compare.
1730     { ISD::SETCC,   MVT::v4i64,   4 },
1731     { ISD::SETCC,   MVT::v8i32,   4 },
1732     { ISD::SETCC,   MVT::v16i16,  4 },
1733     { ISD::SETCC,   MVT::v32i8,   4 },
1734
1735     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
1736     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
1737     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
1738     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
1739     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
1740     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
1741   };
1742
1743   static const CostTblEntry SSE42CostTbl[] = {
1744     { ISD::SETCC,   MVT::v2f64,   1 },
1745     { ISD::SETCC,   MVT::v4f32,   1 },
1746     { ISD::SETCC,   MVT::v2i64,   1 },
1747   };
1748
1749   static const CostTblEntry SSE41CostTbl[] = {
1750     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
1751     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
1752     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
1753     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
1754     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
1755     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
1756   };
1757
1758   static const CostTblEntry SSE2CostTbl[] = {
1759     { ISD::SETCC,   MVT::v2f64,   2 },
1760     { ISD::SETCC,   MVT::f64,     1 },
1761     { ISD::SETCC,   MVT::v2i64,   8 },
1762     { ISD::SETCC,   MVT::v4i32,   1 },
1763     { ISD::SETCC,   MVT::v8i16,   1 },
1764     { ISD::SETCC,   MVT::v16i8,   1 },
1765
1766     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
1767     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
1768     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
1769     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
1770     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
1771   };
1772
1773   static const CostTblEntry SSE1CostTbl[] = {
1774     { ISD::SETCC,   MVT::v4f32,   2 },
1775     { ISD::SETCC,   MVT::f32,     1 },
1776
1777     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
1778   };
1779
1780   if (ST->hasBWI())
1781     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1782       return LT.first * (ExtraCost + Entry->Cost);
1783
1784   if (ST->hasAVX512())
1785     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1786       return LT.first * (ExtraCost + Entry->Cost);
1787
1788   if (ST->hasAVX2())
1789     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1790       return LT.first * (ExtraCost + Entry->Cost);
1791
1792   if (ST->hasAVX())
1793     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1794       return LT.first * (ExtraCost + Entry->Cost);
1795
1796   if (ST->hasSSE42())
1797     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1798       return LT.first * (ExtraCost + Entry->Cost);
1799
1800   if (ST->hasSSE41())
1801     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
1802       return LT.first * (ExtraCost + Entry->Cost);
1803
1804   if (ST->hasSSE2())
1805     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1806       return LT.first * (ExtraCost + Entry->Cost);
1807
1808   if (ST->hasSSE1())
1809     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1810       return LT.first * (ExtraCost + Entry->Cost);
1811
1812   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1813 }
1814
1815 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1816
1817 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1818                                       ArrayRef<Type *> Tys, FastMathFlags FMF,
1819                                       unsigned ScalarizationCostPassed) {
1820   // Costs should match the codegen from:
1821   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1822   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1823   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1824   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1825   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1826   static const CostTblEntry AVX512CDCostTbl[] = {
1827     { ISD::CTLZ,       MVT::v8i64,   1 },
1828     { ISD::CTLZ,       MVT::v16i32,  1 },
1829     { ISD::CTLZ,       MVT::v32i16,  8 },
1830     { ISD::CTLZ,       MVT::v64i8,  20 },
1831     { ISD::CTLZ,       MVT::v4i64,   1 },
1832     { ISD::CTLZ,       MVT::v8i32,   1 },
1833     { ISD::CTLZ,       MVT::v16i16,  4 },
1834     { ISD::CTLZ,       MVT::v32i8,  10 },
1835     { ISD::CTLZ,       MVT::v2i64,   1 },
1836     { ISD::CTLZ,       MVT::v4i32,   1 },
1837     { ISD::CTLZ,       MVT::v8i16,   4 },
1838     { ISD::CTLZ,       MVT::v16i8,   4 },
1839   };
1840   static const CostTblEntry AVX512BWCostTbl[] = {
1841     { ISD::BITREVERSE, MVT::v8i64,   5 },
1842     { ISD::BITREVERSE, MVT::v16i32,  5 },
1843     { ISD::BITREVERSE, MVT::v32i16,  5 },
1844     { ISD::BITREVERSE, MVT::v64i8,   5 },
1845     { ISD::CTLZ,       MVT::v8i64,  23 },
1846     { ISD::CTLZ,       MVT::v16i32, 22 },
1847     { ISD::CTLZ,       MVT::v32i16, 18 },
1848     { ISD::CTLZ,       MVT::v64i8,  17 },
1849     { ISD::CTPOP,      MVT::v8i64,   7 },
1850     { ISD::CTPOP,      MVT::v16i32, 11 },
1851     { ISD::CTPOP,      MVT::v32i16,  9 },
1852     { ISD::CTPOP,      MVT::v64i8,   6 },
1853     { ISD::CTTZ,       MVT::v8i64,  10 },
1854     { ISD::CTTZ,       MVT::v16i32, 14 },
1855     { ISD::CTTZ,       MVT::v32i16, 12 },
1856     { ISD::CTTZ,       MVT::v64i8,   9 },
1857     { ISD::SADDSAT,    MVT::v32i16,  1 },
1858     { ISD::SADDSAT,    MVT::v64i8,   1 },
1859     { ISD::SSUBSAT,    MVT::v32i16,  1 },
1860     { ISD::SSUBSAT,    MVT::v64i8,   1 },
1861     { ISD::UADDSAT,    MVT::v32i16,  1 },
1862     { ISD::UADDSAT,    MVT::v64i8,   1 },
1863     { ISD::USUBSAT,    MVT::v32i16,  1 },
1864     { ISD::USUBSAT,    MVT::v64i8,   1 },
1865   };
1866   static const CostTblEntry AVX512CostTbl[] = {
1867     { ISD::BITREVERSE, MVT::v8i64,  36 },
1868     { ISD::BITREVERSE, MVT::v16i32, 24 },
1869     { ISD::CTLZ,       MVT::v8i64,  29 },
1870     { ISD::CTLZ,       MVT::v16i32, 35 },
1871     { ISD::CTPOP,      MVT::v8i64,  16 },
1872     { ISD::CTPOP,      MVT::v16i32, 24 },
1873     { ISD::CTTZ,       MVT::v8i64,  20 },
1874     { ISD::CTTZ,       MVT::v16i32, 28 },
1875     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
1876     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
1877     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
1878     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
1879     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
1880     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
1881     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
1882     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
1883   };
1884   static const CostTblEntry XOPCostTbl[] = {
1885     { ISD::BITREVERSE, MVT::v4i64,   4 },
1886     { ISD::BITREVERSE, MVT::v8i32,   4 },
1887     { ISD::BITREVERSE, MVT::v16i16,  4 },
1888     { ISD::BITREVERSE, MVT::v32i8,   4 },
1889     { ISD::BITREVERSE, MVT::v2i64,   1 },
1890     { ISD::BITREVERSE, MVT::v4i32,   1 },
1891     { ISD::BITREVERSE, MVT::v8i16,   1 },
1892     { ISD::BITREVERSE, MVT::v16i8,   1 },
1893     { ISD::BITREVERSE, MVT::i64,     3 },
1894     { ISD::BITREVERSE, MVT::i32,     3 },
1895     { ISD::BITREVERSE, MVT::i16,     3 },
1896     { ISD::BITREVERSE, MVT::i8,      3 }
1897   };
1898   static const CostTblEntry AVX2CostTbl[] = {
1899     { ISD::BITREVERSE, MVT::v4i64,   5 },
1900     { ISD::BITREVERSE, MVT::v8i32,   5 },
1901     { ISD::BITREVERSE, MVT::v16i16,  5 },
1902     { ISD::BITREVERSE, MVT::v32i8,   5 },
1903     { ISD::BSWAP,      MVT::v4i64,   1 },
1904     { ISD::BSWAP,      MVT::v8i32,   1 },
1905     { ISD::BSWAP,      MVT::v16i16,  1 },
1906     { ISD::CTLZ,       MVT::v4i64,  23 },
1907     { ISD::CTLZ,       MVT::v8i32,  18 },
1908     { ISD::CTLZ,       MVT::v16i16, 14 },
1909     { ISD::CTLZ,       MVT::v32i8,   9 },
1910     { ISD::CTPOP,      MVT::v4i64,   7 },
1911     { ISD::CTPOP,      MVT::v8i32,  11 },
1912     { ISD::CTPOP,      MVT::v16i16,  9 },
1913     { ISD::CTPOP,      MVT::v32i8,   6 },
1914     { ISD::CTTZ,       MVT::v4i64,  10 },
1915     { ISD::CTTZ,       MVT::v8i32,  14 },
1916     { ISD::CTTZ,       MVT::v16i16, 12 },
1917     { ISD::CTTZ,       MVT::v32i8,   9 },
1918     { ISD::SADDSAT,    MVT::v16i16,  1 },
1919     { ISD::SADDSAT,    MVT::v32i8,   1 },
1920     { ISD::SSUBSAT,    MVT::v16i16,  1 },
1921     { ISD::SSUBSAT,    MVT::v32i8,   1 },
1922     { ISD::UADDSAT,    MVT::v16i16,  1 },
1923     { ISD::UADDSAT,    MVT::v32i8,   1 },
1924     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
1925     { ISD::USUBSAT,    MVT::v16i16,  1 },
1926     { ISD::USUBSAT,    MVT::v32i8,   1 },
1927     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
1928     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
1929     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
1930     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
1931     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
1932     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
1933     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
1934   };
1935   static const CostTblEntry AVX1CostTbl[] = {
1936     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
1937     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
1938     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1939     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
1940     { ISD::BSWAP,      MVT::v4i64,   4 },
1941     { ISD::BSWAP,      MVT::v8i32,   4 },
1942     { ISD::BSWAP,      MVT::v16i16,  4 },
1943     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
1944     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
1945     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
1946     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
1947     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
1948     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
1949     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
1950     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
1951     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
1952     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
1953     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
1954     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
1955     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
1956     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
1957     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
1958     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
1959     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
1960     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
1961     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
1962     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
1963     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
1964     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
1965     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
1966     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
1967     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
1968     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
1969     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
1970     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
1971   };
1972   static const CostTblEntry GLMCostTbl[] = {
1973     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
1974     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
1975     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
1976     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
1977   };
1978   static const CostTblEntry SLMCostTbl[] = {
1979     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
1980     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
1981     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
1982     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
1983   };
1984   static const CostTblEntry SSE42CostTbl[] = {
1985     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
1986     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
1987     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
1988     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
1989   };
1990   static const CostTblEntry SSSE3CostTbl[] = {
1991     { ISD::BITREVERSE, MVT::v2i64,   5 },
1992     { ISD::BITREVERSE, MVT::v4i32,   5 },
1993     { ISD::BITREVERSE, MVT::v8i16,   5 },
1994     { ISD::BITREVERSE, MVT::v16i8,   5 },
1995     { ISD::BSWAP,      MVT::v2i64,   1 },
1996     { ISD::BSWAP,      MVT::v4i32,   1 },
1997     { ISD::BSWAP,      MVT::v8i16,   1 },
1998     { ISD::CTLZ,       MVT::v2i64,  23 },
1999     { ISD::CTLZ,       MVT::v4i32,  18 },
2000     { ISD::CTLZ,       MVT::v8i16,  14 },
2001     { ISD::CTLZ,       MVT::v16i8,   9 },
2002     { ISD::CTPOP,      MVT::v2i64,   7 },
2003     { ISD::CTPOP,      MVT::v4i32,  11 },
2004     { ISD::CTPOP,      MVT::v8i16,   9 },
2005     { ISD::CTPOP,      MVT::v16i8,   6 },
2006     { ISD::CTTZ,       MVT::v2i64,  10 },
2007     { ISD::CTTZ,       MVT::v4i32,  14 },
2008     { ISD::CTTZ,       MVT::v8i16,  12 },
2009     { ISD::CTTZ,       MVT::v16i8,   9 }
2010   };
2011   static const CostTblEntry SSE2CostTbl[] = {
2012     { ISD::BITREVERSE, MVT::v2i64,  29 },
2013     { ISD::BITREVERSE, MVT::v4i32,  27 },
2014     { ISD::BITREVERSE, MVT::v8i16,  27 },
2015     { ISD::BITREVERSE, MVT::v16i8,  20 },
2016     { ISD::BSWAP,      MVT::v2i64,   7 },
2017     { ISD::BSWAP,      MVT::v4i32,   7 },
2018     { ISD::BSWAP,      MVT::v8i16,   7 },
2019     { ISD::CTLZ,       MVT::v2i64,  25 },
2020     { ISD::CTLZ,       MVT::v4i32,  26 },
2021     { ISD::CTLZ,       MVT::v8i16,  20 },
2022     { ISD::CTLZ,       MVT::v16i8,  17 },
2023     { ISD::CTPOP,      MVT::v2i64,  12 },
2024     { ISD::CTPOP,      MVT::v4i32,  15 },
2025     { ISD::CTPOP,      MVT::v8i16,  13 },
2026     { ISD::CTPOP,      MVT::v16i8,  10 },
2027     { ISD::CTTZ,       MVT::v2i64,  14 },
2028     { ISD::CTTZ,       MVT::v4i32,  18 },
2029     { ISD::CTTZ,       MVT::v8i16,  16 },
2030     { ISD::CTTZ,       MVT::v16i8,  13 },
2031     { ISD::SADDSAT,    MVT::v8i16,   1 },
2032     { ISD::SADDSAT,    MVT::v16i8,   1 },
2033     { ISD::SSUBSAT,    MVT::v8i16,   1 },
2034     { ISD::SSUBSAT,    MVT::v16i8,   1 },
2035     { ISD::UADDSAT,    MVT::v8i16,   1 },
2036     { ISD::UADDSAT,    MVT::v16i8,   1 },
2037     { ISD::USUBSAT,    MVT::v8i16,   1 },
2038     { ISD::USUBSAT,    MVT::v16i8,   1 },
2039     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
2040     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
2041   };
2042   static const CostTblEntry SSE1CostTbl[] = {
2043     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
2044     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
2045   };
2046   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2047     { ISD::BITREVERSE, MVT::i64,    14 },
2048     { ISD::SADDO,      MVT::i64,     1 },
2049     { ISD::UADDO,      MVT::i64,     1 },
2050   };
2051   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2052     { ISD::BITREVERSE, MVT::i32,    14 },
2053     { ISD::BITREVERSE, MVT::i16,    14 },
2054     { ISD::BITREVERSE, MVT::i8,     11 },
2055     { ISD::SADDO,      MVT::i32,     1 },
2056     { ISD::SADDO,      MVT::i16,     1 },
2057     { ISD::SADDO,      MVT::i8,      1 },
2058     { ISD::UADDO,      MVT::i32,     1 },
2059     { ISD::UADDO,      MVT::i16,     1 },
2060     { ISD::UADDO,      MVT::i8,      1 },
2061   };
2062
2063   Type *OpTy = RetTy;
2064   unsigned ISD = ISD::DELETED_NODE;
2065   switch (IID) {
2066   default:
2067     break;
2068   case Intrinsic::bitreverse:
2069     ISD = ISD::BITREVERSE;
2070     break;
2071   case Intrinsic::bswap:
2072     ISD = ISD::BSWAP;
2073     break;
2074   case Intrinsic::ctlz:
2075     ISD = ISD::CTLZ;
2076     break;
2077   case Intrinsic::ctpop:
2078     ISD = ISD::CTPOP;
2079     break;
2080   case Intrinsic::cttz:
2081     ISD = ISD::CTTZ;
2082     break;
2083   case Intrinsic::sadd_sat:
2084     ISD = ISD::SADDSAT;
2085     break;
2086   case Intrinsic::ssub_sat:
2087     ISD = ISD::SSUBSAT;
2088     break;
2089   case Intrinsic::uadd_sat:
2090     ISD = ISD::UADDSAT;
2091     break;
2092   case Intrinsic::usub_sat:
2093     ISD = ISD::USUBSAT;
2094     break;
2095   case Intrinsic::sqrt:
2096     ISD = ISD::FSQRT;
2097     break;
2098   case Intrinsic::sadd_with_overflow:
2099   case Intrinsic::ssub_with_overflow:
2100     // SSUBO has same costs so don't duplicate.
2101     ISD = ISD::SADDO;
2102     OpTy = RetTy->getContainedType(0);
2103     break;
2104   case Intrinsic::uadd_with_overflow:
2105   case Intrinsic::usub_with_overflow:
2106     // USUBO has same costs so don't duplicate.
2107     ISD = ISD::UADDO;
2108     OpTy = RetTy->getContainedType(0);
2109     break;
2110   }
2111
2112   if (ISD != ISD::DELETED_NODE) {
2113     // Legalize the type.
2114     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2115     MVT MTy = LT.second;
2116
2117     // Attempt to lookup cost.
2118     if (ST->isGLM())
2119       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2120         return LT.first * Entry->Cost;
2121
2122     if (ST->isSLM())
2123       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2124         return LT.first * Entry->Cost;
2125
2126     if (ST->hasCDI())
2127       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2128         return LT.first * Entry->Cost;
2129
2130     if (ST->hasBWI())
2131       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2132         return LT.first * Entry->Cost;
2133
2134     if (ST->hasAVX512())
2135       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2136         return LT.first * Entry->Cost;
2137
2138     if (ST->hasXOP())
2139       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2140         return LT.first * Entry->Cost;
2141
2142     if (ST->hasAVX2())
2143       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2144         return LT.first * Entry->Cost;
2145
2146     if (ST->hasAVX())
2147       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2148         return LT.first * Entry->Cost;
2149
2150     if (ST->hasSSE42())
2151       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2152         return LT.first * Entry->Cost;
2153
2154     if (ST->hasSSSE3())
2155       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2156         return LT.first * Entry->Cost;
2157
2158     if (ST->hasSSE2())
2159       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2160         return LT.first * Entry->Cost;
2161
2162     if (ST->hasSSE1())
2163       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2164         return LT.first * Entry->Cost;
2165
2166     if (ST->is64Bit())
2167       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2168         return LT.first * Entry->Cost;
2169
2170     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2171       return LT.first * Entry->Cost;
2172   }
2173
2174   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
2175 }
2176
2177 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
2178                                       ArrayRef<Value *> Args, FastMathFlags FMF,
2179                                       unsigned VF) {
2180   static const CostTblEntry AVX512CostTbl[] = {
2181     { ISD::ROTL,       MVT::v8i64,   1 },
2182     { ISD::ROTL,       MVT::v4i64,   1 },
2183     { ISD::ROTL,       MVT::v2i64,   1 },
2184     { ISD::ROTL,       MVT::v16i32,  1 },
2185     { ISD::ROTL,       MVT::v8i32,   1 },
2186     { ISD::ROTL,       MVT::v4i32,   1 },
2187     { ISD::ROTR,       MVT::v8i64,   1 },
2188     { ISD::ROTR,       MVT::v4i64,   1 },
2189     { ISD::ROTR,       MVT::v2i64,   1 },
2190     { ISD::ROTR,       MVT::v16i32,  1 },
2191     { ISD::ROTR,       MVT::v8i32,   1 },
2192     { ISD::ROTR,       MVT::v4i32,   1 }
2193   };
2194   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2195   static const CostTblEntry XOPCostTbl[] = {
2196     { ISD::ROTL,       MVT::v4i64,   4 },
2197     { ISD::ROTL,       MVT::v8i32,   4 },
2198     { ISD::ROTL,       MVT::v16i16,  4 },
2199     { ISD::ROTL,       MVT::v32i8,   4 },
2200     { ISD::ROTL,       MVT::v2i64,   1 },
2201     { ISD::ROTL,       MVT::v4i32,   1 },
2202     { ISD::ROTL,       MVT::v8i16,   1 },
2203     { ISD::ROTL,       MVT::v16i8,   1 },
2204     { ISD::ROTR,       MVT::v4i64,   6 },
2205     { ISD::ROTR,       MVT::v8i32,   6 },
2206     { ISD::ROTR,       MVT::v16i16,  6 },
2207     { ISD::ROTR,       MVT::v32i8,   6 },
2208     { ISD::ROTR,       MVT::v2i64,   2 },
2209     { ISD::ROTR,       MVT::v4i32,   2 },
2210     { ISD::ROTR,       MVT::v8i16,   2 },
2211     { ISD::ROTR,       MVT::v16i8,   2 }
2212   };
2213   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2214     { ISD::ROTL,       MVT::i64,     1 },
2215     { ISD::ROTR,       MVT::i64,     1 },
2216     { ISD::FSHL,       MVT::i64,     4 }
2217   };
2218   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2219     { ISD::ROTL,       MVT::i32,     1 },
2220     { ISD::ROTL,       MVT::i16,     1 },
2221     { ISD::ROTL,       MVT::i8,      1 },
2222     { ISD::ROTR,       MVT::i32,     1 },
2223     { ISD::ROTR,       MVT::i16,     1 },
2224     { ISD::ROTR,       MVT::i8,      1 },
2225     { ISD::FSHL,       MVT::i32,     4 },
2226     { ISD::FSHL,       MVT::i16,     4 },
2227     { ISD::FSHL,       MVT::i8,      4 }
2228   };
2229
2230   unsigned ISD = ISD::DELETED_NODE;
2231   switch (IID) {
2232   default:
2233     break;
2234   case Intrinsic::fshl:
2235     ISD = ISD::FSHL;
2236     if (Args[0] == Args[1])
2237       ISD = ISD::ROTL;
2238     break;
2239   case Intrinsic::fshr:
2240     // FSHR has same costs so don't duplicate.
2241     ISD = ISD::FSHL;
2242     if (Args[0] == Args[1])
2243       ISD = ISD::ROTR;
2244     break;
2245   }
2246
2247   if (ISD != ISD::DELETED_NODE) {
2248     // Legalize the type.
2249     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2250     MVT MTy = LT.second;
2251
2252     // Attempt to lookup cost.
2253     if (ST->hasAVX512())
2254       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2255         return LT.first * Entry->Cost;
2256
2257     if (ST->hasXOP())
2258       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2259         return LT.first * Entry->Cost;
2260
2261     if (ST->is64Bit())
2262       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2263         return LT.first * Entry->Cost;
2264
2265     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2266       return LT.first * Entry->Cost;
2267   }
2268
2269   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
2270 }
2271
2272 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2273   assert(Val->isVectorTy() && "This must be a vector type");
2274
2275   Type *ScalarType = Val->getScalarType();
2276
2277   if (Index != -1U) {
2278     // Legalize the type.
2279     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2280
2281     // This type is legalized to a scalar type.
2282     if (!LT.second.isVector())
2283       return 0;
2284
2285     // The type may be split. Normalize the index to the new type.
2286     unsigned Width = LT.second.getVectorNumElements();
2287     Index = Index % Width;
2288
2289     // Floating point scalars are already located in index #0.
2290     if (ScalarType->isFloatingPointTy() && Index == 0)
2291       return 0;
2292   }
2293
2294   // Add to the base cost if we know that the extracted element of a vector is
2295   // destined to be moved to and used in the integer register file.
2296   int RegisterFileMoveCost = 0;
2297   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2298     RegisterFileMoveCost = 1;
2299
2300   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2301 }
2302
2303 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
2304                                 unsigned AddressSpace, const Instruction *I) {
2305   // Handle non-power-of-two vectors such as <3 x float>
2306   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2307     unsigned NumElem = VTy->getVectorNumElements();
2308
2309     // Handle a few common cases:
2310     // <3 x float>
2311     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2312       // Cost = 64 bit store + extract + 32 bit store.
2313       return 3;
2314
2315     // <3 x double>
2316     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2317       // Cost = 128 bit store + unpack + 64 bit store.
2318       return 3;
2319
2320     // Assume that all other non-power-of-two numbers are scalarized.
2321     if (!isPowerOf2_32(NumElem)) {
2322       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2323                                         AddressSpace);
2324       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
2325                                                Opcode == Instruction::Store);
2326       return NumElem * Cost + SplitCost;
2327     }
2328   }
2329
2330   // Legalize the type.
2331   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2332   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2333          "Invalid Opcode");
2334
2335   // Each load/store unit costs 1.
2336   int Cost = LT.first * 1;
2337
2338   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2339   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2340   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2341     Cost *= 2;
2342
2343   return Cost;
2344 }
2345
2346 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2347                                       unsigned Alignment,
2348                                       unsigned AddressSpace) {
2349   bool IsLoad = (Instruction::Load == Opcode);
2350   bool IsStore = (Instruction::Store == Opcode);
2351
2352   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
2353   if (!SrcVTy)
2354     // To calculate scalar take the regular cost, without mask
2355     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
2356
2357   unsigned NumElem = SrcVTy->getVectorNumElements();
2358   VectorType *MaskTy =
2359       VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
2360   if ((IsLoad && !isLegalMaskedLoad(SrcVTy)) ||
2361       (IsStore && !isLegalMaskedStore(SrcVTy)) || !isPowerOf2_32(NumElem)) {
2362     // Scalarization
2363     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
2364     int ScalarCompareCost = getCmpSelInstrCost(
2365         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
2366     int BranchCost = getCFInstrCost(Instruction::Br);
2367     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
2368
2369     int ValueSplitCost = getScalarizationOverhead(SrcVTy, IsLoad, IsStore);
2370     int MemopCost =
2371         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2372                                          Alignment, AddressSpace);
2373     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
2374   }
2375
2376   // Legalize the type.
2377   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2378   auto VT = TLI->getValueType(DL, SrcVTy);
2379   int Cost = 0;
2380   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
2381       LT.second.getVectorNumElements() == NumElem)
2382     // Promotion requires expand/truncate for data and a shuffle for mask.
2383     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
2384             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
2385
2386   else if (LT.second.getVectorNumElements() > NumElem) {
2387     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
2388                                             LT.second.getVectorNumElements());
2389     // Expanding requires fill mask with zeroes
2390     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
2391   }
2392
2393   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
2394   if (!ST->hasAVX512())
2395     return Cost + LT.first * (IsLoad ? 2 : 8);
2396
2397   // AVX-512 masked load/store is cheapper
2398   return Cost + LT.first;
2399 }
2400
2401 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2402                                           const SCEV *Ptr) {
2403   // Address computations in vectorized code with non-consecutive addresses will
2404   // likely result in more instructions compared to scalar code where the
2405   // computation can more often be merged into the index mode. The resulting
2406   // extra micro-ops can significantly decrease throughput.
2407   const unsigned NumVectorInstToHideOverhead = 10;
2408
2409   // Cost modeling of Strided Access Computation is hidden by the indexing
2410   // modes of X86 regardless of the stride value. We dont believe that there
2411   // is a difference between constant strided access in gerenal and constant
2412   // strided value which is less than or equal to 64.
2413   // Even in the case of (loop invariant) stride whose value is not known at
2414   // compile time, the address computation will not incur more than one extra
2415   // ADD instruction.
2416   if (Ty->isVectorTy() && SE) {
2417     if (!BaseT::isStridedAccess(Ptr))
2418       return NumVectorInstToHideOverhead;
2419     if (!BaseT::getConstantStrideStep(SE, Ptr))
2420       return 1;
2421   }
2422
2423   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
2424 }
2425
2426 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
2427                                            bool IsPairwise) {
2428
2429   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2430
2431   MVT MTy = LT.second;
2432
2433   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2434   assert(ISD && "Invalid opcode");
2435
2436   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2437   // and make it as the cost.
2438
2439   static const CostTblEntry SSE42CostTblPairWise[] = {
2440     { ISD::FADD,  MVT::v2f64,   2 },
2441     { ISD::FADD,  MVT::v4f32,   4 },
2442     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2443     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
2444     { ISD::ADD,   MVT::v8i16,   5 },
2445   };
2446
2447   static const CostTblEntry AVX1CostTblPairWise[] = {
2448     { ISD::FADD,  MVT::v4f32,   4 },
2449     { ISD::FADD,  MVT::v4f64,   5 },
2450     { ISD::FADD,  MVT::v8f32,   7 },
2451     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2452     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
2453     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
2454     { ISD::ADD,   MVT::v8i16,   5 },
2455     { ISD::ADD,   MVT::v8i32,   5 },
2456   };
2457
2458   static const CostTblEntry SSE42CostTblNoPairWise[] = {
2459     { ISD::FADD,  MVT::v2f64,   2 },
2460     { ISD::FADD,  MVT::v4f32,   4 },
2461     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
2462     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
2463     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
2464   };
2465
2466   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2467     { ISD::FADD,  MVT::v4f32,   3 },
2468     { ISD::FADD,  MVT::v4f64,   3 },
2469     { ISD::FADD,  MVT::v8f32,   4 },
2470     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
2471     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
2472     { ISD::ADD,   MVT::v4i64,   3 },
2473     { ISD::ADD,   MVT::v8i16,   4 },
2474     { ISD::ADD,   MVT::v8i32,   5 },
2475   };
2476
2477   if (IsPairwise) {
2478     if (ST->hasAVX())
2479       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2480         return LT.first * Entry->Cost;
2481
2482     if (ST->hasSSE42())
2483       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2484         return LT.first * Entry->Cost;
2485   } else {
2486     if (ST->hasAVX())
2487       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2488         return LT.first * Entry->Cost;
2489
2490     if (ST->hasSSE42())
2491       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2492         return LT.first * Entry->Cost;
2493   }
2494
2495   static const CostTblEntry AVX2BoolReduction[] = {
2496     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
2497     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
2498     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
2499     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
2500   };
2501
2502   static const CostTblEntry AVX1BoolReduction[] = {
2503     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
2504     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
2505     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
2506     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
2507     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
2508     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
2509     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
2510     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
2511   };
2512
2513   static const CostTblEntry SSE2BoolReduction[] = {
2514     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
2515     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
2516     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
2517     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
2518     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
2519     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
2520     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
2521     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
2522   };
2523
2524   // Handle bool allof/anyof patterns.
2525   if (ValTy->getVectorElementType()->isIntegerTy(1)) {
2526     if (ST->hasAVX2())
2527       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
2528         return LT.first * Entry->Cost;
2529     if (ST->hasAVX())
2530       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
2531         return LT.first * Entry->Cost;
2532     if (ST->hasSSE2())
2533       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
2534         return LT.first * Entry->Cost;
2535   }
2536
2537   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2538 }
2539
2540 int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2541                                        bool IsPairwise, bool IsUnsigned) {
2542   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2543
2544   MVT MTy = LT.second;
2545
2546   int ISD;
2547   if (ValTy->isIntOrIntVectorTy()) {
2548     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2549   } else {
2550     assert(ValTy->isFPOrFPVectorTy() &&
2551            "Expected float point or integer vector type.");
2552     ISD = ISD::FMINNUM;
2553   }
2554
2555   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2556   // and make it as the cost.
2557
2558   static const CostTblEntry SSE1CostTblPairWise[] = {
2559       {ISD::FMINNUM, MVT::v4f32, 4},
2560   };
2561
2562   static const CostTblEntry SSE2CostTblPairWise[] = {
2563       {ISD::FMINNUM, MVT::v2f64, 3},
2564       {ISD::SMIN, MVT::v2i64, 6},
2565       {ISD::UMIN, MVT::v2i64, 8},
2566       {ISD::SMIN, MVT::v4i32, 6},
2567       {ISD::UMIN, MVT::v4i32, 8},
2568       {ISD::SMIN, MVT::v8i16, 4},
2569       {ISD::UMIN, MVT::v8i16, 6},
2570       {ISD::SMIN, MVT::v16i8, 8},
2571       {ISD::UMIN, MVT::v16i8, 6},
2572   };
2573
2574   static const CostTblEntry SSE41CostTblPairWise[] = {
2575       {ISD::FMINNUM, MVT::v4f32, 2},
2576       {ISD::SMIN, MVT::v2i64, 9},
2577       {ISD::UMIN, MVT::v2i64,10},
2578       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2579       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2580       {ISD::SMIN, MVT::v8i16, 2},
2581       {ISD::UMIN, MVT::v8i16, 2},
2582       {ISD::SMIN, MVT::v16i8, 3},
2583       {ISD::UMIN, MVT::v16i8, 3},
2584   };
2585
2586   static const CostTblEntry SSE42CostTblPairWise[] = {
2587       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2588       {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2589   };
2590
2591   static const CostTblEntry AVX1CostTblPairWise[] = {
2592       {ISD::FMINNUM, MVT::v4f32, 1},
2593       {ISD::FMINNUM, MVT::v4f64, 1},
2594       {ISD::FMINNUM, MVT::v8f32, 2},
2595       {ISD::SMIN, MVT::v2i64, 3},
2596       {ISD::UMIN, MVT::v2i64, 3},
2597       {ISD::SMIN, MVT::v4i32, 1},
2598       {ISD::UMIN, MVT::v4i32, 1},
2599       {ISD::SMIN, MVT::v8i16, 1},
2600       {ISD::UMIN, MVT::v8i16, 1},
2601       {ISD::SMIN, MVT::v16i8, 2},
2602       {ISD::UMIN, MVT::v16i8, 2},
2603       {ISD::SMIN, MVT::v4i64, 7},
2604       {ISD::UMIN, MVT::v4i64, 7},
2605       {ISD::SMIN, MVT::v8i32, 3},
2606       {ISD::UMIN, MVT::v8i32, 3},
2607       {ISD::SMIN, MVT::v16i16, 3},
2608       {ISD::UMIN, MVT::v16i16, 3},
2609       {ISD::SMIN, MVT::v32i8, 3},
2610       {ISD::UMIN, MVT::v32i8, 3},
2611   };
2612
2613   static const CostTblEntry AVX2CostTblPairWise[] = {
2614       {ISD::SMIN, MVT::v4i64, 2},
2615       {ISD::UMIN, MVT::v4i64, 2},
2616       {ISD::SMIN, MVT::v8i32, 1},
2617       {ISD::UMIN, MVT::v8i32, 1},
2618       {ISD::SMIN, MVT::v16i16, 1},
2619       {ISD::UMIN, MVT::v16i16, 1},
2620       {ISD::SMIN, MVT::v32i8, 2},
2621       {ISD::UMIN, MVT::v32i8, 2},
2622   };
2623
2624   static const CostTblEntry AVX512CostTblPairWise[] = {
2625       {ISD::FMINNUM, MVT::v8f64, 1},
2626       {ISD::FMINNUM, MVT::v16f32, 2},
2627       {ISD::SMIN, MVT::v8i64, 2},
2628       {ISD::UMIN, MVT::v8i64, 2},
2629       {ISD::SMIN, MVT::v16i32, 1},
2630       {ISD::UMIN, MVT::v16i32, 1},
2631   };
2632
2633   static const CostTblEntry SSE1CostTblNoPairWise[] = {
2634       {ISD::FMINNUM, MVT::v4f32, 4},
2635   };
2636
2637   static const CostTblEntry SSE2CostTblNoPairWise[] = {
2638       {ISD::FMINNUM, MVT::v2f64, 3},
2639       {ISD::SMIN, MVT::v2i64, 6},
2640       {ISD::UMIN, MVT::v2i64, 8},
2641       {ISD::SMIN, MVT::v4i32, 6},
2642       {ISD::UMIN, MVT::v4i32, 8},
2643       {ISD::SMIN, MVT::v8i16, 4},
2644       {ISD::UMIN, MVT::v8i16, 6},
2645       {ISD::SMIN, MVT::v16i8, 8},
2646       {ISD::UMIN, MVT::v16i8, 6},
2647   };
2648
2649   static const CostTblEntry SSE41CostTblNoPairWise[] = {
2650       {ISD::FMINNUM, MVT::v4f32, 3},
2651       {ISD::SMIN, MVT::v2i64, 9},
2652       {ISD::UMIN, MVT::v2i64,11},
2653       {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2654       {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2655       {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2656       {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2657       {ISD::SMIN, MVT::v16i8, 3},
2658       {ISD::UMIN, MVT::v16i8, 3},
2659   };
2660
2661   static const CostTblEntry SSE42CostTblNoPairWise[] = {
2662       {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2663       {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
2664   };
2665
2666   static const CostTblEntry AVX1CostTblNoPairWise[] = {
2667       {ISD::FMINNUM, MVT::v4f32, 1},
2668       {ISD::FMINNUM, MVT::v4f64, 1},
2669       {ISD::FMINNUM, MVT::v8f32, 1},
2670       {ISD::SMIN, MVT::v2i64, 3},
2671       {ISD::UMIN, MVT::v2i64, 3},
2672       {ISD::SMIN, MVT::v4i32, 1},
2673       {ISD::UMIN, MVT::v4i32, 1},
2674       {ISD::SMIN, MVT::v8i16, 1},
2675       {ISD::UMIN, MVT::v8i16, 1},
2676       {ISD::SMIN, MVT::v16i8, 2},
2677       {ISD::UMIN, MVT::v16i8, 2},
2678       {ISD::SMIN, MVT::v4i64, 7},
2679       {ISD::UMIN, MVT::v4i64, 7},
2680       {ISD::SMIN, MVT::v8i32, 2},
2681       {ISD::UMIN, MVT::v8i32, 2},
2682       {ISD::SMIN, MVT::v16i16, 2},
2683       {ISD::UMIN, MVT::v16i16, 2},
2684       {ISD::SMIN, MVT::v32i8, 2},
2685       {ISD::UMIN, MVT::v32i8, 2},
2686   };
2687
2688   static const CostTblEntry AVX2CostTblNoPairWise[] = {
2689       {ISD::SMIN, MVT::v4i64, 1},
2690       {ISD::UMIN, MVT::v4i64, 1},
2691       {ISD::SMIN, MVT::v8i32, 1},
2692       {ISD::UMIN, MVT::v8i32, 1},
2693       {ISD::SMIN, MVT::v16i16, 1},
2694       {ISD::UMIN, MVT::v16i16, 1},
2695       {ISD::SMIN, MVT::v32i8, 1},
2696       {ISD::UMIN, MVT::v32i8, 1},
2697   };
2698
2699   static const CostTblEntry AVX512CostTblNoPairWise[] = {
2700       {ISD::FMINNUM, MVT::v8f64, 1},
2701       {ISD::FMINNUM, MVT::v16f32, 2},
2702       {ISD::SMIN, MVT::v8i64, 1},
2703       {ISD::UMIN, MVT::v8i64, 1},
2704       {ISD::SMIN, MVT::v16i32, 1},
2705       {ISD::UMIN, MVT::v16i32, 1},
2706   };
2707
2708   if (IsPairwise) {
2709     if (ST->hasAVX512())
2710       if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
2711         return LT.first * Entry->Cost;
2712
2713     if (ST->hasAVX2())
2714       if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
2715         return LT.first * Entry->Cost;
2716
2717     if (ST->hasAVX())
2718       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2719         return LT.first * Entry->Cost;
2720
2721     if (ST->hasSSE42())
2722       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2723         return LT.first * Entry->Cost;
2724
2725     if (ST->hasSSE41())
2726       if (const auto *Entry = CostTableLookup(SSE41CostTblPairWise, ISD, MTy))
2727         return LT.first * Entry->Cost;
2728
2729     if (ST->hasSSE2())
2730       if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2731         return LT.first * Entry->Cost;
2732
2733     if (ST->hasSSE1())
2734       if (const auto *Entry = CostTableLookup(SSE1CostTblPairWise, ISD, MTy))
2735         return LT.first * Entry->Cost;
2736   } else {
2737     if (ST->hasAVX512())
2738       if (const auto *Entry =
2739               CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
2740         return LT.first * Entry->Cost;
2741
2742     if (ST->hasAVX2())
2743       if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
2744         return LT.first * Entry->Cost;
2745
2746     if (ST->hasAVX())
2747       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2748         return LT.first * Entry->Cost;
2749
2750     if (ST->hasSSE42())
2751       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2752         return LT.first * Entry->Cost;
2753
2754     if (ST->hasSSE41())
2755       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
2756         return LT.first * Entry->Cost;
2757
2758     if (ST->hasSSE2())
2759       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2760         return LT.first * Entry->Cost;
2761
2762     if (ST->hasSSE1())
2763       if (const auto *Entry = CostTableLookup(SSE1CostTblNoPairWise, ISD, MTy))
2764         return LT.first * Entry->Cost;
2765   }
2766
2767   return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
2768 }
2769
2770 /// Calculate the cost of materializing a 64-bit value. This helper
2771 /// method might only calculate a fraction of a larger immediate. Therefore it
2772 /// is valid to return a cost of ZERO.
2773 int X86TTIImpl::getIntImmCost(int64_t Val) {
2774   if (Val == 0)
2775     return TTI::TCC_Free;
2776
2777   if (isInt<32>(Val))
2778     return TTI::TCC_Basic;
2779
2780   return 2 * TTI::TCC_Basic;
2781 }
2782
2783 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
2784   assert(Ty->isIntegerTy());
2785
2786   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2787   if (BitSize == 0)
2788     return ~0U;
2789
2790   // Never hoist constants larger than 128bit, because this might lead to
2791   // incorrect code generation or assertions in codegen.
2792   // Fixme: Create a cost model for types larger than i128 once the codegen
2793   // issues have been fixed.
2794   if (BitSize > 128)
2795     return TTI::TCC_Free;
2796
2797   if (Imm == 0)
2798     return TTI::TCC_Free;
2799
2800   // Sign-extend all constants to a multiple of 64-bit.
2801   APInt ImmVal = Imm;
2802   if (BitSize % 64 != 0)
2803     ImmVal = Imm.sext(alignTo(BitSize, 64));
2804
2805   // Split the constant into 64-bit chunks and calculate the cost for each
2806   // chunk.
2807   int Cost = 0;
2808   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
2809     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
2810     int64_t Val = Tmp.getSExtValue();
2811     Cost += getIntImmCost(Val);
2812   }
2813   // We need at least one instruction to materialize the constant.
2814   return std::max(1, Cost);
2815 }
2816
2817 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
2818                               Type *Ty) {
2819   assert(Ty->isIntegerTy());
2820
2821   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2822   // There is no cost model for constants with a bit size of 0. Return TCC_Free
2823   // here, so that constant hoisting will ignore this constant.
2824   if (BitSize == 0)
2825     return TTI::TCC_Free;
2826
2827   unsigned ImmIdx = ~0U;
2828   switch (Opcode) {
2829   default:
2830     return TTI::TCC_Free;
2831   case Instruction::GetElementPtr:
2832     // Always hoist the base address of a GetElementPtr. This prevents the
2833     // creation of new constants for every base constant that gets constant
2834     // folded with the offset.
2835     if (Idx == 0)
2836       return 2 * TTI::TCC_Basic;
2837     return TTI::TCC_Free;
2838   case Instruction::Store:
2839     ImmIdx = 0;
2840     break;
2841   case Instruction::ICmp:
2842     // This is an imperfect hack to prevent constant hoisting of
2843     // compares that might be trying to check if a 64-bit value fits in
2844     // 32-bits. The backend can optimize these cases using a right shift by 32.
2845     // Ideally we would check the compare predicate here. There also other
2846     // similar immediates the backend can use shifts for.
2847     if (Idx == 1 && Imm.getBitWidth() == 64) {
2848       uint64_t ImmVal = Imm.getZExtValue();
2849       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
2850         return TTI::TCC_Free;
2851     }
2852     ImmIdx = 1;
2853     break;
2854   case Instruction::And:
2855     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2856     // by using a 32-bit operation with implicit zero extension. Detect such
2857     // immediates here as the normal path expects bit 31 to be sign extended.
2858     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
2859       return TTI::TCC_Free;
2860     ImmIdx = 1;
2861     break;
2862   case Instruction::Add:
2863   case Instruction::Sub:
2864     // For add/sub, we can use the opposite instruction for INT32_MIN.
2865     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
2866       return TTI::TCC_Free;
2867     ImmIdx = 1;
2868     break;
2869   case Instruction::UDiv:
2870   case Instruction::SDiv:
2871   case Instruction::URem:
2872   case Instruction::SRem:
2873     // Division by constant is typically expanded later into a different
2874     // instruction sequence. This completely changes the constants.
2875     // Report them as "free" to stop ConstantHoist from marking them as opaque.
2876     return TTI::TCC_Free;
2877   case Instruction::Mul:
2878   case Instruction::Or:
2879   case Instruction::Xor:
2880     ImmIdx = 1;
2881     break;
2882   // Always return TCC_Free for the shift value of a shift instruction.
2883   case Instruction::Shl:
2884   case Instruction::LShr:
2885   case Instruction::AShr:
2886     if (Idx == 1)
2887       return TTI::TCC_Free;
2888     break;
2889   case Instruction::Trunc:
2890   case Instruction::ZExt:
2891   case Instruction::SExt:
2892   case Instruction::IntToPtr:
2893   case Instruction::PtrToInt:
2894   case Instruction::BitCast:
2895   case Instruction::PHI:
2896   case Instruction::Call:
2897   case Instruction::Select:
2898   case Instruction::Ret:
2899   case Instruction::Load:
2900     break;
2901   }
2902
2903   if (Idx == ImmIdx) {
2904     int NumConstants = divideCeil(BitSize, 64);
2905     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
2906     return (Cost <= NumConstants * TTI::TCC_Basic)
2907                ? static_cast<int>(TTI::TCC_Free)
2908                : Cost;
2909   }
2910
2911   return X86TTIImpl::getIntImmCost(Imm, Ty);
2912 }
2913
2914 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
2915                               Type *Ty) {
2916   assert(Ty->isIntegerTy());
2917
2918   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2919   // There is no cost model for constants with a bit size of 0. Return TCC_Free
2920   // here, so that constant hoisting will ignore this constant.
2921   if (BitSize == 0)
2922     return TTI::TCC_Free;
2923
2924   switch (IID) {
2925   default:
2926     return TTI::TCC_Free;
2927   case Intrinsic::sadd_with_overflow:
2928   case Intrinsic::uadd_with_overflow:
2929   case Intrinsic::ssub_with_overflow:
2930   case Intrinsic::usub_with_overflow:
2931   case Intrinsic::smul_with_overflow:
2932   case Intrinsic::umul_with_overflow:
2933     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
2934       return TTI::TCC_Free;
2935     break;
2936   case Intrinsic::experimental_stackmap:
2937     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
2938       return TTI::TCC_Free;
2939     break;
2940   case Intrinsic::experimental_patchpoint_void:
2941   case Intrinsic::experimental_patchpoint_i64:
2942     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
2943       return TTI::TCC_Free;
2944     break;
2945   }
2946   return X86TTIImpl::getIntImmCost(Imm, Ty);
2947 }
2948
2949 unsigned X86TTIImpl::getUserCost(const User *U,
2950                                  ArrayRef<const Value *> Operands) {
2951   if (isa<StoreInst>(U)) {
2952     Value *Ptr = U->getOperand(1);
2953     // Store instruction with index and scale costs 2 Uops.
2954     // Check the preceding GEP to identify non-const indices.
2955     if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
2956       if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
2957         return TTI::TCC_Basic * 2;
2958     }
2959     return TTI::TCC_Basic;
2960   }
2961   return BaseT::getUserCost(U, Operands);
2962 }
2963
2964 // Return an average cost of Gather / Scatter instruction, maybe improved later
2965 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
2966                                 unsigned Alignment, unsigned AddressSpace) {
2967
2968   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
2969   unsigned VF = SrcVTy->getVectorNumElements();
2970
2971   // Try to reduce index size from 64 bit (default for GEP)
2972   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
2973   // operation will use 16 x 64 indices which do not fit in a zmm and needs
2974   // to split. Also check that the base pointer is the same for all lanes,
2975   // and that there's at most one variable index.
2976   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
2977     unsigned IndexSize = DL.getPointerSizeInBits();
2978     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2979     if (IndexSize < 64 || !GEP)
2980       return IndexSize;
2981
2982     unsigned NumOfVarIndices = 0;
2983     Value *Ptrs = GEP->getPointerOperand();
2984     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
2985       return IndexSize;
2986     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
2987       if (isa<Constant>(GEP->getOperand(i)))
2988         continue;
2989       Type *IndxTy = GEP->getOperand(i)->getType();
2990       if (IndxTy->isVectorTy())
2991         IndxTy = IndxTy->getVectorElementType();
2992       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2993           !isa<SExtInst>(GEP->getOperand(i))) ||
2994          ++NumOfVarIndices > 1)
2995         return IndexSize; // 64
2996     }
2997     return (unsigned)32;
2998   };
2999
3000
3001   // Trying to reduce IndexSize to 32 bits for vector 16.
3002   // By default the IndexSize is equal to pointer size.
3003   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3004                            ? getIndexSizeInBits(Ptr, DL)
3005                            : DL.getPointerSizeInBits();
3006
3007   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
3008                                                     IndexSize), VF);
3009   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3010   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3011   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3012   if (SplitFactor > 1) {
3013     // Handle splitting of vector of pointers
3014     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3015     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3016                                          AddressSpace);
3017   }
3018
3019   // The gather / scatter cost is given by Intel architects. It is a rough
3020   // number since we are looking at one instruction in a time.
3021   const int GSOverhead = (Opcode == Instruction::Load)
3022                              ? ST->getGatherOverhead()
3023                              : ST->getScatterOverhead();
3024   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3025                                            Alignment, AddressSpace);
3026 }
3027
3028 /// Return the cost of full scalarization of gather / scatter operation.
3029 ///
3030 /// Opcode - Load or Store instruction.
3031 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3032 /// VariableMask - The mask is non-constant at compile time.
3033 /// Alignment - Alignment for one element.
3034 /// AddressSpace - pointer[s] address space.
3035 ///
3036 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3037                                 bool VariableMask, unsigned Alignment,
3038                                 unsigned AddressSpace) {
3039   unsigned VF = SrcVTy->getVectorNumElements();
3040
3041   int MaskUnpackCost = 0;
3042   if (VariableMask) {
3043     VectorType *MaskTy =
3044       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3045     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
3046     int ScalarCompareCost =
3047       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3048                          nullptr);
3049     int BranchCost = getCFInstrCost(Instruction::Br);
3050     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3051   }
3052
3053   // The cost of the scalar loads/stores.
3054   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3055                                           Alignment, AddressSpace);
3056
3057   int InsertExtractCost = 0;
3058   if (Opcode == Instruction::Load)
3059     for (unsigned i = 0; i < VF; ++i)
3060       // Add the cost of inserting each scalar load into the vector
3061       InsertExtractCost +=
3062         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3063   else
3064     for (unsigned i = 0; i < VF; ++i)
3065       // Add the cost of extracting each element out of the data vector
3066       InsertExtractCost +=
3067         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3068
3069   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3070 }
3071
3072 /// Calculate the cost of Gather / Scatter operation
3073 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
3074                                        Value *Ptr, bool VariableMask,
3075                                        unsigned Alignment) {
3076   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3077   unsigned VF = SrcVTy->getVectorNumElements();
3078   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3079   if (!PtrTy && Ptr->getType()->isVectorTy())
3080     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
3081   assert(PtrTy && "Unexpected type for Ptr argument");
3082   unsigned AddressSpace = PtrTy->getAddressSpace();
3083
3084   bool Scalarize = false;
3085   if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
3086       (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
3087     Scalarize = true;
3088   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3089   // Vector-4 of gather/scatter instruction does not exist on KNL.
3090   // We can extend it to 8 elements, but zeroing upper bits of
3091   // the mask vector will add more instructions. Right now we give the scalar
3092   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3093   // is better in the VariableMask case.
3094   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3095     Scalarize = true;
3096
3097   if (Scalarize)
3098     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3099                            AddressSpace);
3100
3101   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3102 }
3103
3104 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3105                                TargetTransformInfo::LSRCost &C2) {
3106     // X86 specific here are "instruction number 1st priority".
3107     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3108                     C1.NumIVMuls, C1.NumBaseAdds,
3109                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3110            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3111                     C2.NumIVMuls, C2.NumBaseAdds,
3112                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3113 }
3114
3115 bool X86TTIImpl::canMacroFuseCmp() {
3116   return ST->hasMacroFusion() || ST->hasBranchFusion();
3117 }
3118
3119 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
3120   if (!ST->hasAVX())
3121     return false;
3122
3123   // The backend can't handle a single element vector.
3124   if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
3125     return false;
3126   Type *ScalarTy = DataTy->getScalarType();
3127
3128   if (ScalarTy->isPointerTy())
3129     return true;
3130
3131   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3132     return true;
3133
3134   if (!ScalarTy->isIntegerTy())
3135     return false;
3136
3137   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3138   return IntWidth == 32 || IntWidth == 64 ||
3139          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
3140 }
3141
3142 bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
3143   return isLegalMaskedLoad(DataType);
3144 }
3145
3146 bool X86TTIImpl::isLegalNTLoad(Type *DataType, unsigned Alignment) {
3147   unsigned DataSize = DL.getTypeStoreSize(DataType);
3148   // The only supported nontemporal loads are for aligned vectors of 16 or 32
3149   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
3150   // (the equivalent stores only require AVX).
3151   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
3152     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
3153
3154   return false;
3155 }
3156
3157 bool X86TTIImpl::isLegalNTStore(Type *DataType, unsigned Alignment) {
3158   unsigned DataSize = DL.getTypeStoreSize(DataType);
3159
3160   // SSE4A supports nontemporal stores of float and double at arbitrary
3161   // alignment.
3162   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
3163     return true;
3164
3165   // Besides the SSE4A subtarget exception above, only aligned stores are
3166   // available nontemporaly on any other subtarget.  And only stores with a size
3167   // of 4..32 bytes (powers of 2, only) are permitted.
3168   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
3169       !isPowerOf2_32(DataSize))
3170     return false;
3171
3172   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
3173   // loads require AVX2).
3174   if (DataSize == 32)
3175     return ST->hasAVX();
3176   else if (DataSize == 16)
3177     return ST->hasSSE1();
3178   return true;
3179 }
3180
3181 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
3182   if (!isa<VectorType>(DataTy))
3183     return false;
3184
3185   if (!ST->hasAVX512())
3186     return false;
3187
3188   // The backend can't handle a single element vector.
3189   if (DataTy->getVectorNumElements() == 1)
3190     return false;
3191
3192   Type *ScalarTy = DataTy->getVectorElementType();
3193
3194   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3195     return true;
3196
3197   if (!ScalarTy->isIntegerTy())
3198     return false;
3199
3200   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3201   return IntWidth == 32 || IntWidth == 64 ||
3202          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
3203 }
3204
3205 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
3206   return isLegalMaskedExpandLoad(DataTy);
3207 }
3208
3209 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
3210   // Some CPUs have better gather performance than others.
3211   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
3212   // enable gather with a -march.
3213   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
3214     return false;
3215
3216   // This function is called now in two cases: from the Loop Vectorizer
3217   // and from the Scalarizer.
3218   // When the Loop Vectorizer asks about legality of the feature,
3219   // the vectorization factor is not calculated yet. The Loop Vectorizer
3220   // sends a scalar type and the decision is based on the width of the
3221   // scalar element.
3222   // Later on, the cost model will estimate usage this intrinsic based on
3223   // the vector type.
3224   // The Scalarizer asks again about legality. It sends a vector type.
3225   // In this case we can reject non-power-of-2 vectors.
3226   // We also reject single element vectors as the type legalizer can't
3227   // scalarize it.
3228   if (isa<VectorType>(DataTy)) {
3229     unsigned NumElts = DataTy->getVectorNumElements();
3230     if (NumElts == 1 || !isPowerOf2_32(NumElts))
3231       return false;
3232   }
3233   Type *ScalarTy = DataTy->getScalarType();
3234   if (ScalarTy->isPointerTy())
3235     return true;
3236
3237   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3238     return true;
3239
3240   if (!ScalarTy->isIntegerTy())
3241     return false;
3242
3243   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3244   return IntWidth == 32 || IntWidth == 64;
3245 }
3246
3247 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
3248   // AVX2 doesn't support scatter
3249   if (!ST->hasAVX512())
3250     return false;
3251   return isLegalMaskedGather(DataType);
3252 }
3253
3254 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
3255   EVT VT = TLI->getValueType(DL, DataType);
3256   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
3257 }
3258
3259 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
3260   return false;
3261 }
3262
3263 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
3264                                      const Function *Callee) const {
3265   const TargetMachine &TM = getTLI()->getTargetMachine();
3266
3267   // Work this as a subsetting of subtarget features.
3268   const FeatureBitset &CallerBits =
3269       TM.getSubtargetImpl(*Caller)->getFeatureBits();
3270   const FeatureBitset &CalleeBits =
3271       TM.getSubtargetImpl(*Callee)->getFeatureBits();
3272
3273   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
3274   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
3275   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
3276 }
3277
3278 bool X86TTIImpl::areFunctionArgsABICompatible(
3279     const Function *Caller, const Function *Callee,
3280     SmallPtrSetImpl<Argument *> &Args) const {
3281   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
3282     return false;
3283
3284   // If we get here, we know the target features match. If one function
3285   // considers 512-bit vectors legal and the other does not, consider them
3286   // incompatible.
3287   // FIXME Look at the arguments and only consider 512 bit or larger vectors?
3288   const TargetMachine &TM = getTLI()->getTargetMachine();
3289
3290   return TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
3291          TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs();
3292 }
3293
3294 X86TTIImpl::TTI::MemCmpExpansionOptions
3295 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3296   TTI::MemCmpExpansionOptions Options;
3297   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3298   Options.NumLoadsPerBlock = 2;
3299   if (IsZeroCmp) {
3300     // Only enable vector loads for equality comparison. Right now the vector
3301     // version is not as fast for three way compare (see #33329).
3302     // TODO: enable AVX512 when the DAG is ready.
3303     // if (ST->hasAVX512()) Options.LoadSizes.push_back(64);
3304     const unsigned PreferredWidth = ST->getPreferVectorWidth();
3305     if (PreferredWidth >= 256 && ST->hasAVX2()) Options.LoadSizes.push_back(32);
3306     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
3307     // All GPR and vector loads can be unaligned. SIMD compare requires integer
3308     // vectors (SSE2/AVX2).
3309     Options.AllowOverlappingLoads = true;
3310   }
3311   if (ST->is64Bit()) {
3312     Options.LoadSizes.push_back(8);
3313   }
3314   Options.LoadSizes.push_back(4);
3315   Options.LoadSizes.push_back(2);
3316   Options.LoadSizes.push_back(1);
3317   return Options;
3318 }
3319
3320 bool X86TTIImpl::enableInterleavedAccessVectorization() {
3321   // TODO: We expect this to be beneficial regardless of arch,
3322   // but there are currently some unexplained performance artifacts on Atom.
3323   // As a temporary solution, disable on Atom.
3324   return !(ST->isAtom());
3325 }
3326
3327 // Get estimation for interleaved load/store operations for AVX2.
3328 // \p Factor is the interleaved-access factor (stride) - number of
3329 // (interleaved) elements in the group.
3330 // \p Indices contains the indices for a strided load: when the
3331 // interleaved load has gaps they indicate which elements are used.
3332 // If Indices is empty (or if the number of indices is equal to the size
3333 // of the interleaved-access as given in \p Factor) the access has no gaps.
3334 //
3335 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
3336 // computing the cost using a generic formula as a function of generic
3337 // shuffles. We therefore use a lookup table instead, filled according to
3338 // the instruction sequences that codegen currently generates.
3339 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
3340                                                unsigned Factor,
3341                                                ArrayRef<unsigned> Indices,
3342                                                unsigned Alignment,
3343                                                unsigned AddressSpace,
3344                                                bool UseMaskForCond,
3345                                                bool UseMaskForGaps) {
3346
3347   if (UseMaskForCond || UseMaskForGaps)
3348     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3349                                              Alignment, AddressSpace,
3350                                              UseMaskForCond, UseMaskForGaps);
3351
3352   // We currently Support only fully-interleaved groups, with no gaps.
3353   // TODO: Support also strided loads (interleaved-groups with gaps).
3354   if (Indices.size() && Indices.size() != Factor)
3355     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3356                                              Alignment, AddressSpace);
3357
3358   // VecTy for interleave memop is <VF*Factor x Elt>.
3359   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3360   // VecTy = <12 x i32>.
3361   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3362
3363   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
3364   // the VF=2, while v2i128 is an unsupported MVT vector type
3365   // (see MachineValueType.h::getVectorVT()).
3366   if (!LegalVT.isVector())
3367     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3368                                              Alignment, AddressSpace);
3369
3370   unsigned VF = VecTy->getVectorNumElements() / Factor;
3371   Type *ScalarTy = VecTy->getVectorElementType();
3372
3373   // Calculate the number of memory operations (NumOfMemOps), required
3374   // for load/store the VecTy.
3375   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3376   unsigned LegalVTSize = LegalVT.getStoreSize();
3377   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3378
3379   // Get the cost of one memory operation.
3380   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3381                                         LegalVT.getVectorNumElements());
3382   unsigned MemOpCost =
3383       getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
3384
3385   VectorType *VT = VectorType::get(ScalarTy, VF);
3386   EVT ETy = TLI->getValueType(DL, VT);
3387   if (!ETy.isSimple())
3388     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3389                                              Alignment, AddressSpace);
3390
3391   // TODO: Complete for other data-types and strides.
3392   // Each combination of Stride, ElementTy and VF results in a different
3393   // sequence; The cost tables are therefore accessed with:
3394   // Factor (stride) and VectorType=VFxElemType.
3395   // The Cost accounts only for the shuffle sequence;
3396   // The cost of the loads/stores is accounted for separately.
3397   //
3398   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
3399     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
3400     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
3401
3402     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
3403     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
3404     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
3405     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
3406     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
3407     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
3408
3409     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
3410     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
3411     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
3412     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
3413     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
3414
3415     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
3416   };
3417
3418   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
3419     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
3420     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
3421
3422     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
3423     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
3424     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
3425     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
3426     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
3427
3428     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
3429     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
3430     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
3431     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
3432     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
3433   };
3434
3435   if (Opcode == Instruction::Load) {
3436     if (const auto *Entry =
3437             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
3438       return NumOfMemOps * MemOpCost + Entry->Cost;
3439   } else {
3440     assert(Opcode == Instruction::Store &&
3441            "Expected Store Instruction at this  point");
3442     if (const auto *Entry =
3443             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
3444       return NumOfMemOps * MemOpCost + Entry->Cost;
3445   }
3446
3447   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3448                                            Alignment, AddressSpace);
3449 }
3450
3451 // Get estimation for interleaved load/store operations and strided load.
3452 // \p Indices contains indices for strided load.
3453 // \p Factor - the factor of interleaving.
3454 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
3455 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
3456                                                  unsigned Factor,
3457                                                  ArrayRef<unsigned> Indices,
3458                                                  unsigned Alignment,
3459                                                  unsigned AddressSpace,
3460                                                  bool UseMaskForCond,
3461                                                  bool UseMaskForGaps) {
3462
3463   if (UseMaskForCond || UseMaskForGaps)
3464     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3465                                              Alignment, AddressSpace,
3466                                              UseMaskForCond, UseMaskForGaps);
3467
3468   // VecTy for interleave memop is <VF*Factor x Elt>.
3469   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3470   // VecTy = <12 x i32>.
3471
3472   // Calculate the number of memory operations (NumOfMemOps), required
3473   // for load/store the VecTy.
3474   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3475   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3476   unsigned LegalVTSize = LegalVT.getStoreSize();
3477   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3478
3479   // Get the cost of one memory operation.
3480   Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3481                                         LegalVT.getVectorNumElements());
3482   unsigned MemOpCost =
3483       getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
3484
3485   unsigned VF = VecTy->getVectorNumElements() / Factor;
3486   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
3487
3488   if (Opcode == Instruction::Load) {
3489     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
3490     // contain the cost of the optimized shuffle sequence that the
3491     // X86InterleavedAccess pass will generate.
3492     // The cost of loads and stores are computed separately from the table.
3493
3494     // X86InterleavedAccess support only the following interleaved-access group.
3495     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
3496         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
3497         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
3498         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
3499     };
3500
3501     if (const auto *Entry =
3502             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
3503       return NumOfMemOps * MemOpCost + Entry->Cost;
3504     //If an entry does not exist, fallback to the default implementation.
3505
3506     // Kind of shuffle depends on number of loaded values.
3507     // If we load the entire data in one register, we can use a 1-src shuffle.
3508     // Otherwise, we'll merge 2 sources in each operation.
3509     TTI::ShuffleKind ShuffleKind =
3510         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
3511
3512     unsigned ShuffleCost =
3513         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
3514
3515     unsigned NumOfLoadsInInterleaveGrp =
3516         Indices.size() ? Indices.size() : Factor;
3517     Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
3518                                      VecTy->getVectorNumElements() / Factor);
3519     unsigned NumOfResults =
3520         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
3521         NumOfLoadsInInterleaveGrp;
3522
3523     // About a half of the loads may be folded in shuffles when we have only
3524     // one result. If we have more than one result, we do not fold loads at all.
3525     unsigned NumOfUnfoldedLoads =
3526         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
3527
3528     // Get a number of shuffle operations per result.
3529     unsigned NumOfShufflesPerResult =
3530         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
3531
3532     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3533     // When we have more than one destination, we need additional instructions
3534     // to keep sources.
3535     unsigned NumOfMoves = 0;
3536     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
3537       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
3538
3539     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
3540                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
3541
3542     return Cost;
3543   }
3544
3545   // Store.
3546   assert(Opcode == Instruction::Store &&
3547          "Expected Store Instruction at this  point");
3548   // X86InterleavedAccess support only the following interleaved-access group.
3549   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
3550       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
3551       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
3552       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
3553
3554       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
3555       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
3556       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
3557       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
3558   };
3559
3560   if (const auto *Entry =
3561           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
3562     return NumOfMemOps * MemOpCost + Entry->Cost;
3563   //If an entry does not exist, fallback to the default implementation.
3564
3565   // There is no strided stores meanwhile. And store can't be folded in
3566   // shuffle.
3567   unsigned NumOfSources = Factor; // The number of values to be merged.
3568   unsigned ShuffleCost =
3569       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
3570   unsigned NumOfShufflesPerStore = NumOfSources - 1;
3571
3572   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3573   // We need additional instructions to keep sources.
3574   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
3575   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
3576              NumOfMoves;
3577   return Cost;
3578 }
3579
3580 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
3581                                            unsigned Factor,
3582                                            ArrayRef<unsigned> Indices,
3583                                            unsigned Alignment,
3584                                            unsigned AddressSpace,
3585                                            bool UseMaskForCond,
3586                                            bool UseMaskForGaps) {
3587   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
3588     Type *EltTy = VecTy->getVectorElementType();
3589     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
3590         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
3591       return true;
3592     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
3593       return HasBW;
3594     return false;
3595   };
3596   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
3597     return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
3598                                             Alignment, AddressSpace,
3599                                             UseMaskForCond, UseMaskForGaps);
3600   if (ST->hasAVX2())
3601     return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
3602                                           Alignment, AddressSpace,
3603                                           UseMaskForCond, UseMaskForGaps);
3604
3605   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3606                                            Alignment, AddressSpace,
3607                                            UseMaskForCond, UseMaskForGaps);
3608 }