]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / IPO / CalledValuePropagation.cpp
1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/InstVisitor.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Transforms/IPO.h"
27 using namespace llvm;
28
29 #define DEBUG_TYPE "called-value-propagation"
30
31 /// The maximum number of functions to track per lattice value. Once the number
32 /// of functions a call site can possibly target exceeds this threshold, it's
33 /// lattice value becomes overdefined. The number of possible lattice values is
34 /// bounded by Ch(F, M), where F is the number of functions in the module and M
35 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
36 /// likely can't do anything useful for call sites with a large number of
37 /// possible targets, anyway.
38 static cl::opt<unsigned> MaxFunctionsPerValue(
39     "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
40     cl::desc("The maximum number of functions to track per lattice value"));
41
42 namespace {
43 /// To enable interprocedural analysis, we assign LLVM values to the following
44 /// groups. The register group represents SSA registers, the return group
45 /// represents the return values of functions, and the memory group represents
46 /// in-memory values. An LLVM Value can technically be in more than one group.
47 /// It's necessary to distinguish these groups so we can, for example, track a
48 /// global variable separately from the value stored at its location.
49 enum class IPOGrouping { Register, Return, Memory };
50
51 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
52 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
53
54 /// The lattice value type used by our custom lattice function. It holds the
55 /// lattice state, and a set of functions.
56 class CVPLatticeVal {
57 public:
58   /// The states of the lattice values. Only the FunctionSet state is
59   /// interesting. It indicates the set of functions to which an LLVM value may
60   /// refer.
61   enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
62
63   /// Comparator for sorting the functions set. We want to keep the order
64   /// deterministic for testing, etc.
65   struct Compare {
66     bool operator()(const Function *LHS, const Function *RHS) const {
67       return LHS->getName() < RHS->getName();
68     }
69   };
70
71   CVPLatticeVal() : LatticeState(Undefined) {}
72   CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
73   CVPLatticeVal(std::vector<Function *> &&Functions)
74       : LatticeState(FunctionSet), Functions(std::move(Functions)) {
75     assert(std::is_sorted(this->Functions.begin(), this->Functions.end(),
76                           Compare()));
77   }
78
79   /// Get a reference to the functions held by this lattice value. The number
80   /// of functions will be zero for states other than FunctionSet.
81   const std::vector<Function *> &getFunctions() const {
82     return Functions;
83   }
84
85   /// Returns true if the lattice value is in the FunctionSet state.
86   bool isFunctionSet() const { return LatticeState == FunctionSet; }
87
88   bool operator==(const CVPLatticeVal &RHS) const {
89     return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
90   }
91
92   bool operator!=(const CVPLatticeVal &RHS) const {
93     return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
94   }
95
96 private:
97   /// Holds the state this lattice value is in.
98   CVPLatticeStateTy LatticeState;
99
100   /// Holds functions indicating the possible targets of call sites. This set
101   /// is empty for lattice values in the undefined, overdefined, and untracked
102   /// states. The maximum size of the set is controlled by
103   /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
104   /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
105   /// small and efficiently copyable.
106   // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
107   std::vector<Function *> Functions;
108 };
109
110 /// The custom lattice function used by the generic sparse propagation solver.
111 /// It handles merging lattice values and computing new lattice values for
112 /// constants, arguments, values returned from trackable functions, and values
113 /// located in trackable global variables. It also computes the lattice values
114 /// that change as a result of executing instructions.
115 class CVPLatticeFunc
116     : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
117 public:
118   CVPLatticeFunc()
119       : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
120                                 CVPLatticeVal(CVPLatticeVal::Overdefined),
121                                 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
122
123   /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
124   CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
125     switch (Key.getInt()) {
126     case IPOGrouping::Register:
127       if (isa<Instruction>(Key.getPointer())) {
128         return getUndefVal();
129       } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
130         if (canTrackArgumentsInterprocedurally(A->getParent()))
131           return getUndefVal();
132       } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
133         return computeConstant(C);
134       }
135       return getOverdefinedVal();
136     case IPOGrouping::Memory:
137     case IPOGrouping::Return:
138       if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
139         if (canTrackGlobalVariableInterprocedurally(GV))
140           return computeConstant(GV->getInitializer());
141       } else if (auto *F = cast<Function>(Key.getPointer()))
142         if (canTrackReturnsInterprocedurally(F))
143           return getUndefVal();
144     }
145     return getOverdefinedVal();
146   }
147
148   /// Merge the two given lattice values. The interesting cases are merging two
149   /// FunctionSet values and a FunctionSet value with an Undefined value. For
150   /// these cases, we simply union the function sets. If the size of the union
151   /// is greater than the maximum functions we track, the merged value is
152   /// overdefined.
153   CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
154     if (X == getOverdefinedVal() || Y == getOverdefinedVal())
155       return getOverdefinedVal();
156     if (X == getUndefVal() && Y == getUndefVal())
157       return getUndefVal();
158     std::vector<Function *> Union;
159     std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
160                    Y.getFunctions().begin(), Y.getFunctions().end(),
161                    std::back_inserter(Union), CVPLatticeVal::Compare{});
162     if (Union.size() > MaxFunctionsPerValue)
163       return getOverdefinedVal();
164     return CVPLatticeVal(std::move(Union));
165   }
166
167   /// Compute the lattice values that change as a result of executing the given
168   /// instruction. The changed values are stored in \p ChangedValues. We handle
169   /// just a few kinds of instructions since we're only propagating values that
170   /// can be called.
171   void ComputeInstructionState(
172       Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
173       SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
174     switch (I.getOpcode()) {
175     case Instruction::Call:
176       return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
177     case Instruction::Invoke:
178       return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS);
179     case Instruction::Load:
180       return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
181     case Instruction::Ret:
182       return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
183     case Instruction::Select:
184       return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
185     case Instruction::Store:
186       return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
187     default:
188       return visitInst(I, ChangedValues, SS);
189     }
190   }
191
192   /// Print the given CVPLatticeVal to the specified stream.
193   void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
194     if (LV == getUndefVal())
195       OS << "Undefined  ";
196     else if (LV == getOverdefinedVal())
197       OS << "Overdefined";
198     else if (LV == getUntrackedVal())
199       OS << "Untracked  ";
200     else
201       OS << "FunctionSet";
202   }
203
204   /// Print the given CVPLatticeKey to the specified stream.
205   void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
206     if (Key.getInt() == IPOGrouping::Register)
207       OS << "<reg> ";
208     else if (Key.getInt() == IPOGrouping::Memory)
209       OS << "<mem> ";
210     else if (Key.getInt() == IPOGrouping::Return)
211       OS << "<ret> ";
212     if (isa<Function>(Key.getPointer()))
213       OS << Key.getPointer()->getName();
214     else
215       OS << *Key.getPointer();
216   }
217
218   /// We collect a set of indirect calls when visiting call sites. This method
219   /// returns a reference to that set.
220   SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; }
221
222 private:
223   /// Holds the indirect calls we encounter during the analysis. We will attach
224   /// metadata to these calls after the analysis indicating the functions the
225   /// calls can possibly target.
226   SmallPtrSet<Instruction *, 32> IndirectCalls;
227
228   /// Compute a new lattice value for the given constant. The constant, after
229   /// stripping any pointer casts, should be a Function. We ignore null
230   /// pointers as an optimization, since calling these values is undefined
231   /// behavior.
232   CVPLatticeVal computeConstant(Constant *C) {
233     if (isa<ConstantPointerNull>(C))
234       return CVPLatticeVal(CVPLatticeVal::FunctionSet);
235     if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
236       return CVPLatticeVal({F});
237     return getOverdefinedVal();
238   }
239
240   /// Handle return instructions. The function's return state is the merge of
241   /// the returned value state and the function's return state.
242   void visitReturn(ReturnInst &I,
243                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
244                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
245     Function *F = I.getParent()->getParent();
246     if (F->getReturnType()->isVoidTy())
247       return;
248     auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
249     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
250     ChangedValues[RetF] =
251         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
252   }
253
254   /// Handle call sites. The state of a called function's formal arguments is
255   /// the merge of the argument state with the call sites corresponding actual
256   /// argument state. The call site state is the merge of the call site state
257   /// with the returned value state of the called function.
258   void visitCallSite(CallSite CS,
259                      DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
260                      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
261     Function *F = CS.getCalledFunction();
262     Instruction *I = CS.getInstruction();
263     auto RegI = CVPLatticeKey(I, IPOGrouping::Register);
264
265     // If this is an indirect call, save it so we can quickly revisit it when
266     // attaching metadata.
267     if (!F)
268       IndirectCalls.insert(I);
269
270     // If we can't track the function's return values, there's nothing to do.
271     if (!F || !canTrackReturnsInterprocedurally(F)) {
272       // Void return, No need to create and update CVPLattice state as no one
273       // can use it.
274       if (I->getType()->isVoidTy())
275         return;
276       ChangedValues[RegI] = getOverdefinedVal();
277       return;
278     }
279
280     // Inform the solver that the called function is executable, and perform
281     // the merges for the arguments and return value.
282     SS.MarkBlockExecutable(&F->front());
283     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
284     for (Argument &A : F->args()) {
285       auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
286       auto RegActual =
287           CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
288       ChangedValues[RegFormal] =
289           MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
290     }
291
292     // Void return, No need to create and update CVPLattice state as no one can
293     // use it.
294     if (I->getType()->isVoidTy())
295       return;
296
297     ChangedValues[RegI] =
298         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
299   }
300
301   /// Handle select instructions. The select instruction state is the merge the
302   /// true and false value states.
303   void visitSelect(SelectInst &I,
304                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
305                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
306     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
307     auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
308     auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
309     ChangedValues[RegI] =
310         MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
311   }
312
313   /// Handle load instructions. If the pointer operand of the load is a global
314   /// variable, we attempt to track the value. The loaded value state is the
315   /// merge of the loaded value state with the global variable state.
316   void visitLoad(LoadInst &I,
317                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
318                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
319     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
320     if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
321       auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
322       ChangedValues[RegI] =
323           MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
324     } else {
325       ChangedValues[RegI] = getOverdefinedVal();
326     }
327   }
328
329   /// Handle store instructions. If the pointer operand of the store is a
330   /// global variable, we attempt to track the value. The global variable state
331   /// is the merge of the stored value state with the global variable state.
332   void visitStore(StoreInst &I,
333                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
334                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
335     auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
336     if (!GV)
337       return;
338     auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
339     auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
340     ChangedValues[MemGV] =
341         MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
342   }
343
344   /// Handle all other instructions. All other instructions are marked
345   /// overdefined.
346   void visitInst(Instruction &I,
347                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
348                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
349     // Simply bail if this instruction has no user.
350     if (I.use_empty())
351       return;
352     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
353     ChangedValues[RegI] = getOverdefinedVal();
354   }
355 };
356 } // namespace
357
358 namespace llvm {
359 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
360 /// must translate between LatticeKeys and LLVM Values when adding Values to
361 /// its work list and inspecting the state of control-flow related values.
362 template <> struct LatticeKeyInfo<CVPLatticeKey> {
363   static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
364     return Key.getPointer();
365   }
366   static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
367     return CVPLatticeKey(V, IPOGrouping::Register);
368   }
369 };
370 } // namespace llvm
371
372 static bool runCVP(Module &M) {
373   // Our custom lattice function and generic sparse propagation solver.
374   CVPLatticeFunc Lattice;
375   SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
376
377   // For each function in the module, if we can't track its arguments, let the
378   // generic solver assume it is executable.
379   for (Function &F : M)
380     if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
381       Solver.MarkBlockExecutable(&F.front());
382
383   // Solver our custom lattice. In doing so, we will also build a set of
384   // indirect call sites.
385   Solver.Solve();
386
387   // Attach metadata to the indirect call sites that were collected indicating
388   // the set of functions they can possibly target.
389   bool Changed = false;
390   MDBuilder MDB(M.getContext());
391   for (Instruction *C : Lattice.getIndirectCalls()) {
392     CallSite CS(C);
393     auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register);
394     CVPLatticeVal LV = Solver.getExistingValueState(RegI);
395     if (!LV.isFunctionSet() || LV.getFunctions().empty())
396       continue;
397     MDNode *Callees = MDB.createCallees(LV.getFunctions());
398     C->setMetadata(LLVMContext::MD_callees, Callees);
399     Changed = true;
400   }
401
402   return Changed;
403 }
404
405 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
406                                                   ModuleAnalysisManager &) {
407   runCVP(M);
408   return PreservedAnalyses::all();
409 }
410
411 namespace {
412 class CalledValuePropagationLegacyPass : public ModulePass {
413 public:
414   static char ID;
415
416   void getAnalysisUsage(AnalysisUsage &AU) const override {
417     AU.setPreservesAll();
418   }
419
420   CalledValuePropagationLegacyPass() : ModulePass(ID) {
421     initializeCalledValuePropagationLegacyPassPass(
422         *PassRegistry::getPassRegistry());
423   }
424
425   bool runOnModule(Module &M) override {
426     if (skipModule(M))
427       return false;
428     return runCVP(M);
429   }
430 };
431 } // namespace
432
433 char CalledValuePropagationLegacyPass::ID = 0;
434 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
435                 "Called Value Propagation", false, false)
436
437 ModulePass *llvm::createCalledValuePropagationPass() {
438   return new CalledValuePropagationLegacyPass();
439 }