]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
Move all sources from the llvm project into contrib/llvm-project.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / InstCombine / InstCombineAddSub.cpp
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include <cassert>
33 #include <utility>
34
35 using namespace llvm;
36 using namespace PatternMatch;
37
38 #define DEBUG_TYPE "instcombine"
39
40 namespace {
41
42   /// Class representing coefficient of floating-point addend.
43   /// This class needs to be highly efficient, which is especially true for
44   /// the constructor. As of I write this comment, the cost of the default
45   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
46   /// perform write-merging).
47   ///
48   class FAddendCoef {
49   public:
50     // The constructor has to initialize a APFloat, which is unnecessary for
51     // most addends which have coefficient either 1 or -1. So, the constructor
52     // is expensive. In order to avoid the cost of the constructor, we should
53     // reuse some instances whenever possible. The pre-created instances
54     // FAddCombine::Add[0-5] embodies this idea.
55     FAddendCoef() = default;
56     ~FAddendCoef();
57
58     // If possible, don't define operator+/operator- etc because these
59     // operators inevitably call FAddendCoef's constructor which is not cheap.
60     void operator=(const FAddendCoef &A);
61     void operator+=(const FAddendCoef &A);
62     void operator*=(const FAddendCoef &S);
63
64     void set(short C) {
65       assert(!insaneIntVal(C) && "Insane coefficient");
66       IsFp = false; IntVal = C;
67     }
68
69     void set(const APFloat& C);
70
71     void negate();
72
73     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
74     Value *getValue(Type *) const;
75
76     bool isOne() const { return isInt() && IntVal == 1; }
77     bool isTwo() const { return isInt() && IntVal == 2; }
78     bool isMinusOne() const { return isInt() && IntVal == -1; }
79     bool isMinusTwo() const { return isInt() && IntVal == -2; }
80
81   private:
82     bool insaneIntVal(int V) { return V > 4 || V < -4; }
83
84     APFloat *getFpValPtr()
85       { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
86
87     const APFloat *getFpValPtr() const
88       { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
89
90     const APFloat &getFpVal() const {
91       assert(IsFp && BufHasFpVal && "Incorret state");
92       return *getFpValPtr();
93     }
94
95     APFloat &getFpVal() {
96       assert(IsFp && BufHasFpVal && "Incorret state");
97       return *getFpValPtr();
98     }
99
100     bool isInt() const { return !IsFp; }
101
102     // If the coefficient is represented by an integer, promote it to a
103     // floating point.
104     void convertToFpType(const fltSemantics &Sem);
105
106     // Construct an APFloat from a signed integer.
107     // TODO: We should get rid of this function when APFloat can be constructed
108     //       from an *SIGNED* integer.
109     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
110
111     bool IsFp = false;
112
113     // True iff FpValBuf contains an instance of APFloat.
114     bool BufHasFpVal = false;
115
116     // The integer coefficient of an individual addend is either 1 or -1,
117     // and we try to simplify at most 4 addends from neighboring at most
118     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
119     // is overkill of this end.
120     short IntVal = 0;
121
122     AlignedCharArrayUnion<APFloat> FpValBuf;
123   };
124
125   /// FAddend is used to represent floating-point addend. An addend is
126   /// represented as <C, V>, where the V is a symbolic value, and C is a
127   /// constant coefficient. A constant addend is represented as <C, 0>.
128   class FAddend {
129   public:
130     FAddend() = default;
131
132     void operator+=(const FAddend &T) {
133       assert((Val == T.Val) && "Symbolic-values disagree");
134       Coeff += T.Coeff;
135     }
136
137     Value *getSymVal() const { return Val; }
138     const FAddendCoef &getCoef() const { return Coeff; }
139
140     bool isConstant() const { return Val == nullptr; }
141     bool isZero() const { return Coeff.isZero(); }
142
143     void set(short Coefficient, Value *V) {
144       Coeff.set(Coefficient);
145       Val = V;
146     }
147     void set(const APFloat &Coefficient, Value *V) {
148       Coeff.set(Coefficient);
149       Val = V;
150     }
151     void set(const ConstantFP *Coefficient, Value *V) {
152       Coeff.set(Coefficient->getValueAPF());
153       Val = V;
154     }
155
156     void negate() { Coeff.negate(); }
157
158     /// Drill down the U-D chain one step to find the definition of V, and
159     /// try to break the definition into one or two addends.
160     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
161
162     /// Similar to FAddend::drillDownOneStep() except that the value being
163     /// splitted is the addend itself.
164     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
165
166   private:
167     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
168
169     // This addend has the value of "Coeff * Val".
170     Value *Val = nullptr;
171     FAddendCoef Coeff;
172   };
173
174   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
175   /// with its neighboring at most two instructions.
176   ///
177   class FAddCombine {
178   public:
179     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
180
181     Value *simplify(Instruction *FAdd);
182
183   private:
184     using AddendVect = SmallVector<const FAddend *, 4>;
185
186     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
187
188     /// Convert given addend to a Value
189     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
190
191     /// Return the number of instructions needed to emit the N-ary addition.
192     unsigned calcInstrNumber(const AddendVect& Vect);
193
194     Value *createFSub(Value *Opnd0, Value *Opnd1);
195     Value *createFAdd(Value *Opnd0, Value *Opnd1);
196     Value *createFMul(Value *Opnd0, Value *Opnd1);
197     Value *createFNeg(Value *V);
198     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
199     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
200
201      // Debugging stuff are clustered here.
202     #ifndef NDEBUG
203       unsigned CreateInstrNum;
204       void initCreateInstNum() { CreateInstrNum = 0; }
205       void incCreateInstNum() { CreateInstrNum++; }
206     #else
207       void initCreateInstNum() {}
208       void incCreateInstNum() {}
209     #endif
210
211     InstCombiner::BuilderTy &Builder;
212     Instruction *Instr = nullptr;
213   };
214
215 } // end anonymous namespace
216
217 //===----------------------------------------------------------------------===//
218 //
219 // Implementation of
220 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
221 //
222 //===----------------------------------------------------------------------===//
223 FAddendCoef::~FAddendCoef() {
224   if (BufHasFpVal)
225     getFpValPtr()->~APFloat();
226 }
227
228 void FAddendCoef::set(const APFloat& C) {
229   APFloat *P = getFpValPtr();
230
231   if (isInt()) {
232     // As the buffer is meanless byte stream, we cannot call
233     // APFloat::operator=().
234     new(P) APFloat(C);
235   } else
236     *P = C;
237
238   IsFp = BufHasFpVal = true;
239 }
240
241 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
242   if (!isInt())
243     return;
244
245   APFloat *P = getFpValPtr();
246   if (IntVal > 0)
247     new(P) APFloat(Sem, IntVal);
248   else {
249     new(P) APFloat(Sem, 0 - IntVal);
250     P->changeSign();
251   }
252   IsFp = BufHasFpVal = true;
253 }
254
255 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
256   if (Val >= 0)
257     return APFloat(Sem, Val);
258
259   APFloat T(Sem, 0 - Val);
260   T.changeSign();
261
262   return T;
263 }
264
265 void FAddendCoef::operator=(const FAddendCoef &That) {
266   if (That.isInt())
267     set(That.IntVal);
268   else
269     set(That.getFpVal());
270 }
271
272 void FAddendCoef::operator+=(const FAddendCoef &That) {
273   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
274   if (isInt() == That.isInt()) {
275     if (isInt())
276       IntVal += That.IntVal;
277     else
278       getFpVal().add(That.getFpVal(), RndMode);
279     return;
280   }
281
282   if (isInt()) {
283     const APFloat &T = That.getFpVal();
284     convertToFpType(T.getSemantics());
285     getFpVal().add(T, RndMode);
286     return;
287   }
288
289   APFloat &T = getFpVal();
290   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
291 }
292
293 void FAddendCoef::operator*=(const FAddendCoef &That) {
294   if (That.isOne())
295     return;
296
297   if (That.isMinusOne()) {
298     negate();
299     return;
300   }
301
302   if (isInt() && That.isInt()) {
303     int Res = IntVal * (int)That.IntVal;
304     assert(!insaneIntVal(Res) && "Insane int value");
305     IntVal = Res;
306     return;
307   }
308
309   const fltSemantics &Semantic =
310     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
311
312   if (isInt())
313     convertToFpType(Semantic);
314   APFloat &F0 = getFpVal();
315
316   if (That.isInt())
317     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318                 APFloat::rmNearestTiesToEven);
319   else
320     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
321 }
322
323 void FAddendCoef::negate() {
324   if (isInt())
325     IntVal = 0 - IntVal;
326   else
327     getFpVal().changeSign();
328 }
329
330 Value *FAddendCoef::getValue(Type *Ty) const {
331   return isInt() ?
332     ConstantFP::get(Ty, float(IntVal)) :
333     ConstantFP::get(Ty->getContext(), getFpVal());
334 }
335
336 // The definition of <Val>     Addends
337 // =========================================
338 //  A + B                     <1, A>, <1,B>
339 //  A - B                     <1, A>, <1,B>
340 //  0 - B                     <-1, B>
341 //  C * A,                    <C, A>
342 //  A + C                     <1, A> <C, NULL>
343 //  0 +/- 0                   <0, NULL> (corner case)
344 //
345 // Legend: A and B are not constant, C is constant
346 unsigned FAddend::drillValueDownOneStep
347   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
348   Instruction *I = nullptr;
349   if (!Val || !(I = dyn_cast<Instruction>(Val)))
350     return 0;
351
352   unsigned Opcode = I->getOpcode();
353
354   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
355     ConstantFP *C0, *C1;
356     Value *Opnd0 = I->getOperand(0);
357     Value *Opnd1 = I->getOperand(1);
358     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
359       Opnd0 = nullptr;
360
361     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
362       Opnd1 = nullptr;
363
364     if (Opnd0) {
365       if (!C0)
366         Addend0.set(1, Opnd0);
367       else
368         Addend0.set(C0, nullptr);
369     }
370
371     if (Opnd1) {
372       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
373       if (!C1)
374         Addend.set(1, Opnd1);
375       else
376         Addend.set(C1, nullptr);
377       if (Opcode == Instruction::FSub)
378         Addend.negate();
379     }
380
381     if (Opnd0 || Opnd1)
382       return Opnd0 && Opnd1 ? 2 : 1;
383
384     // Both operands are zero. Weird!
385     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
386     return 1;
387   }
388
389   if (I->getOpcode() == Instruction::FMul) {
390     Value *V0 = I->getOperand(0);
391     Value *V1 = I->getOperand(1);
392     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
393       Addend0.set(C, V1);
394       return 1;
395     }
396
397     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
398       Addend0.set(C, V0);
399       return 1;
400     }
401   }
402
403   return 0;
404 }
405
406 // Try to break *this* addend into two addends. e.g. Suppose this addend is
407 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
408 // i.e. <2.3, X> and <2.3, Y>.
409 unsigned FAddend::drillAddendDownOneStep
410   (FAddend &Addend0, FAddend &Addend1) const {
411   if (isConstant())
412     return 0;
413
414   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
415   if (!BreakNum || Coeff.isOne())
416     return BreakNum;
417
418   Addend0.Scale(Coeff);
419
420   if (BreakNum == 2)
421     Addend1.Scale(Coeff);
422
423   return BreakNum;
424 }
425
426 Value *FAddCombine::simplify(Instruction *I) {
427   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
428          "Expected 'reassoc'+'nsz' instruction");
429
430   // Currently we are not able to handle vector type.
431   if (I->getType()->isVectorTy())
432     return nullptr;
433
434   assert((I->getOpcode() == Instruction::FAdd ||
435           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
436
437   // Save the instruction before calling other member-functions.
438   Instr = I;
439
440   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
441
442   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
443
444   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
445   unsigned Opnd0_ExpNum = 0;
446   unsigned Opnd1_ExpNum = 0;
447
448   if (!Opnd0.isConstant())
449     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
450
451   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
452   if (OpndNum == 2 && !Opnd1.isConstant())
453     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
454
455   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
456   if (Opnd0_ExpNum && Opnd1_ExpNum) {
457     AddendVect AllOpnds;
458     AllOpnds.push_back(&Opnd0_0);
459     AllOpnds.push_back(&Opnd1_0);
460     if (Opnd0_ExpNum == 2)
461       AllOpnds.push_back(&Opnd0_1);
462     if (Opnd1_ExpNum == 2)
463       AllOpnds.push_back(&Opnd1_1);
464
465     // Compute instruction quota. We should save at least one instruction.
466     unsigned InstQuota = 0;
467
468     Value *V0 = I->getOperand(0);
469     Value *V1 = I->getOperand(1);
470     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
471                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
472
473     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
474       return R;
475   }
476
477   if (OpndNum != 2) {
478     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
479     // splitted into two addends, say "V = X - Y", the instruction would have
480     // been optimized into "I = Y - X" in the previous steps.
481     //
482     const FAddendCoef &CE = Opnd0.getCoef();
483     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
484   }
485
486   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
487   if (Opnd1_ExpNum) {
488     AddendVect AllOpnds;
489     AllOpnds.push_back(&Opnd0);
490     AllOpnds.push_back(&Opnd1_0);
491     if (Opnd1_ExpNum == 2)
492       AllOpnds.push_back(&Opnd1_1);
493
494     if (Value *R = simplifyFAdd(AllOpnds, 1))
495       return R;
496   }
497
498   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
499   if (Opnd0_ExpNum) {
500     AddendVect AllOpnds;
501     AllOpnds.push_back(&Opnd1);
502     AllOpnds.push_back(&Opnd0_0);
503     if (Opnd0_ExpNum == 2)
504       AllOpnds.push_back(&Opnd0_1);
505
506     if (Value *R = simplifyFAdd(AllOpnds, 1))
507       return R;
508   }
509
510   return nullptr;
511 }
512
513 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
514   unsigned AddendNum = Addends.size();
515   assert(AddendNum <= 4 && "Too many addends");
516
517   // For saving intermediate results;
518   unsigned NextTmpIdx = 0;
519   FAddend TmpResult[3];
520
521   // Points to the constant addend of the resulting simplified expression.
522   // If the resulting expr has constant-addend, this constant-addend is
523   // desirable to reside at the top of the resulting expression tree. Placing
524   // constant close to supper-expr(s) will potentially reveal some optimization
525   // opportunities in super-expr(s).
526   const FAddend *ConstAdd = nullptr;
527
528   // Simplified addends are placed <SimpVect>.
529   AddendVect SimpVect;
530
531   // The outer loop works on one symbolic-value at a time. Suppose the input
532   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
533   // The symbolic-values will be processed in this order: x, y, z.
534   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
535
536     const FAddend *ThisAddend = Addends[SymIdx];
537     if (!ThisAddend) {
538       // This addend was processed before.
539       continue;
540     }
541
542     Value *Val = ThisAddend->getSymVal();
543     unsigned StartIdx = SimpVect.size();
544     SimpVect.push_back(ThisAddend);
545
546     // The inner loop collects addends sharing same symbolic-value, and these
547     // addends will be later on folded into a single addend. Following above
548     // example, if the symbolic value "y" is being processed, the inner loop
549     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
550     // be later on folded into "<b1+b2, y>".
551     for (unsigned SameSymIdx = SymIdx + 1;
552          SameSymIdx < AddendNum; SameSymIdx++) {
553       const FAddend *T = Addends[SameSymIdx];
554       if (T && T->getSymVal() == Val) {
555         // Set null such that next iteration of the outer loop will not process
556         // this addend again.
557         Addends[SameSymIdx] = nullptr;
558         SimpVect.push_back(T);
559       }
560     }
561
562     // If multiple addends share same symbolic value, fold them together.
563     if (StartIdx + 1 != SimpVect.size()) {
564       FAddend &R = TmpResult[NextTmpIdx ++];
565       R = *SimpVect[StartIdx];
566       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
567         R += *SimpVect[Idx];
568
569       // Pop all addends being folded and push the resulting folded addend.
570       SimpVect.resize(StartIdx);
571       if (Val) {
572         if (!R.isZero()) {
573           SimpVect.push_back(&R);
574         }
575       } else {
576         // Don't push constant addend at this time. It will be the last element
577         // of <SimpVect>.
578         ConstAdd = &R;
579       }
580     }
581   }
582
583   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
584          "out-of-bound access");
585
586   if (ConstAdd)
587     SimpVect.push_back(ConstAdd);
588
589   Value *Result;
590   if (!SimpVect.empty())
591     Result = createNaryFAdd(SimpVect, InstrQuota);
592   else {
593     // The addition is folded to 0.0.
594     Result = ConstantFP::get(Instr->getType(), 0.0);
595   }
596
597   return Result;
598 }
599
600 Value *FAddCombine::createNaryFAdd
601   (const AddendVect &Opnds, unsigned InstrQuota) {
602   assert(!Opnds.empty() && "Expect at least one addend");
603
604   // Step 1: Check if the # of instructions needed exceeds the quota.
605
606   unsigned InstrNeeded = calcInstrNumber(Opnds);
607   if (InstrNeeded > InstrQuota)
608     return nullptr;
609
610   initCreateInstNum();
611
612   // step 2: Emit the N-ary addition.
613   // Note that at most three instructions are involved in Fadd-InstCombine: the
614   // addition in question, and at most two neighboring instructions.
615   // The resulting optimized addition should have at least one less instruction
616   // than the original addition expression tree. This implies that the resulting
617   // N-ary addition has at most two instructions, and we don't need to worry
618   // about tree-height when constructing the N-ary addition.
619
620   Value *LastVal = nullptr;
621   bool LastValNeedNeg = false;
622
623   // Iterate the addends, creating fadd/fsub using adjacent two addends.
624   for (const FAddend *Opnd : Opnds) {
625     bool NeedNeg;
626     Value *V = createAddendVal(*Opnd, NeedNeg);
627     if (!LastVal) {
628       LastVal = V;
629       LastValNeedNeg = NeedNeg;
630       continue;
631     }
632
633     if (LastValNeedNeg == NeedNeg) {
634       LastVal = createFAdd(LastVal, V);
635       continue;
636     }
637
638     if (LastValNeedNeg)
639       LastVal = createFSub(V, LastVal);
640     else
641       LastVal = createFSub(LastVal, V);
642
643     LastValNeedNeg = false;
644   }
645
646   if (LastValNeedNeg) {
647     LastVal = createFNeg(LastVal);
648   }
649
650 #ifndef NDEBUG
651   assert(CreateInstrNum == InstrNeeded &&
652          "Inconsistent in instruction numbers");
653 #endif
654
655   return LastVal;
656 }
657
658 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
659   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
660   if (Instruction *I = dyn_cast<Instruction>(V))
661     createInstPostProc(I);
662   return V;
663 }
664
665 Value *FAddCombine::createFNeg(Value *V) {
666   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
667   Value *NewV = createFSub(Zero, V);
668   if (Instruction *I = dyn_cast<Instruction>(NewV))
669     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
670   return NewV;
671 }
672
673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
674   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
675   if (Instruction *I = dyn_cast<Instruction>(V))
676     createInstPostProc(I);
677   return V;
678 }
679
680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
681   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
682   if (Instruction *I = dyn_cast<Instruction>(V))
683     createInstPostProc(I);
684   return V;
685 }
686
687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
688   NewInstr->setDebugLoc(Instr->getDebugLoc());
689
690   // Keep track of the number of instruction created.
691   if (!NoNumber)
692     incCreateInstNum();
693
694   // Propagate fast-math flags
695   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
696 }
697
698 // Return the number of instruction needed to emit the N-ary addition.
699 // NOTE: Keep this function in sync with createAddendVal().
700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
701   unsigned OpndNum = Opnds.size();
702   unsigned InstrNeeded = OpndNum - 1;
703
704   // The number of addends in the form of "(-1)*x".
705   unsigned NegOpndNum = 0;
706
707   // Adjust the number of instructions needed to emit the N-ary add.
708   for (const FAddend *Opnd : Opnds) {
709     if (Opnd->isConstant())
710       continue;
711
712     // The constant check above is really for a few special constant
713     // coefficients.
714     if (isa<UndefValue>(Opnd->getSymVal()))
715       continue;
716
717     const FAddendCoef &CE = Opnd->getCoef();
718     if (CE.isMinusOne() || CE.isMinusTwo())
719       NegOpndNum++;
720
721     // Let the addend be "c * x". If "c == +/-1", the value of the addend
722     // is immediately available; otherwise, it needs exactly one instruction
723     // to evaluate the value.
724     if (!CE.isMinusOne() && !CE.isOne())
725       InstrNeeded++;
726   }
727   if (NegOpndNum == OpndNum)
728     InstrNeeded++;
729   return InstrNeeded;
730 }
731
732 // Input Addend        Value           NeedNeg(output)
733 // ================================================================
734 // Constant C          C               false
735 // <+/-1, V>           V               coefficient is -1
736 // <2/-2, V>          "fadd V, V"      coefficient is -2
737 // <C, V>             "fmul V, C"      false
738 //
739 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
740 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
741   const FAddendCoef &Coeff = Opnd.getCoef();
742
743   if (Opnd.isConstant()) {
744     NeedNeg = false;
745     return Coeff.getValue(Instr->getType());
746   }
747
748   Value *OpndVal = Opnd.getSymVal();
749
750   if (Coeff.isMinusOne() || Coeff.isOne()) {
751     NeedNeg = Coeff.isMinusOne();
752     return OpndVal;
753   }
754
755   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
756     NeedNeg = Coeff.isMinusTwo();
757     return createFAdd(OpndVal, OpndVal);
758   }
759
760   NeedNeg = false;
761   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
762 }
763
764 // Checks if any operand is negative and we can convert add to sub.
765 // This function checks for following negative patterns
766 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
767 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
768 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
769 static Value *checkForNegativeOperand(BinaryOperator &I,
770                                       InstCombiner::BuilderTy &Builder) {
771   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
772
773   // This function creates 2 instructions to replace ADD, we need at least one
774   // of LHS or RHS to have one use to ensure benefit in transform.
775   if (!LHS->hasOneUse() && !RHS->hasOneUse())
776     return nullptr;
777
778   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
779   const APInt *C1 = nullptr, *C2 = nullptr;
780
781   // if ONE is on other side, swap
782   if (match(RHS, m_Add(m_Value(X), m_One())))
783     std::swap(LHS, RHS);
784
785   if (match(LHS, m_Add(m_Value(X), m_One()))) {
786     // if XOR on other side, swap
787     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
788       std::swap(X, RHS);
789
790     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
791       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
792       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
793       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
794         Value *NewAnd = Builder.CreateAnd(Z, *C1);
795         return Builder.CreateSub(RHS, NewAnd, "sub");
796       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
797         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
798         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
799         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
800         return Builder.CreateSub(RHS, NewOr, "sub");
801       }
802     }
803   }
804
805   // Restore LHS and RHS
806   LHS = I.getOperand(0);
807   RHS = I.getOperand(1);
808
809   // if XOR is on other side, swap
810   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
811     std::swap(LHS, RHS);
812
813   // C2 is ODD
814   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
815   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
816   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
817     if (C1->countTrailingZeros() == 0)
818       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
819         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
820         return Builder.CreateSub(RHS, NewOr, "sub");
821       }
822   return nullptr;
823 }
824
825 /// Wrapping flags may allow combining constants separated by an extend.
826 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
827                                   InstCombiner::BuilderTy &Builder) {
828   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
829   Type *Ty = Add.getType();
830   Constant *Op1C;
831   if (!match(Op1, m_Constant(Op1C)))
832     return nullptr;
833
834   // Try this match first because it results in an add in the narrow type.
835   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
836   Value *X;
837   const APInt *C1, *C2;
838   if (match(Op1, m_APInt(C1)) &&
839       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
840       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
841     Constant *NewC =
842         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
843     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
844   }
845
846   // More general combining of constants in the wide type.
847   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
848   Constant *NarrowC;
849   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
850     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
851     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
852     Value *WideX = Builder.CreateSExt(X, Ty);
853     return BinaryOperator::CreateAdd(WideX, NewC);
854   }
855   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
856   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
857     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
858     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
859     Value *WideX = Builder.CreateZExt(X, Ty);
860     return BinaryOperator::CreateAdd(WideX, NewC);
861   }
862
863   return nullptr;
864 }
865
866 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
867   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
868   Constant *Op1C;
869   if (!match(Op1, m_Constant(Op1C)))
870     return nullptr;
871
872   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
873     return NV;
874
875   Value *X;
876   Constant *Op00C;
877
878   // add (sub C1, X), C2 --> sub (add C1, C2), X
879   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
880     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
881
882   Value *Y;
883
884   // add (sub X, Y), -1 --> add (not Y), X
885   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
886       match(Op1, m_AllOnes()))
887     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
888
889   // zext(bool) + C -> bool ? C + 1 : C
890   if (match(Op0, m_ZExt(m_Value(X))) &&
891       X->getType()->getScalarSizeInBits() == 1)
892     return SelectInst::Create(X, AddOne(Op1C), Op1);
893
894   // ~X + C --> (C-1) - X
895   if (match(Op0, m_Not(m_Value(X))))
896     return BinaryOperator::CreateSub(SubOne(Op1C), X);
897
898   const APInt *C;
899   if (!match(Op1, m_APInt(C)))
900     return nullptr;
901
902   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
903   const APInt *C2;
904   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
905     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
906
907   if (C->isSignMask()) {
908     // If wrapping is not allowed, then the addition must set the sign bit:
909     // X + (signmask) --> X | signmask
910     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
911       return BinaryOperator::CreateOr(Op0, Op1);
912
913     // If wrapping is allowed, then the addition flips the sign bit of LHS:
914     // X + (signmask) --> X ^ signmask
915     return BinaryOperator::CreateXor(Op0, Op1);
916   }
917
918   // Is this add the last step in a convoluted sext?
919   // add(zext(xor i16 X, -32768), -32768) --> sext X
920   Type *Ty = Add.getType();
921   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
922       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
923     return CastInst::Create(Instruction::SExt, X, Ty);
924
925   if (C->isOneValue() && Op0->hasOneUse()) {
926     // add (sext i1 X), 1 --> zext (not X)
927     // TODO: The smallest IR representation is (select X, 0, 1), and that would
928     // not require the one-use check. But we need to remove a transform in
929     // visitSelect and make sure that IR value tracking for select is equal or
930     // better than for these ops.
931     if (match(Op0, m_SExt(m_Value(X))) &&
932         X->getType()->getScalarSizeInBits() == 1)
933       return new ZExtInst(Builder.CreateNot(X), Ty);
934
935     // Shifts and add used to flip and mask off the low bit:
936     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
937     const APInt *C3;
938     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
939         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
940       Value *NotX = Builder.CreateNot(X);
941       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
942     }
943   }
944
945   return nullptr;
946 }
947
948 // Matches multiplication expression Op * C where C is a constant. Returns the
949 // constant value in C and the other operand in Op. Returns true if such a
950 // match is found.
951 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
952   const APInt *AI;
953   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
954     C = *AI;
955     return true;
956   }
957   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
958     C = APInt(AI->getBitWidth(), 1);
959     C <<= *AI;
960     return true;
961   }
962   return false;
963 }
964
965 // Matches remainder expression Op % C where C is a constant. Returns the
966 // constant value in C and the other operand in Op. Returns the signedness of
967 // the remainder operation in IsSigned. Returns true if such a match is
968 // found.
969 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
970   const APInt *AI;
971   IsSigned = false;
972   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
973     IsSigned = true;
974     C = *AI;
975     return true;
976   }
977   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
978     C = *AI;
979     return true;
980   }
981   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
982     C = *AI + 1;
983     return true;
984   }
985   return false;
986 }
987
988 // Matches division expression Op / C with the given signedness as indicated
989 // by IsSigned, where C is a constant. Returns the constant value in C and the
990 // other operand in Op. Returns true if such a match is found.
991 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
992   const APInt *AI;
993   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
994     C = *AI;
995     return true;
996   }
997   if (!IsSigned) {
998     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
999       C = *AI;
1000       return true;
1001     }
1002     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1003       C = APInt(AI->getBitWidth(), 1);
1004       C <<= *AI;
1005       return true;
1006     }
1007   }
1008   return false;
1009 }
1010
1011 // Returns whether C0 * C1 with the given signedness overflows.
1012 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1013   bool overflow;
1014   if (IsSigned)
1015     (void)C0.smul_ov(C1, overflow);
1016   else
1017     (void)C0.umul_ov(C1, overflow);
1018   return overflow;
1019 }
1020
1021 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1022 // does not overflow.
1023 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1024   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1025   Value *X, *MulOpV;
1026   APInt C0, MulOpC;
1027   bool IsSigned;
1028   // Match I = X % C0 + MulOpV * C0
1029   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1030        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1031       C0 == MulOpC) {
1032     Value *RemOpV;
1033     APInt C1;
1034     bool Rem2IsSigned;
1035     // Match MulOpC = RemOpV % C1
1036     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1037         IsSigned == Rem2IsSigned) {
1038       Value *DivOpV;
1039       APInt DivOpC;
1040       // Match RemOpV = X / C0
1041       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1042           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1043         Value *NewDivisor =
1044             ConstantInt::get(X->getType()->getContext(), C0 * C1);
1045         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1046                         : Builder.CreateURem(X, NewDivisor, "urem");
1047       }
1048     }
1049   }
1050
1051   return nullptr;
1052 }
1053
1054 /// Fold
1055 ///   (1 << NBits) - 1
1056 /// Into:
1057 ///   ~(-(1 << NBits))
1058 /// Because a 'not' is better for bit-tracking analysis and other transforms
1059 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1060 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1061                                            InstCombiner::BuilderTy &Builder) {
1062   Value *NBits;
1063   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1064     return nullptr;
1065
1066   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1067   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1068   // Be wary of constant folding.
1069   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1070     // Always NSW. But NUW propagates from `add`.
1071     BOp->setHasNoSignedWrap();
1072     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1073   }
1074
1075   return BinaryOperator::CreateNot(NotMask, I.getName());
1076 }
1077
1078 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1079   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1080   Type *Ty = I.getType();
1081   auto getUAddSat = [&]() {
1082     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1083   };
1084
1085   // add (umin X, ~Y), Y --> uaddsat X, Y
1086   Value *X, *Y;
1087   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1088                         m_Deferred(Y))))
1089     return CallInst::Create(getUAddSat(), { X, Y });
1090
1091   // add (umin X, ~C), C --> uaddsat X, C
1092   const APInt *C, *NotC;
1093   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1094       *C == ~*NotC)
1095     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1096
1097   return nullptr;
1098 }
1099
1100 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1101   if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1102                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1103                                  SQ.getWithInstruction(&I)))
1104     return replaceInstUsesWith(I, V);
1105
1106   if (SimplifyAssociativeOrCommutative(I))
1107     return &I;
1108
1109   if (Instruction *X = foldVectorBinop(I))
1110     return X;
1111
1112   // (A*B)+(A*C) -> A*(B+C) etc
1113   if (Value *V = SimplifyUsingDistributiveLaws(I))
1114     return replaceInstUsesWith(I, V);
1115
1116   if (Instruction *X = foldAddWithConstant(I))
1117     return X;
1118
1119   if (Instruction *X = foldNoWrapAdd(I, Builder))
1120     return X;
1121
1122   // FIXME: This should be moved into the above helper function to allow these
1123   // transforms for general constant or constant splat vectors.
1124   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1125   Type *Ty = I.getType();
1126   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1127     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1128     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1129       unsigned TySizeBits = Ty->getScalarSizeInBits();
1130       const APInt &RHSVal = CI->getValue();
1131       unsigned ExtendAmt = 0;
1132       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1133       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1134       if (XorRHS->getValue() == -RHSVal) {
1135         if (RHSVal.isPowerOf2())
1136           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1137         else if (XorRHS->getValue().isPowerOf2())
1138           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1139       }
1140
1141       if (ExtendAmt) {
1142         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1143         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1144           ExtendAmt = 0;
1145       }
1146
1147       if (ExtendAmt) {
1148         Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1149         Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1150         return BinaryOperator::CreateAShr(NewShl, ShAmt);
1151       }
1152
1153       // If this is a xor that was canonicalized from a sub, turn it back into
1154       // a sub and fuse this add with it.
1155       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1156         KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1157         if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1158           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1159                                            XorLHS);
1160       }
1161       // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1162       // transform them into (X + (signmask ^ C))
1163       if (XorRHS->getValue().isSignMask())
1164         return BinaryOperator::CreateAdd(XorLHS,
1165                                          ConstantExpr::getXor(XorRHS, CI));
1166     }
1167   }
1168
1169   if (Ty->isIntOrIntVectorTy(1))
1170     return BinaryOperator::CreateXor(LHS, RHS);
1171
1172   // X + X --> X << 1
1173   if (LHS == RHS) {
1174     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1175     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1176     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1177     return Shl;
1178   }
1179
1180   Value *A, *B;
1181   if (match(LHS, m_Neg(m_Value(A)))) {
1182     // -A + -B --> -(A + B)
1183     if (match(RHS, m_Neg(m_Value(B))))
1184       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1185
1186     // -A + B --> B - A
1187     return BinaryOperator::CreateSub(RHS, A);
1188   }
1189
1190   // Canonicalize sext to zext for better value tracking potential.
1191   // add A, sext(B) --> sub A, zext(B)
1192   if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) &&
1193       B->getType()->isIntOrIntVectorTy(1))
1194     return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty));
1195
1196   // A + -B  -->  A - B
1197   if (match(RHS, m_Neg(m_Value(B))))
1198     return BinaryOperator::CreateSub(LHS, B);
1199
1200   if (Value *V = checkForNegativeOperand(I, Builder))
1201     return replaceInstUsesWith(I, V);
1202
1203   // (A + 1) + ~B --> A - B
1204   // ~B + (A + 1) --> A - B
1205   // (~B + A) + 1 --> A - B
1206   // (A + ~B) + 1 --> A - B
1207   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1208       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1209     return BinaryOperator::CreateSub(A, B);
1210
1211   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1212   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1213
1214   // A+B --> A|B iff A and B have no bits set in common.
1215   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1216     return BinaryOperator::CreateOr(LHS, RHS);
1217
1218   // FIXME: We already did a check for ConstantInt RHS above this.
1219   // FIXME: Is this pattern covered by another fold? No regression tests fail on
1220   // removal.
1221   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1222     // (X & FF00) + xx00  -> (X+xx00) & FF00
1223     Value *X;
1224     ConstantInt *C2;
1225     if (LHS->hasOneUse() &&
1226         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1227         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1228       // See if all bits from the first bit set in the Add RHS up are included
1229       // in the mask.  First, get the rightmost bit.
1230       const APInt &AddRHSV = CRHS->getValue();
1231
1232       // Form a mask of all bits from the lowest bit added through the top.
1233       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1234
1235       // See if the and mask includes all of these bits.
1236       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1237
1238       if (AddRHSHighBits == AddRHSHighBitsAnd) {
1239         // Okay, the xform is safe.  Insert the new add pronto.
1240         Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1241         return BinaryOperator::CreateAnd(NewAdd, C2);
1242       }
1243     }
1244   }
1245
1246   // add (select X 0 (sub n A)) A  -->  select X A n
1247   {
1248     SelectInst *SI = dyn_cast<SelectInst>(LHS);
1249     Value *A = RHS;
1250     if (!SI) {
1251       SI = dyn_cast<SelectInst>(RHS);
1252       A = LHS;
1253     }
1254     if (SI && SI->hasOneUse()) {
1255       Value *TV = SI->getTrueValue();
1256       Value *FV = SI->getFalseValue();
1257       Value *N;
1258
1259       // Can we fold the add into the argument of the select?
1260       // We check both true and false select arguments for a matching subtract.
1261       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1262         // Fold the add into the true select value.
1263         return SelectInst::Create(SI->getCondition(), N, A);
1264
1265       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1266         // Fold the add into the false select value.
1267         return SelectInst::Create(SI->getCondition(), A, N);
1268     }
1269   }
1270
1271   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1272     return Ext;
1273
1274   // (add (xor A, B) (and A, B)) --> (or A, B)
1275   // (add (and A, B) (xor A, B)) --> (or A, B)
1276   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1277                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1278     return BinaryOperator::CreateOr(A, B);
1279
1280   // (add (or A, B) (and A, B)) --> (add A, B)
1281   // (add (and A, B) (or A, B)) --> (add A, B)
1282   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1283                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1284     I.setOperand(0, A);
1285     I.setOperand(1, B);
1286     return &I;
1287   }
1288
1289   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1290   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1291   // computeKnownBits.
1292   bool Changed = false;
1293   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1294     Changed = true;
1295     I.setHasNoSignedWrap(true);
1296   }
1297   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1298     Changed = true;
1299     I.setHasNoUnsignedWrap(true);
1300   }
1301
1302   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1303     return V;
1304
1305   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1306     return SatAdd;
1307
1308   return Changed ? &I : nullptr;
1309 }
1310
1311 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1312 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1313                                       InstCombiner::BuilderTy &Builder) {
1314   assert((I.getOpcode() == Instruction::FAdd ||
1315           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1316   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1317          "FP factorization requires FMF");
1318   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1319   Value *X, *Y, *Z;
1320   bool IsFMul;
1321   if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1322        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1323       (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1324        match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1325     IsFMul = true;
1326   else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1327            match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1328     IsFMul = false;
1329   else
1330     return nullptr;
1331
1332   // (X * Z) + (Y * Z) --> (X + Y) * Z
1333   // (X * Z) - (Y * Z) --> (X - Y) * Z
1334   // (X / Z) + (Y / Z) --> (X + Y) / Z
1335   // (X / Z) - (Y / Z) --> (X - Y) / Z
1336   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1337   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1338                      : Builder.CreateFSubFMF(X, Y, &I);
1339
1340   // Bail out if we just created a denormal constant.
1341   // TODO: This is copied from a previous implementation. Is it necessary?
1342   const APFloat *C;
1343   if (match(XY, m_APFloat(C)) && !C->isNormal())
1344     return nullptr;
1345
1346   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1347                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1348 }
1349
1350 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1351   if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1352                                   I.getFastMathFlags(),
1353                                   SQ.getWithInstruction(&I)))
1354     return replaceInstUsesWith(I, V);
1355
1356   if (SimplifyAssociativeOrCommutative(I))
1357     return &I;
1358
1359   if (Instruction *X = foldVectorBinop(I))
1360     return X;
1361
1362   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1363     return FoldedFAdd;
1364
1365   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1366   Value *X;
1367   // (-X) + Y --> Y - X
1368   if (match(LHS, m_FNeg(m_Value(X))))
1369     return BinaryOperator::CreateFSubFMF(RHS, X, &I);
1370   // Y + (-X) --> Y - X
1371   if (match(RHS, m_FNeg(m_Value(X))))
1372     return BinaryOperator::CreateFSubFMF(LHS, X, &I);
1373
1374   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1375   // integer add followed by a promotion.
1376   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1377     Value *LHSIntVal = LHSConv->getOperand(0);
1378     Type *FPType = LHSConv->getType();
1379
1380     // TODO: This check is overly conservative. In many cases known bits
1381     // analysis can tell us that the result of the addition has less significant
1382     // bits than the integer type can hold.
1383     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1384       Type *FScalarTy = FTy->getScalarType();
1385       Type *IScalarTy = ITy->getScalarType();
1386
1387       // Do we have enough bits in the significand to represent the result of
1388       // the integer addition?
1389       unsigned MaxRepresentableBits =
1390           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1391       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1392     };
1393
1394     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1395     // ... if the constant fits in the integer value.  This is useful for things
1396     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1397     // requires a constant pool load, and generally allows the add to be better
1398     // instcombined.
1399     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1400       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1401         Constant *CI =
1402           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1403         if (LHSConv->hasOneUse() &&
1404             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1405             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1406           // Insert the new integer add.
1407           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1408           return new SIToFPInst(NewAdd, I.getType());
1409         }
1410       }
1411
1412     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1413     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1414       Value *RHSIntVal = RHSConv->getOperand(0);
1415       // It's enough to check LHS types only because we require int types to
1416       // be the same for this transform.
1417       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1418         // Only do this if x/y have the same type, if at least one of them has a
1419         // single use (so we don't increase the number of int->fp conversions),
1420         // and if the integer add will not overflow.
1421         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1422             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1423             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1424           // Insert the new integer add.
1425           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1426           return new SIToFPInst(NewAdd, I.getType());
1427         }
1428       }
1429     }
1430   }
1431
1432   // Handle specials cases for FAdd with selects feeding the operation
1433   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1434     return replaceInstUsesWith(I, V);
1435
1436   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1437     if (Instruction *F = factorizeFAddFSub(I, Builder))
1438       return F;
1439     if (Value *V = FAddCombine(Builder).simplify(&I))
1440       return replaceInstUsesWith(I, V);
1441   }
1442
1443   return nullptr;
1444 }
1445
1446 /// Optimize pointer differences into the same array into a size.  Consider:
1447 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1448 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1449 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1450                                                Type *Ty) {
1451   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1452   // this.
1453   bool Swapped = false;
1454   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1455
1456   // For now we require one side to be the base pointer "A" or a constant
1457   // GEP derived from it.
1458   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1459     // (gep X, ...) - X
1460     if (LHSGEP->getOperand(0) == RHS) {
1461       GEP1 = LHSGEP;
1462       Swapped = false;
1463     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1464       // (gep X, ...) - (gep X, ...)
1465       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1466             RHSGEP->getOperand(0)->stripPointerCasts()) {
1467         GEP2 = RHSGEP;
1468         GEP1 = LHSGEP;
1469         Swapped = false;
1470       }
1471     }
1472   }
1473
1474   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1475     // X - (gep X, ...)
1476     if (RHSGEP->getOperand(0) == LHS) {
1477       GEP1 = RHSGEP;
1478       Swapped = true;
1479     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1480       // (gep X, ...) - (gep X, ...)
1481       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1482             LHSGEP->getOperand(0)->stripPointerCasts()) {
1483         GEP2 = LHSGEP;
1484         GEP1 = RHSGEP;
1485         Swapped = true;
1486       }
1487     }
1488   }
1489
1490   if (!GEP1)
1491     // No GEP found.
1492     return nullptr;
1493
1494   if (GEP2) {
1495     // (gep X, ...) - (gep X, ...)
1496     //
1497     // Avoid duplicating the arithmetic if there are more than one non-constant
1498     // indices between the two GEPs and either GEP has a non-constant index and
1499     // multiple users. If zero non-constant index, the result is a constant and
1500     // there is no duplication. If one non-constant index, the result is an add
1501     // or sub with a constant, which is no larger than the original code, and
1502     // there's no duplicated arithmetic, even if either GEP has multiple
1503     // users. If more than one non-constant indices combined, as long as the GEP
1504     // with at least one non-constant index doesn't have multiple users, there
1505     // is no duplication.
1506     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1507     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1508     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1509         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1510          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1511       return nullptr;
1512     }
1513   }
1514
1515   // Emit the offset of the GEP and an intptr_t.
1516   Value *Result = EmitGEPOffset(GEP1);
1517
1518   // If we had a constant expression GEP on the other side offsetting the
1519   // pointer, subtract it from the offset we have.
1520   if (GEP2) {
1521     Value *Offset = EmitGEPOffset(GEP2);
1522     Result = Builder.CreateSub(Result, Offset);
1523   }
1524
1525   // If we have p - gep(p, ...)  then we have to negate the result.
1526   if (Swapped)
1527     Result = Builder.CreateNeg(Result, "diff.neg");
1528
1529   return Builder.CreateIntCast(Result, Ty, true);
1530 }
1531
1532 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1533   if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1534                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1535                                  SQ.getWithInstruction(&I)))
1536     return replaceInstUsesWith(I, V);
1537
1538   if (Instruction *X = foldVectorBinop(I))
1539     return X;
1540
1541   // (A*B)-(A*C) -> A*(B-C) etc
1542   if (Value *V = SimplifyUsingDistributiveLaws(I))
1543     return replaceInstUsesWith(I, V);
1544
1545   // If this is a 'B = x-(-A)', change to B = x+A.
1546   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1547   if (Value *V = dyn_castNegVal(Op1)) {
1548     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1549
1550     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1551       assert(BO->getOpcode() == Instruction::Sub &&
1552              "Expected a subtraction operator!");
1553       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1554         Res->setHasNoSignedWrap(true);
1555     } else {
1556       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1557         Res->setHasNoSignedWrap(true);
1558     }
1559
1560     return Res;
1561   }
1562
1563   if (I.getType()->isIntOrIntVectorTy(1))
1564     return BinaryOperator::CreateXor(Op0, Op1);
1565
1566   // Replace (-1 - A) with (~A).
1567   if (match(Op0, m_AllOnes()))
1568     return BinaryOperator::CreateNot(Op1);
1569
1570   // (~X) - (~Y) --> Y - X
1571   Value *X, *Y;
1572   if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1573     return BinaryOperator::CreateSub(Y, X);
1574
1575   // (X + -1) - Y --> ~Y + X
1576   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1577     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1578
1579   // Y - (X + 1) --> ~X + Y
1580   if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1581     return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1582
1583   // Y - ~X --> (X + 1) + Y
1584   if (match(Op1, m_OneUse(m_Not(m_Value(X))))) {
1585     return BinaryOperator::CreateAdd(
1586         Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X);
1587   }
1588
1589   if (Constant *C = dyn_cast<Constant>(Op0)) {
1590     bool IsNegate = match(C, m_ZeroInt());
1591     Value *X;
1592     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1593       // 0 - (zext bool) --> sext bool
1594       // C - (zext bool) --> bool ? C - 1 : C
1595       if (IsNegate)
1596         return CastInst::CreateSExtOrBitCast(X, I.getType());
1597       return SelectInst::Create(X, SubOne(C), C);
1598     }
1599     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1600       // 0 - (sext bool) --> zext bool
1601       // C - (sext bool) --> bool ? C + 1 : C
1602       if (IsNegate)
1603         return CastInst::CreateZExtOrBitCast(X, I.getType());
1604       return SelectInst::Create(X, AddOne(C), C);
1605     }
1606
1607     // C - ~X == X + (1+C)
1608     if (match(Op1, m_Not(m_Value(X))))
1609       return BinaryOperator::CreateAdd(X, AddOne(C));
1610
1611     // Try to fold constant sub into select arguments.
1612     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1613       if (Instruction *R = FoldOpIntoSelect(I, SI))
1614         return R;
1615
1616     // Try to fold constant sub into PHI values.
1617     if (PHINode *PN = dyn_cast<PHINode>(Op1))
1618       if (Instruction *R = foldOpIntoPhi(I, PN))
1619         return R;
1620
1621     Constant *C2;
1622
1623     // C-(C2-X) --> X+(C-C2)
1624     if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))))
1625       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1626
1627     // C-(X+C2) --> (C-C2)-X
1628     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1629       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1630   }
1631
1632   const APInt *Op0C;
1633   if (match(Op0, m_APInt(Op0C))) {
1634     unsigned BitWidth = I.getType()->getScalarSizeInBits();
1635
1636     // -(X >>u 31) -> (X >>s 31)
1637     // -(X >>s 31) -> (X >>u 31)
1638     if (Op0C->isNullValue()) {
1639       Value *X;
1640       const APInt *ShAmt;
1641       if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1642           *ShAmt == BitWidth - 1) {
1643         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1644         return BinaryOperator::CreateAShr(X, ShAmtOp);
1645       }
1646       if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1647           *ShAmt == BitWidth - 1) {
1648         Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1649         return BinaryOperator::CreateLShr(X, ShAmtOp);
1650       }
1651
1652       if (Op1->hasOneUse()) {
1653         Value *LHS, *RHS;
1654         SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1655         if (SPF == SPF_ABS || SPF == SPF_NABS) {
1656           // This is a negate of an ABS/NABS pattern. Just swap the operands
1657           // of the select.
1658           SelectInst *SI = cast<SelectInst>(Op1);
1659           Value *TrueVal = SI->getTrueValue();
1660           Value *FalseVal = SI->getFalseValue();
1661           SI->setTrueValue(FalseVal);
1662           SI->setFalseValue(TrueVal);
1663           // Don't swap prof metadata, we didn't change the branch behavior.
1664           return replaceInstUsesWith(I, SI);
1665         }
1666       }
1667     }
1668
1669     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1670     // zero.
1671     if (Op0C->isMask()) {
1672       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1673       if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1674         return BinaryOperator::CreateXor(Op1, Op0);
1675     }
1676   }
1677
1678   {
1679     Value *Y;
1680     // X-(X+Y) == -Y    X-(Y+X) == -Y
1681     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1682       return BinaryOperator::CreateNeg(Y);
1683
1684     // (X-Y)-X == -Y
1685     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1686       return BinaryOperator::CreateNeg(Y);
1687   }
1688
1689   // (sub (or A, B), (xor A, B)) --> (and A, B)
1690   {
1691     Value *A, *B;
1692     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1693         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1694       return BinaryOperator::CreateAnd(A, B);
1695   }
1696
1697   {
1698     Value *Y;
1699     // ((X | Y) - X) --> (~X & Y)
1700     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1701       return BinaryOperator::CreateAnd(
1702           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1703   }
1704
1705   if (Op1->hasOneUse()) {
1706     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1707     Constant *C = nullptr;
1708
1709     // (X - (Y - Z))  -->  (X + (Z - Y)).
1710     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1711       return BinaryOperator::CreateAdd(Op0,
1712                                       Builder.CreateSub(Z, Y, Op1->getName()));
1713
1714     // (X - (X & Y))   -->   (X & ~Y)
1715     if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1716       return BinaryOperator::CreateAnd(Op0,
1717                                   Builder.CreateNot(Y, Y->getName() + ".not"));
1718
1719     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
1720     // TODO: This could be extended to match arbitrary vector constants.
1721     const APInt *DivC;
1722     if (match(Op0, m_Zero()) && match(Op1, m_SDiv(m_Value(X), m_APInt(DivC))) &&
1723         !DivC->isMinSignedValue() && *DivC != 1) {
1724       Constant *NegDivC = ConstantInt::get(I.getType(), -(*DivC));
1725       Instruction *BO = BinaryOperator::CreateSDiv(X, NegDivC);
1726       BO->setIsExact(cast<BinaryOperator>(Op1)->isExact());
1727       return BO;
1728     }
1729
1730     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1731     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1732       if (Value *XNeg = dyn_castNegVal(X))
1733         return BinaryOperator::CreateShl(XNeg, Y);
1734
1735     // Subtracting -1/0 is the same as adding 1/0:
1736     // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1737     // 'nuw' is dropped in favor of the canonical form.
1738     if (match(Op1, m_SExt(m_Value(Y))) &&
1739         Y->getType()->getScalarSizeInBits() == 1) {
1740       Value *Zext = Builder.CreateZExt(Y, I.getType());
1741       BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1742       Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1743       return Add;
1744     }
1745
1746     // X - A*-B -> X + A*B
1747     // X - -A*B -> X + A*B
1748     Value *A, *B;
1749     if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1750       return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1751
1752     // X - A*C -> X + A*-C
1753     // No need to handle commuted multiply because multiply handling will
1754     // ensure constant will be move to the right hand side.
1755     if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
1756       Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
1757       return BinaryOperator::CreateAdd(Op0, NewMul);
1758     }
1759   }
1760
1761   {
1762     // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1763     // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1764     // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1765     // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1766     // So long as O here is freely invertible, this will be neutral or a win.
1767     Value *LHS, *RHS, *A;
1768     Value *NotA = Op0, *MinMax = Op1;
1769     SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1770     if (!SelectPatternResult::isMinOrMax(SPF)) {
1771       NotA = Op1;
1772       MinMax = Op0;
1773       SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1774     }
1775     if (SelectPatternResult::isMinOrMax(SPF) &&
1776         match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1777       if (NotA == LHS)
1778         std::swap(LHS, RHS);
1779       // LHS is now O above and expected to have at least 2 uses (the min/max)
1780       // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1781       if (IsFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1782           !NotA->hasNUsesOrMore(4)) {
1783         // Note: We don't generate the inverse max/min, just create the not of
1784         // it and let other folds do the rest.
1785         Value *Not = Builder.CreateNot(MinMax);
1786         if (NotA == Op0)
1787           return BinaryOperator::CreateSub(Not, A);
1788         else
1789           return BinaryOperator::CreateSub(A, Not);
1790       }
1791     }
1792   }
1793
1794   // Optimize pointer differences into the same array into a size.  Consider:
1795   //  &A[10] - &A[0]: we should compile this to "10".
1796   Value *LHSOp, *RHSOp;
1797   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1798       match(Op1, m_PtrToInt(m_Value(RHSOp))))
1799     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1800       return replaceInstUsesWith(I, Res);
1801
1802   // trunc(p)-trunc(q) -> trunc(p-q)
1803   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1804       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1805     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1806       return replaceInstUsesWith(I, Res);
1807
1808   // Canonicalize a shifty way to code absolute value to the common pattern.
1809   // There are 2 potential commuted variants.
1810   // We're relying on the fact that we only do this transform when the shift has
1811   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1812   // instructions).
1813   Value *A;
1814   const APInt *ShAmt;
1815   Type *Ty = I.getType();
1816   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1817       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1818       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1819     // B = ashr i32 A, 31 ; smear the sign bit
1820     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
1821     // --> (A < 0) ? -A : A
1822     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
1823     // Copy the nuw/nsw flags from the sub to the negate.
1824     Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
1825                                    I.hasNoSignedWrap());
1826     return SelectInst::Create(Cmp, Neg, A);
1827   }
1828
1829   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1830     return Ext;
1831
1832   bool Changed = false;
1833   if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1834     Changed = true;
1835     I.setHasNoSignedWrap(true);
1836   }
1837   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1838     Changed = true;
1839     I.setHasNoUnsignedWrap(true);
1840   }
1841
1842   return Changed ? &I : nullptr;
1843 }
1844
1845 /// This eliminates floating-point negation in either 'fneg(X)' or
1846 /// 'fsub(-0.0, X)' form by combining into a constant operand.
1847 static Instruction *foldFNegIntoConstant(Instruction &I) {
1848   Value *X;
1849   Constant *C;
1850
1851   // Fold negation into constant operand. This is limited with one-use because
1852   // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
1853   // -(X * C) --> X * (-C)
1854   // FIXME: It's arguable whether these should be m_OneUse or not. The current
1855   // belief is that the FNeg allows for better reassociation opportunities.
1856   if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
1857     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
1858   // -(X / C) --> X / (-C)
1859   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
1860     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1861   // -(C / X) --> (-C) / X
1862   if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
1863     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1864
1865   return nullptr;
1866 }
1867
1868 Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
1869   Value *Op = I.getOperand(0);
1870
1871   if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
1872                                   SQ.getWithInstruction(&I)))
1873     return replaceInstUsesWith(I, V);
1874
1875   if (Instruction *X = foldFNegIntoConstant(I))
1876     return X;
1877
1878   Value *X, *Y;
1879
1880   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
1881   if (I.hasNoSignedZeros() &&
1882       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
1883     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1884
1885   return nullptr;
1886 }
1887
1888 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1889   if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
1890                                   I.getFastMathFlags(),
1891                                   SQ.getWithInstruction(&I)))
1892     return replaceInstUsesWith(I, V);
1893
1894   if (Instruction *X = foldVectorBinop(I))
1895     return X;
1896
1897   // Subtraction from -0.0 is the canonical form of fneg.
1898   // fsub nsz 0, X ==> fsub nsz -0.0, X
1899   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1900   if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
1901     return BinaryOperator::CreateFNegFMF(Op1, &I);
1902
1903   if (Instruction *X = foldFNegIntoConstant(I))
1904     return X;
1905
1906   Value *X, *Y;
1907   Constant *C;
1908
1909   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
1910   // Canonicalize to fadd to make analysis easier.
1911   // This can also help codegen because fadd is commutative.
1912   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
1913   // killed later. We still limit that particular transform with 'hasOneUse'
1914   // because an fneg is assumed better/cheaper than a generic fsub.
1915   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
1916     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
1917       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
1918       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
1919     }
1920   }
1921
1922   if (isa<Constant>(Op0))
1923     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1924       if (Instruction *NV = FoldOpIntoSelect(I, SI))
1925         return NV;
1926
1927   // X - C --> X + (-C)
1928   // But don't transform constant expressions because there's an inverse fold
1929   // for X + (-Y) --> X - Y.
1930   if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
1931     return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
1932
1933   // X - (-Y) --> X + Y
1934   if (match(Op1, m_FNeg(m_Value(Y))))
1935     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
1936
1937   // Similar to above, but look through a cast of the negated value:
1938   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
1939   Type *Ty = I.getType();
1940   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
1941     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
1942
1943   // X - (fpext(-Y)) --> X + fpext(Y)
1944   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
1945     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
1946
1947   // Handle special cases for FSub with selects feeding the operation
1948   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1949     return replaceInstUsesWith(I, V);
1950
1951   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1952     // (Y - X) - Y --> -X
1953     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
1954       return BinaryOperator::CreateFNegFMF(X, &I);
1955
1956     // Y - (X + Y) --> -X
1957     // Y - (Y + X) --> -X
1958     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
1959       return BinaryOperator::CreateFNegFMF(X, &I);
1960
1961     // (X * C) - X --> X * (C - 1.0)
1962     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
1963       Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
1964       return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
1965     }
1966     // X - (X * C) --> X * (1.0 - C)
1967     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
1968       Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
1969       return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
1970     }
1971
1972     if (Instruction *F = factorizeFAddFSub(I, Builder))
1973       return F;
1974
1975     // TODO: This performs reassociative folds for FP ops. Some fraction of the
1976     // functionality has been subsumed by simple pattern matching here and in
1977     // InstSimplify. We should let a dedicated reassociation pass handle more
1978     // complex pattern matching and remove this from InstCombine.
1979     if (Value *V = FAddCombine(Builder).simplify(&I))
1980       return replaceInstUsesWith(I, V);
1981   }
1982
1983   return nullptr;
1984 }