]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / InstCombine / InstCombinePHI.cpp
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitPHINode function.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Transforms/Utils/Local.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 static cl::opt<unsigned>
26 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
27            cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
28
29 /// The PHI arguments will be folded into a single operation with a PHI node
30 /// as input. The debug location of the single operation will be the merged
31 /// locations of the original PHI node arguments.
32 void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
33   auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
34   Inst->setDebugLoc(FirstInst->getDebugLoc());
35   // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
36   // will be inefficient.
37   assert(!isa<CallInst>(Inst));
38
39   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
40     auto *I = cast<Instruction>(PN.getIncomingValue(i));
41     Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
42   }
43 }
44
45 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
46 // If there is an existing pointer typed PHI that produces the same value as PN,
47 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
48 // PHI node:
49 //
50 // Case-1:
51 // bb1:
52 //     int_init = PtrToInt(ptr_init)
53 //     br label %bb2
54 // bb2:
55 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
56 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
57 //    ptr_val2 = IntToPtr(int_val)
58 //    ...
59 //    use(ptr_val2)
60 //    ptr_val_inc = ...
61 //    inc_val_inc = PtrToInt(ptr_val_inc)
62 //
63 // ==>
64 // bb1:
65 //     br label %bb2
66 // bb2:
67 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
68 //    ...
69 //    use(ptr_val)
70 //    ptr_val_inc = ...
71 //
72 // Case-2:
73 // bb1:
74 //    int_ptr = BitCast(ptr_ptr)
75 //    int_init = Load(int_ptr)
76 //    br label %bb2
77 // bb2:
78 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
79 //    ptr_val2 = IntToPtr(int_val)
80 //    ...
81 //    use(ptr_val2)
82 //    ptr_val_inc = ...
83 //    inc_val_inc = PtrToInt(ptr_val_inc)
84 // ==>
85 // bb1:
86 //    ptr_init = Load(ptr_ptr)
87 //    br label %bb2
88 // bb2:
89 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
90 //    ...
91 //    use(ptr_val)
92 //    ptr_val_inc = ...
93 //    ...
94 //
95 Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) {
96   if (!PN.getType()->isIntegerTy())
97     return nullptr;
98   if (!PN.hasOneUse())
99     return nullptr;
100
101   auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
102   if (!IntToPtr)
103     return nullptr;
104
105   // Check if the pointer is actually used as pointer:
106   auto HasPointerUse = [](Instruction *IIP) {
107     for (User *U : IIP->users()) {
108       Value *Ptr = nullptr;
109       if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
110         Ptr = LoadI->getPointerOperand();
111       } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
112         Ptr = SI->getPointerOperand();
113       } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
114         Ptr = GI->getPointerOperand();
115       }
116
117       if (Ptr && Ptr == IIP)
118         return true;
119     }
120     return false;
121   };
122
123   if (!HasPointerUse(IntToPtr))
124     return nullptr;
125
126   if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
127       DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
128     return nullptr;
129
130   SmallVector<Value *, 4> AvailablePtrVals;
131   for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
132     Value *Arg = PN.getIncomingValue(i);
133
134     // First look backward:
135     if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
136       AvailablePtrVals.emplace_back(PI->getOperand(0));
137       continue;
138     }
139
140     // Next look forward:
141     Value *ArgIntToPtr = nullptr;
142     for (User *U : Arg->users()) {
143       if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
144           (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) ||
145            cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) {
146         ArgIntToPtr = U;
147         break;
148       }
149     }
150
151     if (ArgIntToPtr) {
152       AvailablePtrVals.emplace_back(ArgIntToPtr);
153       continue;
154     }
155
156     // If Arg is defined by a PHI, allow it. This will also create
157     // more opportunities iteratively.
158     if (isa<PHINode>(Arg)) {
159       AvailablePtrVals.emplace_back(Arg);
160       continue;
161     }
162
163     // For a single use integer load:
164     auto *LoadI = dyn_cast<LoadInst>(Arg);
165     if (!LoadI)
166       return nullptr;
167
168     if (!LoadI->hasOneUse())
169       return nullptr;
170
171     // Push the integer typed Load instruction into the available
172     // value set, and fix it up later when the pointer typed PHI
173     // is synthesized.
174     AvailablePtrVals.emplace_back(LoadI);
175   }
176
177   // Now search for a matching PHI
178   auto *BB = PN.getParent();
179   assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
180          "Not enough available ptr typed incoming values");
181   PHINode *MatchingPtrPHI = nullptr;
182   unsigned NumPhis = 0;
183   for (auto II = BB->begin(), EI = BasicBlock::iterator(BB->getFirstNonPHI());
184        II != EI; II++, NumPhis++) {
185     // FIXME: consider handling this in AggressiveInstCombine
186     if (NumPhis > MaxNumPhis)
187       return nullptr;
188     PHINode *PtrPHI = dyn_cast<PHINode>(II);
189     if (!PtrPHI || PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType())
190       continue;
191     MatchingPtrPHI = PtrPHI;
192     for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) {
193       if (AvailablePtrVals[i] !=
194           PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) {
195         MatchingPtrPHI = nullptr;
196         break;
197       }
198     }
199
200     if (MatchingPtrPHI)
201       break;
202   }
203
204   if (MatchingPtrPHI) {
205     assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
206            "Phi's Type does not match with IntToPtr");
207     // The PtrToCast + IntToPtr will be simplified later
208     return CastInst::CreateBitOrPointerCast(MatchingPtrPHI,
209                                             IntToPtr->getOperand(0)->getType());
210   }
211
212   // If it requires a conversion for every PHI operand, do not do it.
213   if (all_of(AvailablePtrVals, [&](Value *V) {
214         return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
215       }))
216     return nullptr;
217
218   // If any of the operand that requires casting is a terminator
219   // instruction, do not do it.
220   if (any_of(AvailablePtrVals, [&](Value *V) {
221         if (V->getType() == IntToPtr->getType())
222           return false;
223
224         auto *Inst = dyn_cast<Instruction>(V);
225         return Inst && Inst->isTerminator();
226       }))
227     return nullptr;
228
229   PHINode *NewPtrPHI = PHINode::Create(
230       IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
231
232   InsertNewInstBefore(NewPtrPHI, PN);
233   SmallDenseMap<Value *, Instruction *> Casts;
234   for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
235     auto *IncomingBB = PN.getIncomingBlock(i);
236     auto *IncomingVal = AvailablePtrVals[i];
237
238     if (IncomingVal->getType() == IntToPtr->getType()) {
239       NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
240       continue;
241     }
242
243 #ifndef NDEBUG
244     LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
245     assert((isa<PHINode>(IncomingVal) ||
246             IncomingVal->getType()->isPointerTy() ||
247             (LoadI && LoadI->hasOneUse())) &&
248            "Can not replace LoadInst with multiple uses");
249 #endif
250     // Need to insert a BitCast.
251     // For an integer Load instruction with a single use, the load + IntToPtr
252     // cast will be simplified into a pointer load:
253     // %v = load i64, i64* %a.ip, align 8
254     // %v.cast = inttoptr i64 %v to float **
255     // ==>
256     // %v.ptrp = bitcast i64 * %a.ip to float **
257     // %v.cast = load float *, float ** %v.ptrp, align 8
258     Instruction *&CI = Casts[IncomingVal];
259     if (!CI) {
260       CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
261                                             IncomingVal->getName() + ".ptr");
262       if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
263         BasicBlock::iterator InsertPos(IncomingI);
264         InsertPos++;
265         if (isa<PHINode>(IncomingI))
266           InsertPos = IncomingI->getParent()->getFirstInsertionPt();
267         InsertNewInstBefore(CI, *InsertPos);
268       } else {
269         auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
270         InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
271       }
272     }
273     NewPtrPHI->addIncoming(CI, IncomingBB);
274   }
275
276   // The PtrToCast + IntToPtr will be simplified later
277   return CastInst::CreateBitOrPointerCast(NewPtrPHI,
278                                           IntToPtr->getOperand(0)->getType());
279 }
280
281 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
282 /// adds all have a single use, turn this into a phi and a single binop.
283 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
284   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
285   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
286   unsigned Opc = FirstInst->getOpcode();
287   Value *LHSVal = FirstInst->getOperand(0);
288   Value *RHSVal = FirstInst->getOperand(1);
289
290   Type *LHSType = LHSVal->getType();
291   Type *RHSType = RHSVal->getType();
292
293   // Scan to see if all operands are the same opcode, and all have one use.
294   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
295     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
296     if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
297         // Verify type of the LHS matches so we don't fold cmp's of different
298         // types.
299         I->getOperand(0)->getType() != LHSType ||
300         I->getOperand(1)->getType() != RHSType)
301       return nullptr;
302
303     // If they are CmpInst instructions, check their predicates
304     if (CmpInst *CI = dyn_cast<CmpInst>(I))
305       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
306         return nullptr;
307
308     // Keep track of which operand needs a phi node.
309     if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
310     if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
311   }
312
313   // If both LHS and RHS would need a PHI, don't do this transformation,
314   // because it would increase the number of PHIs entering the block,
315   // which leads to higher register pressure. This is especially
316   // bad when the PHIs are in the header of a loop.
317   if (!LHSVal && !RHSVal)
318     return nullptr;
319
320   // Otherwise, this is safe to transform!
321
322   Value *InLHS = FirstInst->getOperand(0);
323   Value *InRHS = FirstInst->getOperand(1);
324   PHINode *NewLHS = nullptr, *NewRHS = nullptr;
325   if (!LHSVal) {
326     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
327                              FirstInst->getOperand(0)->getName() + ".pn");
328     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
329     InsertNewInstBefore(NewLHS, PN);
330     LHSVal = NewLHS;
331   }
332
333   if (!RHSVal) {
334     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
335                              FirstInst->getOperand(1)->getName() + ".pn");
336     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
337     InsertNewInstBefore(NewRHS, PN);
338     RHSVal = NewRHS;
339   }
340
341   // Add all operands to the new PHIs.
342   if (NewLHS || NewRHS) {
343     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
344       Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
345       if (NewLHS) {
346         Value *NewInLHS = InInst->getOperand(0);
347         NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
348       }
349       if (NewRHS) {
350         Value *NewInRHS = InInst->getOperand(1);
351         NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
352       }
353     }
354   }
355
356   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
357     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
358                                      LHSVal, RHSVal);
359     PHIArgMergedDebugLoc(NewCI, PN);
360     return NewCI;
361   }
362
363   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
364   BinaryOperator *NewBinOp =
365     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
366
367   NewBinOp->copyIRFlags(PN.getIncomingValue(0));
368
369   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
370     NewBinOp->andIRFlags(PN.getIncomingValue(i));
371
372   PHIArgMergedDebugLoc(NewBinOp, PN);
373   return NewBinOp;
374 }
375
376 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
377   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
378
379   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
380                                         FirstInst->op_end());
381   // This is true if all GEP bases are allocas and if all indices into them are
382   // constants.
383   bool AllBasePointersAreAllocas = true;
384
385   // We don't want to replace this phi if the replacement would require
386   // more than one phi, which leads to higher register pressure. This is
387   // especially bad when the PHIs are in the header of a loop.
388   bool NeededPhi = false;
389
390   bool AllInBounds = true;
391
392   // Scan to see if all operands are the same opcode, and all have one use.
393   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
394     GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
395     if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
396       GEP->getNumOperands() != FirstInst->getNumOperands())
397       return nullptr;
398
399     AllInBounds &= GEP->isInBounds();
400
401     // Keep track of whether or not all GEPs are of alloca pointers.
402     if (AllBasePointersAreAllocas &&
403         (!isa<AllocaInst>(GEP->getOperand(0)) ||
404          !GEP->hasAllConstantIndices()))
405       AllBasePointersAreAllocas = false;
406
407     // Compare the operand lists.
408     for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
409       if (FirstInst->getOperand(op) == GEP->getOperand(op))
410         continue;
411
412       // Don't merge two GEPs when two operands differ (introducing phi nodes)
413       // if one of the PHIs has a constant for the index.  The index may be
414       // substantially cheaper to compute for the constants, so making it a
415       // variable index could pessimize the path.  This also handles the case
416       // for struct indices, which must always be constant.
417       if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
418           isa<ConstantInt>(GEP->getOperand(op)))
419         return nullptr;
420
421       if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
422         return nullptr;
423
424       // If we already needed a PHI for an earlier operand, and another operand
425       // also requires a PHI, we'd be introducing more PHIs than we're
426       // eliminating, which increases register pressure on entry to the PHI's
427       // block.
428       if (NeededPhi)
429         return nullptr;
430
431       FixedOperands[op] = nullptr;  // Needs a PHI.
432       NeededPhi = true;
433     }
434   }
435
436   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
437   // bother doing this transformation.  At best, this will just save a bit of
438   // offset calculation, but all the predecessors will have to materialize the
439   // stack address into a register anyway.  We'd actually rather *clone* the
440   // load up into the predecessors so that we have a load of a gep of an alloca,
441   // which can usually all be folded into the load.
442   if (AllBasePointersAreAllocas)
443     return nullptr;
444
445   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
446   // that is variable.
447   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
448
449   bool HasAnyPHIs = false;
450   for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
451     if (FixedOperands[i]) continue;  // operand doesn't need a phi.
452     Value *FirstOp = FirstInst->getOperand(i);
453     PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
454                                      FirstOp->getName()+".pn");
455     InsertNewInstBefore(NewPN, PN);
456
457     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
458     OperandPhis[i] = NewPN;
459     FixedOperands[i] = NewPN;
460     HasAnyPHIs = true;
461   }
462
463
464   // Add all operands to the new PHIs.
465   if (HasAnyPHIs) {
466     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
467       GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
468       BasicBlock *InBB = PN.getIncomingBlock(i);
469
470       for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
471         if (PHINode *OpPhi = OperandPhis[op])
472           OpPhi->addIncoming(InGEP->getOperand(op), InBB);
473     }
474   }
475
476   Value *Base = FixedOperands[0];
477   GetElementPtrInst *NewGEP =
478       GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
479                                 makeArrayRef(FixedOperands).slice(1));
480   if (AllInBounds) NewGEP->setIsInBounds();
481   PHIArgMergedDebugLoc(NewGEP, PN);
482   return NewGEP;
483 }
484
485
486 /// Return true if we know that it is safe to sink the load out of the block
487 /// that defines it. This means that it must be obvious the value of the load is
488 /// not changed from the point of the load to the end of the block it is in.
489 ///
490 /// Finally, it is safe, but not profitable, to sink a load targeting a
491 /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
492 /// to a register.
493 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
494   BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
495
496   for (++BBI; BBI != E; ++BBI)
497     if (BBI->mayWriteToMemory())
498       return false;
499
500   // Check for non-address taken alloca.  If not address-taken already, it isn't
501   // profitable to do this xform.
502   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
503     bool isAddressTaken = false;
504     for (User *U : AI->users()) {
505       if (isa<LoadInst>(U)) continue;
506       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
507         // If storing TO the alloca, then the address isn't taken.
508         if (SI->getOperand(1) == AI) continue;
509       }
510       isAddressTaken = true;
511       break;
512     }
513
514     if (!isAddressTaken && AI->isStaticAlloca())
515       return false;
516   }
517
518   // If this load is a load from a GEP with a constant offset from an alloca,
519   // then we don't want to sink it.  In its present form, it will be
520   // load [constant stack offset].  Sinking it will cause us to have to
521   // materialize the stack addresses in each predecessor in a register only to
522   // do a shared load from register in the successor.
523   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
524     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
525       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
526         return false;
527
528   return true;
529 }
530
531 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
532   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
533
534   // FIXME: This is overconservative; this transform is allowed in some cases
535   // for atomic operations.
536   if (FirstLI->isAtomic())
537     return nullptr;
538
539   // When processing loads, we need to propagate two bits of information to the
540   // sunk load: whether it is volatile, and what its alignment is.  We currently
541   // don't sink loads when some have their alignment specified and some don't.
542   // visitLoadInst will propagate an alignment onto the load when TD is around,
543   // and if TD isn't around, we can't handle the mixed case.
544   bool isVolatile = FirstLI->isVolatile();
545   unsigned LoadAlignment = FirstLI->getAlignment();
546   unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
547
548   // We can't sink the load if the loaded value could be modified between the
549   // load and the PHI.
550   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
551       !isSafeAndProfitableToSinkLoad(FirstLI))
552     return nullptr;
553
554   // If the PHI is of volatile loads and the load block has multiple
555   // successors, sinking it would remove a load of the volatile value from
556   // the path through the other successor.
557   if (isVolatile &&
558       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
559     return nullptr;
560
561   // Check to see if all arguments are the same operation.
562   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
563     LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
564     if (!LI || !LI->hasOneUse())
565       return nullptr;
566
567     // We can't sink the load if the loaded value could be modified between
568     // the load and the PHI.
569     if (LI->isVolatile() != isVolatile ||
570         LI->getParent() != PN.getIncomingBlock(i) ||
571         LI->getPointerAddressSpace() != LoadAddrSpace ||
572         !isSafeAndProfitableToSinkLoad(LI))
573       return nullptr;
574
575     // If some of the loads have an alignment specified but not all of them,
576     // we can't do the transformation.
577     if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
578       return nullptr;
579
580     LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
581
582     // If the PHI is of volatile loads and the load block has multiple
583     // successors, sinking it would remove a load of the volatile value from
584     // the path through the other successor.
585     if (isVolatile &&
586         LI->getParent()->getTerminator()->getNumSuccessors() != 1)
587       return nullptr;
588   }
589
590   // Okay, they are all the same operation.  Create a new PHI node of the
591   // correct type, and PHI together all of the LHS's of the instructions.
592   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
593                                    PN.getNumIncomingValues(),
594                                    PN.getName()+".in");
595
596   Value *InVal = FirstLI->getOperand(0);
597   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
598   LoadInst *NewLI =
599       new LoadInst(FirstLI->getType(), NewPN, "", isVolatile, LoadAlignment);
600
601   unsigned KnownIDs[] = {
602     LLVMContext::MD_tbaa,
603     LLVMContext::MD_range,
604     LLVMContext::MD_invariant_load,
605     LLVMContext::MD_alias_scope,
606     LLVMContext::MD_noalias,
607     LLVMContext::MD_nonnull,
608     LLVMContext::MD_align,
609     LLVMContext::MD_dereferenceable,
610     LLVMContext::MD_dereferenceable_or_null,
611     LLVMContext::MD_access_group,
612   };
613
614   for (unsigned ID : KnownIDs)
615     NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
616
617   // Add all operands to the new PHI and combine TBAA metadata.
618   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
619     LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
620     combineMetadata(NewLI, LI, KnownIDs, true);
621     Value *NewInVal = LI->getOperand(0);
622     if (NewInVal != InVal)
623       InVal = nullptr;
624     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
625   }
626
627   if (InVal) {
628     // The new PHI unions all of the same values together.  This is really
629     // common, so we handle it intelligently here for compile-time speed.
630     NewLI->setOperand(0, InVal);
631     delete NewPN;
632   } else {
633     InsertNewInstBefore(NewPN, PN);
634   }
635
636   // If this was a volatile load that we are merging, make sure to loop through
637   // and mark all the input loads as non-volatile.  If we don't do this, we will
638   // insert a new volatile load and the old ones will not be deletable.
639   if (isVolatile)
640     for (Value *IncValue : PN.incoming_values())
641       cast<LoadInst>(IncValue)->setVolatile(false);
642
643   PHIArgMergedDebugLoc(NewLI, PN);
644   return NewLI;
645 }
646
647 /// TODO: This function could handle other cast types, but then it might
648 /// require special-casing a cast from the 'i1' type. See the comment in
649 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
650 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) {
651   // We cannot create a new instruction after the PHI if the terminator is an
652   // EHPad because there is no valid insertion point.
653   if (Instruction *TI = Phi.getParent()->getTerminator())
654     if (TI->isEHPad())
655       return nullptr;
656
657   // Early exit for the common case of a phi with two operands. These are
658   // handled elsewhere. See the comment below where we check the count of zexts
659   // and constants for more details.
660   unsigned NumIncomingValues = Phi.getNumIncomingValues();
661   if (NumIncomingValues < 3)
662     return nullptr;
663
664   // Find the narrower type specified by the first zext.
665   Type *NarrowType = nullptr;
666   for (Value *V : Phi.incoming_values()) {
667     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
668       NarrowType = Zext->getSrcTy();
669       break;
670     }
671   }
672   if (!NarrowType)
673     return nullptr;
674
675   // Walk the phi operands checking that we only have zexts or constants that
676   // we can shrink for free. Store the new operands for the new phi.
677   SmallVector<Value *, 4> NewIncoming;
678   unsigned NumZexts = 0;
679   unsigned NumConsts = 0;
680   for (Value *V : Phi.incoming_values()) {
681     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
682       // All zexts must be identical and have one use.
683       if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse())
684         return nullptr;
685       NewIncoming.push_back(Zext->getOperand(0));
686       NumZexts++;
687     } else if (auto *C = dyn_cast<Constant>(V)) {
688       // Make sure that constants can fit in the new type.
689       Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
690       if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
691         return nullptr;
692       NewIncoming.push_back(Trunc);
693       NumConsts++;
694     } else {
695       // If it's not a cast or a constant, bail out.
696       return nullptr;
697     }
698   }
699
700   // The more common cases of a phi with no constant operands or just one
701   // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
702   // respectively. foldOpIntoPhi() wants to do the opposite transform that is
703   // performed here. It tries to replicate a cast in the phi operand's basic
704   // block to expose other folding opportunities. Thus, InstCombine will
705   // infinite loop without this check.
706   if (NumConsts == 0 || NumZexts < 2)
707     return nullptr;
708
709   // All incoming values are zexts or constants that are safe to truncate.
710   // Create a new phi node of the narrow type, phi together all of the new
711   // operands, and zext the result back to the original type.
712   PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
713                                     Phi.getName() + ".shrunk");
714   for (unsigned i = 0; i != NumIncomingValues; ++i)
715     NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));
716
717   InsertNewInstBefore(NewPhi, Phi);
718   return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
719 }
720
721 /// If all operands to a PHI node are the same "unary" operator and they all are
722 /// only used by the PHI, PHI together their inputs, and do the operation once,
723 /// to the result of the PHI.
724 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
725   // We cannot create a new instruction after the PHI if the terminator is an
726   // EHPad because there is no valid insertion point.
727   if (Instruction *TI = PN.getParent()->getTerminator())
728     if (TI->isEHPad())
729       return nullptr;
730
731   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
732
733   if (isa<GetElementPtrInst>(FirstInst))
734     return FoldPHIArgGEPIntoPHI(PN);
735   if (isa<LoadInst>(FirstInst))
736     return FoldPHIArgLoadIntoPHI(PN);
737
738   // Scan the instruction, looking for input operations that can be folded away.
739   // If all input operands to the phi are the same instruction (e.g. a cast from
740   // the same type or "+42") we can pull the operation through the PHI, reducing
741   // code size and simplifying code.
742   Constant *ConstantOp = nullptr;
743   Type *CastSrcTy = nullptr;
744
745   if (isa<CastInst>(FirstInst)) {
746     CastSrcTy = FirstInst->getOperand(0)->getType();
747
748     // Be careful about transforming integer PHIs.  We don't want to pessimize
749     // the code by turning an i32 into an i1293.
750     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
751       if (!shouldChangeType(PN.getType(), CastSrcTy))
752         return nullptr;
753     }
754   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
755     // Can fold binop, compare or shift here if the RHS is a constant,
756     // otherwise call FoldPHIArgBinOpIntoPHI.
757     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
758     if (!ConstantOp)
759       return FoldPHIArgBinOpIntoPHI(PN);
760   } else {
761     return nullptr;  // Cannot fold this operation.
762   }
763
764   // Check to see if all arguments are the same operation.
765   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
766     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
767     if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
768       return nullptr;
769     if (CastSrcTy) {
770       if (I->getOperand(0)->getType() != CastSrcTy)
771         return nullptr;  // Cast operation must match.
772     } else if (I->getOperand(1) != ConstantOp) {
773       return nullptr;
774     }
775   }
776
777   // Okay, they are all the same operation.  Create a new PHI node of the
778   // correct type, and PHI together all of the LHS's of the instructions.
779   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
780                                    PN.getNumIncomingValues(),
781                                    PN.getName()+".in");
782
783   Value *InVal = FirstInst->getOperand(0);
784   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
785
786   // Add all operands to the new PHI.
787   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
788     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
789     if (NewInVal != InVal)
790       InVal = nullptr;
791     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
792   }
793
794   Value *PhiVal;
795   if (InVal) {
796     // The new PHI unions all of the same values together.  This is really
797     // common, so we handle it intelligently here for compile-time speed.
798     PhiVal = InVal;
799     delete NewPN;
800   } else {
801     InsertNewInstBefore(NewPN, PN);
802     PhiVal = NewPN;
803   }
804
805   // Insert and return the new operation.
806   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
807     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
808                                        PN.getType());
809     PHIArgMergedDebugLoc(NewCI, PN);
810     return NewCI;
811   }
812
813   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
814     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
815     BinOp->copyIRFlags(PN.getIncomingValue(0));
816
817     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
818       BinOp->andIRFlags(PN.getIncomingValue(i));
819
820     PHIArgMergedDebugLoc(BinOp, PN);
821     return BinOp;
822   }
823
824   CmpInst *CIOp = cast<CmpInst>(FirstInst);
825   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
826                                    PhiVal, ConstantOp);
827   PHIArgMergedDebugLoc(NewCI, PN);
828   return NewCI;
829 }
830
831 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
832 static bool DeadPHICycle(PHINode *PN,
833                          SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
834   if (PN->use_empty()) return true;
835   if (!PN->hasOneUse()) return false;
836
837   // Remember this node, and if we find the cycle, return.
838   if (!PotentiallyDeadPHIs.insert(PN).second)
839     return true;
840
841   // Don't scan crazily complex things.
842   if (PotentiallyDeadPHIs.size() == 16)
843     return false;
844
845   if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
846     return DeadPHICycle(PU, PotentiallyDeadPHIs);
847
848   return false;
849 }
850
851 /// Return true if this phi node is always equal to NonPhiInVal.
852 /// This happens with mutually cyclic phi nodes like:
853 ///   z = some value; x = phi (y, z); y = phi (x, z)
854 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
855                            SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
856   // See if we already saw this PHI node.
857   if (!ValueEqualPHIs.insert(PN).second)
858     return true;
859
860   // Don't scan crazily complex things.
861   if (ValueEqualPHIs.size() == 16)
862     return false;
863
864   // Scan the operands to see if they are either phi nodes or are equal to
865   // the value.
866   for (Value *Op : PN->incoming_values()) {
867     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
868       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
869         return false;
870     } else if (Op != NonPhiInVal)
871       return false;
872   }
873
874   return true;
875 }
876
877 /// Return an existing non-zero constant if this phi node has one, otherwise
878 /// return constant 1.
879 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) {
880   assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
881   for (Value *V : PN.operands())
882     if (auto *ConstVA = dyn_cast<ConstantInt>(V))
883       if (!ConstVA->isZero())
884         return ConstVA;
885   return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
886 }
887
888 namespace {
889 struct PHIUsageRecord {
890   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
891   unsigned Shift;     // The amount shifted.
892   Instruction *Inst;  // The trunc instruction.
893
894   PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
895     : PHIId(pn), Shift(Sh), Inst(User) {}
896
897   bool operator<(const PHIUsageRecord &RHS) const {
898     if (PHIId < RHS.PHIId) return true;
899     if (PHIId > RHS.PHIId) return false;
900     if (Shift < RHS.Shift) return true;
901     if (Shift > RHS.Shift) return false;
902     return Inst->getType()->getPrimitiveSizeInBits() <
903            RHS.Inst->getType()->getPrimitiveSizeInBits();
904   }
905 };
906
907 struct LoweredPHIRecord {
908   PHINode *PN;        // The PHI that was lowered.
909   unsigned Shift;     // The amount shifted.
910   unsigned Width;     // The width extracted.
911
912   LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
913     : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
914
915   // Ctor form used by DenseMap.
916   LoweredPHIRecord(PHINode *pn, unsigned Sh)
917     : PN(pn), Shift(Sh), Width(0) {}
918 };
919 }
920
921 namespace llvm {
922   template<>
923   struct DenseMapInfo<LoweredPHIRecord> {
924     static inline LoweredPHIRecord getEmptyKey() {
925       return LoweredPHIRecord(nullptr, 0);
926     }
927     static inline LoweredPHIRecord getTombstoneKey() {
928       return LoweredPHIRecord(nullptr, 1);
929     }
930     static unsigned getHashValue(const LoweredPHIRecord &Val) {
931       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
932              (Val.Width>>3);
933     }
934     static bool isEqual(const LoweredPHIRecord &LHS,
935                         const LoweredPHIRecord &RHS) {
936       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
937              LHS.Width == RHS.Width;
938     }
939   };
940 }
941
942
943 /// This is an integer PHI and we know that it has an illegal type: see if it is
944 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
945 /// the various pieces being extracted. This sort of thing is introduced when
946 /// SROA promotes an aggregate to large integer values.
947 ///
948 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
949 /// inttoptr.  We should produce new PHIs in the right type.
950 ///
951 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
952   // PHIUsers - Keep track of all of the truncated values extracted from a set
953   // of PHIs, along with their offset.  These are the things we want to rewrite.
954   SmallVector<PHIUsageRecord, 16> PHIUsers;
955
956   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
957   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
958   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
959   // check the uses of (to ensure they are all extracts).
960   SmallVector<PHINode*, 8> PHIsToSlice;
961   SmallPtrSet<PHINode*, 8> PHIsInspected;
962
963   PHIsToSlice.push_back(&FirstPhi);
964   PHIsInspected.insert(&FirstPhi);
965
966   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
967     PHINode *PN = PHIsToSlice[PHIId];
968
969     // Scan the input list of the PHI.  If any input is an invoke, and if the
970     // input is defined in the predecessor, then we won't be split the critical
971     // edge which is required to insert a truncate.  Because of this, we have to
972     // bail out.
973     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
974       InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
975       if (!II) continue;
976       if (II->getParent() != PN->getIncomingBlock(i))
977         continue;
978
979       // If we have a phi, and if it's directly in the predecessor, then we have
980       // a critical edge where we need to put the truncate.  Since we can't
981       // split the edge in instcombine, we have to bail out.
982       return nullptr;
983     }
984
985     for (User *U : PN->users()) {
986       Instruction *UserI = cast<Instruction>(U);
987
988       // If the user is a PHI, inspect its uses recursively.
989       if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
990         if (PHIsInspected.insert(UserPN).second)
991           PHIsToSlice.push_back(UserPN);
992         continue;
993       }
994
995       // Truncates are always ok.
996       if (isa<TruncInst>(UserI)) {
997         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
998         continue;
999       }
1000
1001       // Otherwise it must be a lshr which can only be used by one trunc.
1002       if (UserI->getOpcode() != Instruction::LShr ||
1003           !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1004           !isa<ConstantInt>(UserI->getOperand(1)))
1005         return nullptr;
1006
1007       // Bail on out of range shifts.
1008       unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1009       if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1010         return nullptr;
1011
1012       unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1013       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1014     }
1015   }
1016
1017   // If we have no users, they must be all self uses, just nuke the PHI.
1018   if (PHIUsers.empty())
1019     return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
1020
1021   // If this phi node is transformable, create new PHIs for all the pieces
1022   // extracted out of it.  First, sort the users by their offset and size.
1023   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1024
1025   LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1026              for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs()
1027              << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';);
1028
1029   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
1030   // hoisted out here to avoid construction/destruction thrashing.
1031   DenseMap<BasicBlock*, Value*> PredValues;
1032
1033   // ExtractedVals - Each new PHI we introduce is saved here so we don't
1034   // introduce redundant PHIs.
1035   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1036
1037   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1038     unsigned PHIId = PHIUsers[UserI].PHIId;
1039     PHINode *PN = PHIsToSlice[PHIId];
1040     unsigned Offset = PHIUsers[UserI].Shift;
1041     Type *Ty = PHIUsers[UserI].Inst->getType();
1042
1043     PHINode *EltPHI;
1044
1045     // If we've already lowered a user like this, reuse the previously lowered
1046     // value.
1047     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1048
1049       // Otherwise, Create the new PHI node for this user.
1050       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1051                                PN->getName()+".off"+Twine(Offset), PN);
1052       assert(EltPHI->getType() != PN->getType() &&
1053              "Truncate didn't shrink phi?");
1054
1055       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1056         BasicBlock *Pred = PN->getIncomingBlock(i);
1057         Value *&PredVal = PredValues[Pred];
1058
1059         // If we already have a value for this predecessor, reuse it.
1060         if (PredVal) {
1061           EltPHI->addIncoming(PredVal, Pred);
1062           continue;
1063         }
1064
1065         // Handle the PHI self-reuse case.
1066         Value *InVal = PN->getIncomingValue(i);
1067         if (InVal == PN) {
1068           PredVal = EltPHI;
1069           EltPHI->addIncoming(PredVal, Pred);
1070           continue;
1071         }
1072
1073         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1074           // If the incoming value was a PHI, and if it was one of the PHIs we
1075           // already rewrote it, just use the lowered value.
1076           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1077             PredVal = Res;
1078             EltPHI->addIncoming(PredVal, Pred);
1079             continue;
1080           }
1081         }
1082
1083         // Otherwise, do an extract in the predecessor.
1084         Builder.SetInsertPoint(Pred->getTerminator());
1085         Value *Res = InVal;
1086         if (Offset)
1087           Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(),
1088                                                           Offset), "extract");
1089         Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1090         PredVal = Res;
1091         EltPHI->addIncoming(Res, Pred);
1092
1093         // If the incoming value was a PHI, and if it was one of the PHIs we are
1094         // rewriting, we will ultimately delete the code we inserted.  This
1095         // means we need to revisit that PHI to make sure we extract out the
1096         // needed piece.
1097         if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
1098           if (PHIsInspected.count(OldInVal)) {
1099             unsigned RefPHIId =
1100                 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1101             PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
1102                                               cast<Instruction>(Res)));
1103             ++UserE;
1104           }
1105       }
1106       PredValues.clear();
1107
1108       LLVM_DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
1109                         << *EltPHI << '\n');
1110       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1111     }
1112
1113     // Replace the use of this piece with the PHI node.
1114     replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1115   }
1116
1117   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1118   // with undefs.
1119   Value *Undef = UndefValue::get(FirstPhi.getType());
1120   for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
1121     replaceInstUsesWith(*PHIsToSlice[i], Undef);
1122   return replaceInstUsesWith(FirstPhi, Undef);
1123 }
1124
1125 // PHINode simplification
1126 //
1127 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
1128   if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1129     return replaceInstUsesWith(PN, V);
1130
1131   if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN))
1132     return Result;
1133
1134   // If all PHI operands are the same operation, pull them through the PHI,
1135   // reducing code size.
1136   if (isa<Instruction>(PN.getIncomingValue(0)) &&
1137       isa<Instruction>(PN.getIncomingValue(1)) &&
1138       cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
1139       cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
1140       // FIXME: The hasOneUse check will fail for PHIs that use the value more
1141       // than themselves more than once.
1142       PN.getIncomingValue(0)->hasOneUse())
1143     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
1144       return Result;
1145
1146   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
1147   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
1148   // PHI)... break the cycle.
1149   if (PN.hasOneUse()) {
1150     if (Instruction *Result = FoldIntegerTypedPHI(PN))
1151       return Result;
1152
1153     Instruction *PHIUser = cast<Instruction>(PN.user_back());
1154     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1155       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1156       PotentiallyDeadPHIs.insert(&PN);
1157       if (DeadPHICycle(PU, PotentiallyDeadPHIs))
1158         return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1159     }
1160
1161     // If this phi has a single use, and if that use just computes a value for
1162     // the next iteration of a loop, delete the phi.  This occurs with unused
1163     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
1164     // common case here is good because the only other things that catch this
1165     // are induction variable analysis (sometimes) and ADCE, which is only run
1166     // late.
1167     if (PHIUser->hasOneUse() &&
1168         (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
1169         PHIUser->user_back() == &PN) {
1170       return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1171     }
1172     // When a PHI is used only to be compared with zero, it is safe to replace
1173     // an incoming value proved as known nonzero with any non-zero constant.
1174     // For example, in the code below, the incoming value %v can be replaced
1175     // with any non-zero constant based on the fact that the PHI is only used to
1176     // be compared with zero and %v is a known non-zero value:
1177     // %v = select %cond, 1, 2
1178     // %p = phi [%v, BB] ...
1179     //      icmp eq, %p, 0
1180     auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
1181     // FIXME: To be simple, handle only integer type for now.
1182     if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
1183         match(CmpInst->getOperand(1), m_Zero())) {
1184       ConstantInt *NonZeroConst = nullptr;
1185       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1186         Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator();
1187         Value *VA = PN.getIncomingValue(i);
1188         if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
1189           if (!NonZeroConst)
1190             NonZeroConst = GetAnyNonZeroConstInt(PN);
1191           PN.setIncomingValue(i, NonZeroConst);
1192         }
1193       }
1194     }
1195   }
1196
1197   // We sometimes end up with phi cycles that non-obviously end up being the
1198   // same value, for example:
1199   //   z = some value; x = phi (y, z); y = phi (x, z)
1200   // where the phi nodes don't necessarily need to be in the same block.  Do a
1201   // quick check to see if the PHI node only contains a single non-phi value, if
1202   // so, scan to see if the phi cycle is actually equal to that value.
1203   {
1204     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1205     // Scan for the first non-phi operand.
1206     while (InValNo != NumIncomingVals &&
1207            isa<PHINode>(PN.getIncomingValue(InValNo)))
1208       ++InValNo;
1209
1210     if (InValNo != NumIncomingVals) {
1211       Value *NonPhiInVal = PN.getIncomingValue(InValNo);
1212
1213       // Scan the rest of the operands to see if there are any conflicts, if so
1214       // there is no need to recursively scan other phis.
1215       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1216         Value *OpVal = PN.getIncomingValue(InValNo);
1217         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1218           break;
1219       }
1220
1221       // If we scanned over all operands, then we have one unique value plus
1222       // phi values.  Scan PHI nodes to see if they all merge in each other or
1223       // the value.
1224       if (InValNo == NumIncomingVals) {
1225         SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
1226         if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1227           return replaceInstUsesWith(PN, NonPhiInVal);
1228       }
1229     }
1230   }
1231
1232   // If there are multiple PHIs, sort their operands so that they all list
1233   // the blocks in the same order. This will help identical PHIs be eliminated
1234   // by other passes. Other passes shouldn't depend on this for correctness
1235   // however.
1236   PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
1237   if (&PN != FirstPN)
1238     for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
1239       BasicBlock *BBA = PN.getIncomingBlock(i);
1240       BasicBlock *BBB = FirstPN->getIncomingBlock(i);
1241       if (BBA != BBB) {
1242         Value *VA = PN.getIncomingValue(i);
1243         unsigned j = PN.getBasicBlockIndex(BBB);
1244         Value *VB = PN.getIncomingValue(j);
1245         PN.setIncomingBlock(i, BBB);
1246         PN.setIncomingValue(i, VB);
1247         PN.setIncomingBlock(j, BBA);
1248         PN.setIncomingValue(j, VA);
1249         // NOTE: Instcombine normally would want us to "return &PN" if we
1250         // modified any of the operands of an instruction.  However, since we
1251         // aren't adding or removing uses (just rearranging them) we don't do
1252         // this in this case.
1253       }
1254     }
1255
1256   // If this is an integer PHI and we know that it has an illegal type, see if
1257   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
1258   // PHI into the various pieces being extracted.  This sort of thing is
1259   // introduced when SROA promotes an aggregate to a single large integer type.
1260   if (PN.getType()->isIntegerTy() &&
1261       !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1262     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1263       return Res;
1264
1265   return nullptr;
1266 }