]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
MFV r356143:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / InstCombine / InstCombineSelect.cpp
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include <cassert>
42 #include <utility>
43
44 using namespace llvm;
45 using namespace PatternMatch;
46
47 #define DEBUG_TYPE "instcombine"
48
49 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50                            SelectPatternFlavor SPF, Value *A, Value *B) {
51   CmpInst::Predicate Pred = getMinMaxPred(SPF);
52   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54 }
55
56 /// Replace a select operand based on an equality comparison with the identity
57 /// constant of a binop.
58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59                                             const TargetLibraryInfo &TLI) {
60   // The select condition must be an equality compare with a constant operand.
61   Value *X;
62   Constant *C;
63   CmpInst::Predicate Pred;
64   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65     return nullptr;
66
67   bool IsEq;
68   if (ICmpInst::isEquality(Pred))
69     IsEq = Pred == ICmpInst::ICMP_EQ;
70   else if (Pred == FCmpInst::FCMP_OEQ)
71     IsEq = true;
72   else if (Pred == FCmpInst::FCMP_UNE)
73     IsEq = false;
74   else
75     return nullptr;
76
77   // A select operand must be a binop.
78   BinaryOperator *BO;
79   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80     return nullptr;
81
82   // The compare constant must be the identity constant for that binop.
83   // If this a floating-point compare with 0.0, any zero constant will do.
84   Type *Ty = BO->getType();
85   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86   if (IdC != C) {
87     if (!IdC || !CmpInst::isFPPredicate(Pred))
88       return nullptr;
89     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90       return nullptr;
91   }
92
93   // Last, match the compare variable operand with a binop operand.
94   Value *Y;
95   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98     return nullptr;
99
100   // +0.0 compares equal to -0.0, and so it does not behave as required for this
101   // transform. Bail out if we can not exclude that possibility.
102   if (isa<FPMathOperator>(BO))
103     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104       return nullptr;
105
106   // BO = binop Y, X
107   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108   // =>
109   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
110   Sel.setOperand(IsEq ? 1 : 2, Y);
111   return &Sel;
112 }
113
114 /// This folds:
115 ///  select (icmp eq (and X, C1)), TC, FC
116 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117 /// To something like:
118 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119 /// Or:
120 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121 /// With some variations depending if FC is larger than TC, or the shift
122 /// isn't needed, or the bit widths don't match.
123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124                                 InstCombiner::BuilderTy &Builder) {
125   const APInt *SelTC, *SelFC;
126   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127       !match(Sel.getFalseValue(), m_APInt(SelFC)))
128     return nullptr;
129
130   // If this is a vector select, we need a vector compare.
131   Type *SelType = Sel.getType();
132   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133     return nullptr;
134
135   Value *V;
136   APInt AndMask;
137   bool CreateAnd = false;
138   ICmpInst::Predicate Pred = Cmp->getPredicate();
139   if (ICmpInst::isEquality(Pred)) {
140     if (!match(Cmp->getOperand(1), m_Zero()))
141       return nullptr;
142
143     V = Cmp->getOperand(0);
144     const APInt *AndRHS;
145     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146       return nullptr;
147
148     AndMask = *AndRHS;
149   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150                                   Pred, V, AndMask)) {
151     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152     if (!AndMask.isPowerOf2())
153       return nullptr;
154
155     CreateAnd = true;
156   } else {
157     return nullptr;
158   }
159
160   // In general, when both constants are non-zero, we would need an offset to
161   // replace the select. This would require more instructions than we started
162   // with. But there's one special-case that we handle here because it can
163   // simplify/reduce the instructions.
164   APInt TC = *SelTC;
165   APInt FC = *SelFC;
166   if (!TC.isNullValue() && !FC.isNullValue()) {
167     // If the select constants differ by exactly one bit and that's the same
168     // bit that is masked and checked by the select condition, the select can
169     // be replaced by bitwise logic to set/clear one bit of the constant result.
170     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171       return nullptr;
172     if (CreateAnd) {
173       // If we have to create an 'and', then we must kill the cmp to not
174       // increase the instruction count.
175       if (!Cmp->hasOneUse())
176         return nullptr;
177       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178     }
179     bool ExtraBitInTC = TC.ugt(FC);
180     if (Pred == ICmpInst::ICMP_EQ) {
181       // If the masked bit in V is clear, clear or set the bit in the result:
182       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184       Constant *C = ConstantInt::get(SelType, TC);
185       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186     }
187     if (Pred == ICmpInst::ICMP_NE) {
188       // If the masked bit in V is set, set or clear the bit in the result:
189       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191       Constant *C = ConstantInt::get(SelType, FC);
192       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193     }
194     llvm_unreachable("Only expecting equality predicates");
195   }
196
197   // Make sure one of the select arms is a power-of-2.
198   if (!TC.isPowerOf2() && !FC.isPowerOf2())
199     return nullptr;
200
201   // Determine which shift is needed to transform result of the 'and' into the
202   // desired result.
203   const APInt &ValC = !TC.isNullValue() ? TC : FC;
204   unsigned ValZeros = ValC.logBase2();
205   unsigned AndZeros = AndMask.logBase2();
206
207   // Insert the 'and' instruction on the input to the truncate.
208   if (CreateAnd)
209     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210
211   // If types don't match, we can still convert the select by introducing a zext
212   // or a trunc of the 'and'.
213   if (ValZeros > AndZeros) {
214     V = Builder.CreateZExtOrTrunc(V, SelType);
215     V = Builder.CreateShl(V, ValZeros - AndZeros);
216   } else if (ValZeros < AndZeros) {
217     V = Builder.CreateLShr(V, AndZeros - ValZeros);
218     V = Builder.CreateZExtOrTrunc(V, SelType);
219   } else {
220     V = Builder.CreateZExtOrTrunc(V, SelType);
221   }
222
223   // Okay, now we know that everything is set up, we just don't know whether we
224   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225   bool ShouldNotVal = !TC.isNullValue();
226   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227   if (ShouldNotVal)
228     V = Builder.CreateXor(V, ValC);
229
230   return V;
231 }
232
233 /// We want to turn code that looks like this:
234 ///   %C = or %A, %B
235 ///   %D = select %cond, %C, %A
236 /// into:
237 ///   %C = select %cond, %B, 0
238 ///   %D = or %A, %C
239 ///
240 /// Assuming that the specified instruction is an operand to the select, return
241 /// a bitmask indicating which operands of this instruction are foldable if they
242 /// equal the other incoming value of the select.
243 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244   switch (I->getOpcode()) {
245   case Instruction::Add:
246   case Instruction::Mul:
247   case Instruction::And:
248   case Instruction::Or:
249   case Instruction::Xor:
250     return 3;              // Can fold through either operand.
251   case Instruction::Sub:   // Can only fold on the amount subtracted.
252   case Instruction::Shl:   // Can only fold on the shift amount.
253   case Instruction::LShr:
254   case Instruction::AShr:
255     return 1;
256   default:
257     return 0;              // Cannot fold
258   }
259 }
260
261 /// For the same transformation as the previous function, return the identity
262 /// constant that goes into the select.
263 static APInt getSelectFoldableConstant(BinaryOperator *I) {
264   switch (I->getOpcode()) {
265   default: llvm_unreachable("This cannot happen!");
266   case Instruction::Add:
267   case Instruction::Sub:
268   case Instruction::Or:
269   case Instruction::Xor:
270   case Instruction::Shl:
271   case Instruction::LShr:
272   case Instruction::AShr:
273     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274   case Instruction::And:
275     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276   case Instruction::Mul:
277     return APInt(I->getType()->getScalarSizeInBits(), 1);
278   }
279 }
280
281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283                                           Instruction *FI) {
284   // Don't break up min/max patterns. The hasOneUse checks below prevent that
285   // for most cases, but vector min/max with bitcasts can be transformed. If the
286   // one-use restrictions are eased for other patterns, we still don't want to
287   // obfuscate min/max.
288   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289        match(&SI, m_SMax(m_Value(), m_Value())) ||
290        match(&SI, m_UMin(m_Value(), m_Value())) ||
291        match(&SI, m_UMax(m_Value(), m_Value()))))
292     return nullptr;
293
294   // If this is a cast from the same type, merge.
295   Value *Cond = SI.getCondition();
296   Type *CondTy = Cond->getType();
297   if (TI->getNumOperands() == 1 && TI->isCast()) {
298     Type *FIOpndTy = FI->getOperand(0)->getType();
299     if (TI->getOperand(0)->getType() != FIOpndTy)
300       return nullptr;
301
302     // The select condition may be a vector. We may only change the operand
303     // type if the vector width remains the same (and matches the condition).
304     if (CondTy->isVectorTy()) {
305       if (!FIOpndTy->isVectorTy())
306         return nullptr;
307       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308         return nullptr;
309
310       // TODO: If the backend knew how to deal with casts better, we could
311       // remove this limitation. For now, there's too much potential to create
312       // worse codegen by promoting the select ahead of size-altering casts
313       // (PR28160).
314       //
315       // Note that ValueTracking's matchSelectPattern() looks through casts
316       // without checking 'hasOneUse' when it matches min/max patterns, so this
317       // transform may end up happening anyway.
318       if (TI->getOpcode() != Instruction::BitCast &&
319           (!TI->hasOneUse() || !FI->hasOneUse()))
320         return nullptr;
321     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322       // TODO: The one-use restrictions for a scalar select could be eased if
323       // the fold of a select in visitLoadInst() was enhanced to match a pattern
324       // that includes a cast.
325       return nullptr;
326     }
327
328     // Fold this by inserting a select from the input values.
329     Value *NewSI =
330         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331                              SI.getName() + ".v", &SI);
332     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333                             TI->getType());
334   }
335
336   // Cond ? -X : -Y --> -(Cond ? X : Y)
337   Value *X, *Y;
338   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339       (TI->hasOneUse() || FI->hasOneUse())) {
340     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341     // TODO: Remove the hack for the binop form when the unary op is optimized
342     //       properly with all IR passes.
343     if (TI->getOpcode() != Instruction::FNeg)
344       return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345     return UnaryOperator::CreateFNeg(NewSel);
346   }
347
348   // Only handle binary operators (including two-operand getelementptr) with
349   // one-use here. As with the cast case above, it may be possible to relax the
350   // one-use constraint, but that needs be examined carefully since it may not
351   // reduce the total number of instructions.
352   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354       !TI->hasOneUse() || !FI->hasOneUse())
355     return nullptr;
356
357   // Figure out if the operations have any operands in common.
358   Value *MatchOp, *OtherOpT, *OtherOpF;
359   bool MatchIsOpZero;
360   if (TI->getOperand(0) == FI->getOperand(0)) {
361     MatchOp  = TI->getOperand(0);
362     OtherOpT = TI->getOperand(1);
363     OtherOpF = FI->getOperand(1);
364     MatchIsOpZero = true;
365   } else if (TI->getOperand(1) == FI->getOperand(1)) {
366     MatchOp  = TI->getOperand(1);
367     OtherOpT = TI->getOperand(0);
368     OtherOpF = FI->getOperand(0);
369     MatchIsOpZero = false;
370   } else if (!TI->isCommutative()) {
371     return nullptr;
372   } else if (TI->getOperand(0) == FI->getOperand(1)) {
373     MatchOp  = TI->getOperand(0);
374     OtherOpT = TI->getOperand(1);
375     OtherOpF = FI->getOperand(0);
376     MatchIsOpZero = true;
377   } else if (TI->getOperand(1) == FI->getOperand(0)) {
378     MatchOp  = TI->getOperand(1);
379     OtherOpT = TI->getOperand(0);
380     OtherOpF = FI->getOperand(1);
381     MatchIsOpZero = true;
382   } else {
383     return nullptr;
384   }
385
386   // If the select condition is a vector, the operands of the original select's
387   // operands also must be vectors. This may not be the case for getelementptr
388   // for example.
389   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390                                !OtherOpF->getType()->isVectorTy()))
391     return nullptr;
392
393   // If we reach here, they do have operations in common.
394   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395                                       SI.getName() + ".v", &SI);
396   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400     NewBO->copyIRFlags(TI);
401     NewBO->andIRFlags(FI);
402     return NewBO;
403   }
404   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405     auto *FGEP = cast<GetElementPtrInst>(FI);
406     Type *ElementType = TGEP->getResultElementType();
407     return TGEP->isInBounds() && FGEP->isInBounds()
408                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410   }
411   llvm_unreachable("Expected BinaryOperator or GEP");
412   return nullptr;
413 }
414
415 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417     return false;
418   return C1I.isOneValue() || C1I.isAllOnesValue() ||
419          C2I.isOneValue() || C2I.isAllOnesValue();
420 }
421
422 /// Try to fold the select into one of the operands to allow further
423 /// optimization.
424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425                                             Value *FalseVal) {
426   // See the comment above GetSelectFoldableOperands for a description of the
427   // transformation we are doing here.
428   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431         unsigned OpToFold = 0;
432         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433           OpToFold = 1;
434         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435           OpToFold = 2;
436         }
437
438         if (OpToFold) {
439           APInt CI = getSelectFoldableConstant(TVI);
440           Value *OOp = TVI->getOperand(2-OpToFold);
441           // Avoid creating select between 2 constants unless it's selecting
442           // between 0, 1 and -1.
443           const APInt *OOpC;
444           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446             Value *C = ConstantInt::get(OOp->getType(), CI);
447             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448             NewSel->takeName(TVI);
449             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450                                                         FalseVal, NewSel);
451             BO->copyIRFlags(TVI);
452             return BO;
453           }
454         }
455       }
456     }
457   }
458
459   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462         unsigned OpToFold = 0;
463         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464           OpToFold = 1;
465         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466           OpToFold = 2;
467         }
468
469         if (OpToFold) {
470           APInt CI = getSelectFoldableConstant(FVI);
471           Value *OOp = FVI->getOperand(2-OpToFold);
472           // Avoid creating select between 2 constants unless it's selecting
473           // between 0, 1 and -1.
474           const APInt *OOpC;
475           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477             Value *C = ConstantInt::get(OOp->getType(), CI);
478             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479             NewSel->takeName(FVI);
480             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481                                                         TrueVal, NewSel);
482             BO->copyIRFlags(FVI);
483             return BO;
484           }
485         }
486       }
487     }
488   }
489
490   return nullptr;
491 }
492
493 /// We want to turn:
494 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495 /// into:
496 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497 /// Note:
498 ///   Z may be 0 if lshr is missing.
499 /// Worst-case scenario is that we will replace 5 instructions with 5 different
500 /// instructions, but we got rid of select.
501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502                                          Value *TVal, Value *FVal,
503                                          InstCombiner::BuilderTy &Builder) {
504   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507     return nullptr;
508
509   // The TrueVal has general form of:  and %B, 1
510   Value *B;
511   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512     return nullptr;
513
514   // Where %B may be optionally shifted:  lshr %X, %Z.
515   Value *X, *Z;
516   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517   if (!HasShift)
518     X = B;
519
520   Value *Y;
521   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522     return nullptr;
523
524   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526   Constant *One = ConstantInt::get(SelType, 1);
527   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528   Value *FullMask = Builder.CreateOr(Y, MaskB);
529   Value *MaskedX = Builder.CreateAnd(X, FullMask);
530   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531   return new ZExtInst(ICmpNeZero, SelType);
532 }
533
534 /// We want to turn:
535 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537 /// into:
538 ///   ashr (X, Y)
539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540                                      Value *FalseVal,
541                                      InstCombiner::BuilderTy &Builder) {
542   ICmpInst::Predicate Pred = IC->getPredicate();
543   Value *CmpLHS = IC->getOperand(0);
544   Value *CmpRHS = IC->getOperand(1);
545   if (!CmpRHS->getType()->isIntOrIntVectorTy())
546     return nullptr;
547
548   Value *X, *Y;
549   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550   if ((Pred != ICmpInst::ICMP_SGT ||
551        !match(CmpRHS,
552               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553       (Pred != ICmpInst::ICMP_SLT ||
554        !match(CmpRHS,
555               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556     return nullptr;
557
558   // Canonicalize so that ashr is in FalseVal.
559   if (Pred == ICmpInst::ICMP_SLT)
560     std::swap(TrueVal, FalseVal);
561
562   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564       match(CmpLHS, m_Specific(X))) {
565     const auto *Ashr = cast<Instruction>(FalseVal);
566     // if lshr is not exact and ashr is, this new ashr must not be exact.
567     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569   }
570
571   return nullptr;
572 }
573
574 /// We want to turn:
575 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576 /// into:
577 ///   (or (shl (and X, C1), C3), Y)
578 /// iff:
579 ///   C1 and C2 are both powers of 2
580 /// where:
581 ///   C3 = Log(C2) - Log(C1)
582 ///
583 /// This transform handles cases where:
584 /// 1. The icmp predicate is inverted
585 /// 2. The select operands are reversed
586 /// 3. The magnitude of C2 and C1 are flipped
587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588                                   Value *FalseVal,
589                                   InstCombiner::BuilderTy &Builder) {
590   // Only handle integer compares. Also, if this is a vector select, we need a
591   // vector compare.
592   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594     return nullptr;
595
596   Value *CmpLHS = IC->getOperand(0);
597   Value *CmpRHS = IC->getOperand(1);
598
599   Value *V;
600   unsigned C1Log;
601   bool IsEqualZero;
602   bool NeedAnd = false;
603   if (IC->isEquality()) {
604     if (!match(CmpRHS, m_Zero()))
605       return nullptr;
606
607     const APInt *C1;
608     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609       return nullptr;
610
611     V = CmpLHS;
612     C1Log = C1->logBase2();
613     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615              IC->getPredicate() == ICmpInst::ICMP_SGT) {
616     // We also need to recognize (icmp slt (trunc (X)), 0) and
617     // (icmp sgt (trunc (X)), -1).
618     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620         (!IsEqualZero && !match(CmpRHS, m_Zero())))
621       return nullptr;
622
623     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624       return nullptr;
625
626     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627     NeedAnd = true;
628   } else {
629     return nullptr;
630   }
631
632   const APInt *C2;
633   bool OrOnTrueVal = false;
634   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635   if (!OrOnFalseVal)
636     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637
638   if (!OrOnFalseVal && !OrOnTrueVal)
639     return nullptr;
640
641   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642
643   unsigned C2Log = C2->logBase2();
644
645   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646   bool NeedShift = C1Log != C2Log;
647   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648                        V->getType()->getScalarSizeInBits();
649
650   // Make sure we don't create more instructions than we save.
651   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652   if ((NeedShift + NeedXor + NeedZExtTrunc) >
653       (IC->hasOneUse() + Or->hasOneUse()))
654     return nullptr;
655
656   if (NeedAnd) {
657     // Insert the AND instruction on the input to the truncate.
658     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660   }
661
662   if (C2Log > C1Log) {
663     V = Builder.CreateZExtOrTrunc(V, Y->getType());
664     V = Builder.CreateShl(V, C2Log - C1Log);
665   } else if (C1Log > C2Log) {
666     V = Builder.CreateLShr(V, C1Log - C2Log);
667     V = Builder.CreateZExtOrTrunc(V, Y->getType());
668   } else
669     V = Builder.CreateZExtOrTrunc(V, Y->getType());
670
671   if (NeedXor)
672     V = Builder.CreateXor(V, *C2);
673
674   return Builder.CreateOr(V, Y);
675 }
676
677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678 /// There are 8 commuted/swapped variants of this pattern.
679 /// TODO: Also support a - UMIN(a,b) patterns.
680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681                                             const Value *TrueVal,
682                                             const Value *FalseVal,
683                                             InstCombiner::BuilderTy &Builder) {
684   ICmpInst::Predicate Pred = ICI->getPredicate();
685   if (!ICmpInst::isUnsigned(Pred))
686     return nullptr;
687
688   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689   if (match(TrueVal, m_Zero())) {
690     Pred = ICmpInst::getInversePredicate(Pred);
691     std::swap(TrueVal, FalseVal);
692   }
693   if (!match(FalseVal, m_Zero()))
694     return nullptr;
695
696   Value *A = ICI->getOperand(0);
697   Value *B = ICI->getOperand(1);
698   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700     std::swap(A, B);
701     Pred = ICmpInst::getSwappedPredicate(Pred);
702   }
703
704   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705          "Unexpected isUnsigned predicate!");
706
707   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
708   bool IsNegative = false;
709   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
710     IsNegative = true;
711   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
712     return nullptr;
713
714   // If sub is used anywhere else, we wouldn't be able to eliminate it
715   // afterwards.
716   if (!TrueVal->hasOneUse())
717     return nullptr;
718
719   // (a > b) ? a - b : 0 -> usub.sat(a, b)
720   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
721   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
722   if (IsNegative)
723     Result = Builder.CreateNeg(Result);
724   return Result;
725 }
726
727 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
728                                        InstCombiner::BuilderTy &Builder) {
729   if (!Cmp->hasOneUse())
730     return nullptr;
731
732   // Match unsigned saturated add with constant.
733   Value *Cmp0 = Cmp->getOperand(0);
734   Value *Cmp1 = Cmp->getOperand(1);
735   ICmpInst::Predicate Pred = Cmp->getPredicate();
736   Value *X;
737   const APInt *C, *CmpC;
738   if (Pred == ICmpInst::ICMP_ULT &&
739       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
740       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
741     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
742     return Builder.CreateBinaryIntrinsic(
743         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
744   }
745
746   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
747   // There are 8 commuted variants.
748   // Canonicalize -1 (saturated result) to true value of the select. Just
749   // swapping the compare operands is legal, because the selected value is the
750   // same in case of equality, so we can interchange u< and u<=.
751   if (match(FVal, m_AllOnes())) {
752     std::swap(TVal, FVal);
753     std::swap(Cmp0, Cmp1);
754   }
755   if (!match(TVal, m_AllOnes()))
756     return nullptr;
757
758   // Canonicalize predicate to 'ULT'.
759   if (Pred == ICmpInst::ICMP_UGT) {
760     Pred = ICmpInst::ICMP_ULT;
761     std::swap(Cmp0, Cmp1);
762   }
763   if (Pred != ICmpInst::ICMP_ULT)
764     return nullptr;
765
766   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
767   Value *Y;
768   if (match(Cmp0, m_Not(m_Value(X))) &&
769       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
770     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
771     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
772     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
773   }
774   // The 'not' op may be included in the sum but not the compare.
775   X = Cmp0;
776   Y = Cmp1;
777   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
778     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
779     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
780     BinaryOperator *BO = cast<BinaryOperator>(FVal);
781     return Builder.CreateBinaryIntrinsic(
782         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
783   }
784
785   return nullptr;
786 }
787
788 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
789 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
790 ///
791 /// For example, we can fold the following code sequence:
792 /// \code
793 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
794 ///   %1 = icmp ne i32 %x, 0
795 ///   %2 = select i1 %1, i32 %0, i32 32
796 /// \code
797 ///
798 /// into:
799 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
800 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
801                                  InstCombiner::BuilderTy &Builder) {
802   ICmpInst::Predicate Pred = ICI->getPredicate();
803   Value *CmpLHS = ICI->getOperand(0);
804   Value *CmpRHS = ICI->getOperand(1);
805
806   // Check if the condition value compares a value for equality against zero.
807   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
808     return nullptr;
809
810   Value *Count = FalseVal;
811   Value *ValueOnZero = TrueVal;
812   if (Pred == ICmpInst::ICMP_NE)
813     std::swap(Count, ValueOnZero);
814
815   // Skip zero extend/truncate.
816   Value *V = nullptr;
817   if (match(Count, m_ZExt(m_Value(V))) ||
818       match(Count, m_Trunc(m_Value(V))))
819     Count = V;
820
821   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
822   // input to the cttz/ctlz is used as LHS for the compare instruction.
823   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
824       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
825     return nullptr;
826
827   IntrinsicInst *II = cast<IntrinsicInst>(Count);
828
829   // Check if the value propagated on zero is a constant number equal to the
830   // sizeof in bits of 'Count'.
831   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
832   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
833     // Explicitly clear the 'undef_on_zero' flag.
834     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
835     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
836     Builder.Insert(NewI);
837     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
838   }
839
840   // If the ValueOnZero is not the bitwidth, we can at least make use of the
841   // fact that the cttz/ctlz result will not be used if the input is zero, so
842   // it's okay to relax it to undef for that case.
843   if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
844     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
845
846   return nullptr;
847 }
848
849 /// Return true if we find and adjust an icmp+select pattern where the compare
850 /// is with a constant that can be incremented or decremented to match the
851 /// minimum or maximum idiom.
852 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
853   ICmpInst::Predicate Pred = Cmp.getPredicate();
854   Value *CmpLHS = Cmp.getOperand(0);
855   Value *CmpRHS = Cmp.getOperand(1);
856   Value *TrueVal = Sel.getTrueValue();
857   Value *FalseVal = Sel.getFalseValue();
858
859   // We may move or edit the compare, so make sure the select is the only user.
860   const APInt *CmpC;
861   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
862     return false;
863
864   // These transforms only work for selects of integers or vector selects of
865   // integer vectors.
866   Type *SelTy = Sel.getType();
867   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
868   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
869     return false;
870
871   Constant *AdjustedRHS;
872   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
873     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
874   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
875     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
876   else
877     return false;
878
879   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
880   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
881   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
882       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
883     ; // Nothing to do here. Values match without any sign/zero extension.
884   }
885   // Types do not match. Instead of calculating this with mixed types, promote
886   // all to the larger type. This enables scalar evolution to analyze this
887   // expression.
888   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
889     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
890
891     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
892     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
893     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
894     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
895     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
896       CmpLHS = TrueVal;
897       AdjustedRHS = SextRHS;
898     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
899                SextRHS == TrueVal) {
900       CmpLHS = FalseVal;
901       AdjustedRHS = SextRHS;
902     } else if (Cmp.isUnsigned()) {
903       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
904       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
905       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
906       // zext + signed compare cannot be changed:
907       //    0xff <s 0x00, but 0x00ff >s 0x0000
908       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
909         CmpLHS = TrueVal;
910         AdjustedRHS = ZextRHS;
911       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
912                  ZextRHS == TrueVal) {
913         CmpLHS = FalseVal;
914         AdjustedRHS = ZextRHS;
915       } else {
916         return false;
917       }
918     } else {
919       return false;
920     }
921   } else {
922     return false;
923   }
924
925   Pred = ICmpInst::getSwappedPredicate(Pred);
926   CmpRHS = AdjustedRHS;
927   std::swap(FalseVal, TrueVal);
928   Cmp.setPredicate(Pred);
929   Cmp.setOperand(0, CmpLHS);
930   Cmp.setOperand(1, CmpRHS);
931   Sel.setOperand(1, TrueVal);
932   Sel.setOperand(2, FalseVal);
933   Sel.swapProfMetadata();
934
935   // Move the compare instruction right before the select instruction. Otherwise
936   // the sext/zext value may be defined after the compare instruction uses it.
937   Cmp.moveBefore(&Sel);
938
939   return true;
940 }
941
942 /// If this is an integer min/max (icmp + select) with a constant operand,
943 /// create the canonical icmp for the min/max operation and canonicalize the
944 /// constant to the 'false' operand of the select:
945 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
946 /// Note: if C1 != C2, this will change the icmp constant to the existing
947 /// constant operand of the select.
948 static Instruction *
949 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
950                                InstCombiner::BuilderTy &Builder) {
951   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
952     return nullptr;
953
954   // Canonicalize the compare predicate based on whether we have min or max.
955   Value *LHS, *RHS;
956   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
957   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
958     return nullptr;
959
960   // Is this already canonical?
961   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
962   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
963       Cmp.getPredicate() == CanonicalPred)
964     return nullptr;
965
966   // Create the canonical compare and plug it into the select.
967   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
968
969   // If the select operands did not change, we're done.
970   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
971     return &Sel;
972
973   // If we are swapping the select operands, swap the metadata too.
974   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
975          "Unexpected results from matchSelectPattern");
976   Sel.setTrueValue(LHS);
977   Sel.setFalseValue(RHS);
978   Sel.swapProfMetadata();
979   return &Sel;
980 }
981
982 /// There are many select variants for each of ABS/NABS.
983 /// In matchSelectPattern(), there are different compare constants, compare
984 /// predicates/operands and select operands.
985 /// In isKnownNegation(), there are different formats of negated operands.
986 /// Canonicalize all these variants to 1 pattern.
987 /// This makes CSE more likely.
988 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
989                                         InstCombiner::BuilderTy &Builder) {
990   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
991     return nullptr;
992
993   // Choose a sign-bit check for the compare (likely simpler for codegen).
994   // ABS:  (X <s 0) ? -X : X
995   // NABS: (X <s 0) ? X : -X
996   Value *LHS, *RHS;
997   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
998   if (SPF != SelectPatternFlavor::SPF_ABS &&
999       SPF != SelectPatternFlavor::SPF_NABS)
1000     return nullptr;
1001
1002   Value *TVal = Sel.getTrueValue();
1003   Value *FVal = Sel.getFalseValue();
1004   assert(isKnownNegation(TVal, FVal) &&
1005          "Unexpected result from matchSelectPattern");
1006
1007   // The compare may use the negated abs()/nabs() operand, or it may use
1008   // negation in non-canonical form such as: sub A, B.
1009   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1010                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1011
1012   bool CmpCanonicalized = !CmpUsesNegatedOp &&
1013                           match(Cmp.getOperand(1), m_ZeroInt()) &&
1014                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1015   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1016
1017   // Is this already canonical?
1018   if (CmpCanonicalized && RHSCanonicalized)
1019     return nullptr;
1020
1021   // If RHS is used by other instructions except compare and select, don't
1022   // canonicalize it to not increase the instruction count.
1023   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1024     return nullptr;
1025
1026   // Create the canonical compare: icmp slt LHS 0.
1027   if (!CmpCanonicalized) {
1028     Cmp.setPredicate(ICmpInst::ICMP_SLT);
1029     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1030     if (CmpUsesNegatedOp)
1031       Cmp.setOperand(0, LHS);
1032   }
1033
1034   // Create the canonical RHS: RHS = sub (0, LHS).
1035   if (!RHSCanonicalized) {
1036     assert(RHS->hasOneUse() && "RHS use number is not right");
1037     RHS = Builder.CreateNeg(LHS);
1038     if (TVal == LHS) {
1039       Sel.setFalseValue(RHS);
1040       FVal = RHS;
1041     } else {
1042       Sel.setTrueValue(RHS);
1043       TVal = RHS;
1044     }
1045   }
1046
1047   // If the select operands do not change, we're done.
1048   if (SPF == SelectPatternFlavor::SPF_NABS) {
1049     if (TVal == LHS)
1050       return &Sel;
1051     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1052   } else {
1053     if (FVal == LHS)
1054       return &Sel;
1055     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1056   }
1057
1058   // We are swapping the select operands, so swap the metadata too.
1059   Sel.setTrueValue(FVal);
1060   Sel.setFalseValue(TVal);
1061   Sel.swapProfMetadata();
1062   return &Sel;
1063 }
1064
1065 /// Visit a SelectInst that has an ICmpInst as its first operand.
1066 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1067                                                   ICmpInst *ICI) {
1068   Value *TrueVal = SI.getTrueValue();
1069   Value *FalseVal = SI.getFalseValue();
1070
1071   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1072     return NewSel;
1073
1074   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1075     return NewAbs;
1076
1077   bool Changed = adjustMinMax(SI, *ICI);
1078
1079   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1080     return replaceInstUsesWith(SI, V);
1081
1082   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1083   ICmpInst::Predicate Pred = ICI->getPredicate();
1084   Value *CmpLHS = ICI->getOperand(0);
1085   Value *CmpRHS = ICI->getOperand(1);
1086   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1087     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1088       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1089       SI.setOperand(1, CmpRHS);
1090       Changed = true;
1091     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1092       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1093       SI.setOperand(2, CmpRHS);
1094       Changed = true;
1095     }
1096   }
1097
1098   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1099   // decomposeBitTestICmp() might help.
1100   {
1101     unsigned BitWidth =
1102         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1103     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1104     Value *X;
1105     const APInt *Y, *C;
1106     bool TrueWhenUnset;
1107     bool IsBitTest = false;
1108     if (ICmpInst::isEquality(Pred) &&
1109         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1110         match(CmpRHS, m_Zero())) {
1111       IsBitTest = true;
1112       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1113     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1114       X = CmpLHS;
1115       Y = &MinSignedValue;
1116       IsBitTest = true;
1117       TrueWhenUnset = false;
1118     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1119       X = CmpLHS;
1120       Y = &MinSignedValue;
1121       IsBitTest = true;
1122       TrueWhenUnset = true;
1123     }
1124     if (IsBitTest) {
1125       Value *V = nullptr;
1126       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1127       if (TrueWhenUnset && TrueVal == X &&
1128           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1129         V = Builder.CreateAnd(X, ~(*Y));
1130       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1131       else if (!TrueWhenUnset && FalseVal == X &&
1132                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1133         V = Builder.CreateAnd(X, ~(*Y));
1134       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1135       else if (TrueWhenUnset && FalseVal == X &&
1136                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1137         V = Builder.CreateOr(X, *Y);
1138       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1139       else if (!TrueWhenUnset && TrueVal == X &&
1140                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1141         V = Builder.CreateOr(X, *Y);
1142
1143       if (V)
1144         return replaceInstUsesWith(SI, V);
1145     }
1146   }
1147
1148   if (Instruction *V =
1149           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1150     return V;
1151
1152   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1153     return replaceInstUsesWith(SI, V);
1154
1155   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1156     return replaceInstUsesWith(SI, V);
1157
1158   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1159     return replaceInstUsesWith(SI, V);
1160
1161   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1162     return replaceInstUsesWith(SI, V);
1163
1164   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1165     return replaceInstUsesWith(SI, V);
1166
1167   return Changed ? &SI : nullptr;
1168 }
1169
1170 /// SI is a select whose condition is a PHI node (but the two may be in
1171 /// different blocks). See if the true/false values (V) are live in all of the
1172 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1173 ///
1174 ///   X = phi [ C1, BB1], [C2, BB2]
1175 ///   Y = add
1176 ///   Z = select X, Y, 0
1177 ///
1178 /// because Y is not live in BB1/BB2.
1179 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1180                                                    const SelectInst &SI) {
1181   // If the value is a non-instruction value like a constant or argument, it
1182   // can always be mapped.
1183   const Instruction *I = dyn_cast<Instruction>(V);
1184   if (!I) return true;
1185
1186   // If V is a PHI node defined in the same block as the condition PHI, we can
1187   // map the arguments.
1188   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1189
1190   if (const PHINode *VP = dyn_cast<PHINode>(I))
1191     if (VP->getParent() == CondPHI->getParent())
1192       return true;
1193
1194   // Otherwise, if the PHI and select are defined in the same block and if V is
1195   // defined in a different block, then we can transform it.
1196   if (SI.getParent() == CondPHI->getParent() &&
1197       I->getParent() != CondPHI->getParent())
1198     return true;
1199
1200   // Otherwise we have a 'hard' case and we can't tell without doing more
1201   // detailed dominator based analysis, punt.
1202   return false;
1203 }
1204
1205 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1206 ///   SPF2(SPF1(A, B), C)
1207 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1208                                         SelectPatternFlavor SPF1,
1209                                         Value *A, Value *B,
1210                                         Instruction &Outer,
1211                                         SelectPatternFlavor SPF2, Value *C) {
1212   if (Outer.getType() != Inner->getType())
1213     return nullptr;
1214
1215   if (C == A || C == B) {
1216     // MAX(MAX(A, B), B) -> MAX(A, B)
1217     // MIN(MIN(a, b), a) -> MIN(a, b)
1218     // TODO: This could be done in instsimplify.
1219     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1220       return replaceInstUsesWith(Outer, Inner);
1221
1222     // MAX(MIN(a, b), a) -> a
1223     // MIN(MAX(a, b), a) -> a
1224     // TODO: This could be done in instsimplify.
1225     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1226         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1227         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1228         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1229       return replaceInstUsesWith(Outer, C);
1230   }
1231
1232   if (SPF1 == SPF2) {
1233     const APInt *CB, *CC;
1234     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1235       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1236       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1237       // TODO: This could be done in instsimplify.
1238       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1239           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1240           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1241           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1242         return replaceInstUsesWith(Outer, Inner);
1243
1244       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1245       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1246       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1247           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1248           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1249           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1250         Outer.replaceUsesOfWith(Inner, A);
1251         return &Outer;
1252       }
1253     }
1254   }
1255
1256   // ABS(ABS(X)) -> ABS(X)
1257   // NABS(NABS(X)) -> NABS(X)
1258   // TODO: This could be done in instsimplify.
1259   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1260     return replaceInstUsesWith(Outer, Inner);
1261   }
1262
1263   // ABS(NABS(X)) -> ABS(X)
1264   // NABS(ABS(X)) -> NABS(X)
1265   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1266       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1267     SelectInst *SI = cast<SelectInst>(Inner);
1268     Value *NewSI =
1269         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1270                              SI->getTrueValue(), SI->getName(), SI);
1271     return replaceInstUsesWith(Outer, NewSI);
1272   }
1273
1274   auto IsFreeOrProfitableToInvert =
1275       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1276     if (match(V, m_Not(m_Value(NotV)))) {
1277       // If V has at most 2 uses then we can get rid of the xor operation
1278       // entirely.
1279       ElidesXor |= !V->hasNUsesOrMore(3);
1280       return true;
1281     }
1282
1283     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1284       NotV = nullptr;
1285       return true;
1286     }
1287
1288     return false;
1289   };
1290
1291   Value *NotA, *NotB, *NotC;
1292   bool ElidesXor = false;
1293
1294   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1295   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1296   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1297   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1298   //
1299   // This transform is performance neutral if we can elide at least one xor from
1300   // the set of three operands, since we'll be tacking on an xor at the very
1301   // end.
1302   if (SelectPatternResult::isMinOrMax(SPF1) &&
1303       SelectPatternResult::isMinOrMax(SPF2) &&
1304       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1305       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1306       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1307     if (!NotA)
1308       NotA = Builder.CreateNot(A);
1309     if (!NotB)
1310       NotB = Builder.CreateNot(B);
1311     if (!NotC)
1312       NotC = Builder.CreateNot(C);
1313
1314     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1315                                    NotB);
1316     Value *NewOuter = Builder.CreateNot(
1317         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1318     return replaceInstUsesWith(Outer, NewOuter);
1319   }
1320
1321   return nullptr;
1322 }
1323
1324 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1325 /// This is even legal for FP.
1326 static Instruction *foldAddSubSelect(SelectInst &SI,
1327                                      InstCombiner::BuilderTy &Builder) {
1328   Value *CondVal = SI.getCondition();
1329   Value *TrueVal = SI.getTrueValue();
1330   Value *FalseVal = SI.getFalseValue();
1331   auto *TI = dyn_cast<Instruction>(TrueVal);
1332   auto *FI = dyn_cast<Instruction>(FalseVal);
1333   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1334     return nullptr;
1335
1336   Instruction *AddOp = nullptr, *SubOp = nullptr;
1337   if ((TI->getOpcode() == Instruction::Sub &&
1338        FI->getOpcode() == Instruction::Add) ||
1339       (TI->getOpcode() == Instruction::FSub &&
1340        FI->getOpcode() == Instruction::FAdd)) {
1341     AddOp = FI;
1342     SubOp = TI;
1343   } else if ((FI->getOpcode() == Instruction::Sub &&
1344               TI->getOpcode() == Instruction::Add) ||
1345              (FI->getOpcode() == Instruction::FSub &&
1346               TI->getOpcode() == Instruction::FAdd)) {
1347     AddOp = TI;
1348     SubOp = FI;
1349   }
1350
1351   if (AddOp) {
1352     Value *OtherAddOp = nullptr;
1353     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1354       OtherAddOp = AddOp->getOperand(1);
1355     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1356       OtherAddOp = AddOp->getOperand(0);
1357     }
1358
1359     if (OtherAddOp) {
1360       // So at this point we know we have (Y -> OtherAddOp):
1361       //        select C, (add X, Y), (sub X, Z)
1362       Value *NegVal; // Compute -Z
1363       if (SI.getType()->isFPOrFPVectorTy()) {
1364         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1365         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1366           FastMathFlags Flags = AddOp->getFastMathFlags();
1367           Flags &= SubOp->getFastMathFlags();
1368           NegInst->setFastMathFlags(Flags);
1369         }
1370       } else {
1371         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1372       }
1373
1374       Value *NewTrueOp = OtherAddOp;
1375       Value *NewFalseOp = NegVal;
1376       if (AddOp != TI)
1377         std::swap(NewTrueOp, NewFalseOp);
1378       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1379                                            SI.getName() + ".p", &SI);
1380
1381       if (SI.getType()->isFPOrFPVectorTy()) {
1382         Instruction *RI =
1383             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1384
1385         FastMathFlags Flags = AddOp->getFastMathFlags();
1386         Flags &= SubOp->getFastMathFlags();
1387         RI->setFastMathFlags(Flags);
1388         return RI;
1389       } else
1390         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1391     }
1392   }
1393   return nullptr;
1394 }
1395
1396 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1397   Constant *C;
1398   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1399       !match(Sel.getFalseValue(), m_Constant(C)))
1400     return nullptr;
1401
1402   Instruction *ExtInst;
1403   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1404       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1405     return nullptr;
1406
1407   auto ExtOpcode = ExtInst->getOpcode();
1408   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1409     return nullptr;
1410
1411   // If we are extending from a boolean type or if we can create a select that
1412   // has the same size operands as its condition, try to narrow the select.
1413   Value *X = ExtInst->getOperand(0);
1414   Type *SmallType = X->getType();
1415   Value *Cond = Sel.getCondition();
1416   auto *Cmp = dyn_cast<CmpInst>(Cond);
1417   if (!SmallType->isIntOrIntVectorTy(1) &&
1418       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1419     return nullptr;
1420
1421   // If the constant is the same after truncation to the smaller type and
1422   // extension to the original type, we can narrow the select.
1423   Type *SelType = Sel.getType();
1424   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1425   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1426   if (ExtC == C) {
1427     Value *TruncCVal = cast<Value>(TruncC);
1428     if (ExtInst == Sel.getFalseValue())
1429       std::swap(X, TruncCVal);
1430
1431     // select Cond, (ext X), C --> ext(select Cond, X, C')
1432     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1433     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1434     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1435   }
1436
1437   // If one arm of the select is the extend of the condition, replace that arm
1438   // with the extension of the appropriate known bool value.
1439   if (Cond == X) {
1440     if (ExtInst == Sel.getTrueValue()) {
1441       // select X, (sext X), C --> select X, -1, C
1442       // select X, (zext X), C --> select X,  1, C
1443       Constant *One = ConstantInt::getTrue(SmallType);
1444       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1445       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1446     } else {
1447       // select X, C, (sext X) --> select X, C, 0
1448       // select X, C, (zext X) --> select X, C, 0
1449       Constant *Zero = ConstantInt::getNullValue(SelType);
1450       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1451     }
1452   }
1453
1454   return nullptr;
1455 }
1456
1457 /// Try to transform a vector select with a constant condition vector into a
1458 /// shuffle for easier combining with other shuffles and insert/extract.
1459 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1460   Value *CondVal = SI.getCondition();
1461   Constant *CondC;
1462   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1463     return nullptr;
1464
1465   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1466   SmallVector<Constant *, 16> Mask;
1467   Mask.reserve(NumElts);
1468   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1469   for (unsigned i = 0; i != NumElts; ++i) {
1470     Constant *Elt = CondC->getAggregateElement(i);
1471     if (!Elt)
1472       return nullptr;
1473
1474     if (Elt->isOneValue()) {
1475       // If the select condition element is true, choose from the 1st vector.
1476       Mask.push_back(ConstantInt::get(Int32Ty, i));
1477     } else if (Elt->isNullValue()) {
1478       // If the select condition element is false, choose from the 2nd vector.
1479       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1480     } else if (isa<UndefValue>(Elt)) {
1481       // Undef in a select condition (choose one of the operands) does not mean
1482       // the same thing as undef in a shuffle mask (any value is acceptable), so
1483       // give up.
1484       return nullptr;
1485     } else {
1486       // Bail out on a constant expression.
1487       return nullptr;
1488     }
1489   }
1490
1491   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1492                                ConstantVector::get(Mask));
1493 }
1494
1495 /// Reuse bitcasted operands between a compare and select:
1496 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1497 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1498 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1499                                           InstCombiner::BuilderTy &Builder) {
1500   Value *Cond = Sel.getCondition();
1501   Value *TVal = Sel.getTrueValue();
1502   Value *FVal = Sel.getFalseValue();
1503
1504   CmpInst::Predicate Pred;
1505   Value *A, *B;
1506   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1507     return nullptr;
1508
1509   // The select condition is a compare instruction. If the select's true/false
1510   // values are already the same as the compare operands, there's nothing to do.
1511   if (TVal == A || TVal == B || FVal == A || FVal == B)
1512     return nullptr;
1513
1514   Value *C, *D;
1515   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1516     return nullptr;
1517
1518   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1519   Value *TSrc, *FSrc;
1520   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1521       !match(FVal, m_BitCast(m_Value(FSrc))))
1522     return nullptr;
1523
1524   // If the select true/false values are *different bitcasts* of the same source
1525   // operands, make the select operands the same as the compare operands and
1526   // cast the result. This is the canonical select form for min/max.
1527   Value *NewSel;
1528   if (TSrc == C && FSrc == D) {
1529     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1530     // bitcast (select (cmp A, B), A, B)
1531     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1532   } else if (TSrc == D && FSrc == C) {
1533     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1534     // bitcast (select (cmp A, B), B, A)
1535     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1536   } else {
1537     return nullptr;
1538   }
1539   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1540 }
1541
1542 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1543 /// instructions.
1544 ///
1545 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1546 /// selects between the returned value of the cmpxchg instruction its compare
1547 /// operand, the result of the select will always be equal to its false value.
1548 /// For example:
1549 ///
1550 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1551 ///   %1 = extractvalue { i64, i1 } %0, 1
1552 ///   %2 = extractvalue { i64, i1 } %0, 0
1553 ///   %3 = select i1 %1, i64 %compare, i64 %2
1554 ///   ret i64 %3
1555 ///
1556 /// The returned value of the cmpxchg instruction (%2) is the original value
1557 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1558 /// must have been equal to %compare. Thus, the result of the select is always
1559 /// equal to %2, and the code can be simplified to:
1560 ///
1561 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1562 ///   %1 = extractvalue { i64, i1 } %0, 0
1563 ///   ret i64 %1
1564 ///
1565 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1566   // A helper that determines if V is an extractvalue instruction whose
1567   // aggregate operand is a cmpxchg instruction and whose single index is equal
1568   // to I. If such conditions are true, the helper returns the cmpxchg
1569   // instruction; otherwise, a nullptr is returned.
1570   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1571     auto *Extract = dyn_cast<ExtractValueInst>(V);
1572     if (!Extract)
1573       return nullptr;
1574     if (Extract->getIndices()[0] != I)
1575       return nullptr;
1576     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1577   };
1578
1579   // If the select has a single user, and this user is a select instruction that
1580   // we can simplify, skip the cmpxchg simplification for now.
1581   if (SI.hasOneUse())
1582     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1583       if (Select->getCondition() == SI.getCondition())
1584         if (Select->getFalseValue() == SI.getTrueValue() ||
1585             Select->getTrueValue() == SI.getFalseValue())
1586           return nullptr;
1587
1588   // Ensure the select condition is the returned flag of a cmpxchg instruction.
1589   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1590   if (!CmpXchg)
1591     return nullptr;
1592
1593   // Check the true value case: The true value of the select is the returned
1594   // value of the same cmpxchg used by the condition, and the false value is the
1595   // cmpxchg instruction's compare operand.
1596   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1597     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1598       SI.setTrueValue(SI.getFalseValue());
1599       return &SI;
1600     }
1601
1602   // Check the false value case: The false value of the select is the returned
1603   // value of the same cmpxchg used by the condition, and the true value is the
1604   // cmpxchg instruction's compare operand.
1605   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1606     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1607       SI.setTrueValue(SI.getFalseValue());
1608       return &SI;
1609     }
1610
1611   return nullptr;
1612 }
1613
1614 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
1615                                        Value *Y,
1616                                        InstCombiner::BuilderTy &Builder) {
1617   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
1618   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
1619                     SPF == SelectPatternFlavor::SPF_UMAX;
1620   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
1621   // the constant value check to an assert.
1622   Value *A;
1623   const APInt *C1, *C2;
1624   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
1625       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
1626     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
1627     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
1628     Value *NewMinMax = createMinMax(Builder, SPF, A,
1629                                     ConstantInt::get(X->getType(), *C2 - *C1));
1630     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
1631                                      ConstantInt::get(X->getType(), *C1));
1632   }
1633
1634   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
1635       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
1636     bool Overflow;
1637     APInt Diff = C2->ssub_ov(*C1, Overflow);
1638     if (!Overflow) {
1639       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
1640       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
1641       Value *NewMinMax = createMinMax(Builder, SPF, A,
1642                                       ConstantInt::get(X->getType(), Diff));
1643       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
1644                                        ConstantInt::get(X->getType(), *C1));
1645     }
1646   }
1647
1648   return nullptr;
1649 }
1650
1651 /// Reduce a sequence of min/max with a common operand.
1652 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1653                                         Value *RHS,
1654                                         InstCombiner::BuilderTy &Builder) {
1655   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1656   // TODO: Allow FP min/max with nnan/nsz.
1657   if (!LHS->getType()->isIntOrIntVectorTy())
1658     return nullptr;
1659
1660   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1661   Value *A, *B, *C, *D;
1662   SelectPatternResult L = matchSelectPattern(LHS, A, B);
1663   SelectPatternResult R = matchSelectPattern(RHS, C, D);
1664   if (SPF != L.Flavor || L.Flavor != R.Flavor)
1665     return nullptr;
1666
1667   // Look for a common operand. The use checks are different than usual because
1668   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1669   // the select.
1670   Value *MinMaxOp = nullptr;
1671   Value *ThirdOp = nullptr;
1672   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
1673     // If the LHS is only used in this chain and the RHS is used outside of it,
1674     // reuse the RHS min/max because that will eliminate the LHS.
1675     if (D == A || C == A) {
1676       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1677       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1678       MinMaxOp = RHS;
1679       ThirdOp = B;
1680     } else if (D == B || C == B) {
1681       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1682       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1683       MinMaxOp = RHS;
1684       ThirdOp = A;
1685     }
1686   } else if (!RHS->hasNUsesOrMore(3)) {
1687     // Reuse the LHS. This will eliminate the RHS.
1688     if (D == A || D == B) {
1689       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1690       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1691       MinMaxOp = LHS;
1692       ThirdOp = C;
1693     } else if (C == A || C == B) {
1694       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1695       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1696       MinMaxOp = LHS;
1697       ThirdOp = D;
1698     }
1699   }
1700   if (!MinMaxOp || !ThirdOp)
1701     return nullptr;
1702
1703   CmpInst::Predicate P = getMinMaxPred(SPF);
1704   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1705   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1706 }
1707
1708 /// Try to reduce a rotate pattern that includes a compare and select into a
1709 /// funnel shift intrinsic. Example:
1710 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
1711 ///              --> call llvm.fshl.i32(a, a, b)
1712 static Instruction *foldSelectRotate(SelectInst &Sel) {
1713   // The false value of the select must be a rotate of the true value.
1714   Value *Or0, *Or1;
1715   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
1716     return nullptr;
1717
1718   Value *TVal = Sel.getTrueValue();
1719   Value *SA0, *SA1;
1720   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
1721       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
1722     return nullptr;
1723
1724   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
1725   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
1726   if (ShiftOpcode0 == ShiftOpcode1)
1727     return nullptr;
1728
1729   // We have one of these patterns so far:
1730   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
1731   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
1732   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
1733   unsigned Width = Sel.getType()->getScalarSizeInBits();
1734   if (!isPowerOf2_32(Width))
1735     return nullptr;
1736
1737   // Check the shift amounts to see if they are an opposite pair.
1738   Value *ShAmt;
1739   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
1740     ShAmt = SA0;
1741   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
1742     ShAmt = SA1;
1743   else
1744     return nullptr;
1745
1746   // Finally, see if the select is filtering out a shift-by-zero.
1747   Value *Cond = Sel.getCondition();
1748   ICmpInst::Predicate Pred;
1749   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
1750       Pred != ICmpInst::ICMP_EQ)
1751     return nullptr;
1752
1753   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
1754   // Convert to funnel shift intrinsic.
1755   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
1756                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
1757   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
1758   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
1759   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
1760 }
1761
1762 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1763   Value *CondVal = SI.getCondition();
1764   Value *TrueVal = SI.getTrueValue();
1765   Value *FalseVal = SI.getFalseValue();
1766   Type *SelType = SI.getType();
1767
1768   // FIXME: Remove this workaround when freeze related patches are done.
1769   // For select with undef operand which feeds into an equality comparison,
1770   // don't simplify it so loop unswitch can know the equality comparison
1771   // may have an undef operand. This is a workaround for PR31652 caused by
1772   // descrepancy about branch on undef between LoopUnswitch and GVN.
1773   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1774     if (llvm::any_of(SI.users(), [&](User *U) {
1775           ICmpInst *CI = dyn_cast<ICmpInst>(U);
1776           if (CI && CI->isEquality())
1777             return true;
1778           return false;
1779         })) {
1780       return nullptr;
1781     }
1782   }
1783
1784   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1785                                     SQ.getWithInstruction(&SI)))
1786     return replaceInstUsesWith(SI, V);
1787
1788   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1789     return I;
1790
1791   // Canonicalize a one-use integer compare with a non-canonical predicate by
1792   // inverting the predicate and swapping the select operands. This matches a
1793   // compare canonicalization for conditional branches.
1794   // TODO: Should we do the same for FP compares?
1795   CmpInst::Predicate Pred;
1796   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
1797       !isCanonicalPredicate(Pred)) {
1798     // Swap true/false values and condition.
1799     CmpInst *Cond = cast<CmpInst>(CondVal);
1800     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
1801     SI.setOperand(1, FalseVal);
1802     SI.setOperand(2, TrueVal);
1803     SI.swapProfMetadata();
1804     Worklist.Add(Cond);
1805     return &SI;
1806   }
1807
1808   if (SelType->isIntOrIntVectorTy(1) &&
1809       TrueVal->getType() == CondVal->getType()) {
1810     if (match(TrueVal, m_One())) {
1811       // Change: A = select B, true, C --> A = or B, C
1812       return BinaryOperator::CreateOr(CondVal, FalseVal);
1813     }
1814     if (match(TrueVal, m_Zero())) {
1815       // Change: A = select B, false, C --> A = and !B, C
1816       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1817       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1818     }
1819     if (match(FalseVal, m_Zero())) {
1820       // Change: A = select B, C, false --> A = and B, C
1821       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1822     }
1823     if (match(FalseVal, m_One())) {
1824       // Change: A = select B, C, true --> A = or !B, C
1825       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1826       return BinaryOperator::CreateOr(NotCond, TrueVal);
1827     }
1828
1829     // select a, a, b  -> a | b
1830     // select a, b, a  -> a & b
1831     if (CondVal == TrueVal)
1832       return BinaryOperator::CreateOr(CondVal, FalseVal);
1833     if (CondVal == FalseVal)
1834       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1835
1836     // select a, ~a, b -> (~a) & b
1837     // select a, b, ~a -> (~a) | b
1838     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1839       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1840     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1841       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1842   }
1843
1844   // Selecting between two integer or vector splat integer constants?
1845   //
1846   // Note that we don't handle a scalar select of vectors:
1847   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1848   // because that may need 3 instructions to splat the condition value:
1849   // extend, insertelement, shufflevector.
1850   if (SelType->isIntOrIntVectorTy() &&
1851       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1852     // select C, 1, 0 -> zext C to int
1853     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1854       return new ZExtInst(CondVal, SelType);
1855
1856     // select C, -1, 0 -> sext C to int
1857     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1858       return new SExtInst(CondVal, SelType);
1859
1860     // select C, 0, 1 -> zext !C to int
1861     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1862       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1863       return new ZExtInst(NotCond, SelType);
1864     }
1865
1866     // select C, 0, -1 -> sext !C to int
1867     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1868       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1869       return new SExtInst(NotCond, SelType);
1870     }
1871   }
1872
1873   // See if we are selecting two values based on a comparison of the two values.
1874   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1875     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1876       // Canonicalize to use ordered comparisons by swapping the select
1877       // operands.
1878       //
1879       // e.g.
1880       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1881       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1882         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1883         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1884         Builder.setFastMathFlags(FCI->getFastMathFlags());
1885         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
1886                                             FCI->getName() + ".inv");
1887
1888         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1889                                   SI.getName() + ".p");
1890       }
1891
1892       // NOTE: if we wanted to, this is where to detect MIN/MAX
1893     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1894       // Canonicalize to use ordered comparisons by swapping the select
1895       // operands.
1896       //
1897       // e.g.
1898       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1899       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1900         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1901         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1902         Builder.setFastMathFlags(FCI->getFastMathFlags());
1903         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
1904                                             FCI->getName() + ".inv");
1905
1906         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1907                                   SI.getName() + ".p");
1908       }
1909
1910       // NOTE: if we wanted to, this is where to detect MIN/MAX
1911     }
1912   }
1913
1914   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
1915   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
1916   // also require nnan because we do not want to unintentionally change the
1917   // sign of a NaN value.
1918   // FIXME: These folds should test/propagate FMF from the select, not the
1919   //        fsub or fneg.
1920   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
1921   Instruction *FSub;
1922   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
1923       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
1924       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
1925       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
1926     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
1927     return replaceInstUsesWith(SI, Fabs);
1928   }
1929   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
1930   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
1931       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
1932       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
1933       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
1934     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
1935     return replaceInstUsesWith(SI, Fabs);
1936   }
1937   // With nnan and nsz:
1938   // (X <  +/-0.0) ? -X : X --> fabs(X)
1939   // (X <= +/-0.0) ? -X : X --> fabs(X)
1940   Instruction *FNeg;
1941   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
1942       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
1943       match(TrueVal, m_Instruction(FNeg)) &&
1944       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
1945       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
1946        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
1947     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
1948     return replaceInstUsesWith(SI, Fabs);
1949   }
1950   // With nnan and nsz:
1951   // (X >  +/-0.0) ? X : -X --> fabs(X)
1952   // (X >= +/-0.0) ? X : -X --> fabs(X)
1953   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
1954       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
1955       match(FalseVal, m_Instruction(FNeg)) &&
1956       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
1957       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
1958        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
1959     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
1960     return replaceInstUsesWith(SI, Fabs);
1961   }
1962
1963   // See if we are selecting two values based on a comparison of the two values.
1964   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1965     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1966       return Result;
1967
1968   if (Instruction *Add = foldAddSubSelect(SI, Builder))
1969     return Add;
1970
1971   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1972   auto *TI = dyn_cast<Instruction>(TrueVal);
1973   auto *FI = dyn_cast<Instruction>(FalseVal);
1974   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1975     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1976       return IV;
1977
1978   if (Instruction *I = foldSelectExtConst(SI))
1979     return I;
1980
1981   // See if we can fold the select into one of our operands.
1982   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1983     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1984       return FoldI;
1985
1986     Value *LHS, *RHS;
1987     Instruction::CastOps CastOp;
1988     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1989     auto SPF = SPR.Flavor;
1990     if (SPF) {
1991       Value *LHS2, *RHS2;
1992       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1993         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
1994                                           RHS2, SI, SPF, RHS))
1995           return R;
1996       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1997         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
1998                                           RHS2, SI, SPF, LHS))
1999           return R;
2000       // TODO.
2001       // ABS(-X) -> ABS(X)
2002     }
2003
2004     if (SelectPatternResult::isMinOrMax(SPF)) {
2005       // Canonicalize so that
2006       // - type casts are outside select patterns.
2007       // - float clamp is transformed to min/max pattern
2008
2009       bool IsCastNeeded = LHS->getType() != SelType;
2010       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2011       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2012       if (IsCastNeeded ||
2013           (LHS->getType()->isFPOrFPVectorTy() &&
2014            ((CmpLHS != LHS && CmpLHS != RHS) ||
2015             (CmpRHS != LHS && CmpRHS != RHS)))) {
2016         CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
2017
2018         Value *Cmp;
2019         if (CmpInst::isIntPredicate(Pred)) {
2020           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
2021         } else {
2022           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2023           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2024           Builder.setFastMathFlags(FMF);
2025           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
2026         }
2027
2028         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2029         if (!IsCastNeeded)
2030           return replaceInstUsesWith(SI, NewSI);
2031
2032         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2033         return replaceInstUsesWith(SI, NewCast);
2034       }
2035
2036       // MAX(~a, ~b) -> ~MIN(a, b)
2037       // MAX(~a, C)  -> ~MIN(a, ~C)
2038       // MIN(~a, ~b) -> ~MAX(a, b)
2039       // MIN(~a, C)  -> ~MAX(a, ~C)
2040       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2041         Value *A;
2042         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2043             !IsFreeToInvert(A, A->hasOneUse()) &&
2044             // Passing false to only consider m_Not and constants.
2045             IsFreeToInvert(Y, false)) {
2046           Value *B = Builder.CreateNot(Y);
2047           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2048                                           A, B);
2049           // Copy the profile metadata.
2050           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2051             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2052             // Swap the metadata if the operands are swapped.
2053             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2054               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2055           }
2056
2057           return BinaryOperator::CreateNot(NewMinMax);
2058         }
2059
2060         return nullptr;
2061       };
2062
2063       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2064         return I;
2065       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2066         return I;
2067
2068       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2069         return I;
2070
2071       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2072         return I;
2073     }
2074   }
2075
2076   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2077   // minnum/maxnum intrinsics.
2078   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2079     Value *X, *Y;
2080     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2081       return replaceInstUsesWith(
2082           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2083
2084     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2085       return replaceInstUsesWith(
2086           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2087   }
2088
2089   // See if we can fold the select into a phi node if the condition is a select.
2090   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2091     // The true/false values have to be live in the PHI predecessor's blocks.
2092     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2093         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2094       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2095         return NV;
2096
2097   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2098     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2099       // select(C, select(C, a, b), c) -> select(C, a, c)
2100       if (TrueSI->getCondition() == CondVal) {
2101         if (SI.getTrueValue() == TrueSI->getTrueValue())
2102           return nullptr;
2103         SI.setOperand(1, TrueSI->getTrueValue());
2104         return &SI;
2105       }
2106       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2107       // We choose this as normal form to enable folding on the And and shortening
2108       // paths for the values (this helps GetUnderlyingObjects() for example).
2109       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2110         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2111         SI.setOperand(0, And);
2112         SI.setOperand(1, TrueSI->getTrueValue());
2113         return &SI;
2114       }
2115     }
2116   }
2117   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2118     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2119       // select(C, a, select(C, b, c)) -> select(C, a, c)
2120       if (FalseSI->getCondition() == CondVal) {
2121         if (SI.getFalseValue() == FalseSI->getFalseValue())
2122           return nullptr;
2123         SI.setOperand(2, FalseSI->getFalseValue());
2124         return &SI;
2125       }
2126       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2127       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2128         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2129         SI.setOperand(0, Or);
2130         SI.setOperand(2, FalseSI->getFalseValue());
2131         return &SI;
2132       }
2133     }
2134   }
2135
2136   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2137     // The select might be preventing a division by 0.
2138     switch (BO->getOpcode()) {
2139     default:
2140       return true;
2141     case Instruction::SRem:
2142     case Instruction::URem:
2143     case Instruction::SDiv:
2144     case Instruction::UDiv:
2145       return false;
2146     }
2147   };
2148
2149   // Try to simplify a binop sandwiched between 2 selects with the same
2150   // condition.
2151   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2152   BinaryOperator *TrueBO;
2153   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2154       canMergeSelectThroughBinop(TrueBO)) {
2155     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2156       if (TrueBOSI->getCondition() == CondVal) {
2157         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2158         Worklist.Add(TrueBO);
2159         return &SI;
2160       }
2161     }
2162     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2163       if (TrueBOSI->getCondition() == CondVal) {
2164         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2165         Worklist.Add(TrueBO);
2166         return &SI;
2167       }
2168     }
2169   }
2170
2171   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2172   BinaryOperator *FalseBO;
2173   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2174       canMergeSelectThroughBinop(FalseBO)) {
2175     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2176       if (FalseBOSI->getCondition() == CondVal) {
2177         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2178         Worklist.Add(FalseBO);
2179         return &SI;
2180       }
2181     }
2182     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2183       if (FalseBOSI->getCondition() == CondVal) {
2184         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2185         Worklist.Add(FalseBO);
2186         return &SI;
2187       }
2188     }
2189   }
2190
2191   Value *NotCond;
2192   if (match(CondVal, m_Not(m_Value(NotCond)))) {
2193     SI.setOperand(0, NotCond);
2194     SI.setOperand(1, FalseVal);
2195     SI.setOperand(2, TrueVal);
2196     SI.swapProfMetadata();
2197     return &SI;
2198   }
2199
2200   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2201     unsigned VWidth = VecTy->getNumElements();
2202     APInt UndefElts(VWidth, 0);
2203     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2204     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2205       if (V != &SI)
2206         return replaceInstUsesWith(SI, V);
2207       return &SI;
2208     }
2209   }
2210
2211   // If we can compute the condition, there's no need for a select.
2212   // Like the above fold, we are attempting to reduce compile-time cost by
2213   // putting this fold here with limitations rather than in InstSimplify.
2214   // The motivation for this call into value tracking is to take advantage of
2215   // the assumption cache, so make sure that is populated.
2216   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2217     KnownBits Known(1);
2218     computeKnownBits(CondVal, Known, 0, &SI);
2219     if (Known.One.isOneValue())
2220       return replaceInstUsesWith(SI, TrueVal);
2221     if (Known.Zero.isOneValue())
2222       return replaceInstUsesWith(SI, FalseVal);
2223   }
2224
2225   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2226     return BitCastSel;
2227
2228   // Simplify selects that test the returned flag of cmpxchg instructions.
2229   if (Instruction *Select = foldSelectCmpXchg(SI))
2230     return Select;
2231
2232   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2233     return Select;
2234
2235   if (Instruction *Rot = foldSelectRotate(SI))
2236     return Rot;
2237
2238   return nullptr;
2239 }