]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
Merge llvm-project release/14.x llvmorg-14.0.0-rc2-12-g09546e1b5103
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / InstCombine / InstCombineVectorOps.cpp
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombiner.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <utility>
43
44 #define DEBUG_TYPE "instcombine"
45 #include "llvm/Transforms/Utils/InstructionWorklist.h"
46
47 using namespace llvm;
48 using namespace PatternMatch;
49
50 STATISTIC(NumAggregateReconstructionsSimplified,
51           "Number of aggregate reconstructions turned into reuse of the "
52           "original aggregate");
53
54 /// Return true if the value is cheaper to scalarize than it is to leave as a
55 /// vector operation. If the extract index \p EI is a constant integer then
56 /// some operations may be cheap to scalarize.
57 ///
58 /// FIXME: It's possible to create more instructions than previously existed.
59 static bool cheapToScalarize(Value *V, Value *EI) {
60   ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
61
62   // If we can pick a scalar constant value out of a vector, that is free.
63   if (auto *C = dyn_cast<Constant>(V))
64     return CEI || C->getSplatValue();
65
66   if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
67     ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
68     // Index needs to be lower than the minimum size of the vector, because
69     // for scalable vector, the vector size is known at run time.
70     return CEI->getValue().ult(EC.getKnownMinValue());
71   }
72
73   // An insertelement to the same constant index as our extract will simplify
74   // to the scalar inserted element. An insertelement to a different constant
75   // index is irrelevant to our extract.
76   if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
77     return CEI;
78
79   if (match(V, m_OneUse(m_Load(m_Value()))))
80     return true;
81
82   if (match(V, m_OneUse(m_UnOp())))
83     return true;
84
85   Value *V0, *V1;
86   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
87     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
88       return true;
89
90   CmpInst::Predicate UnusedPred;
91   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
92     if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
93       return true;
94
95   return false;
96 }
97
98 // If we have a PHI node with a vector type that is only used to feed
99 // itself and be an operand of extractelement at a constant location,
100 // try to replace the PHI of the vector type with a PHI of a scalar type.
101 Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
102                                             PHINode *PN) {
103   SmallVector<Instruction *, 2> Extracts;
104   // The users we want the PHI to have are:
105   // 1) The EI ExtractElement (we already know this)
106   // 2) Possibly more ExtractElements with the same index.
107   // 3) Another operand, which will feed back into the PHI.
108   Instruction *PHIUser = nullptr;
109   for (auto U : PN->users()) {
110     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
111       if (EI.getIndexOperand() == EU->getIndexOperand())
112         Extracts.push_back(EU);
113       else
114         return nullptr;
115     } else if (!PHIUser) {
116       PHIUser = cast<Instruction>(U);
117     } else {
118       return nullptr;
119     }
120   }
121
122   if (!PHIUser)
123     return nullptr;
124
125   // Verify that this PHI user has one use, which is the PHI itself,
126   // and that it is a binary operation which is cheap to scalarize.
127   // otherwise return nullptr.
128   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
129       !(isa<BinaryOperator>(PHIUser)) ||
130       !cheapToScalarize(PHIUser, EI.getIndexOperand()))
131     return nullptr;
132
133   // Create a scalar PHI node that will replace the vector PHI node
134   // just before the current PHI node.
135   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
136       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
137   // Scalarize each PHI operand.
138   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
139     Value *PHIInVal = PN->getIncomingValue(i);
140     BasicBlock *inBB = PN->getIncomingBlock(i);
141     Value *Elt = EI.getIndexOperand();
142     // If the operand is the PHI induction variable:
143     if (PHIInVal == PHIUser) {
144       // Scalarize the binary operation. Its first operand is the
145       // scalar PHI, and the second operand is extracted from the other
146       // vector operand.
147       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
148       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
149       Value *Op = InsertNewInstWith(
150           ExtractElementInst::Create(B0->getOperand(opId), Elt,
151                                      B0->getOperand(opId)->getName() + ".Elt"),
152           *B0);
153       Value *newPHIUser = InsertNewInstWith(
154           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
155                                                 scalarPHI, Op, B0), *B0);
156       scalarPHI->addIncoming(newPHIUser, inBB);
157     } else {
158       // Scalarize PHI input:
159       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
160       // Insert the new instruction into the predecessor basic block.
161       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
162       BasicBlock::iterator InsertPos;
163       if (pos && !isa<PHINode>(pos)) {
164         InsertPos = ++pos->getIterator();
165       } else {
166         InsertPos = inBB->getFirstInsertionPt();
167       }
168
169       InsertNewInstWith(newEI, *InsertPos);
170
171       scalarPHI->addIncoming(newEI, inBB);
172     }
173   }
174
175   for (auto E : Extracts)
176     replaceInstUsesWith(*E, scalarPHI);
177
178   return &EI;
179 }
180
181 Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
182   Value *X;
183   uint64_t ExtIndexC;
184   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
185       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
186     return nullptr;
187
188   ElementCount NumElts =
189       cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
190   Type *DestTy = Ext.getType();
191   bool IsBigEndian = DL.isBigEndian();
192
193   // If we are casting an integer to vector and extracting a portion, that is
194   // a shift-right and truncate.
195   // TODO: Allow FP dest type by casting the trunc to FP?
196   if (X->getType()->isIntegerTy() && DestTy->isIntegerTy() &&
197       isDesirableIntType(X->getType()->getPrimitiveSizeInBits())) {
198     assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
199            "Expected fixed vector type for bitcast from scalar integer");
200
201     // Big endian requires adjusting the extract index since MSB is at index 0.
202     // LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
203     // BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
204     if (IsBigEndian)
205       ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
206     unsigned ShiftAmountC = ExtIndexC * DestTy->getPrimitiveSizeInBits();
207     if (!ShiftAmountC || Ext.getVectorOperand()->hasOneUse()) {
208       Value *Lshr = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
209       return new TruncInst(Lshr, DestTy);
210     }
211   }
212
213   if (!X->getType()->isVectorTy())
214     return nullptr;
215
216   // If this extractelement is using a bitcast from a vector of the same number
217   // of elements, see if we can find the source element from the source vector:
218   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
219   auto *SrcTy = cast<VectorType>(X->getType());
220   ElementCount NumSrcElts = SrcTy->getElementCount();
221   if (NumSrcElts == NumElts)
222     if (Value *Elt = findScalarElement(X, ExtIndexC))
223       return new BitCastInst(Elt, DestTy);
224
225   assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
226          "Src and Dst must be the same sort of vector type");
227
228   // If the source elements are wider than the destination, try to shift and
229   // truncate a subset of scalar bits of an insert op.
230   if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
231     Value *Scalar;
232     uint64_t InsIndexC;
233     if (!match(X, m_InsertElt(m_Value(), m_Value(Scalar),
234                               m_ConstantInt(InsIndexC))))
235       return nullptr;
236
237     // The extract must be from the subset of vector elements that we inserted
238     // into. Example: if we inserted element 1 of a <2 x i64> and we are
239     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
240     // of elements 4-7 of the bitcasted vector.
241     unsigned NarrowingRatio =
242         NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
243     if (ExtIndexC / NarrowingRatio != InsIndexC)
244       return nullptr;
245
246     // We are extracting part of the original scalar. How that scalar is
247     // inserted into the vector depends on the endian-ness. Example:
248     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
249     //                                       +--+--+--+--+--+--+--+--+
250     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
251     // extelt <4 x i16> V', 3:               |                 |S2|S3|
252     //                                       +--+--+--+--+--+--+--+--+
253     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
254     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
255     // In this example, we must right-shift little-endian. Big-endian is just a
256     // truncate.
257     unsigned Chunk = ExtIndexC % NarrowingRatio;
258     if (IsBigEndian)
259       Chunk = NarrowingRatio - 1 - Chunk;
260
261     // Bail out if this is an FP vector to FP vector sequence. That would take
262     // more instructions than we started with unless there is no shift, and it
263     // may not be handled as well in the backend.
264     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
265     bool NeedDestBitcast = DestTy->isFloatingPointTy();
266     if (NeedSrcBitcast && NeedDestBitcast)
267       return nullptr;
268
269     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
270     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
271     unsigned ShAmt = Chunk * DestWidth;
272
273     // TODO: This limitation is more strict than necessary. We could sum the
274     // number of new instructions and subtract the number eliminated to know if
275     // we can proceed.
276     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
277       if (NeedSrcBitcast || NeedDestBitcast)
278         return nullptr;
279
280     if (NeedSrcBitcast) {
281       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
282       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
283     }
284
285     if (ShAmt) {
286       // Bail out if we could end with more instructions than we started with.
287       if (!Ext.getVectorOperand()->hasOneUse())
288         return nullptr;
289       Scalar = Builder.CreateLShr(Scalar, ShAmt);
290     }
291
292     if (NeedDestBitcast) {
293       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
294       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
295     }
296     return new TruncInst(Scalar, DestTy);
297   }
298
299   return nullptr;
300 }
301
302 /// Find elements of V demanded by UserInstr.
303 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
304   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
305
306   // Conservatively assume that all elements are needed.
307   APInt UsedElts(APInt::getAllOnes(VWidth));
308
309   switch (UserInstr->getOpcode()) {
310   case Instruction::ExtractElement: {
311     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
312     assert(EEI->getVectorOperand() == V);
313     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
314     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
315       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
316     }
317     break;
318   }
319   case Instruction::ShuffleVector: {
320     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
321     unsigned MaskNumElts =
322         cast<FixedVectorType>(UserInstr->getType())->getNumElements();
323
324     UsedElts = APInt(VWidth, 0);
325     for (unsigned i = 0; i < MaskNumElts; i++) {
326       unsigned MaskVal = Shuffle->getMaskValue(i);
327       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
328         continue;
329       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
330         UsedElts.setBit(MaskVal);
331       if (Shuffle->getOperand(1) == V &&
332           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
333         UsedElts.setBit(MaskVal - VWidth);
334     }
335     break;
336   }
337   default:
338     break;
339   }
340   return UsedElts;
341 }
342
343 /// Find union of elements of V demanded by all its users.
344 /// If it is known by querying findDemandedEltsBySingleUser that
345 /// no user demands an element of V, then the corresponding bit
346 /// remains unset in the returned value.
347 static APInt findDemandedEltsByAllUsers(Value *V) {
348   unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
349
350   APInt UnionUsedElts(VWidth, 0);
351   for (const Use &U : V->uses()) {
352     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
353       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
354     } else {
355       UnionUsedElts = APInt::getAllOnes(VWidth);
356       break;
357     }
358
359     if (UnionUsedElts.isAllOnes())
360       break;
361   }
362
363   return UnionUsedElts;
364 }
365
366 /// Given a constant index for a extractelement or insertelement instruction,
367 /// return it with the canonical type if it isn't already canonical.  We
368 /// arbitrarily pick 64 bit as our canonical type.  The actual bitwidth doesn't
369 /// matter, we just want a consistent type to simplify CSE.
370 ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
371   const unsigned IndexBW = IndexC->getType()->getBitWidth();
372   if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
373     return nullptr;
374   return ConstantInt::get(IndexC->getContext(),
375                           IndexC->getValue().zextOrTrunc(64));
376 }
377
378 Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
379   Value *SrcVec = EI.getVectorOperand();
380   Value *Index = EI.getIndexOperand();
381   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
382                                             SQ.getWithInstruction(&EI)))
383     return replaceInstUsesWith(EI, V);
384
385   // If extracting a specified index from the vector, see if we can recursively
386   // find a previously computed scalar that was inserted into the vector.
387   auto *IndexC = dyn_cast<ConstantInt>(Index);
388   if (IndexC) {
389     // Canonicalize type of constant indices to i64 to simplify CSE
390     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
391       return replaceOperand(EI, 1, NewIdx);
392
393     ElementCount EC = EI.getVectorOperandType()->getElementCount();
394     unsigned NumElts = EC.getKnownMinValue();
395
396     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
397       Intrinsic::ID IID = II->getIntrinsicID();
398       // Index needs to be lower than the minimum size of the vector, because
399       // for scalable vector, the vector size is known at run time.
400       if (IID == Intrinsic::experimental_stepvector &&
401           IndexC->getValue().ult(NumElts)) {
402         Type *Ty = EI.getType();
403         unsigned BitWidth = Ty->getIntegerBitWidth();
404         Value *Idx;
405         // Return index when its value does not exceed the allowed limit
406         // for the element type of the vector, otherwise return undefined.
407         if (IndexC->getValue().getActiveBits() <= BitWidth)
408           Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
409         else
410           Idx = UndefValue::get(Ty);
411         return replaceInstUsesWith(EI, Idx);
412       }
413     }
414
415     // InstSimplify should handle cases where the index is invalid.
416     // For fixed-length vector, it's invalid to extract out-of-range element.
417     if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
418       return nullptr;
419
420     if (Instruction *I = foldBitcastExtElt(EI))
421       return I;
422
423     // If there's a vector PHI feeding a scalar use through this extractelement
424     // instruction, try to scalarize the PHI.
425     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
426       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
427         return ScalarPHI;
428   }
429
430   // TODO come up with a n-ary matcher that subsumes both unary and
431   // binary matchers.
432   UnaryOperator *UO;
433   if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
434     // extelt (unop X), Index --> unop (extelt X, Index)
435     Value *X = UO->getOperand(0);
436     Value *E = Builder.CreateExtractElement(X, Index);
437     return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
438   }
439
440   BinaryOperator *BO;
441   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index)) {
442     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
443     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
444     Value *E0 = Builder.CreateExtractElement(X, Index);
445     Value *E1 = Builder.CreateExtractElement(Y, Index);
446     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
447   }
448
449   Value *X, *Y;
450   CmpInst::Predicate Pred;
451   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
452       cheapToScalarize(SrcVec, Index)) {
453     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
454     Value *E0 = Builder.CreateExtractElement(X, Index);
455     Value *E1 = Builder.CreateExtractElement(Y, Index);
456     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
457   }
458
459   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
460     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
461       // instsimplify already handled the case where the indices are constants
462       // and equal by value, if both are constants, they must not be the same
463       // value, extract from the pre-inserted value instead.
464       if (isa<Constant>(IE->getOperand(2)) && IndexC)
465         return replaceOperand(EI, 0, IE->getOperand(0));
466     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
467       auto *VecType = cast<VectorType>(GEP->getType());
468       ElementCount EC = VecType->getElementCount();
469       uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
470       if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
471         // Find out why we have a vector result - these are a few examples:
472         //  1. We have a scalar pointer and a vector of indices, or
473         //  2. We have a vector of pointers and a scalar index, or
474         //  3. We have a vector of pointers and a vector of indices, etc.
475         // Here we only consider combining when there is exactly one vector
476         // operand, since the optimization is less obviously a win due to
477         // needing more than one extractelements.
478
479         unsigned VectorOps =
480             llvm::count_if(GEP->operands(), [](const Value *V) {
481               return isa<VectorType>(V->getType());
482             });
483         if (VectorOps == 1) {
484           Value *NewPtr = GEP->getPointerOperand();
485           if (isa<VectorType>(NewPtr->getType()))
486             NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
487
488           SmallVector<Value *> NewOps;
489           for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
490             Value *Op = GEP->getOperand(I);
491             if (isa<VectorType>(Op->getType()))
492               NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
493             else
494               NewOps.push_back(Op);
495           }
496
497           GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
498               GEP->getSourceElementType(), NewPtr, NewOps);
499           NewGEP->setIsInBounds(GEP->isInBounds());
500           return NewGEP;
501         }
502       }
503     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
504       // If this is extracting an element from a shufflevector, figure out where
505       // it came from and extract from the appropriate input element instead.
506       // Restrict the following transformation to fixed-length vector.
507       if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
508         int SrcIdx =
509             SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
510         Value *Src;
511         unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
512                                 ->getNumElements();
513
514         if (SrcIdx < 0)
515           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
516         if (SrcIdx < (int)LHSWidth)
517           Src = SVI->getOperand(0);
518         else {
519           SrcIdx -= LHSWidth;
520           Src = SVI->getOperand(1);
521         }
522         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
523         return ExtractElementInst::Create(
524             Src, ConstantInt::get(Int32Ty, SrcIdx, false));
525       }
526     } else if (auto *CI = dyn_cast<CastInst>(I)) {
527       // Canonicalize extractelement(cast) -> cast(extractelement).
528       // Bitcasts can change the number of vector elements, and they cost
529       // nothing.
530       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
531         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
532         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
533       }
534     }
535   }
536
537   // Run demanded elements after other transforms as this can drop flags on
538   // binops.  If there's two paths to the same final result, we prefer the
539   // one which doesn't force us to drop flags.
540   if (IndexC) {
541     ElementCount EC = EI.getVectorOperandType()->getElementCount();
542     unsigned NumElts = EC.getKnownMinValue();
543     // This instruction only demands the single element from the input vector.
544     // Skip for scalable type, the number of elements is unknown at
545     // compile-time.
546     if (!EC.isScalable() && NumElts != 1) {
547       // If the input vector has a single use, simplify it based on this use
548       // property.
549       if (SrcVec->hasOneUse()) {
550         APInt UndefElts(NumElts, 0);
551         APInt DemandedElts(NumElts, 0);
552         DemandedElts.setBit(IndexC->getZExtValue());
553         if (Value *V =
554                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts))
555           return replaceOperand(EI, 0, V);
556       } else {
557         // If the input vector has multiple uses, simplify it based on a union
558         // of all elements used.
559         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
560         if (!DemandedElts.isAllOnes()) {
561           APInt UndefElts(NumElts, 0);
562           if (Value *V = SimplifyDemandedVectorElts(
563                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
564                   true /* AllowMultipleUsers */)) {
565             if (V != SrcVec) {
566               SrcVec->replaceAllUsesWith(V);
567               return &EI;
568             }
569           }
570         }
571       }
572     }
573   }
574   return nullptr;
575 }
576
577 /// If V is a shuffle of values that ONLY returns elements from either LHS or
578 /// RHS, return the shuffle mask and true. Otherwise, return false.
579 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
580                                          SmallVectorImpl<int> &Mask) {
581   assert(LHS->getType() == RHS->getType() &&
582          "Invalid CollectSingleShuffleElements");
583   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
584
585   if (match(V, m_Undef())) {
586     Mask.assign(NumElts, -1);
587     return true;
588   }
589
590   if (V == LHS) {
591     for (unsigned i = 0; i != NumElts; ++i)
592       Mask.push_back(i);
593     return true;
594   }
595
596   if (V == RHS) {
597     for (unsigned i = 0; i != NumElts; ++i)
598       Mask.push_back(i + NumElts);
599     return true;
600   }
601
602   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
603     // If this is an insert of an extract from some other vector, include it.
604     Value *VecOp    = IEI->getOperand(0);
605     Value *ScalarOp = IEI->getOperand(1);
606     Value *IdxOp    = IEI->getOperand(2);
607
608     if (!isa<ConstantInt>(IdxOp))
609       return false;
610     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
611
612     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
613       // We can handle this if the vector we are inserting into is
614       // transitively ok.
615       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
616         // If so, update the mask to reflect the inserted undef.
617         Mask[InsertedIdx] = -1;
618         return true;
619       }
620     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
621       if (isa<ConstantInt>(EI->getOperand(1))) {
622         unsigned ExtractedIdx =
623         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
624         unsigned NumLHSElts =
625             cast<FixedVectorType>(LHS->getType())->getNumElements();
626
627         // This must be extracting from either LHS or RHS.
628         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
629           // We can handle this if the vector we are inserting into is
630           // transitively ok.
631           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
632             // If so, update the mask to reflect the inserted value.
633             if (EI->getOperand(0) == LHS) {
634               Mask[InsertedIdx % NumElts] = ExtractedIdx;
635             } else {
636               assert(EI->getOperand(0) == RHS);
637               Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
638             }
639             return true;
640           }
641         }
642       }
643     }
644   }
645
646   return false;
647 }
648
649 /// If we have insertion into a vector that is wider than the vector that we
650 /// are extracting from, try to widen the source vector to allow a single
651 /// shufflevector to replace one or more insert/extract pairs.
652 static void replaceExtractElements(InsertElementInst *InsElt,
653                                    ExtractElementInst *ExtElt,
654                                    InstCombinerImpl &IC) {
655   auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
656   auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
657   unsigned NumInsElts = InsVecType->getNumElements();
658   unsigned NumExtElts = ExtVecType->getNumElements();
659
660   // The inserted-to vector must be wider than the extracted-from vector.
661   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
662       NumExtElts >= NumInsElts)
663     return;
664
665   // Create a shuffle mask to widen the extended-from vector using poison
666   // values. The mask selects all of the values of the original vector followed
667   // by as many poison values as needed to create a vector of the same length
668   // as the inserted-to vector.
669   SmallVector<int, 16> ExtendMask;
670   for (unsigned i = 0; i < NumExtElts; ++i)
671     ExtendMask.push_back(i);
672   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
673     ExtendMask.push_back(-1);
674
675   Value *ExtVecOp = ExtElt->getVectorOperand();
676   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
677   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
678                                    ? ExtVecOpInst->getParent()
679                                    : ExtElt->getParent();
680
681   // TODO: This restriction matches the basic block check below when creating
682   // new extractelement instructions. If that limitation is removed, this one
683   // could also be removed. But for now, we just bail out to ensure that we
684   // will replace the extractelement instruction that is feeding our
685   // insertelement instruction. This allows the insertelement to then be
686   // replaced by a shufflevector. If the insertelement is not replaced, we can
687   // induce infinite looping because there's an optimization for extractelement
688   // that will delete our widening shuffle. This would trigger another attempt
689   // here to create that shuffle, and we spin forever.
690   if (InsertionBlock != InsElt->getParent())
691     return;
692
693   // TODO: This restriction matches the check in visitInsertElementInst() and
694   // prevents an infinite loop caused by not turning the extract/insert pair
695   // into a shuffle. We really should not need either check, but we're lacking
696   // folds for shufflevectors because we're afraid to generate shuffle masks
697   // that the backend can't handle.
698   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
699     return;
700
701   auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
702
703   // Insert the new shuffle after the vector operand of the extract is defined
704   // (as long as it's not a PHI) or at the start of the basic block of the
705   // extract, so any subsequent extracts in the same basic block can use it.
706   // TODO: Insert before the earliest ExtractElementInst that is replaced.
707   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
708     WideVec->insertAfter(ExtVecOpInst);
709   else
710     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
711
712   // Replace extracts from the original narrow vector with extracts from the new
713   // wide vector.
714   for (User *U : ExtVecOp->users()) {
715     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
716     if (!OldExt || OldExt->getParent() != WideVec->getParent())
717       continue;
718     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
719     NewExt->insertAfter(OldExt);
720     IC.replaceInstUsesWith(*OldExt, NewExt);
721   }
722 }
723
724 /// We are building a shuffle to create V, which is a sequence of insertelement,
725 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
726 /// not rely on the second vector source. Return a std::pair containing the
727 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
728 /// parameter as required.
729 ///
730 /// Note: we intentionally don't try to fold earlier shuffles since they have
731 /// often been chosen carefully to be efficiently implementable on the target.
732 using ShuffleOps = std::pair<Value *, Value *>;
733
734 static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
735                                          Value *PermittedRHS,
736                                          InstCombinerImpl &IC) {
737   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
738   unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
739
740   if (match(V, m_Undef())) {
741     Mask.assign(NumElts, -1);
742     return std::make_pair(
743         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
744   }
745
746   if (isa<ConstantAggregateZero>(V)) {
747     Mask.assign(NumElts, 0);
748     return std::make_pair(V, nullptr);
749   }
750
751   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
752     // If this is an insert of an extract from some other vector, include it.
753     Value *VecOp    = IEI->getOperand(0);
754     Value *ScalarOp = IEI->getOperand(1);
755     Value *IdxOp    = IEI->getOperand(2);
756
757     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
758       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
759         unsigned ExtractedIdx =
760           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
761         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
762
763         // Either the extracted from or inserted into vector must be RHSVec,
764         // otherwise we'd end up with a shuffle of three inputs.
765         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
766           Value *RHS = EI->getOperand(0);
767           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
768           assert(LR.second == nullptr || LR.second == RHS);
769
770           if (LR.first->getType() != RHS->getType()) {
771             // Although we are giving up for now, see if we can create extracts
772             // that match the inserts for another round of combining.
773             replaceExtractElements(IEI, EI, IC);
774
775             // We tried our best, but we can't find anything compatible with RHS
776             // further up the chain. Return a trivial shuffle.
777             for (unsigned i = 0; i < NumElts; ++i)
778               Mask[i] = i;
779             return std::make_pair(V, nullptr);
780           }
781
782           unsigned NumLHSElts =
783               cast<FixedVectorType>(RHS->getType())->getNumElements();
784           Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
785           return std::make_pair(LR.first, RHS);
786         }
787
788         if (VecOp == PermittedRHS) {
789           // We've gone as far as we can: anything on the other side of the
790           // extractelement will already have been converted into a shuffle.
791           unsigned NumLHSElts =
792               cast<FixedVectorType>(EI->getOperand(0)->getType())
793                   ->getNumElements();
794           for (unsigned i = 0; i != NumElts; ++i)
795             Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
796           return std::make_pair(EI->getOperand(0), PermittedRHS);
797         }
798
799         // If this insertelement is a chain that comes from exactly these two
800         // vectors, return the vector and the effective shuffle.
801         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
802             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
803                                          Mask))
804           return std::make_pair(EI->getOperand(0), PermittedRHS);
805       }
806     }
807   }
808
809   // Otherwise, we can't do anything fancy. Return an identity vector.
810   for (unsigned i = 0; i != NumElts; ++i)
811     Mask.push_back(i);
812   return std::make_pair(V, nullptr);
813 }
814
815 /// Look for chain of insertvalue's that fully define an aggregate, and trace
816 /// back the values inserted, see if they are all were extractvalue'd from
817 /// the same source aggregate from the exact same element indexes.
818 /// If they were, just reuse the source aggregate.
819 /// This potentially deals with PHI indirections.
820 Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
821     InsertValueInst &OrigIVI) {
822   Type *AggTy = OrigIVI.getType();
823   unsigned NumAggElts;
824   switch (AggTy->getTypeID()) {
825   case Type::StructTyID:
826     NumAggElts = AggTy->getStructNumElements();
827     break;
828   case Type::ArrayTyID:
829     NumAggElts = AggTy->getArrayNumElements();
830     break;
831   default:
832     llvm_unreachable("Unhandled aggregate type?");
833   }
834
835   // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
836   // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
837   // FIXME: any interesting patterns to be caught with larger limit?
838   assert(NumAggElts > 0 && "Aggregate should have elements.");
839   if (NumAggElts > 2)
840     return nullptr;
841
842   static constexpr auto NotFound = None;
843   static constexpr auto FoundMismatch = nullptr;
844
845   // Try to find a value of each element of an aggregate.
846   // FIXME: deal with more complex, not one-dimensional, aggregate types
847   SmallVector<Optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
848
849   // Do we know values for each element of the aggregate?
850   auto KnowAllElts = [&AggElts]() {
851     return all_of(AggElts,
852                   [](Optional<Instruction *> Elt) { return Elt != NotFound; });
853   };
854
855   int Depth = 0;
856
857   // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
858   // every element being overwritten twice, which should never happen.
859   static const int DepthLimit = 2 * NumAggElts;
860
861   // Recurse up the chain of `insertvalue` aggregate operands until either we've
862   // reconstructed full initializer or can't visit any more `insertvalue`'s.
863   for (InsertValueInst *CurrIVI = &OrigIVI;
864        Depth < DepthLimit && CurrIVI && !KnowAllElts();
865        CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
866                        ++Depth) {
867     auto *InsertedValue =
868         dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
869     if (!InsertedValue)
870       return nullptr; // Inserted value must be produced by an instruction.
871
872     ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
873
874     // Don't bother with more than single-level aggregates.
875     if (Indices.size() != 1)
876       return nullptr; // FIXME: deal with more complex aggregates?
877
878     // Now, we may have already previously recorded the value for this element
879     // of an aggregate. If we did, that means the CurrIVI will later be
880     // overwritten with the already-recorded value. But if not, let's record it!
881     Optional<Instruction *> &Elt = AggElts[Indices.front()];
882     Elt = Elt.getValueOr(InsertedValue);
883
884     // FIXME: should we handle chain-terminating undef base operand?
885   }
886
887   // Was that sufficient to deduce the full initializer for the aggregate?
888   if (!KnowAllElts())
889     return nullptr; // Give up then.
890
891   // We now want to find the source[s] of the aggregate elements we've found.
892   // And with "source" we mean the original aggregate[s] from which
893   // the inserted elements were extracted. This may require PHI translation.
894
895   enum class AggregateDescription {
896     /// When analyzing the value that was inserted into an aggregate, we did
897     /// not manage to find defining `extractvalue` instruction to analyze.
898     NotFound,
899     /// When analyzing the value that was inserted into an aggregate, we did
900     /// manage to find defining `extractvalue` instruction[s], and everything
901     /// matched perfectly - aggregate type, element insertion/extraction index.
902     Found,
903     /// When analyzing the value that was inserted into an aggregate, we did
904     /// manage to find defining `extractvalue` instruction, but there was
905     /// a mismatch: either the source type from which the extraction was didn't
906     /// match the aggregate type into which the insertion was,
907     /// or the extraction/insertion channels mismatched,
908     /// or different elements had different source aggregates.
909     FoundMismatch
910   };
911   auto Describe = [](Optional<Value *> SourceAggregate) {
912     if (SourceAggregate == NotFound)
913       return AggregateDescription::NotFound;
914     if (*SourceAggregate == FoundMismatch)
915       return AggregateDescription::FoundMismatch;
916     return AggregateDescription::Found;
917   };
918
919   // Given the value \p Elt that was being inserted into element \p EltIdx of an
920   // aggregate AggTy, see if \p Elt was originally defined by an
921   // appropriate extractvalue (same element index, same aggregate type).
922   // If found, return the source aggregate from which the extraction was.
923   // If \p PredBB is provided, does PHI translation of an \p Elt first.
924   auto FindSourceAggregate =
925       [&](Instruction *Elt, unsigned EltIdx, Optional<BasicBlock *> UseBB,
926           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
927     // For now(?), only deal with, at most, a single level of PHI indirection.
928     if (UseBB && PredBB)
929       Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
930     // FIXME: deal with multiple levels of PHI indirection?
931
932     // Did we find an extraction?
933     auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
934     if (!EVI)
935       return NotFound;
936
937     Value *SourceAggregate = EVI->getAggregateOperand();
938
939     // Is the extraction from the same type into which the insertion was?
940     if (SourceAggregate->getType() != AggTy)
941       return FoundMismatch;
942     // And the element index doesn't change between extraction and insertion?
943     if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
944       return FoundMismatch;
945
946     return SourceAggregate; // AggregateDescription::Found
947   };
948
949   // Given elements AggElts that were constructing an aggregate OrigIVI,
950   // see if we can find appropriate source aggregate for each of the elements,
951   // and see it's the same aggregate for each element. If so, return it.
952   auto FindCommonSourceAggregate =
953       [&](Optional<BasicBlock *> UseBB,
954           Optional<BasicBlock *> PredBB) -> Optional<Value *> {
955     Optional<Value *> SourceAggregate;
956
957     for (auto I : enumerate(AggElts)) {
958       assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
959              "We don't store nullptr in SourceAggregate!");
960       assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
961                  (I.index() != 0) &&
962              "SourceAggregate should be valid after the first element,");
963
964       // For this element, is there a plausible source aggregate?
965       // FIXME: we could special-case undef element, IFF we know that in the
966       //        source aggregate said element isn't poison.
967       Optional<Value *> SourceAggregateForElement =
968           FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
969
970       // Okay, what have we found? Does that correlate with previous findings?
971
972       // Regardless of whether or not we have previously found source
973       // aggregate for previous elements (if any), if we didn't find one for
974       // this element, passthrough whatever we have just found.
975       if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
976         return SourceAggregateForElement;
977
978       // Okay, we have found source aggregate for this element.
979       // Let's see what we already know from previous elements, if any.
980       switch (Describe(SourceAggregate)) {
981       case AggregateDescription::NotFound:
982         // This is apparently the first element that we have examined.
983         SourceAggregate = SourceAggregateForElement; // Record the aggregate!
984         continue; // Great, now look at next element.
985       case AggregateDescription::Found:
986         // We have previously already successfully examined other elements.
987         // Is this the same source aggregate we've found for other elements?
988         if (*SourceAggregateForElement != *SourceAggregate)
989           return FoundMismatch;
990         continue; // Still the same aggregate, look at next element.
991       case AggregateDescription::FoundMismatch:
992         llvm_unreachable("Can't happen. We would have early-exited then.");
993       };
994     }
995
996     assert(Describe(SourceAggregate) == AggregateDescription::Found &&
997            "Must be a valid Value");
998     return *SourceAggregate;
999   };
1000
1001   Optional<Value *> SourceAggregate;
1002
1003   // Can we find the source aggregate without looking at predecessors?
1004   SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/None, /*PredBB=*/None);
1005   if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1006     if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1007       return nullptr; // Conflicting source aggregates!
1008     ++NumAggregateReconstructionsSimplified;
1009     return replaceInstUsesWith(OrigIVI, *SourceAggregate);
1010   }
1011
1012   // Okay, apparently we need to look at predecessors.
1013
1014   // We should be smart about picking the "use" basic block, which will be the
1015   // merge point for aggregate, where we'll insert the final PHI that will be
1016   // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1017   // We should look in which blocks each of the AggElts is being defined,
1018   // they all should be defined in the same basic block.
1019   BasicBlock *UseBB = nullptr;
1020
1021   for (const Optional<Instruction *> &I : AggElts) {
1022     BasicBlock *BB = (*I)->getParent();
1023     // If it's the first instruction we've encountered, record the basic block.
1024     if (!UseBB) {
1025       UseBB = BB;
1026       continue;
1027     }
1028     // Otherwise, this must be the same basic block we've seen previously.
1029     if (UseBB != BB)
1030       return nullptr;
1031   }
1032
1033   // If *all* of the elements are basic-block-independent, meaning they are
1034   // either function arguments, or constant expressions, then if we didn't
1035   // handle them without predecessor-aware handling, we won't handle them now.
1036   if (!UseBB)
1037     return nullptr;
1038
1039   // If we didn't manage to find source aggregate without looking at
1040   // predecessors, and there are no predecessors to look at, then we're done.
1041   if (pred_empty(UseBB))
1042     return nullptr;
1043
1044   // Arbitrary predecessor count limit.
1045   static const int PredCountLimit = 64;
1046
1047   // Cache the (non-uniqified!) list of predecessors in a vector,
1048   // checking the limit at the same time for efficiency.
1049   SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1050   for (BasicBlock *Pred : predecessors(UseBB)) {
1051     // Don't bother if there are too many predecessors.
1052     if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1053       return nullptr;
1054     Preds.emplace_back(Pred);
1055   }
1056
1057   // For each predecessor, what is the source aggregate,
1058   // from which all the elements were originally extracted from?
1059   // Note that we want for the map to have stable iteration order!
1060   SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1061   for (BasicBlock *Pred : Preds) {
1062     std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1063         SourceAggregates.insert({Pred, nullptr});
1064     // Did we already evaluate this predecessor?
1065     if (!IV.second)
1066       continue;
1067
1068     // Let's hope that when coming from predecessor Pred, all elements of the
1069     // aggregate produced by OrigIVI must have been originally extracted from
1070     // the same aggregate. Is that so? Can we find said original aggregate?
1071     SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1072     if (Describe(SourceAggregate) != AggregateDescription::Found)
1073       return nullptr; // Give up.
1074     IV.first->second = *SourceAggregate;
1075   }
1076
1077   // All good! Now we just need to thread the source aggregates here.
1078   // Note that we have to insert the new PHI here, ourselves, because we can't
1079   // rely on InstCombinerImpl::run() inserting it into the right basic block.
1080   // Note that the same block can be a predecessor more than once,
1081   // and we need to preserve that invariant for the PHI node.
1082   BuilderTy::InsertPointGuard Guard(Builder);
1083   Builder.SetInsertPoint(UseBB->getFirstNonPHI());
1084   auto *PHI =
1085       Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1086   for (BasicBlock *Pred : Preds)
1087     PHI->addIncoming(SourceAggregates[Pred], Pred);
1088
1089   ++NumAggregateReconstructionsSimplified;
1090   return replaceInstUsesWith(OrigIVI, PHI);
1091 }
1092
1093 /// Try to find redundant insertvalue instructions, like the following ones:
1094 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1095 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
1096 /// Here the second instruction inserts values at the same indices, as the
1097 /// first one, making the first one redundant.
1098 /// It should be transformed to:
1099 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1100 Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1101   bool IsRedundant = false;
1102   ArrayRef<unsigned int> FirstIndices = I.getIndices();
1103
1104   // If there is a chain of insertvalue instructions (each of them except the
1105   // last one has only one use and it's another insertvalue insn from this
1106   // chain), check if any of the 'children' uses the same indices as the first
1107   // instruction. In this case, the first one is redundant.
1108   Value *V = &I;
1109   unsigned Depth = 0;
1110   while (V->hasOneUse() && Depth < 10) {
1111     User *U = V->user_back();
1112     auto UserInsInst = dyn_cast<InsertValueInst>(U);
1113     if (!UserInsInst || U->getOperand(0) != V)
1114       break;
1115     if (UserInsInst->getIndices() == FirstIndices) {
1116       IsRedundant = true;
1117       break;
1118     }
1119     V = UserInsInst;
1120     Depth++;
1121   }
1122
1123   if (IsRedundant)
1124     return replaceInstUsesWith(I, I.getOperand(0));
1125
1126   if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1127     return NewI;
1128
1129   return nullptr;
1130 }
1131
1132 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1133   // Can not analyze scalable type, the number of elements is not a compile-time
1134   // constant.
1135   if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1136     return false;
1137
1138   int MaskSize = Shuf.getShuffleMask().size();
1139   int VecSize =
1140       cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1141
1142   // A vector select does not change the size of the operands.
1143   if (MaskSize != VecSize)
1144     return false;
1145
1146   // Each mask element must be undefined or choose a vector element from one of
1147   // the source operands without crossing vector lanes.
1148   for (int i = 0; i != MaskSize; ++i) {
1149     int Elt = Shuf.getMaskValue(i);
1150     if (Elt != -1 && Elt != i && Elt != i + VecSize)
1151       return false;
1152   }
1153
1154   return true;
1155 }
1156
1157 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1158 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1159 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1160 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1161   // We are interested in the last insert in a chain. So if this insert has a
1162   // single user and that user is an insert, bail.
1163   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1164     return nullptr;
1165
1166   VectorType *VecTy = InsElt.getType();
1167   // Can not handle scalable type, the number of elements is not a compile-time
1168   // constant.
1169   if (isa<ScalableVectorType>(VecTy))
1170     return nullptr;
1171   unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1172
1173   // Do not try to do this for a one-element vector, since that's a nop,
1174   // and will cause an inf-loop.
1175   if (NumElements == 1)
1176     return nullptr;
1177
1178   Value *SplatVal = InsElt.getOperand(1);
1179   InsertElementInst *CurrIE = &InsElt;
1180   SmallBitVector ElementPresent(NumElements, false);
1181   InsertElementInst *FirstIE = nullptr;
1182
1183   // Walk the chain backwards, keeping track of which indices we inserted into,
1184   // until we hit something that isn't an insert of the splatted value.
1185   while (CurrIE) {
1186     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1187     if (!Idx || CurrIE->getOperand(1) != SplatVal)
1188       return nullptr;
1189
1190     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1191     // Check none of the intermediate steps have any additional uses, except
1192     // for the root insertelement instruction, which can be re-used, if it
1193     // inserts at position 0.
1194     if (CurrIE != &InsElt &&
1195         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1196       return nullptr;
1197
1198     ElementPresent[Idx->getZExtValue()] = true;
1199     FirstIE = CurrIE;
1200     CurrIE = NextIE;
1201   }
1202
1203   // If this is just a single insertelement (not a sequence), we are done.
1204   if (FirstIE == &InsElt)
1205     return nullptr;
1206
1207   // If we are not inserting into an undef vector, make sure we've seen an
1208   // insert into every element.
1209   // TODO: If the base vector is not undef, it might be better to create a splat
1210   //       and then a select-shuffle (blend) with the base vector.
1211   if (!match(FirstIE->getOperand(0), m_Undef()))
1212     if (!ElementPresent.all())
1213       return nullptr;
1214
1215   // Create the insert + shuffle.
1216   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
1217   PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1218   Constant *Zero = ConstantInt::get(Int32Ty, 0);
1219   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1220     FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "", &InsElt);
1221
1222   // Splat from element 0, but replace absent elements with undef in the mask.
1223   SmallVector<int, 16> Mask(NumElements, 0);
1224   for (unsigned i = 0; i != NumElements; ++i)
1225     if (!ElementPresent[i])
1226       Mask[i] = -1;
1227
1228   return new ShuffleVectorInst(FirstIE, Mask);
1229 }
1230
1231 /// Try to fold an insert element into an existing splat shuffle by changing
1232 /// the shuffle's mask to include the index of this insert element.
1233 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1234   // Check if the vector operand of this insert is a canonical splat shuffle.
1235   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1236   if (!Shuf || !Shuf->isZeroEltSplat())
1237     return nullptr;
1238
1239   // Bail out early if shuffle is scalable type. The number of elements in
1240   // shuffle mask is unknown at compile-time.
1241   if (isa<ScalableVectorType>(Shuf->getType()))
1242     return nullptr;
1243
1244   // Check for a constant insertion index.
1245   uint64_t IdxC;
1246   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1247     return nullptr;
1248
1249   // Check if the splat shuffle's input is the same as this insert's scalar op.
1250   Value *X = InsElt.getOperand(1);
1251   Value *Op0 = Shuf->getOperand(0);
1252   if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1253     return nullptr;
1254
1255   // Replace the shuffle mask element at the index of this insert with a zero.
1256   // For example:
1257   // inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1258   //   --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1259   unsigned NumMaskElts =
1260       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1261   SmallVector<int, 16> NewMask(NumMaskElts);
1262   for (unsigned i = 0; i != NumMaskElts; ++i)
1263     NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1264
1265   return new ShuffleVectorInst(Op0, NewMask);
1266 }
1267
1268 /// Try to fold an extract+insert element into an existing identity shuffle by
1269 /// changing the shuffle's mask to include the index of this insert element.
1270 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1271   // Check if the vector operand of this insert is an identity shuffle.
1272   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1273   if (!Shuf || !match(Shuf->getOperand(1), m_Undef()) ||
1274       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1275     return nullptr;
1276
1277   // Bail out early if shuffle is scalable type. The number of elements in
1278   // shuffle mask is unknown at compile-time.
1279   if (isa<ScalableVectorType>(Shuf->getType()))
1280     return nullptr;
1281
1282   // Check for a constant insertion index.
1283   uint64_t IdxC;
1284   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1285     return nullptr;
1286
1287   // Check if this insert's scalar op is extracted from the identity shuffle's
1288   // input vector.
1289   Value *Scalar = InsElt.getOperand(1);
1290   Value *X = Shuf->getOperand(0);
1291   if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1292     return nullptr;
1293
1294   // Replace the shuffle mask element at the index of this extract+insert with
1295   // that same index value.
1296   // For example:
1297   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1298   unsigned NumMaskElts =
1299       cast<FixedVectorType>(Shuf->getType())->getNumElements();
1300   SmallVector<int, 16> NewMask(NumMaskElts);
1301   ArrayRef<int> OldMask = Shuf->getShuffleMask();
1302   for (unsigned i = 0; i != NumMaskElts; ++i) {
1303     if (i != IdxC) {
1304       // All mask elements besides the inserted element remain the same.
1305       NewMask[i] = OldMask[i];
1306     } else if (OldMask[i] == (int)IdxC) {
1307       // If the mask element was already set, there's nothing to do
1308       // (demanded elements analysis may unset it later).
1309       return nullptr;
1310     } else {
1311       assert(OldMask[i] == UndefMaskElem &&
1312              "Unexpected shuffle mask element for identity shuffle");
1313       NewMask[i] = IdxC;
1314     }
1315   }
1316
1317   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1318 }
1319
1320 /// If we have an insertelement instruction feeding into another insertelement
1321 /// and the 2nd is inserting a constant into the vector, canonicalize that
1322 /// constant insertion before the insertion of a variable:
1323 ///
1324 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1325 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1326 ///
1327 /// This has the potential of eliminating the 2nd insertelement instruction
1328 /// via constant folding of the scalar constant into a vector constant.
1329 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1330                                      InstCombiner::BuilderTy &Builder) {
1331   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1332   if (!InsElt1 || !InsElt1->hasOneUse())
1333     return nullptr;
1334
1335   Value *X, *Y;
1336   Constant *ScalarC;
1337   ConstantInt *IdxC1, *IdxC2;
1338   if (match(InsElt1->getOperand(0), m_Value(X)) &&
1339       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1340       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1341       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1342       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1343     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1344     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1345   }
1346
1347   return nullptr;
1348 }
1349
1350 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1351 /// --> shufflevector X, CVec', Mask'
1352 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1353   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1354   // Bail out if the parent has more than one use. In that case, we'd be
1355   // replacing the insertelt with a shuffle, and that's not a clear win.
1356   if (!Inst || !Inst->hasOneUse())
1357     return nullptr;
1358   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1359     // The shuffle must have a constant vector operand. The insertelt must have
1360     // a constant scalar being inserted at a constant position in the vector.
1361     Constant *ShufConstVec, *InsEltScalar;
1362     uint64_t InsEltIndex;
1363     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1364         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1365         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1366       return nullptr;
1367
1368     // Adding an element to an arbitrary shuffle could be expensive, but a
1369     // shuffle that selects elements from vectors without crossing lanes is
1370     // assumed cheap.
1371     // If we're just adding a constant into that shuffle, it will still be
1372     // cheap.
1373     if (!isShuffleEquivalentToSelect(*Shuf))
1374       return nullptr;
1375
1376     // From the above 'select' check, we know that the mask has the same number
1377     // of elements as the vector input operands. We also know that each constant
1378     // input element is used in its lane and can not be used more than once by
1379     // the shuffle. Therefore, replace the constant in the shuffle's constant
1380     // vector with the insertelt constant. Replace the constant in the shuffle's
1381     // mask vector with the insertelt index plus the length of the vector
1382     // (because the constant vector operand of a shuffle is always the 2nd
1383     // operand).
1384     ArrayRef<int> Mask = Shuf->getShuffleMask();
1385     unsigned NumElts = Mask.size();
1386     SmallVector<Constant *, 16> NewShufElts(NumElts);
1387     SmallVector<int, 16> NewMaskElts(NumElts);
1388     for (unsigned I = 0; I != NumElts; ++I) {
1389       if (I == InsEltIndex) {
1390         NewShufElts[I] = InsEltScalar;
1391         NewMaskElts[I] = InsEltIndex + NumElts;
1392       } else {
1393         // Copy over the existing values.
1394         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1395         NewMaskElts[I] = Mask[I];
1396       }
1397
1398       // Bail if we failed to find an element.
1399       if (!NewShufElts[I])
1400         return nullptr;
1401     }
1402
1403     // Create new operands for a shuffle that includes the constant of the
1404     // original insertelt. The old shuffle will be dead now.
1405     return new ShuffleVectorInst(Shuf->getOperand(0),
1406                                  ConstantVector::get(NewShufElts), NewMaskElts);
1407   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1408     // Transform sequences of insertelements ops with constant data/indexes into
1409     // a single shuffle op.
1410     // Can not handle scalable type, the number of elements needed to create
1411     // shuffle mask is not a compile-time constant.
1412     if (isa<ScalableVectorType>(InsElt.getType()))
1413       return nullptr;
1414     unsigned NumElts =
1415         cast<FixedVectorType>(InsElt.getType())->getNumElements();
1416
1417     uint64_t InsertIdx[2];
1418     Constant *Val[2];
1419     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1420         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1421         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1422         !match(IEI->getOperand(1), m_Constant(Val[1])))
1423       return nullptr;
1424     SmallVector<Constant *, 16> Values(NumElts);
1425     SmallVector<int, 16> Mask(NumElts);
1426     auto ValI = std::begin(Val);
1427     // Generate new constant vector and mask.
1428     // We have 2 values/masks from the insertelements instructions. Insert them
1429     // into new value/mask vectors.
1430     for (uint64_t I : InsertIdx) {
1431       if (!Values[I]) {
1432         Values[I] = *ValI;
1433         Mask[I] = NumElts + I;
1434       }
1435       ++ValI;
1436     }
1437     // Remaining values are filled with 'undef' values.
1438     for (unsigned I = 0; I < NumElts; ++I) {
1439       if (!Values[I]) {
1440         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1441         Mask[I] = I;
1442       }
1443     }
1444     // Create new operands for a shuffle that includes the constant of the
1445     // original insertelt.
1446     return new ShuffleVectorInst(IEI->getOperand(0),
1447                                  ConstantVector::get(Values), Mask);
1448   }
1449   return nullptr;
1450 }
1451
1452 /// If both the base vector and the inserted element are extended from the same
1453 /// type, do the insert element in the narrow source type followed by extend.
1454 /// TODO: This can be extended to include other cast opcodes, but particularly
1455 ///       if we create a wider insertelement, make sure codegen is not harmed.
1456 static Instruction *narrowInsElt(InsertElementInst &InsElt,
1457                                  InstCombiner::BuilderTy &Builder) {
1458   // We are creating a vector extend. If the original vector extend has another
1459   // use, that would mean we end up with 2 vector extends, so avoid that.
1460   // TODO: We could ease the use-clause to "if at least one op has one use"
1461   //       (assuming that the source types match - see next TODO comment).
1462   Value *Vec = InsElt.getOperand(0);
1463   if (!Vec->hasOneUse())
1464     return nullptr;
1465
1466   Value *Scalar = InsElt.getOperand(1);
1467   Value *X, *Y;
1468   CastInst::CastOps CastOpcode;
1469   if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1470     CastOpcode = Instruction::FPExt;
1471   else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1472     CastOpcode = Instruction::SExt;
1473   else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1474     CastOpcode = Instruction::ZExt;
1475   else
1476     return nullptr;
1477
1478   // TODO: We can allow mismatched types by creating an intermediate cast.
1479   if (X->getType()->getScalarType() != Y->getType())
1480     return nullptr;
1481
1482   // inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1483   Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1484   return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1485 }
1486
1487 Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1488   Value *VecOp    = IE.getOperand(0);
1489   Value *ScalarOp = IE.getOperand(1);
1490   Value *IdxOp    = IE.getOperand(2);
1491
1492   if (auto *V = SimplifyInsertElementInst(
1493           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1494     return replaceInstUsesWith(IE, V);
1495
1496   // Canonicalize type of constant indices to i64 to simplify CSE
1497   if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp))
1498     if (auto *NewIdx = getPreferredVectorIndex(IndexC))
1499       return replaceOperand(IE, 2, NewIdx);
1500
1501   // If the scalar is bitcast and inserted into undef, do the insert in the
1502   // source type followed by bitcast.
1503   // TODO: Generalize for insert into any constant, not just undef?
1504   Value *ScalarSrc;
1505   if (match(VecOp, m_Undef()) &&
1506       match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1507       (ScalarSrc->getType()->isIntegerTy() ||
1508        ScalarSrc->getType()->isFloatingPointTy())) {
1509     // inselt undef, (bitcast ScalarSrc), IdxOp -->
1510     //   bitcast (inselt undef, ScalarSrc, IdxOp)
1511     Type *ScalarTy = ScalarSrc->getType();
1512     Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1513     UndefValue *NewUndef = UndefValue::get(VecTy);
1514     Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1515     return new BitCastInst(NewInsElt, IE.getType());
1516   }
1517
1518   // If the vector and scalar are both bitcast from the same element type, do
1519   // the insert in that source type followed by bitcast.
1520   Value *VecSrc;
1521   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1522       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1523       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1524       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1525       cast<VectorType>(VecSrc->getType())->getElementType() ==
1526           ScalarSrc->getType()) {
1527     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1528     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1529     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1530     return new BitCastInst(NewInsElt, IE.getType());
1531   }
1532
1533   // If the inserted element was extracted from some other fixed-length vector
1534   // and both indexes are valid constants, try to turn this into a shuffle.
1535   // Can not handle scalable vector type, the number of elements needed to
1536   // create shuffle mask is not a compile-time constant.
1537   uint64_t InsertedIdx, ExtractedIdx;
1538   Value *ExtVecOp;
1539   if (isa<FixedVectorType>(IE.getType()) &&
1540       match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1541       match(ScalarOp,
1542             m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1543       isa<FixedVectorType>(ExtVecOp->getType()) &&
1544       ExtractedIdx <
1545           cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1546     // TODO: Looking at the user(s) to determine if this insert is a
1547     // fold-to-shuffle opportunity does not match the usual instcombine
1548     // constraints. We should decide if the transform is worthy based only
1549     // on this instruction and its operands, but that may not work currently.
1550     //
1551     // Here, we are trying to avoid creating shuffles before reaching
1552     // the end of a chain of extract-insert pairs. This is complicated because
1553     // we do not generally form arbitrary shuffle masks in instcombine
1554     // (because those may codegen poorly), but collectShuffleElements() does
1555     // exactly that.
1556     //
1557     // The rules for determining what is an acceptable target-independent
1558     // shuffle mask are fuzzy because they evolve based on the backend's
1559     // capabilities and real-world impact.
1560     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1561       if (!Insert.hasOneUse())
1562         return true;
1563       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1564       if (!InsertUser)
1565         return true;
1566       return false;
1567     };
1568
1569     // Try to form a shuffle from a chain of extract-insert ops.
1570     if (isShuffleRootCandidate(IE)) {
1571       SmallVector<int, 16> Mask;
1572       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1573
1574       // The proposed shuffle may be trivial, in which case we shouldn't
1575       // perform the combine.
1576       if (LR.first != &IE && LR.second != &IE) {
1577         // We now have a shuffle of LHS, RHS, Mask.
1578         if (LR.second == nullptr)
1579           LR.second = UndefValue::get(LR.first->getType());
1580         return new ShuffleVectorInst(LR.first, LR.second, Mask);
1581       }
1582     }
1583   }
1584
1585   if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1586     unsigned VWidth = VecTy->getNumElements();
1587     APInt UndefElts(VWidth, 0);
1588     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1589     if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1590       if (V != &IE)
1591         return replaceInstUsesWith(IE, V);
1592       return &IE;
1593     }
1594   }
1595
1596   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1597     return Shuf;
1598
1599   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1600     return NewInsElt;
1601
1602   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1603     return Broadcast;
1604
1605   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1606     return Splat;
1607
1608   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1609     return IdentityShuf;
1610
1611   if (Instruction *Ext = narrowInsElt(IE, Builder))
1612     return Ext;
1613
1614   return nullptr;
1615 }
1616
1617 /// Return true if we can evaluate the specified expression tree if the vector
1618 /// elements were shuffled in a different order.
1619 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1620                                 unsigned Depth = 5) {
1621   // We can always reorder the elements of a constant.
1622   if (isa<Constant>(V))
1623     return true;
1624
1625   // We won't reorder vector arguments. No IPO here.
1626   Instruction *I = dyn_cast<Instruction>(V);
1627   if (!I) return false;
1628
1629   // Two users may expect different orders of the elements. Don't try it.
1630   if (!I->hasOneUse())
1631     return false;
1632
1633   if (Depth == 0) return false;
1634
1635   switch (I->getOpcode()) {
1636     case Instruction::UDiv:
1637     case Instruction::SDiv:
1638     case Instruction::URem:
1639     case Instruction::SRem:
1640       // Propagating an undefined shuffle mask element to integer div/rem is not
1641       // allowed because those opcodes can create immediate undefined behavior
1642       // from an undefined element in an operand.
1643       if (llvm::is_contained(Mask, -1))
1644         return false;
1645       LLVM_FALLTHROUGH;
1646     case Instruction::Add:
1647     case Instruction::FAdd:
1648     case Instruction::Sub:
1649     case Instruction::FSub:
1650     case Instruction::Mul:
1651     case Instruction::FMul:
1652     case Instruction::FDiv:
1653     case Instruction::FRem:
1654     case Instruction::Shl:
1655     case Instruction::LShr:
1656     case Instruction::AShr:
1657     case Instruction::And:
1658     case Instruction::Or:
1659     case Instruction::Xor:
1660     case Instruction::ICmp:
1661     case Instruction::FCmp:
1662     case Instruction::Trunc:
1663     case Instruction::ZExt:
1664     case Instruction::SExt:
1665     case Instruction::FPToUI:
1666     case Instruction::FPToSI:
1667     case Instruction::UIToFP:
1668     case Instruction::SIToFP:
1669     case Instruction::FPTrunc:
1670     case Instruction::FPExt:
1671     case Instruction::GetElementPtr: {
1672       // Bail out if we would create longer vector ops. We could allow creating
1673       // longer vector ops, but that may result in more expensive codegen.
1674       Type *ITy = I->getType();
1675       if (ITy->isVectorTy() &&
1676           Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1677         return false;
1678       for (Value *Operand : I->operands()) {
1679         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1680           return false;
1681       }
1682       return true;
1683     }
1684     case Instruction::InsertElement: {
1685       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1686       if (!CI) return false;
1687       int ElementNumber = CI->getLimitedValue();
1688
1689       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1690       // can't put an element into multiple indices.
1691       bool SeenOnce = false;
1692       for (int i = 0, e = Mask.size(); i != e; ++i) {
1693         if (Mask[i] == ElementNumber) {
1694           if (SeenOnce)
1695             return false;
1696           SeenOnce = true;
1697         }
1698       }
1699       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1700     }
1701   }
1702   return false;
1703 }
1704
1705 /// Rebuild a new instruction just like 'I' but with the new operands given.
1706 /// In the event of type mismatch, the type of the operands is correct.
1707 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1708   // We don't want to use the IRBuilder here because we want the replacement
1709   // instructions to appear next to 'I', not the builder's insertion point.
1710   switch (I->getOpcode()) {
1711     case Instruction::Add:
1712     case Instruction::FAdd:
1713     case Instruction::Sub:
1714     case Instruction::FSub:
1715     case Instruction::Mul:
1716     case Instruction::FMul:
1717     case Instruction::UDiv:
1718     case Instruction::SDiv:
1719     case Instruction::FDiv:
1720     case Instruction::URem:
1721     case Instruction::SRem:
1722     case Instruction::FRem:
1723     case Instruction::Shl:
1724     case Instruction::LShr:
1725     case Instruction::AShr:
1726     case Instruction::And:
1727     case Instruction::Or:
1728     case Instruction::Xor: {
1729       BinaryOperator *BO = cast<BinaryOperator>(I);
1730       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1731       BinaryOperator *New =
1732           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1733                                  NewOps[0], NewOps[1], "", BO);
1734       if (isa<OverflowingBinaryOperator>(BO)) {
1735         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1736         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1737       }
1738       if (isa<PossiblyExactOperator>(BO)) {
1739         New->setIsExact(BO->isExact());
1740       }
1741       if (isa<FPMathOperator>(BO))
1742         New->copyFastMathFlags(I);
1743       return New;
1744     }
1745     case Instruction::ICmp:
1746       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1747       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1748                           NewOps[0], NewOps[1]);
1749     case Instruction::FCmp:
1750       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1751       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1752                           NewOps[0], NewOps[1]);
1753     case Instruction::Trunc:
1754     case Instruction::ZExt:
1755     case Instruction::SExt:
1756     case Instruction::FPToUI:
1757     case Instruction::FPToSI:
1758     case Instruction::UIToFP:
1759     case Instruction::SIToFP:
1760     case Instruction::FPTrunc:
1761     case Instruction::FPExt: {
1762       // It's possible that the mask has a different number of elements from
1763       // the original cast. We recompute the destination type to match the mask.
1764       Type *DestTy = VectorType::get(
1765           I->getType()->getScalarType(),
1766           cast<VectorType>(NewOps[0]->getType())->getElementCount());
1767       assert(NewOps.size() == 1 && "cast with #ops != 1");
1768       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1769                               "", I);
1770     }
1771     case Instruction::GetElementPtr: {
1772       Value *Ptr = NewOps[0];
1773       ArrayRef<Value*> Idx = NewOps.slice(1);
1774       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1775           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1776       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1777       return GEP;
1778     }
1779   }
1780   llvm_unreachable("failed to rebuild vector instructions");
1781 }
1782
1783 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1784   // Mask.size() does not need to be equal to the number of vector elements.
1785
1786   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1787   Type *EltTy = V->getType()->getScalarType();
1788   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1789   if (match(V, m_Undef()))
1790     return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1791
1792   if (isa<ConstantAggregateZero>(V))
1793     return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1794
1795   if (Constant *C = dyn_cast<Constant>(V))
1796     return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1797                                           Mask);
1798
1799   Instruction *I = cast<Instruction>(V);
1800   switch (I->getOpcode()) {
1801     case Instruction::Add:
1802     case Instruction::FAdd:
1803     case Instruction::Sub:
1804     case Instruction::FSub:
1805     case Instruction::Mul:
1806     case Instruction::FMul:
1807     case Instruction::UDiv:
1808     case Instruction::SDiv:
1809     case Instruction::FDiv:
1810     case Instruction::URem:
1811     case Instruction::SRem:
1812     case Instruction::FRem:
1813     case Instruction::Shl:
1814     case Instruction::LShr:
1815     case Instruction::AShr:
1816     case Instruction::And:
1817     case Instruction::Or:
1818     case Instruction::Xor:
1819     case Instruction::ICmp:
1820     case Instruction::FCmp:
1821     case Instruction::Trunc:
1822     case Instruction::ZExt:
1823     case Instruction::SExt:
1824     case Instruction::FPToUI:
1825     case Instruction::FPToSI:
1826     case Instruction::UIToFP:
1827     case Instruction::SIToFP:
1828     case Instruction::FPTrunc:
1829     case Instruction::FPExt:
1830     case Instruction::Select:
1831     case Instruction::GetElementPtr: {
1832       SmallVector<Value*, 8> NewOps;
1833       bool NeedsRebuild =
1834           (Mask.size() !=
1835            cast<FixedVectorType>(I->getType())->getNumElements());
1836       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1837         Value *V;
1838         // Recursively call evaluateInDifferentElementOrder on vector arguments
1839         // as well. E.g. GetElementPtr may have scalar operands even if the
1840         // return value is a vector, so we need to examine the operand type.
1841         if (I->getOperand(i)->getType()->isVectorTy())
1842           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1843         else
1844           V = I->getOperand(i);
1845         NewOps.push_back(V);
1846         NeedsRebuild |= (V != I->getOperand(i));
1847       }
1848       if (NeedsRebuild) {
1849         return buildNew(I, NewOps);
1850       }
1851       return I;
1852     }
1853     case Instruction::InsertElement: {
1854       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1855
1856       // The insertelement was inserting at Element. Figure out which element
1857       // that becomes after shuffling. The answer is guaranteed to be unique
1858       // by CanEvaluateShuffled.
1859       bool Found = false;
1860       int Index = 0;
1861       for (int e = Mask.size(); Index != e; ++Index) {
1862         if (Mask[Index] == Element) {
1863           Found = true;
1864           break;
1865         }
1866       }
1867
1868       // If element is not in Mask, no need to handle the operand 1 (element to
1869       // be inserted). Just evaluate values in operand 0 according to Mask.
1870       if (!Found)
1871         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1872
1873       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1874       return InsertElementInst::Create(V, I->getOperand(1),
1875                                        ConstantInt::get(I32Ty, Index), "", I);
1876     }
1877   }
1878   llvm_unreachable("failed to reorder elements of vector instruction!");
1879 }
1880
1881 // Returns true if the shuffle is extracting a contiguous range of values from
1882 // LHS, for example:
1883 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1884 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1885 //   Shuffles to:  |EE|FF|GG|HH|
1886 //                 +--+--+--+--+
1887 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1888                                        ArrayRef<int> Mask) {
1889   unsigned LHSElems =
1890       cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
1891   unsigned MaskElems = Mask.size();
1892   unsigned BegIdx = Mask.front();
1893   unsigned EndIdx = Mask.back();
1894   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1895     return false;
1896   for (unsigned I = 0; I != MaskElems; ++I)
1897     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1898       return false;
1899   return true;
1900 }
1901
1902 /// These are the ingredients in an alternate form binary operator as described
1903 /// below.
1904 struct BinopElts {
1905   BinaryOperator::BinaryOps Opcode;
1906   Value *Op0;
1907   Value *Op1;
1908   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1909             Value *V0 = nullptr, Value *V1 = nullptr) :
1910       Opcode(Opc), Op0(V0), Op1(V1) {}
1911   operator bool() const { return Opcode != 0; }
1912 };
1913
1914 /// Binops may be transformed into binops with different opcodes and operands.
1915 /// Reverse the usual canonicalization to enable folds with the non-canonical
1916 /// form of the binop. If a transform is possible, return the elements of the
1917 /// new binop. If not, return invalid elements.
1918 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1919   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1920   Type *Ty = BO->getType();
1921   switch (BO->getOpcode()) {
1922     case Instruction::Shl: {
1923       // shl X, C --> mul X, (1 << C)
1924       Constant *C;
1925       if (match(BO1, m_Constant(C))) {
1926         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1927         return { Instruction::Mul, BO0, ShlOne };
1928       }
1929       break;
1930     }
1931     case Instruction::Or: {
1932       // or X, C --> add X, C (when X and C have no common bits set)
1933       const APInt *C;
1934       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1935         return { Instruction::Add, BO0, BO1 };
1936       break;
1937     }
1938     default:
1939       break;
1940   }
1941   return {};
1942 }
1943
1944 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1945   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1946
1947   // Are we shuffling together some value and that same value after it has been
1948   // modified by a binop with a constant?
1949   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1950   Constant *C;
1951   bool Op0IsBinop;
1952   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1953     Op0IsBinop = true;
1954   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1955     Op0IsBinop = false;
1956   else
1957     return nullptr;
1958
1959   // The identity constant for a binop leaves a variable operand unchanged. For
1960   // a vector, this is a splat of something like 0, -1, or 1.
1961   // If there's no identity constant for this binop, we're done.
1962   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1963   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1964   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1965   if (!IdC)
1966     return nullptr;
1967
1968   // Shuffle identity constants into the lanes that return the original value.
1969   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1970   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1971   // The existing binop constant vector remains in the same operand position.
1972   ArrayRef<int> Mask = Shuf.getShuffleMask();
1973   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1974                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1975
1976   bool MightCreatePoisonOrUB =
1977       is_contained(Mask, UndefMaskElem) &&
1978       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1979   if (MightCreatePoisonOrUB)
1980     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
1981
1982   // shuf (bop X, C), X, M --> bop X, C'
1983   // shuf X, (bop X, C), M --> bop X, C'
1984   Value *X = Op0IsBinop ? Op1 : Op0;
1985   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1986   NewBO->copyIRFlags(BO);
1987
1988   // An undef shuffle mask element may propagate as an undef constant element in
1989   // the new binop. That would produce poison where the original code might not.
1990   // If we already made a safe constant, then there's no danger.
1991   if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
1992     NewBO->dropPoisonGeneratingFlags();
1993   return NewBO;
1994 }
1995
1996 /// If we have an insert of a scalar to a non-zero element of an undefined
1997 /// vector and then shuffle that value, that's the same as inserting to the zero
1998 /// element and shuffling. Splatting from the zero element is recognized as the
1999 /// canonical form of splat.
2000 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
2001                                             InstCombiner::BuilderTy &Builder) {
2002   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2003   ArrayRef<int> Mask = Shuf.getShuffleMask();
2004   Value *X;
2005   uint64_t IndexC;
2006
2007   // Match a shuffle that is a splat to a non-zero element.
2008   if (!match(Op0, m_OneUse(m_InsertElt(m_Undef(), m_Value(X),
2009                                        m_ConstantInt(IndexC)))) ||
2010       !match(Op1, m_Undef()) || match(Mask, m_ZeroMask()) || IndexC == 0)
2011     return nullptr;
2012
2013   // Insert into element 0 of an undef vector.
2014   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
2015   Constant *Zero = Builder.getInt32(0);
2016   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
2017
2018   // Splat from element 0. Any mask element that is undefined remains undefined.
2019   // For example:
2020   // shuf (inselt undef, X, 2), _, <2,2,undef>
2021   //   --> shuf (inselt undef, X, 0), poison, <0,0,undef>
2022   unsigned NumMaskElts =
2023       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2024   SmallVector<int, 16> NewMask(NumMaskElts, 0);
2025   for (unsigned i = 0; i != NumMaskElts; ++i)
2026     if (Mask[i] == UndefMaskElem)
2027       NewMask[i] = Mask[i];
2028
2029   return new ShuffleVectorInst(NewIns, NewMask);
2030 }
2031
2032 /// Try to fold shuffles that are the equivalent of a vector select.
2033 Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
2034   if (!Shuf.isSelect())
2035     return nullptr;
2036
2037   // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2038   // Commuting undef to operand 0 conflicts with another canonicalization.
2039   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2040   if (!match(Shuf.getOperand(1), m_Undef()) &&
2041       Shuf.getMaskValue(0) >= (int)NumElts) {
2042     // TODO: Can we assert that both operands of a shuffle-select are not undef
2043     // (otherwise, it would have been folded by instsimplify?
2044     Shuf.commute();
2045     return &Shuf;
2046   }
2047
2048   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
2049     return I;
2050
2051   BinaryOperator *B0, *B1;
2052   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2053       !match(Shuf.getOperand(1), m_BinOp(B1)))
2054     return nullptr;
2055
2056   Value *X, *Y;
2057   Constant *C0, *C1;
2058   bool ConstantsAreOp1;
2059   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
2060       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
2061     ConstantsAreOp1 = true;
2062   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2063            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2064     ConstantsAreOp1 = false;
2065   else
2066     return nullptr;
2067
2068   // We need matching binops to fold the lanes together.
2069   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2070   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2071   bool DropNSW = false;
2072   if (ConstantsAreOp1 && Opc0 != Opc1) {
2073     // TODO: We drop "nsw" if shift is converted into multiply because it may
2074     // not be correct when the shift amount is BitWidth - 1. We could examine
2075     // each vector element to determine if it is safe to keep that flag.
2076     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2077       DropNSW = true;
2078     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2079       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2080       Opc0 = AltB0.Opcode;
2081       C0 = cast<Constant>(AltB0.Op1);
2082     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2083       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2084       Opc1 = AltB1.Opcode;
2085       C1 = cast<Constant>(AltB1.Op1);
2086     }
2087   }
2088
2089   if (Opc0 != Opc1)
2090     return nullptr;
2091
2092   // The opcodes must be the same. Use a new name to make that clear.
2093   BinaryOperator::BinaryOps BOpc = Opc0;
2094
2095   // Select the constant elements needed for the single binop.
2096   ArrayRef<int> Mask = Shuf.getShuffleMask();
2097   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2098
2099   // We are moving a binop after a shuffle. When a shuffle has an undefined
2100   // mask element, the result is undefined, but it is not poison or undefined
2101   // behavior. That is not necessarily true for div/rem/shift.
2102   bool MightCreatePoisonOrUB =
2103       is_contained(Mask, UndefMaskElem) &&
2104       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2105   if (MightCreatePoisonOrUB)
2106     NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2107                                                        ConstantsAreOp1);
2108
2109   Value *V;
2110   if (X == Y) {
2111     // Remove a binop and the shuffle by rearranging the constant:
2112     // shuffle (op V, C0), (op V, C1), M --> op V, C'
2113     // shuffle (op C0, V), (op C1, V), M --> op C', V
2114     V = X;
2115   } else {
2116     // If there are 2 different variable operands, we must create a new shuffle
2117     // (select) first, so check uses to ensure that we don't end up with more
2118     // instructions than we started with.
2119     if (!B0->hasOneUse() && !B1->hasOneUse())
2120       return nullptr;
2121
2122     // If we use the original shuffle mask and op1 is *variable*, we would be
2123     // putting an undef into operand 1 of div/rem/shift. This is either UB or
2124     // poison. We do not have to guard against UB when *constants* are op1
2125     // because safe constants guarantee that we do not overflow sdiv/srem (and
2126     // there's no danger for other opcodes).
2127     // TODO: To allow this case, create a new shuffle mask with no undefs.
2128     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2129       return nullptr;
2130
2131     // Note: In general, we do not create new shuffles in InstCombine because we
2132     // do not know if a target can lower an arbitrary shuffle optimally. In this
2133     // case, the shuffle uses the existing mask, so there is no additional risk.
2134
2135     // Select the variable vectors first, then perform the binop:
2136     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2137     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2138     V = Builder.CreateShuffleVector(X, Y, Mask);
2139   }
2140
2141   Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
2142                                    Builder.CreateBinOp(BOpc, NewC, V);
2143
2144   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2145   // 1. If we changed an opcode, poison conditions might have changed.
2146   // 2. If the shuffle had undef mask elements, the new binop might have undefs
2147   //    where the original code did not. But if we already made a safe constant,
2148   //    then there's no danger.
2149   if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
2150     NewI->copyIRFlags(B0);
2151     NewI->andIRFlags(B1);
2152     if (DropNSW)
2153       NewI->setHasNoSignedWrap(false);
2154     if (is_contained(Mask, UndefMaskElem) && !MightCreatePoisonOrUB)
2155       NewI->dropPoisonGeneratingFlags();
2156   }
2157   return replaceInstUsesWith(Shuf, NewBO);
2158 }
2159
2160 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2161 /// Example (little endian):
2162 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2163 static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2164                                      bool IsBigEndian) {
2165   // This must be a bitcasted shuffle of 1 vector integer operand.
2166   Type *DestType = Shuf.getType();
2167   Value *X;
2168   if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2169       !match(Shuf.getOperand(1), m_Undef()) || !DestType->isIntOrIntVectorTy())
2170     return nullptr;
2171
2172   // The source type must have the same number of elements as the shuffle,
2173   // and the source element type must be larger than the shuffle element type.
2174   Type *SrcType = X->getType();
2175   if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2176       cast<FixedVectorType>(SrcType)->getNumElements() !=
2177           cast<FixedVectorType>(DestType)->getNumElements() ||
2178       SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2179     return nullptr;
2180
2181   assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2182          "Expected a shuffle that decreases length");
2183
2184   // Last, check that the mask chooses the correct low bits for each narrow
2185   // element in the result.
2186   uint64_t TruncRatio =
2187       SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2188   ArrayRef<int> Mask = Shuf.getShuffleMask();
2189   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2190     if (Mask[i] == UndefMaskElem)
2191       continue;
2192     uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2193     assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2194     if (Mask[i] != (int)LSBIndex)
2195       return nullptr;
2196   }
2197
2198   return new TruncInst(X, DestType);
2199 }
2200
2201 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2202 /// narrowing (concatenating with undef and extracting back to the original
2203 /// length). This allows replacing the wide select with a narrow select.
2204 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2205                                        InstCombiner::BuilderTy &Builder) {
2206   // This must be a narrowing identity shuffle. It extracts the 1st N elements
2207   // of the 1st vector operand of a shuffle.
2208   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
2209     return nullptr;
2210
2211   // The vector being shuffled must be a vector select that we can eliminate.
2212   // TODO: The one-use requirement could be eased if X and/or Y are constants.
2213   Value *Cond, *X, *Y;
2214   if (!match(Shuf.getOperand(0),
2215              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2216     return nullptr;
2217
2218   // We need a narrow condition value. It must be extended with undef elements
2219   // and have the same number of elements as this shuffle.
2220   unsigned NarrowNumElts =
2221       cast<FixedVectorType>(Shuf.getType())->getNumElements();
2222   Value *NarrowCond;
2223   if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Undef()))) ||
2224       cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2225           NarrowNumElts ||
2226       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2227     return nullptr;
2228
2229   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2230   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2231   Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2232   Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2233   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2234 }
2235
2236 /// Try to fold an extract subvector operation.
2237 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2238   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2239   if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Undef()))
2240     return nullptr;
2241
2242   // Check if we are extracting all bits of an inserted scalar:
2243   // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2244   Value *X;
2245   if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2246       X->getType()->getPrimitiveSizeInBits() ==
2247           Shuf.getType()->getPrimitiveSizeInBits())
2248     return new BitCastInst(X, Shuf.getType());
2249
2250   // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2251   Value *Y;
2252   ArrayRef<int> Mask;
2253   if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2254     return nullptr;
2255
2256   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2257   // then combining may result in worse codegen.
2258   if (!Op0->hasOneUse())
2259     return nullptr;
2260
2261   // We are extracting a subvector from a shuffle. Remove excess elements from
2262   // the 1st shuffle mask to eliminate the extract.
2263   //
2264   // This transform is conservatively limited to identity extracts because we do
2265   // not allow arbitrary shuffle mask creation as a target-independent transform
2266   // (because we can't guarantee that will lower efficiently).
2267   //
2268   // If the extracting shuffle has an undef mask element, it transfers to the
2269   // new shuffle mask. Otherwise, copy the original mask element. Example:
2270   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2271   //   shuf X, Y, <C0, undef, C2, undef>
2272   unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2273   SmallVector<int, 16> NewMask(NumElts);
2274   assert(NumElts < Mask.size() &&
2275          "Identity with extract must have less elements than its inputs");
2276
2277   for (unsigned i = 0; i != NumElts; ++i) {
2278     int ExtractMaskElt = Shuf.getMaskValue(i);
2279     int MaskElt = Mask[i];
2280     NewMask[i] = ExtractMaskElt == UndefMaskElem ? ExtractMaskElt : MaskElt;
2281   }
2282   return new ShuffleVectorInst(X, Y, NewMask);
2283 }
2284
2285 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2286 /// operand with the operand of an insertelement.
2287 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2288                                           InstCombinerImpl &IC) {
2289   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2290   SmallVector<int, 16> Mask;
2291   Shuf.getShuffleMask(Mask);
2292
2293   int NumElts = Mask.size();
2294   int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
2295
2296   // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2297   // not be able to handle it there if the insertelement has >1 use.
2298   // If the shuffle has an insertelement operand but does not choose the
2299   // inserted scalar element from that value, then we can replace that shuffle
2300   // operand with the source vector of the insertelement.
2301   Value *X;
2302   uint64_t IdxC;
2303   if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2304     // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2305     if (!is_contained(Mask, (int)IdxC))
2306       return IC.replaceOperand(Shuf, 0, X);
2307   }
2308   if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2309     // Offset the index constant by the vector width because we are checking for
2310     // accesses to the 2nd vector input of the shuffle.
2311     IdxC += InpNumElts;
2312     // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2313     if (!is_contained(Mask, (int)IdxC))
2314       return IC.replaceOperand(Shuf, 1, X);
2315   }
2316   // For the rest of the transform, the shuffle must not change vector sizes.
2317   // TODO: This restriction could be removed if the insert has only one use
2318   //       (because the transform would require a new length-changing shuffle).
2319   if (NumElts != InpNumElts)
2320     return nullptr;
2321
2322   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2323   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2324     // We need an insertelement with a constant index.
2325     if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2326                                m_ConstantInt(IndexC))))
2327       return false;
2328
2329     // Test the shuffle mask to see if it splices the inserted scalar into the
2330     // operand 1 vector of the shuffle.
2331     int NewInsIndex = -1;
2332     for (int i = 0; i != NumElts; ++i) {
2333       // Ignore undef mask elements.
2334       if (Mask[i] == -1)
2335         continue;
2336
2337       // The shuffle takes elements of operand 1 without lane changes.
2338       if (Mask[i] == NumElts + i)
2339         continue;
2340
2341       // The shuffle must choose the inserted scalar exactly once.
2342       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2343         return false;
2344
2345       // The shuffle is placing the inserted scalar into element i.
2346       NewInsIndex = i;
2347     }
2348
2349     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2350
2351     // Index is updated to the potentially translated insertion lane.
2352     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
2353     return true;
2354   };
2355
2356   // If the shuffle is unnecessary, insert the scalar operand directly into
2357   // operand 1 of the shuffle. Example:
2358   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2359   Value *Scalar;
2360   ConstantInt *IndexC;
2361   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2362     return InsertElementInst::Create(V1, Scalar, IndexC);
2363
2364   // Try again after commuting shuffle. Example:
2365   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2366   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2367   std::swap(V0, V1);
2368   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2369   if (isShufflingScalarIntoOp1(Scalar, IndexC))
2370     return InsertElementInst::Create(V1, Scalar, IndexC);
2371
2372   return nullptr;
2373 }
2374
2375 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2376   // Match the operands as identity with padding (also known as concatenation
2377   // with undef) shuffles of the same source type. The backend is expected to
2378   // recreate these concatenations from a shuffle of narrow operands.
2379   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2380   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2381   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2382       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2383     return nullptr;
2384
2385   // We limit this transform to power-of-2 types because we expect that the
2386   // backend can convert the simplified IR patterns to identical nodes as the
2387   // original IR.
2388   // TODO: If we can verify the same behavior for arbitrary types, the
2389   //       power-of-2 checks can be removed.
2390   Value *X = Shuffle0->getOperand(0);
2391   Value *Y = Shuffle1->getOperand(0);
2392   if (X->getType() != Y->getType() ||
2393       !isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2394       !isPowerOf2_32(
2395           cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2396       !isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2397       match(X, m_Undef()) || match(Y, m_Undef()))
2398     return nullptr;
2399   assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2400          match(Shuffle1->getOperand(1), m_Undef()) &&
2401          "Unexpected operand for identity shuffle");
2402
2403   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2404   // operands directly by adjusting the shuffle mask to account for the narrower
2405   // types:
2406   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2407   int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2408   int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2409   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2410
2411   ArrayRef<int> Mask = Shuf.getShuffleMask();
2412   SmallVector<int, 16> NewMask(Mask.size(), -1);
2413   for (int i = 0, e = Mask.size(); i != e; ++i) {
2414     if (Mask[i] == -1)
2415       continue;
2416
2417     // If this shuffle is choosing an undef element from 1 of the sources, that
2418     // element is undef.
2419     if (Mask[i] < WideElts) {
2420       if (Shuffle0->getMaskValue(Mask[i]) == -1)
2421         continue;
2422     } else {
2423       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2424         continue;
2425     }
2426
2427     // If this shuffle is choosing from the 1st narrow op, the mask element is
2428     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2429     // element is offset down to adjust for the narrow vector widths.
2430     if (Mask[i] < WideElts) {
2431       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2432       NewMask[i] = Mask[i];
2433     } else {
2434       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2435       NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2436     }
2437   }
2438   return new ShuffleVectorInst(X, Y, NewMask);
2439 }
2440
2441 Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2442   Value *LHS = SVI.getOperand(0);
2443   Value *RHS = SVI.getOperand(1);
2444   SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2445   if (auto *V = SimplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2446                                           SVI.getType(), ShufQuery))
2447     return replaceInstUsesWith(SVI, V);
2448
2449   // Bail out for scalable vectors
2450   if (isa<ScalableVectorType>(LHS->getType()))
2451     return nullptr;
2452
2453   unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2454   unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2455
2456   // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2457   //
2458   // if X and Y are of the same (vector) type, and the element size is not
2459   // changed by the bitcasts, we can distribute the bitcasts through the
2460   // shuffle, hopefully reducing the number of instructions. We make sure that
2461   // at least one bitcast only has one use, so we don't *increase* the number of
2462   // instructions here.
2463   Value *X, *Y;
2464   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2465       X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2466       X->getType()->getScalarSizeInBits() ==
2467           SVI.getType()->getScalarSizeInBits() &&
2468       (LHS->hasOneUse() || RHS->hasOneUse())) {
2469     Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2470                                            SVI.getName() + ".uncasted");
2471     return new BitCastInst(V, SVI.getType());
2472   }
2473
2474   ArrayRef<int> Mask = SVI.getShuffleMask();
2475   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
2476
2477   // Peek through a bitcasted shuffle operand by scaling the mask. If the
2478   // simulated shuffle can simplify, then this shuffle is unnecessary:
2479   // shuf (bitcast X), undef, Mask --> bitcast X'
2480   // TODO: This could be extended to allow length-changing shuffles.
2481   //       The transform might also be obsoleted if we allowed canonicalization
2482   //       of bitcasted shuffles.
2483   if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2484       X->getType()->isVectorTy() && VWidth == LHSWidth) {
2485     // Try to create a scaled mask constant.
2486     auto *XType = cast<FixedVectorType>(X->getType());
2487     unsigned XNumElts = XType->getNumElements();
2488     SmallVector<int, 16> ScaledMask;
2489     if (XNumElts >= VWidth) {
2490       assert(XNumElts % VWidth == 0 && "Unexpected vector bitcast");
2491       narrowShuffleMaskElts(XNumElts / VWidth, Mask, ScaledMask);
2492     } else {
2493       assert(VWidth % XNumElts == 0 && "Unexpected vector bitcast");
2494       if (!widenShuffleMaskElts(VWidth / XNumElts, Mask, ScaledMask))
2495         ScaledMask.clear();
2496     }
2497     if (!ScaledMask.empty()) {
2498       // If the shuffled source vector simplifies, cast that value to this
2499       // shuffle's type.
2500       if (auto *V = SimplifyShuffleVectorInst(X, UndefValue::get(XType),
2501                                               ScaledMask, XType, ShufQuery))
2502         return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2503     }
2504   }
2505
2506   // shuffle x, x, mask --> shuffle x, undef, mask'
2507   if (LHS == RHS) {
2508     assert(!match(RHS, m_Undef()) &&
2509            "Shuffle with 2 undef ops not simplified?");
2510     return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
2511   }
2512
2513   // shuffle undef, x, mask --> shuffle x, undef, mask'
2514   if (match(LHS, m_Undef())) {
2515     SVI.commute();
2516     return &SVI;
2517   }
2518
2519   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2520     return I;
2521
2522   if (Instruction *I = foldSelectShuffle(SVI))
2523     return I;
2524
2525   if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2526     return I;
2527
2528   if (Instruction *I = narrowVectorSelect(SVI, Builder))
2529     return I;
2530
2531   APInt UndefElts(VWidth, 0);
2532   APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2533   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
2534     if (V != &SVI)
2535       return replaceInstUsesWith(SVI, V);
2536     return &SVI;
2537   }
2538
2539   if (Instruction *I = foldIdentityExtractShuffle(SVI))
2540     return I;
2541
2542   // These transforms have the potential to lose undef knowledge, so they are
2543   // intentionally placed after SimplifyDemandedVectorElts().
2544   if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2545     return I;
2546   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2547     return I;
2548
2549   if (match(RHS, m_Undef()) && canEvaluateShuffled(LHS, Mask)) {
2550     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
2551     return replaceInstUsesWith(SVI, V);
2552   }
2553
2554   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2555   // a non-vector type. We can instead bitcast the original vector followed by
2556   // an extract of the desired element:
2557   //
2558   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2559   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2560   //   %1 = bitcast <4 x i8> %sroa to i32
2561   // Becomes:
2562   //   %bc = bitcast <16 x i8> %in to <4 x i32>
2563   //   %ext = extractelement <4 x i32> %bc, i32 0
2564   //
2565   // If the shuffle is extracting a contiguous range of values from the input
2566   // vector then each use which is a bitcast of the extracted size can be
2567   // replaced. This will work if the vector types are compatible, and the begin
2568   // index is aligned to a value in the casted vector type. If the begin index
2569   // isn't aligned then we can shuffle the original vector (keeping the same
2570   // vector type) before extracting.
2571   //
2572   // This code will bail out if the target type is fundamentally incompatible
2573   // with vectors of the source type.
2574   //
2575   // Example of <16 x i8>, target type i32:
2576   // Index range [4,8):         v-----------v Will work.
2577   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2578   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
2579   //     <4 x i32>: |           |           |           |           |
2580   //                +-----------+-----------+-----------+-----------+
2581   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
2582   // Target type i40:           ^--------------^ Won't work, bail.
2583   bool MadeChange = false;
2584   if (isShuffleExtractingFromLHS(SVI, Mask)) {
2585     Value *V = LHS;
2586     unsigned MaskElems = Mask.size();
2587     auto *SrcTy = cast<FixedVectorType>(V->getType());
2588     unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedSize();
2589     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2590     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2591     unsigned SrcNumElems = SrcTy->getNumElements();
2592     SmallVector<BitCastInst *, 8> BCs;
2593     DenseMap<Type *, Value *> NewBCs;
2594     for (User *U : SVI.users())
2595       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2596         if (!BC->use_empty())
2597           // Only visit bitcasts that weren't previously handled.
2598           BCs.push_back(BC);
2599     for (BitCastInst *BC : BCs) {
2600       unsigned BegIdx = Mask.front();
2601       Type *TgtTy = BC->getDestTy();
2602       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2603       if (!TgtElemBitWidth)
2604         continue;
2605       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2606       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2607       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2608       if (!VecBitWidthsEqual)
2609         continue;
2610       if (!VectorType::isValidElementType(TgtTy))
2611         continue;
2612       auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2613       if (!BegIsAligned) {
2614         // Shuffle the input so [0,NumElements) contains the output, and
2615         // [NumElems,SrcNumElems) is undef.
2616         SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2617         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2618           ShuffleMask[I] = Idx;
2619         V = Builder.CreateShuffleVector(V, ShuffleMask,
2620                                         SVI.getName() + ".extract");
2621         BegIdx = 0;
2622       }
2623       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2624       assert(SrcElemsPerTgtElem);
2625       BegIdx /= SrcElemsPerTgtElem;
2626       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2627       auto *NewBC =
2628           BCAlreadyExists
2629               ? NewBCs[CastSrcTy]
2630               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2631       if (!BCAlreadyExists)
2632         NewBCs[CastSrcTy] = NewBC;
2633       auto *Ext = Builder.CreateExtractElement(
2634           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2635       // The shufflevector isn't being replaced: the bitcast that used it
2636       // is. InstCombine will visit the newly-created instructions.
2637       replaceInstUsesWith(*BC, Ext);
2638       MadeChange = true;
2639     }
2640   }
2641
2642   // If the LHS is a shufflevector itself, see if we can combine it with this
2643   // one without producing an unusual shuffle.
2644   // Cases that might be simplified:
2645   // 1.
2646   // x1=shuffle(v1,v2,mask1)
2647   //  x=shuffle(x1,undef,mask)
2648   //        ==>
2649   //  x=shuffle(v1,undef,newMask)
2650   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2651   // 2.
2652   // x1=shuffle(v1,undef,mask1)
2653   //  x=shuffle(x1,x2,mask)
2654   // where v1.size() == mask1.size()
2655   //        ==>
2656   //  x=shuffle(v1,x2,newMask)
2657   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2658   // 3.
2659   // x2=shuffle(v2,undef,mask2)
2660   //  x=shuffle(x1,x2,mask)
2661   // where v2.size() == mask2.size()
2662   //        ==>
2663   //  x=shuffle(x1,v2,newMask)
2664   // newMask[i] = (mask[i] < x1.size())
2665   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2666   // 4.
2667   // x1=shuffle(v1,undef,mask1)
2668   // x2=shuffle(v2,undef,mask2)
2669   //  x=shuffle(x1,x2,mask)
2670   // where v1.size() == v2.size()
2671   //        ==>
2672   //  x=shuffle(v1,v2,newMask)
2673   // newMask[i] = (mask[i] < x1.size())
2674   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2675   //
2676   // Here we are really conservative:
2677   // we are absolutely afraid of producing a shuffle mask not in the input
2678   // program, because the code gen may not be smart enough to turn a merged
2679   // shuffle into two specific shuffles: it may produce worse code.  As such,
2680   // we only merge two shuffles if the result is either a splat or one of the
2681   // input shuffle masks.  In this case, merging the shuffles just removes
2682   // one instruction, which we know is safe.  This is good for things like
2683   // turning: (splat(splat)) -> splat, or
2684   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2685   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2686   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2687   if (LHSShuffle)
2688     if (!match(LHSShuffle->getOperand(1), m_Undef()) && !match(RHS, m_Undef()))
2689       LHSShuffle = nullptr;
2690   if (RHSShuffle)
2691     if (!match(RHSShuffle->getOperand(1), m_Undef()))
2692       RHSShuffle = nullptr;
2693   if (!LHSShuffle && !RHSShuffle)
2694     return MadeChange ? &SVI : nullptr;
2695
2696   Value* LHSOp0 = nullptr;
2697   Value* LHSOp1 = nullptr;
2698   Value* RHSOp0 = nullptr;
2699   unsigned LHSOp0Width = 0;
2700   unsigned RHSOp0Width = 0;
2701   if (LHSShuffle) {
2702     LHSOp0 = LHSShuffle->getOperand(0);
2703     LHSOp1 = LHSShuffle->getOperand(1);
2704     LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
2705   }
2706   if (RHSShuffle) {
2707     RHSOp0 = RHSShuffle->getOperand(0);
2708     RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
2709   }
2710   Value* newLHS = LHS;
2711   Value* newRHS = RHS;
2712   if (LHSShuffle) {
2713     // case 1
2714     if (match(RHS, m_Undef())) {
2715       newLHS = LHSOp0;
2716       newRHS = LHSOp1;
2717     }
2718     // case 2 or 4
2719     else if (LHSOp0Width == LHSWidth) {
2720       newLHS = LHSOp0;
2721     }
2722   }
2723   // case 3 or 4
2724   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2725     newRHS = RHSOp0;
2726   }
2727   // case 4
2728   if (LHSOp0 == RHSOp0) {
2729     newLHS = LHSOp0;
2730     newRHS = nullptr;
2731   }
2732
2733   if (newLHS == LHS && newRHS == RHS)
2734     return MadeChange ? &SVI : nullptr;
2735
2736   ArrayRef<int> LHSMask;
2737   ArrayRef<int> RHSMask;
2738   if (newLHS != LHS)
2739     LHSMask = LHSShuffle->getShuffleMask();
2740   if (RHSShuffle && newRHS != RHS)
2741     RHSMask = RHSShuffle->getShuffleMask();
2742
2743   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2744   SmallVector<int, 16> newMask;
2745   bool isSplat = true;
2746   int SplatElt = -1;
2747   // Create a new mask for the new ShuffleVectorInst so that the new
2748   // ShuffleVectorInst is equivalent to the original one.
2749   for (unsigned i = 0; i < VWidth; ++i) {
2750     int eltMask;
2751     if (Mask[i] < 0) {
2752       // This element is an undef value.
2753       eltMask = -1;
2754     } else if (Mask[i] < (int)LHSWidth) {
2755       // This element is from left hand side vector operand.
2756       //
2757       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2758       // new mask value for the element.
2759       if (newLHS != LHS) {
2760         eltMask = LHSMask[Mask[i]];
2761         // If the value selected is an undef value, explicitly specify it
2762         // with a -1 mask value.
2763         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2764           eltMask = -1;
2765       } else
2766         eltMask = Mask[i];
2767     } else {
2768       // This element is from right hand side vector operand
2769       //
2770       // If the value selected is an undef value, explicitly specify it
2771       // with a -1 mask value. (case 1)
2772       if (match(RHS, m_Undef()))
2773         eltMask = -1;
2774       // If RHS is going to be replaced (case 3 or 4), calculate the
2775       // new mask value for the element.
2776       else if (newRHS != RHS) {
2777         eltMask = RHSMask[Mask[i]-LHSWidth];
2778         // If the value selected is an undef value, explicitly specify it
2779         // with a -1 mask value.
2780         if (eltMask >= (int)RHSOp0Width) {
2781           assert(match(RHSShuffle->getOperand(1), m_Undef()) &&
2782                  "should have been check above");
2783           eltMask = -1;
2784         }
2785       } else
2786         eltMask = Mask[i]-LHSWidth;
2787
2788       // If LHS's width is changed, shift the mask value accordingly.
2789       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2790       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2791       // If newRHS == newLHS, we want to remap any references from newRHS to
2792       // newLHS so that we can properly identify splats that may occur due to
2793       // obfuscation across the two vectors.
2794       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2795         eltMask += newLHSWidth;
2796     }
2797
2798     // Check if this could still be a splat.
2799     if (eltMask >= 0) {
2800       if (SplatElt >= 0 && SplatElt != eltMask)
2801         isSplat = false;
2802       SplatElt = eltMask;
2803     }
2804
2805     newMask.push_back(eltMask);
2806   }
2807
2808   // If the result mask is equal to one of the original shuffle masks,
2809   // or is a splat, do the replacement.
2810   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2811     if (!newRHS)
2812       newRHS = UndefValue::get(newLHS->getType());
2813     return new ShuffleVectorInst(newLHS, newRHS, newMask);
2814   }
2815
2816   return MadeChange ? &SVI : nullptr;
2817 }