]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Scalar/DivRemPairs.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Scalar / DivRemPairs.cpp
1 //===- DivRemPairs.cpp - Hoist/decompose division and remainder -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists and/or decomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Support/DebugCounter.h"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "div-rem-pairs"
30 STATISTIC(NumPairs, "Number of div/rem pairs");
31 STATISTIC(NumHoisted, "Number of instructions hoisted");
32 STATISTIC(NumDecomposed, "Number of instructions decomposed");
33 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
34               "Controls transformations in div-rem-pairs pass");
35
36 /// A thin wrapper to store two values that we matched as div-rem pair.
37 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
38 struct DivRemPairWorklistEntry {
39   /// The actual udiv/sdiv instruction. Source of truth.
40   AssertingVH<Instruction> DivInst;
41
42   /// The instruction that we have matched as a remainder instruction.
43   /// Should only be used as Value, don't introspect it.
44   AssertingVH<Instruction> RemInst;
45
46   DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
47       : DivInst(DivInst_), RemInst(RemInst_) {
48     assert((DivInst->getOpcode() == Instruction::UDiv ||
49             DivInst->getOpcode() == Instruction::SDiv) &&
50            "Not a division.");
51     assert(DivInst->getType() == RemInst->getType() && "Types should match.");
52     // We can't check anything else about remainder instruction,
53     // it's not strictly required to be a urem/srem.
54   }
55
56   /// The type for this pair, identical for both the div and rem.
57   Type *getType() const { return DivInst->getType(); }
58
59   /// Is this pair signed or unsigned?
60   bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
61
62   /// In this pair, what are the divident and divisor?
63   Value *getDividend() const { return DivInst->getOperand(0); }
64   Value *getDivisor() const { return DivInst->getOperand(1); }
65 };
66 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
67
68 /// Find matching pairs of integer div/rem ops (they have the same numerator,
69 /// denominator, and signedness). Place those pairs into a worklist for further
70 /// processing. This indirection is needed because we have to use TrackingVH<>
71 /// because we will be doing RAUW, and if one of the rem instructions we change
72 /// happens to be an input to another div/rem in the maps, we'd have problems.
73 static DivRemWorklistTy getWorklist(Function &F) {
74   // Insert all divide and remainder instructions into maps keyed by their
75   // operands and opcode (signed or unsigned).
76   DenseMap<DivRemMapKey, Instruction *> DivMap;
77   // Use a MapVector for RemMap so that instructions are moved/inserted in a
78   // deterministic order.
79   MapVector<DivRemMapKey, Instruction *> RemMap;
80   for (auto &BB : F) {
81     for (auto &I : BB) {
82       if (I.getOpcode() == Instruction::SDiv)
83         DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
84       else if (I.getOpcode() == Instruction::UDiv)
85         DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
86       else if (I.getOpcode() == Instruction::SRem)
87         RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
88       else if (I.getOpcode() == Instruction::URem)
89         RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
90     }
91   }
92
93   // We'll accumulate the matching pairs of div-rem instructions here.
94   DivRemWorklistTy Worklist;
95
96   // We can iterate over either map because we are only looking for matched
97   // pairs. Choose remainders for efficiency because they are usually even more
98   // rare than division.
99   for (auto &RemPair : RemMap) {
100     // Find the matching division instruction from the division map.
101     Instruction *DivInst = DivMap[RemPair.first];
102     if (!DivInst)
103       continue;
104
105     // We have a matching pair of div/rem instructions.
106     NumPairs++;
107     Instruction *RemInst = RemPair.second;
108
109     // Place it in the worklist.
110     Worklist.emplace_back(DivInst, RemInst);
111   }
112
113   return Worklist;
114 }
115
116 /// Find matching pairs of integer div/rem ops (they have the same numerator,
117 /// denominator, and signedness). If they exist in different basic blocks, bring
118 /// them together by hoisting or replace the common division operation that is
119 /// implicit in the remainder:
120 /// X % Y <--> X - ((X / Y) * Y).
121 ///
122 /// We can largely ignore the normal safety and cost constraints on speculation
123 /// of these ops when we find a matching pair. This is because we are already
124 /// guaranteed that any exceptions and most cost are already incurred by the
125 /// first member of the pair.
126 ///
127 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
128 /// SimplifyCFG, but it's split off on its own because it's different enough
129 /// that it doesn't quite match the stated objectives of those passes.
130 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
131                            const DominatorTree &DT) {
132   bool Changed = false;
133
134   // Get the matching pairs of div-rem instructions. We want this extra
135   // indirection to avoid dealing with having to RAUW the keys of the maps.
136   DivRemWorklistTy Worklist = getWorklist(F);
137
138   // Process each entry in the worklist.
139   for (DivRemPairWorklistEntry &E : Worklist) {
140     bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
141
142     auto &DivInst = E.DivInst;
143     auto &RemInst = E.RemInst;
144
145     // If the target supports div+rem and the instructions are in the same block
146     // already, there's nothing to do. The backend should handle this. If the
147     // target does not support div+rem, then we will decompose the rem.
148     if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
149       continue;
150
151     bool DivDominates = DT.dominates(DivInst, RemInst);
152     if (!DivDominates && !DT.dominates(RemInst, DivInst))
153       continue;
154
155     if (!DebugCounter::shouldExecute(DRPCounter))
156       continue;
157
158     if (HasDivRemOp) {
159       // The target has a single div/rem operation. Hoist the lower instruction
160       // to make the matched pair visible to the backend.
161       if (DivDominates)
162         RemInst->moveAfter(DivInst);
163       else
164         DivInst->moveAfter(RemInst);
165       NumHoisted++;
166     } else {
167       // The target does not have a single div/rem operation. Decompose the
168       // remainder calculation as:
169       // X % Y --> X - ((X / Y) * Y).
170       Value *X = E.getDividend();
171       Value *Y = E.getDivisor();
172       Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
173       Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
174
175       // If the remainder dominates, then hoist the division up to that block:
176       //
177       // bb1:
178       //   %rem = srem %x, %y
179       // bb2:
180       //   %div = sdiv %x, %y
181       // -->
182       // bb1:
183       //   %div = sdiv %x, %y
184       //   %mul = mul %div, %y
185       //   %rem = sub %x, %mul
186       //
187       // If the division dominates, it's already in the right place. The mul+sub
188       // will be in a different block because we don't assume that they are
189       // cheap to speculatively execute:
190       //
191       // bb1:
192       //   %div = sdiv %x, %y
193       // bb2:
194       //   %rem = srem %x, %y
195       // -->
196       // bb1:
197       //   %div = sdiv %x, %y
198       // bb2:
199       //   %mul = mul %div, %y
200       //   %rem = sub %x, %mul
201       //
202       // If the div and rem are in the same block, we do the same transform,
203       // but any code movement would be within the same block.
204
205       if (!DivDominates)
206         DivInst->moveBefore(RemInst);
207       Mul->insertAfter(RemInst);
208       Sub->insertAfter(Mul);
209
210       // Now kill the explicit remainder. We have replaced it with:
211       // (sub X, (mul (div X, Y), Y)
212       Sub->setName(RemInst->getName() + ".decomposed");
213       Instruction *OrigRemInst = RemInst;
214       // Update AssertingVH<> with new instruction so it doesn't assert.
215       RemInst = Sub;
216       // And replace the original instruction with the new one.
217       OrigRemInst->replaceAllUsesWith(Sub);
218       OrigRemInst->eraseFromParent();
219       NumDecomposed++;
220     }
221     Changed = true;
222   }
223
224   return Changed;
225 }
226
227 // Pass manager boilerplate below here.
228
229 namespace {
230 struct DivRemPairsLegacyPass : public FunctionPass {
231   static char ID;
232   DivRemPairsLegacyPass() : FunctionPass(ID) {
233     initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
234   }
235
236   void getAnalysisUsage(AnalysisUsage &AU) const override {
237     AU.addRequired<DominatorTreeWrapperPass>();
238     AU.addRequired<TargetTransformInfoWrapperPass>();
239     AU.setPreservesCFG();
240     AU.addPreserved<DominatorTreeWrapperPass>();
241     AU.addPreserved<GlobalsAAWrapperPass>();
242     FunctionPass::getAnalysisUsage(AU);
243   }
244
245   bool runOnFunction(Function &F) override {
246     if (skipFunction(F))
247       return false;
248     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
249     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
250     return optimizeDivRem(F, TTI, DT);
251   }
252 };
253 } // namespace
254
255 char DivRemPairsLegacyPass::ID = 0;
256 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
257                       "Hoist/decompose integer division and remainder", false,
258                       false)
259 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
260 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
261                     "Hoist/decompose integer division and remainder", false,
262                     false)
263 FunctionPass *llvm::createDivRemPairsPass() {
264   return new DivRemPairsLegacyPass();
265 }
266
267 PreservedAnalyses DivRemPairsPass::run(Function &F,
268                                        FunctionAnalysisManager &FAM) {
269   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
270   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
271   if (!optimizeDivRem(F, TTI, DT))
272     return PreservedAnalyses::all();
273   // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
274   PreservedAnalyses PA;
275   PA.preserveSet<CFGAnalyses>();
276   PA.preserve<GlobalsAA>();
277   return PA;
278 }