]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Scalar/GVN.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Scalar / GVN.cpp
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/InitializePasses.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/VNCoercion.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstdint>
82 #include <utility>
83 #include <vector>
84
85 using namespace llvm;
86 using namespace llvm::gvn;
87 using namespace llvm::VNCoercion;
88 using namespace PatternMatch;
89
90 #define DEBUG_TYPE "gvn"
91
92 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
93 STATISTIC(NumGVNLoad,   "Number of loads deleted");
94 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
95 STATISTIC(NumGVNBlocks, "Number of blocks merged");
96 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
97 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
98 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
99
100 static cl::opt<bool> EnablePRE("enable-pre",
101                                cl::init(true), cl::Hidden);
102 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
103 static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
104
105 // Maximum allowed recursion depth.
106 static cl::opt<uint32_t>
107 MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
108                 cl::desc("Max recurse depth in GVN (default = 1000)"));
109
110 static cl::opt<uint32_t> MaxNumDeps(
111     "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
112     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
113
114 struct llvm::GVN::Expression {
115   uint32_t opcode;
116   Type *type = nullptr;
117   bool commutative = false;
118   SmallVector<uint32_t, 4> varargs;
119
120   Expression(uint32_t o = ~2U) : opcode(o) {}
121
122   bool operator==(const Expression &other) const {
123     if (opcode != other.opcode)
124       return false;
125     if (opcode == ~0U || opcode == ~1U)
126       return true;
127     if (type != other.type)
128       return false;
129     if (varargs != other.varargs)
130       return false;
131     return true;
132   }
133
134   friend hash_code hash_value(const Expression &Value) {
135     return hash_combine(
136         Value.opcode, Value.type,
137         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
138   }
139 };
140
141 namespace llvm {
142
143 template <> struct DenseMapInfo<GVN::Expression> {
144   static inline GVN::Expression getEmptyKey() { return ~0U; }
145   static inline GVN::Expression getTombstoneKey() { return ~1U; }
146
147   static unsigned getHashValue(const GVN::Expression &e) {
148     using llvm::hash_value;
149
150     return static_cast<unsigned>(hash_value(e));
151   }
152
153   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
154     return LHS == RHS;
155   }
156 };
157
158 } // end namespace llvm
159
160 /// Represents a particular available value that we know how to materialize.
161 /// Materialization of an AvailableValue never fails.  An AvailableValue is
162 /// implicitly associated with a rematerialization point which is the
163 /// location of the instruction from which it was formed.
164 struct llvm::gvn::AvailableValue {
165   enum ValType {
166     SimpleVal, // A simple offsetted value that is accessed.
167     LoadVal,   // A value produced by a load.
168     MemIntrin, // A memory intrinsic which is loaded from.
169     UndefVal   // A UndefValue representing a value from dead block (which
170                // is not yet physically removed from the CFG).
171   };
172
173   /// V - The value that is live out of the block.
174   PointerIntPair<Value *, 2, ValType> Val;
175
176   /// Offset - The byte offset in Val that is interesting for the load query.
177   unsigned Offset = 0;
178
179   static AvailableValue get(Value *V, unsigned Offset = 0) {
180     AvailableValue Res;
181     Res.Val.setPointer(V);
182     Res.Val.setInt(SimpleVal);
183     Res.Offset = Offset;
184     return Res;
185   }
186
187   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
188     AvailableValue Res;
189     Res.Val.setPointer(MI);
190     Res.Val.setInt(MemIntrin);
191     Res.Offset = Offset;
192     return Res;
193   }
194
195   static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
196     AvailableValue Res;
197     Res.Val.setPointer(LI);
198     Res.Val.setInt(LoadVal);
199     Res.Offset = Offset;
200     return Res;
201   }
202
203   static AvailableValue getUndef() {
204     AvailableValue Res;
205     Res.Val.setPointer(nullptr);
206     Res.Val.setInt(UndefVal);
207     Res.Offset = 0;
208     return Res;
209   }
210
211   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
212   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
213   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
214   bool isUndefValue() const { return Val.getInt() == UndefVal; }
215
216   Value *getSimpleValue() const {
217     assert(isSimpleValue() && "Wrong accessor");
218     return Val.getPointer();
219   }
220
221   LoadInst *getCoercedLoadValue() const {
222     assert(isCoercedLoadValue() && "Wrong accessor");
223     return cast<LoadInst>(Val.getPointer());
224   }
225
226   MemIntrinsic *getMemIntrinValue() const {
227     assert(isMemIntrinValue() && "Wrong accessor");
228     return cast<MemIntrinsic>(Val.getPointer());
229   }
230
231   /// Emit code at the specified insertion point to adjust the value defined
232   /// here to the specified type. This handles various coercion cases.
233   Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
234                                   GVN &gvn) const;
235 };
236
237 /// Represents an AvailableValue which can be rematerialized at the end of
238 /// the associated BasicBlock.
239 struct llvm::gvn::AvailableValueInBlock {
240   /// BB - The basic block in question.
241   BasicBlock *BB = nullptr;
242
243   /// AV - The actual available value
244   AvailableValue AV;
245
246   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
247     AvailableValueInBlock Res;
248     Res.BB = BB;
249     Res.AV = std::move(AV);
250     return Res;
251   }
252
253   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
254                                    unsigned Offset = 0) {
255     return get(BB, AvailableValue::get(V, Offset));
256   }
257
258   static AvailableValueInBlock getUndef(BasicBlock *BB) {
259     return get(BB, AvailableValue::getUndef());
260   }
261
262   /// Emit code at the end of this block to adjust the value defined here to
263   /// the specified type. This handles various coercion cases.
264   Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
265     return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
266   }
267 };
268
269 //===----------------------------------------------------------------------===//
270 //                     ValueTable Internal Functions
271 //===----------------------------------------------------------------------===//
272
273 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
274   Expression e;
275   e.type = I->getType();
276   e.opcode = I->getOpcode();
277   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
278        OI != OE; ++OI)
279     e.varargs.push_back(lookupOrAdd(*OI));
280   if (I->isCommutative()) {
281     // Ensure that commutative instructions that only differ by a permutation
282     // of their operands get the same value number by sorting the operand value
283     // numbers.  Since all commutative instructions have two operands it is more
284     // efficient to sort by hand rather than using, say, std::sort.
285     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
286     if (e.varargs[0] > e.varargs[1])
287       std::swap(e.varargs[0], e.varargs[1]);
288     e.commutative = true;
289   }
290
291   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
292     // Sort the operand value numbers so x<y and y>x get the same value number.
293     CmpInst::Predicate Predicate = C->getPredicate();
294     if (e.varargs[0] > e.varargs[1]) {
295       std::swap(e.varargs[0], e.varargs[1]);
296       Predicate = CmpInst::getSwappedPredicate(Predicate);
297     }
298     e.opcode = (C->getOpcode() << 8) | Predicate;
299     e.commutative = true;
300   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
301     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
302          II != IE; ++II)
303       e.varargs.push_back(*II);
304   }
305
306   return e;
307 }
308
309 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
310                                                CmpInst::Predicate Predicate,
311                                                Value *LHS, Value *RHS) {
312   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
313          "Not a comparison!");
314   Expression e;
315   e.type = CmpInst::makeCmpResultType(LHS->getType());
316   e.varargs.push_back(lookupOrAdd(LHS));
317   e.varargs.push_back(lookupOrAdd(RHS));
318
319   // Sort the operand value numbers so x<y and y>x get the same value number.
320   if (e.varargs[0] > e.varargs[1]) {
321     std::swap(e.varargs[0], e.varargs[1]);
322     Predicate = CmpInst::getSwappedPredicate(Predicate);
323   }
324   e.opcode = (Opcode << 8) | Predicate;
325   e.commutative = true;
326   return e;
327 }
328
329 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
330   assert(EI && "Not an ExtractValueInst?");
331   Expression e;
332   e.type = EI->getType();
333   e.opcode = 0;
334
335   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
336   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
337     // EI is an extract from one of our with.overflow intrinsics. Synthesize
338     // a semantically equivalent expression instead of an extract value
339     // expression.
340     e.opcode = WO->getBinaryOp();
341     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
342     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
343     return e;
344   }
345
346   // Not a recognised intrinsic. Fall back to producing an extract value
347   // expression.
348   e.opcode = EI->getOpcode();
349   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
350        OI != OE; ++OI)
351     e.varargs.push_back(lookupOrAdd(*OI));
352
353   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
354          II != IE; ++II)
355     e.varargs.push_back(*II);
356
357   return e;
358 }
359
360 //===----------------------------------------------------------------------===//
361 //                     ValueTable External Functions
362 //===----------------------------------------------------------------------===//
363
364 GVN::ValueTable::ValueTable() = default;
365 GVN::ValueTable::ValueTable(const ValueTable &) = default;
366 GVN::ValueTable::ValueTable(ValueTable &&) = default;
367 GVN::ValueTable::~ValueTable() = default;
368 GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default;
369
370 /// add - Insert a value into the table with a specified value number.
371 void GVN::ValueTable::add(Value *V, uint32_t num) {
372   valueNumbering.insert(std::make_pair(V, num));
373   if (PHINode *PN = dyn_cast<PHINode>(V))
374     NumberingPhi[num] = PN;
375 }
376
377 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
378   if (AA->doesNotAccessMemory(C)) {
379     Expression exp = createExpr(C);
380     uint32_t e = assignExpNewValueNum(exp).first;
381     valueNumbering[C] = e;
382     return e;
383   } else if (MD && AA->onlyReadsMemory(C)) {
384     Expression exp = createExpr(C);
385     auto ValNum = assignExpNewValueNum(exp);
386     if (ValNum.second) {
387       valueNumbering[C] = ValNum.first;
388       return ValNum.first;
389     }
390
391     MemDepResult local_dep = MD->getDependency(C);
392
393     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
394       valueNumbering[C] =  nextValueNumber;
395       return nextValueNumber++;
396     }
397
398     if (local_dep.isDef()) {
399       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
400
401       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
402         valueNumbering[C] = nextValueNumber;
403         return nextValueNumber++;
404       }
405
406       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
407         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
408         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
409         if (c_vn != cd_vn) {
410           valueNumbering[C] = nextValueNumber;
411           return nextValueNumber++;
412         }
413       }
414
415       uint32_t v = lookupOrAdd(local_cdep);
416       valueNumbering[C] = v;
417       return v;
418     }
419
420     // Non-local case.
421     const MemoryDependenceResults::NonLocalDepInfo &deps =
422         MD->getNonLocalCallDependency(C);
423     // FIXME: Move the checking logic to MemDep!
424     CallInst* cdep = nullptr;
425
426     // Check to see if we have a single dominating call instruction that is
427     // identical to C.
428     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
429       const NonLocalDepEntry *I = &deps[i];
430       if (I->getResult().isNonLocal())
431         continue;
432
433       // We don't handle non-definitions.  If we already have a call, reject
434       // instruction dependencies.
435       if (!I->getResult().isDef() || cdep != nullptr) {
436         cdep = nullptr;
437         break;
438       }
439
440       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
441       // FIXME: All duplicated with non-local case.
442       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
443         cdep = NonLocalDepCall;
444         continue;
445       }
446
447       cdep = nullptr;
448       break;
449     }
450
451     if (!cdep) {
452       valueNumbering[C] = nextValueNumber;
453       return nextValueNumber++;
454     }
455
456     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
457       valueNumbering[C] = nextValueNumber;
458       return nextValueNumber++;
459     }
460     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
461       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
462       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
463       if (c_vn != cd_vn) {
464         valueNumbering[C] = nextValueNumber;
465         return nextValueNumber++;
466       }
467     }
468
469     uint32_t v = lookupOrAdd(cdep);
470     valueNumbering[C] = v;
471     return v;
472   } else {
473     valueNumbering[C] = nextValueNumber;
474     return nextValueNumber++;
475   }
476 }
477
478 /// Returns true if a value number exists for the specified value.
479 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
480
481 /// lookup_or_add - Returns the value number for the specified value, assigning
482 /// it a new number if it did not have one before.
483 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
484   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
485   if (VI != valueNumbering.end())
486     return VI->second;
487
488   if (!isa<Instruction>(V)) {
489     valueNumbering[V] = nextValueNumber;
490     return nextValueNumber++;
491   }
492
493   Instruction* I = cast<Instruction>(V);
494   Expression exp;
495   switch (I->getOpcode()) {
496     case Instruction::Call:
497       return lookupOrAddCall(cast<CallInst>(I));
498     case Instruction::FNeg:
499     case Instruction::Add:
500     case Instruction::FAdd:
501     case Instruction::Sub:
502     case Instruction::FSub:
503     case Instruction::Mul:
504     case Instruction::FMul:
505     case Instruction::UDiv:
506     case Instruction::SDiv:
507     case Instruction::FDiv:
508     case Instruction::URem:
509     case Instruction::SRem:
510     case Instruction::FRem:
511     case Instruction::Shl:
512     case Instruction::LShr:
513     case Instruction::AShr:
514     case Instruction::And:
515     case Instruction::Or:
516     case Instruction::Xor:
517     case Instruction::ICmp:
518     case Instruction::FCmp:
519     case Instruction::Trunc:
520     case Instruction::ZExt:
521     case Instruction::SExt:
522     case Instruction::FPToUI:
523     case Instruction::FPToSI:
524     case Instruction::UIToFP:
525     case Instruction::SIToFP:
526     case Instruction::FPTrunc:
527     case Instruction::FPExt:
528     case Instruction::PtrToInt:
529     case Instruction::IntToPtr:
530     case Instruction::AddrSpaceCast:
531     case Instruction::BitCast:
532     case Instruction::Select:
533     case Instruction::ExtractElement:
534     case Instruction::InsertElement:
535     case Instruction::ShuffleVector:
536     case Instruction::InsertValue:
537     case Instruction::GetElementPtr:
538       exp = createExpr(I);
539       break;
540     case Instruction::ExtractValue:
541       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
542       break;
543     case Instruction::PHI:
544       valueNumbering[V] = nextValueNumber;
545       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
546       return nextValueNumber++;
547     default:
548       valueNumbering[V] = nextValueNumber;
549       return nextValueNumber++;
550   }
551
552   uint32_t e = assignExpNewValueNum(exp).first;
553   valueNumbering[V] = e;
554   return e;
555 }
556
557 /// Returns the value number of the specified value. Fails if
558 /// the value has not yet been numbered.
559 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
560   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
561   if (Verify) {
562     assert(VI != valueNumbering.end() && "Value not numbered?");
563     return VI->second;
564   }
565   return (VI != valueNumbering.end()) ? VI->second : 0;
566 }
567
568 /// Returns the value number of the given comparison,
569 /// assigning it a new number if it did not have one before.  Useful when
570 /// we deduced the result of a comparison, but don't immediately have an
571 /// instruction realizing that comparison to hand.
572 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
573                                          CmpInst::Predicate Predicate,
574                                          Value *LHS, Value *RHS) {
575   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
576   return assignExpNewValueNum(exp).first;
577 }
578
579 /// Remove all entries from the ValueTable.
580 void GVN::ValueTable::clear() {
581   valueNumbering.clear();
582   expressionNumbering.clear();
583   NumberingPhi.clear();
584   PhiTranslateTable.clear();
585   nextValueNumber = 1;
586   Expressions.clear();
587   ExprIdx.clear();
588   nextExprNumber = 0;
589 }
590
591 /// Remove a value from the value numbering.
592 void GVN::ValueTable::erase(Value *V) {
593   uint32_t Num = valueNumbering.lookup(V);
594   valueNumbering.erase(V);
595   // If V is PHINode, V <--> value number is an one-to-one mapping.
596   if (isa<PHINode>(V))
597     NumberingPhi.erase(Num);
598 }
599
600 /// verifyRemoved - Verify that the value is removed from all internal data
601 /// structures.
602 void GVN::ValueTable::verifyRemoved(const Value *V) const {
603   for (DenseMap<Value*, uint32_t>::const_iterator
604          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
605     assert(I->first != V && "Inst still occurs in value numbering map!");
606   }
607 }
608
609 //===----------------------------------------------------------------------===//
610 //                                GVN Pass
611 //===----------------------------------------------------------------------===//
612
613 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
614   // FIXME: The order of evaluation of these 'getResult' calls is very
615   // significant! Re-ordering these variables will cause GVN when run alone to
616   // be less effective! We should fix memdep and basic-aa to not exhibit this
617   // behavior, but until then don't change the order here.
618   auto &AC = AM.getResult<AssumptionAnalysis>(F);
619   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
620   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
621   auto &AA = AM.getResult<AAManager>(F);
622   auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
623   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
624   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
625   bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
626   if (!Changed)
627     return PreservedAnalyses::all();
628   PreservedAnalyses PA;
629   PA.preserve<DominatorTreeAnalysis>();
630   PA.preserve<GlobalsAA>();
631   PA.preserve<TargetLibraryAnalysis>();
632   if (LI)
633     PA.preserve<LoopAnalysis>();
634   return PA;
635 }
636
637 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
638 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
639   errs() << "{\n";
640   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
641        E = d.end(); I != E; ++I) {
642       errs() << I->first << "\n";
643       I->second->dump();
644   }
645   errs() << "}\n";
646 }
647 #endif
648
649 /// Return true if we can prove that the value
650 /// we're analyzing is fully available in the specified block.  As we go, keep
651 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
652 /// map is actually a tri-state map with the following values:
653 ///   0) we know the block *is not* fully available.
654 ///   1) we know the block *is* fully available.
655 ///   2) we do not know whether the block is fully available or not, but we are
656 ///      currently speculating that it will be.
657 ///   3) we are speculating for this block and have used that to speculate for
658 ///      other blocks.
659 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
660                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
661                             uint32_t RecurseDepth) {
662   if (RecurseDepth > MaxRecurseDepth)
663     return false;
664
665   // Optimistically assume that the block is fully available and check to see
666   // if we already know about this block in one lookup.
667   std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
668     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
669
670   // If the entry already existed for this block, return the precomputed value.
671   if (!IV.second) {
672     // If this is a speculative "available" value, mark it as being used for
673     // speculation of other blocks.
674     if (IV.first->second == 2)
675       IV.first->second = 3;
676     return IV.first->second != 0;
677   }
678
679   // Otherwise, see if it is fully available in all predecessors.
680   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
681
682   // If this block has no predecessors, it isn't live-in here.
683   if (PI == PE)
684     goto SpeculationFailure;
685
686   for (; PI != PE; ++PI)
687     // If the value isn't fully available in one of our predecessors, then it
688     // isn't fully available in this block either.  Undo our previous
689     // optimistic assumption and bail out.
690     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
691       goto SpeculationFailure;
692
693   return true;
694
695 // If we get here, we found out that this is not, after
696 // all, a fully-available block.  We have a problem if we speculated on this and
697 // used the speculation to mark other blocks as available.
698 SpeculationFailure:
699   char &BBVal = FullyAvailableBlocks[BB];
700
701   // If we didn't speculate on this, just return with it set to false.
702   if (BBVal == 2) {
703     BBVal = 0;
704     return false;
705   }
706
707   // If we did speculate on this value, we could have blocks set to 1 that are
708   // incorrect.  Walk the (transitive) successors of this block and mark them as
709   // 0 if set to one.
710   SmallVector<BasicBlock*, 32> BBWorklist;
711   BBWorklist.push_back(BB);
712
713   do {
714     BasicBlock *Entry = BBWorklist.pop_back_val();
715     // Note that this sets blocks to 0 (unavailable) if they happen to not
716     // already be in FullyAvailableBlocks.  This is safe.
717     char &EntryVal = FullyAvailableBlocks[Entry];
718     if (EntryVal == 0) continue;  // Already unavailable.
719
720     // Mark as unavailable.
721     EntryVal = 0;
722
723     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
724   } while (!BBWorklist.empty());
725
726   return false;
727 }
728
729 /// Given a set of loads specified by ValuesPerBlock,
730 /// construct SSA form, allowing us to eliminate LI.  This returns the value
731 /// that should be used at LI's definition site.
732 static Value *ConstructSSAForLoadSet(LoadInst *LI,
733                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
734                                      GVN &gvn) {
735   // Check for the fully redundant, dominating load case.  In this case, we can
736   // just use the dominating value directly.
737   if (ValuesPerBlock.size() == 1 &&
738       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
739                                                LI->getParent())) {
740     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
741            "Dead BB dominate this block");
742     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
743   }
744
745   // Otherwise, we have to construct SSA form.
746   SmallVector<PHINode*, 8> NewPHIs;
747   SSAUpdater SSAUpdate(&NewPHIs);
748   SSAUpdate.Initialize(LI->getType(), LI->getName());
749
750   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
751     BasicBlock *BB = AV.BB;
752
753     if (SSAUpdate.HasValueForBlock(BB))
754       continue;
755
756     // If the value is the load that we will be eliminating, and the block it's
757     // available in is the block that the load is in, then don't add it as
758     // SSAUpdater will resolve the value to the relevant phi which may let it
759     // avoid phi construction entirely if there's actually only one value.
760     if (BB == LI->getParent() &&
761         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
762          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
763       continue;
764
765     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
766   }
767
768   // Perform PHI construction.
769   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
770 }
771
772 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
773                                                 Instruction *InsertPt,
774                                                 GVN &gvn) const {
775   Value *Res;
776   Type *LoadTy = LI->getType();
777   const DataLayout &DL = LI->getModule()->getDataLayout();
778   if (isSimpleValue()) {
779     Res = getSimpleValue();
780     if (Res->getType() != LoadTy) {
781       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
782
783       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
784                         << "  " << *getSimpleValue() << '\n'
785                         << *Res << '\n'
786                         << "\n\n\n");
787     }
788   } else if (isCoercedLoadValue()) {
789     LoadInst *Load = getCoercedLoadValue();
790     if (Load->getType() == LoadTy && Offset == 0) {
791       Res = Load;
792     } else {
793       Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
794       // We would like to use gvn.markInstructionForDeletion here, but we can't
795       // because the load is already memoized into the leader map table that GVN
796       // tracks.  It is potentially possible to remove the load from the table,
797       // but then there all of the operations based on it would need to be
798       // rehashed.  Just leave the dead load around.
799       gvn.getMemDep().removeInstruction(Load);
800       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
801                         << "  " << *getCoercedLoadValue() << '\n'
802                         << *Res << '\n'
803                         << "\n\n\n");
804     }
805   } else if (isMemIntrinValue()) {
806     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
807                                  InsertPt, DL);
808     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
809                       << "  " << *getMemIntrinValue() << '\n'
810                       << *Res << '\n'
811                       << "\n\n\n");
812   } else {
813     assert(isUndefValue() && "Should be UndefVal");
814     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
815     return UndefValue::get(LoadTy);
816   }
817   assert(Res && "failed to materialize?");
818   return Res;
819 }
820
821 static bool isLifetimeStart(const Instruction *Inst) {
822   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
823     return II->getIntrinsicID() == Intrinsic::lifetime_start;
824   return false;
825 }
826
827 /// Try to locate the three instruction involved in a missed
828 /// load-elimination case that is due to an intervening store.
829 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
830                                    DominatorTree *DT,
831                                    OptimizationRemarkEmitter *ORE) {
832   using namespace ore;
833
834   User *OtherAccess = nullptr;
835
836   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
837   R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
838     << setExtraArgs();
839
840   for (auto *U : LI->getPointerOperand()->users())
841     if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
842         DT->dominates(cast<Instruction>(U), LI)) {
843       // FIXME: for now give up if there are multiple memory accesses that
844       // dominate the load.  We need further analysis to decide which one is
845       // that we're forwarding from.
846       if (OtherAccess)
847         OtherAccess = nullptr;
848       else
849         OtherAccess = U;
850     }
851
852   if (OtherAccess)
853     R << " in favor of " << NV("OtherAccess", OtherAccess);
854
855   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
856
857   ORE->emit(R);
858 }
859
860 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
861                                   Value *Address, AvailableValue &Res) {
862   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
863          "expected a local dependence");
864   assert(LI->isUnordered() && "rules below are incorrect for ordered access");
865
866   const DataLayout &DL = LI->getModule()->getDataLayout();
867
868   Instruction *DepInst = DepInfo.getInst();
869   if (DepInfo.isClobber()) {
870     // If the dependence is to a store that writes to a superset of the bits
871     // read by the load, we can extract the bits we need for the load from the
872     // stored value.
873     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
874       // Can't forward from non-atomic to atomic without violating memory model.
875       if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
876         int Offset =
877           analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
878         if (Offset != -1) {
879           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
880           return true;
881         }
882       }
883     }
884
885     // Check to see if we have something like this:
886     //    load i32* P
887     //    load i8* (P+1)
888     // if we have this, replace the later with an extraction from the former.
889     if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
890       // If this is a clobber and L is the first instruction in its block, then
891       // we have the first instruction in the entry block.
892       // Can't forward from non-atomic to atomic without violating memory model.
893       if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
894         int Offset =
895           analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
896
897         if (Offset != -1) {
898           Res = AvailableValue::getLoad(DepLI, Offset);
899           return true;
900         }
901       }
902     }
903
904     // If the clobbering value is a memset/memcpy/memmove, see if we can
905     // forward a value on from it.
906     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
907       if (Address && !LI->isAtomic()) {
908         int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
909                                                       DepMI, DL);
910         if (Offset != -1) {
911           Res = AvailableValue::getMI(DepMI, Offset);
912           return true;
913         }
914       }
915     }
916     // Nothing known about this clobber, have to be conservative
917     LLVM_DEBUG(
918         // fast print dep, using operator<< on instruction is too slow.
919         dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
920         dbgs() << " is clobbered by " << *DepInst << '\n';);
921     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
922       reportMayClobberedLoad(LI, DepInfo, DT, ORE);
923
924     return false;
925   }
926   assert(DepInfo.isDef() && "follows from above");
927
928   // Loading the allocation -> undef.
929   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
930       // Loading immediately after lifetime begin -> undef.
931       isLifetimeStart(DepInst)) {
932     Res = AvailableValue::get(UndefValue::get(LI->getType()));
933     return true;
934   }
935
936   // Loading from calloc (which zero initializes memory) -> zero
937   if (isCallocLikeFn(DepInst, TLI)) {
938     Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
939     return true;
940   }
941
942   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
943     // Reject loads and stores that are to the same address but are of
944     // different types if we have to. If the stored value is larger or equal to
945     // the loaded value, we can reuse it.
946     if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(),
947                                          DL))
948       return false;
949
950     // Can't forward from non-atomic to atomic without violating memory model.
951     if (S->isAtomic() < LI->isAtomic())
952       return false;
953
954     Res = AvailableValue::get(S->getValueOperand());
955     return true;
956   }
957
958   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
959     // If the types mismatch and we can't handle it, reject reuse of the load.
960     // If the stored value is larger or equal to the loaded value, we can reuse
961     // it.
962     if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
963       return false;
964
965     // Can't forward from non-atomic to atomic without violating memory model.
966     if (LD->isAtomic() < LI->isAtomic())
967       return false;
968
969     Res = AvailableValue::getLoad(LD);
970     return true;
971   }
972
973   // Unknown def - must be conservative
974   LLVM_DEBUG(
975       // fast print dep, using operator<< on instruction is too slow.
976       dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
977       dbgs() << " has unknown def " << *DepInst << '\n';);
978   return false;
979 }
980
981 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
982                                   AvailValInBlkVect &ValuesPerBlock,
983                                   UnavailBlkVect &UnavailableBlocks) {
984   // Filter out useless results (non-locals, etc).  Keep track of the blocks
985   // where we have a value available in repl, also keep track of whether we see
986   // dependencies that produce an unknown value for the load (such as a call
987   // that could potentially clobber the load).
988   unsigned NumDeps = Deps.size();
989   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
990     BasicBlock *DepBB = Deps[i].getBB();
991     MemDepResult DepInfo = Deps[i].getResult();
992
993     if (DeadBlocks.count(DepBB)) {
994       // Dead dependent mem-op disguise as a load evaluating the same value
995       // as the load in question.
996       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
997       continue;
998     }
999
1000     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1001       UnavailableBlocks.push_back(DepBB);
1002       continue;
1003     }
1004
1005     // The address being loaded in this non-local block may not be the same as
1006     // the pointer operand of the load if PHI translation occurs.  Make sure
1007     // to consider the right address.
1008     Value *Address = Deps[i].getAddress();
1009
1010     AvailableValue AV;
1011     if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1012       // subtlety: because we know this was a non-local dependency, we know
1013       // it's safe to materialize anywhere between the instruction within
1014       // DepInfo and the end of it's block.
1015       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1016                                                           std::move(AV)));
1017     } else {
1018       UnavailableBlocks.push_back(DepBB);
1019     }
1020   }
1021
1022   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1023          "post condition violation");
1024 }
1025
1026 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1027                          UnavailBlkVect &UnavailableBlocks) {
1028   // Okay, we have *some* definitions of the value.  This means that the value
1029   // is available in some of our (transitive) predecessors.  Lets think about
1030   // doing PRE of this load.  This will involve inserting a new load into the
1031   // predecessor when it's not available.  We could do this in general, but
1032   // prefer to not increase code size.  As such, we only do this when we know
1033   // that we only have to insert *one* load (which means we're basically moving
1034   // the load, not inserting a new one).
1035
1036   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1037                                         UnavailableBlocks.end());
1038
1039   // Let's find the first basic block with more than one predecessor.  Walk
1040   // backwards through predecessors if needed.
1041   BasicBlock *LoadBB = LI->getParent();
1042   BasicBlock *TmpBB = LoadBB;
1043   bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1044
1045   // Check that there is no implicit control flow instructions above our load in
1046   // its block. If there is an instruction that doesn't always pass the
1047   // execution to the following instruction, then moving through it may become
1048   // invalid. For example:
1049   //
1050   // int arr[LEN];
1051   // int index = ???;
1052   // ...
1053   // guard(0 <= index && index < LEN);
1054   // use(arr[index]);
1055   //
1056   // It is illegal to move the array access to any point above the guard,
1057   // because if the index is out of bounds we should deoptimize rather than
1058   // access the array.
1059   // Check that there is no guard in this block above our instruction.
1060   if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
1061     return false;
1062   while (TmpBB->getSinglePredecessor()) {
1063     TmpBB = TmpBB->getSinglePredecessor();
1064     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1065       return false;
1066     if (Blockers.count(TmpBB))
1067       return false;
1068
1069     // If any of these blocks has more than one successor (i.e. if the edge we
1070     // just traversed was critical), then there are other paths through this
1071     // block along which the load may not be anticipated.  Hoisting the load
1072     // above this block would be adding the load to execution paths along
1073     // which it was not previously executed.
1074     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1075       return false;
1076
1077     // Check that there is no implicit control flow in a block above.
1078     if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
1079       return false;
1080   }
1081
1082   assert(TmpBB);
1083   LoadBB = TmpBB;
1084
1085   // Check to see how many predecessors have the loaded value fully
1086   // available.
1087   MapVector<BasicBlock *, Value *> PredLoads;
1088   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1089   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1090     FullyAvailableBlocks[AV.BB] = true;
1091   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1092     FullyAvailableBlocks[UnavailableBB] = false;
1093
1094   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1095   for (BasicBlock *Pred : predecessors(LoadBB)) {
1096     // If any predecessor block is an EH pad that does not allow non-PHI
1097     // instructions before the terminator, we can't PRE the load.
1098     if (Pred->getTerminator()->isEHPad()) {
1099       LLVM_DEBUG(
1100           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1101                  << Pred->getName() << "': " << *LI << '\n');
1102       return false;
1103     }
1104
1105     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1106       continue;
1107     }
1108
1109     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1110       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1111         LLVM_DEBUG(
1112             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1113                    << Pred->getName() << "': " << *LI << '\n');
1114         return false;
1115       }
1116
1117       // FIXME: Can we support the fallthrough edge?
1118       if (isa<CallBrInst>(Pred->getTerminator())) {
1119         LLVM_DEBUG(
1120             dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1121                    << Pred->getName() << "': " << *LI << '\n');
1122         return false;
1123       }
1124
1125       if (LoadBB->isEHPad()) {
1126         LLVM_DEBUG(
1127             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1128                    << Pred->getName() << "': " << *LI << '\n');
1129         return false;
1130       }
1131
1132       CriticalEdgePred.push_back(Pred);
1133     } else {
1134       // Only add the predecessors that will not be split for now.
1135       PredLoads[Pred] = nullptr;
1136     }
1137   }
1138
1139   // Decide whether PRE is profitable for this load.
1140   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1141   assert(NumUnavailablePreds != 0 &&
1142          "Fully available value should already be eliminated!");
1143
1144   // If this load is unavailable in multiple predecessors, reject it.
1145   // FIXME: If we could restructure the CFG, we could make a common pred with
1146   // all the preds that don't have an available LI and insert a new load into
1147   // that one block.
1148   if (NumUnavailablePreds != 1)
1149       return false;
1150
1151   // Split critical edges, and update the unavailable predecessors accordingly.
1152   for (BasicBlock *OrigPred : CriticalEdgePred) {
1153     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1154     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1155     PredLoads[NewPred] = nullptr;
1156     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1157                       << LoadBB->getName() << '\n');
1158   }
1159
1160   // Check if the load can safely be moved to all the unavailable predecessors.
1161   bool CanDoPRE = true;
1162   const DataLayout &DL = LI->getModule()->getDataLayout();
1163   SmallVector<Instruction*, 8> NewInsts;
1164   for (auto &PredLoad : PredLoads) {
1165     BasicBlock *UnavailablePred = PredLoad.first;
1166
1167     // Do PHI translation to get its value in the predecessor if necessary.  The
1168     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1169     // We do the translation for each edge we skipped by going from LI's block
1170     // to LoadBB, otherwise we might miss pieces needing translation.
1171
1172     // If all preds have a single successor, then we know it is safe to insert
1173     // the load on the pred (?!?), so we can insert code to materialize the
1174     // pointer if it is not available.
1175     Value *LoadPtr = LI->getPointerOperand();
1176     BasicBlock *Cur = LI->getParent();
1177     while (Cur != LoadBB) {
1178       PHITransAddr Address(LoadPtr, DL, AC);
1179       LoadPtr = Address.PHITranslateWithInsertion(
1180           Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
1181       if (!LoadPtr) {
1182         CanDoPRE = false;
1183         break;
1184       }
1185       Cur = Cur->getSinglePredecessor();
1186     }
1187
1188     if (LoadPtr) {
1189       PHITransAddr Address(LoadPtr, DL, AC);
1190       LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
1191                                                   NewInsts);
1192     }
1193     // If we couldn't find or insert a computation of this phi translated value,
1194     // we fail PRE.
1195     if (!LoadPtr) {
1196       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1197                         << *LI->getPointerOperand() << "\n");
1198       CanDoPRE = false;
1199       break;
1200     }
1201
1202     PredLoad.second = LoadPtr;
1203   }
1204
1205   if (!CanDoPRE) {
1206     while (!NewInsts.empty()) {
1207       // Erase instructions generated by the failed PHI translation before
1208       // trying to number them. PHI translation might insert instructions
1209       // in basic blocks other than the current one, and we delete them
1210       // directly, as markInstructionForDeletion only allows removing from the
1211       // current basic block.
1212       NewInsts.pop_back_val()->eraseFromParent();
1213     }
1214     // HINT: Don't revert the edge-splitting as following transformation may
1215     // also need to split these critical edges.
1216     return !CriticalEdgePred.empty();
1217   }
1218
1219   // Okay, we can eliminate this load by inserting a reload in the predecessor
1220   // and using PHI construction to get the value in the other predecessors, do
1221   // it.
1222   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1223   LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
1224              << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
1225              << '\n');
1226
1227   // Assign value numbers to the new instructions.
1228   for (Instruction *I : NewInsts) {
1229     // Instructions that have been inserted in predecessor(s) to materialize
1230     // the load address do not retain their original debug locations. Doing
1231     // so could lead to confusing (but correct) source attributions.
1232     if (const DebugLoc &DL = I->getDebugLoc())
1233       I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1234
1235     // FIXME: We really _ought_ to insert these value numbers into their
1236     // parent's availability map.  However, in doing so, we risk getting into
1237     // ordering issues.  If a block hasn't been processed yet, we would be
1238     // marking a value as AVAIL-IN, which isn't what we intend.
1239     VN.lookupOrAdd(I);
1240   }
1241
1242   for (const auto &PredLoad : PredLoads) {
1243     BasicBlock *UnavailablePred = PredLoad.first;
1244     Value *LoadPtr = PredLoad.second;
1245
1246     auto *NewLoad = new LoadInst(
1247         LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(),
1248         MaybeAlign(LI->getAlignment()), LI->getOrdering(), LI->getSyncScopeID(),
1249         UnavailablePred->getTerminator());
1250     NewLoad->setDebugLoc(LI->getDebugLoc());
1251
1252     // Transfer the old load's AA tags to the new load.
1253     AAMDNodes Tags;
1254     LI->getAAMetadata(Tags);
1255     if (Tags)
1256       NewLoad->setAAMetadata(Tags);
1257
1258     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1259       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1260     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1261       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1262     if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1263       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1264
1265     // We do not propagate the old load's debug location, because the new
1266     // load now lives in a different BB, and we want to avoid a jumpy line
1267     // table.
1268     // FIXME: How do we retain source locations without causing poor debugging
1269     // behavior?
1270
1271     // Add the newly created load.
1272     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1273                                                         NewLoad));
1274     MD->invalidateCachedPointerInfo(LoadPtr);
1275     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1276   }
1277
1278   // Perform PHI construction.
1279   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1280   LI->replaceAllUsesWith(V);
1281   if (isa<PHINode>(V))
1282     V->takeName(LI);
1283   if (Instruction *I = dyn_cast<Instruction>(V))
1284     I->setDebugLoc(LI->getDebugLoc());
1285   if (V->getType()->isPtrOrPtrVectorTy())
1286     MD->invalidateCachedPointerInfo(V);
1287   markInstructionForDeletion(LI);
1288   ORE->emit([&]() {
1289     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1290            << "load eliminated by PRE";
1291   });
1292   ++NumPRELoad;
1293   return true;
1294 }
1295
1296 static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1297                            OptimizationRemarkEmitter *ORE) {
1298   using namespace ore;
1299
1300   ORE->emit([&]() {
1301     return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1302            << "load of type " << NV("Type", LI->getType()) << " eliminated"
1303            << setExtraArgs() << " in favor of "
1304            << NV("InfavorOfValue", AvailableValue);
1305   });
1306 }
1307
1308 /// Attempt to eliminate a load whose dependencies are
1309 /// non-local by performing PHI construction.
1310 bool GVN::processNonLocalLoad(LoadInst *LI) {
1311   // non-local speculations are not allowed under asan.
1312   if (LI->getParent()->getParent()->hasFnAttribute(
1313           Attribute::SanitizeAddress) ||
1314       LI->getParent()->getParent()->hasFnAttribute(
1315           Attribute::SanitizeHWAddress))
1316     return false;
1317
1318   // Step 1: Find the non-local dependencies of the load.
1319   LoadDepVect Deps;
1320   MD->getNonLocalPointerDependency(LI, Deps);
1321
1322   // If we had to process more than one hundred blocks to find the
1323   // dependencies, this load isn't worth worrying about.  Optimizing
1324   // it will be too expensive.
1325   unsigned NumDeps = Deps.size();
1326   if (NumDeps > MaxNumDeps)
1327     return false;
1328
1329   // If we had a phi translation failure, we'll have a single entry which is a
1330   // clobber in the current block.  Reject this early.
1331   if (NumDeps == 1 &&
1332       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1333     LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
1334                dbgs() << " has unknown dependencies\n";);
1335     return false;
1336   }
1337
1338   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1339   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1340     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1341                                         OE = GEP->idx_end();
1342          OI != OE; ++OI)
1343       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1344         performScalarPRE(I);
1345   }
1346
1347   // Step 2: Analyze the availability of the load
1348   AvailValInBlkVect ValuesPerBlock;
1349   UnavailBlkVect UnavailableBlocks;
1350   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1351
1352   // If we have no predecessors that produce a known value for this load, exit
1353   // early.
1354   if (ValuesPerBlock.empty())
1355     return false;
1356
1357   // Step 3: Eliminate fully redundancy.
1358   //
1359   // If all of the instructions we depend on produce a known value for this
1360   // load, then it is fully redundant and we can use PHI insertion to compute
1361   // its value.  Insert PHIs and remove the fully redundant value now.
1362   if (UnavailableBlocks.empty()) {
1363     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1364
1365     // Perform PHI construction.
1366     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1367     LI->replaceAllUsesWith(V);
1368
1369     if (isa<PHINode>(V))
1370       V->takeName(LI);
1371     if (Instruction *I = dyn_cast<Instruction>(V))
1372       // If instruction I has debug info, then we should not update it.
1373       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1374       // to propagate LI's DebugLoc because LI may not post-dominate I.
1375       if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1376         I->setDebugLoc(LI->getDebugLoc());
1377     if (V->getType()->isPtrOrPtrVectorTy())
1378       MD->invalidateCachedPointerInfo(V);
1379     markInstructionForDeletion(LI);
1380     ++NumGVNLoad;
1381     reportLoadElim(LI, V, ORE);
1382     return true;
1383   }
1384
1385   // Step 4: Eliminate partial redundancy.
1386   if (!EnablePRE || !EnableLoadPRE)
1387     return false;
1388
1389   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1390 }
1391
1392 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1393   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1394     return true;
1395
1396   // Floating point comparisons can be equal, but not equivalent.  Cases:
1397   // NaNs for unordered operators
1398   // +0.0 vs 0.0 for all operators
1399   if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1400       (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1401        Cmp->getFastMathFlags().noNaNs())) {
1402       Value *LHS = Cmp->getOperand(0);
1403       Value *RHS = Cmp->getOperand(1);
1404       // If we can prove either side non-zero, then equality must imply
1405       // equivalence.
1406       // FIXME: We should do this optimization if 'no signed zeros' is
1407       // applicable via an instruction-level fast-math-flag or some other
1408       // indicator that relaxed FP semantics are being used.
1409       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1410         return true;
1411       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1412         return true;;
1413       // TODO: Handle vector floating point constants
1414   }
1415   return false;
1416 }
1417
1418 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1419   if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1420     return true;
1421
1422   // Floating point comparisons can be equal, but not equivelent.  Cases:
1423   // NaNs for unordered operators
1424   // +0.0 vs 0.0 for all operators
1425   if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1426        Cmp->getFastMathFlags().noNaNs()) ||
1427       Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1428       Value *LHS = Cmp->getOperand(0);
1429       Value *RHS = Cmp->getOperand(1);
1430       // If we can prove either side non-zero, then equality must imply
1431       // equivalence. 
1432       // FIXME: We should do this optimization if 'no signed zeros' is
1433       // applicable via an instruction-level fast-math-flag or some other
1434       // indicator that relaxed FP semantics are being used.
1435       if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1436         return true;
1437       if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1438         return true;;
1439       // TODO: Handle vector floating point constants
1440   }
1441   return false;
1442 }
1443
1444
1445 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1446   for (User *U : V->users())
1447     if (isa<Instruction>(U) &&
1448         cast<Instruction>(U)->getParent() == BB)
1449       return true;
1450   return false;
1451 }
1452
1453 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1454   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1455          "This function can only be called with llvm.assume intrinsic");
1456   Value *V = IntrinsicI->getArgOperand(0);
1457
1458   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1459     if (Cond->isZero()) {
1460       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1461       // Insert a new store to null instruction before the load to indicate that
1462       // this code is not reachable.  FIXME: We could insert unreachable
1463       // instruction directly because we can modify the CFG.
1464       new StoreInst(UndefValue::get(Int8Ty),
1465                     Constant::getNullValue(Int8Ty->getPointerTo()),
1466                     IntrinsicI);
1467     }
1468     markInstructionForDeletion(IntrinsicI);
1469     return false;
1470   } else if (isa<Constant>(V)) {
1471     // If it's not false, and constant, it must evaluate to true. This means our
1472     // assume is assume(true), and thus, pointless, and we don't want to do
1473     // anything more here.
1474     return false;
1475   }
1476
1477   Constant *True = ConstantInt::getTrue(V->getContext());
1478   bool Changed = false;
1479
1480   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1481     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1482
1483     // This property is only true in dominated successors, propagateEquality
1484     // will check dominance for us.
1485     Changed |= propagateEquality(V, True, Edge, false);
1486   }
1487
1488   // We can replace assume value with true, which covers cases like this:
1489   // call void @llvm.assume(i1 %cmp)
1490   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1491   ReplaceOperandsWithMap[V] = True;
1492
1493   // If we find an equality fact, canonicalize all dominated uses in this block
1494   // to one of the two values.  We heuristically choice the "oldest" of the
1495   // two where age is determined by value number. (Note that propagateEquality
1496   // above handles the cross block case.) 
1497   // 
1498   // Key case to cover are:
1499   // 1) 
1500   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1501   // call void @llvm.assume(i1 %cmp)
1502   // ret float %0 ; will change it to ret float 3.000000e+00
1503   // 2)
1504   // %load = load float, float* %addr
1505   // %cmp = fcmp oeq float %load, %0
1506   // call void @llvm.assume(i1 %cmp)
1507   // ret float %load ; will change it to ret float %0
1508   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1509     if (impliesEquivalanceIfTrue(CmpI)) {
1510       Value *CmpLHS = CmpI->getOperand(0);
1511       Value *CmpRHS = CmpI->getOperand(1);
1512       // Heuristically pick the better replacement -- the choice of heuristic
1513       // isn't terribly important here, but the fact we canonicalize on some
1514       // replacement is for exposing other simplifications.
1515       // TODO: pull this out as a helper function and reuse w/existing
1516       // (slightly different) logic.
1517       if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
1518         std::swap(CmpLHS, CmpRHS);
1519       if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
1520         std::swap(CmpLHS, CmpRHS);
1521       if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
1522           (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
1523         // Move the 'oldest' value to the right-hand side, using the value
1524         // number as a proxy for age.
1525         uint32_t LVN = VN.lookupOrAdd(CmpLHS);
1526         uint32_t RVN = VN.lookupOrAdd(CmpRHS);
1527         if (LVN < RVN)
1528           std::swap(CmpLHS, CmpRHS);
1529       }
1530
1531       // Handle degenerate case where we either haven't pruned a dead path or a
1532       // removed a trivial assume yet.
1533       if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
1534         return Changed;
1535
1536       LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
1537                  << *CmpLHS << " with "
1538                  << *CmpRHS << " in block "
1539                  << IntrinsicI->getParent()->getName() << "\n");
1540       
1541
1542       // Setup the replacement map - this handles uses within the same block
1543       if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
1544         ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
1545
1546       // NOTE: The non-block local cases are handled by the call to
1547       // propagateEquality above; this block is just about handling the block
1548       // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
1549       // isn't duplicated for the block local case, can we share it somehow?
1550     }
1551   }
1552   return Changed;
1553 }
1554
1555 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1556   patchReplacementInstruction(I, Repl);
1557   I->replaceAllUsesWith(Repl);
1558 }
1559
1560 /// Attempt to eliminate a load, first by eliminating it
1561 /// locally, and then attempting non-local elimination if that fails.
1562 bool GVN::processLoad(LoadInst *L) {
1563   if (!MD)
1564     return false;
1565
1566   // This code hasn't been audited for ordered or volatile memory access
1567   if (!L->isUnordered())
1568     return false;
1569
1570   if (L->use_empty()) {
1571     markInstructionForDeletion(L);
1572     return true;
1573   }
1574
1575   // ... to a pointer that has been loaded from before...
1576   MemDepResult Dep = MD->getDependency(L);
1577
1578   // If it is defined in another block, try harder.
1579   if (Dep.isNonLocal())
1580     return processNonLocalLoad(L);
1581
1582   // Only handle the local case below
1583   if (!Dep.isDef() && !Dep.isClobber()) {
1584     // This might be a NonFuncLocal or an Unknown
1585     LLVM_DEBUG(
1586         // fast print dep, using operator<< on instruction is too slow.
1587         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1588         dbgs() << " has unknown dependence\n";);
1589     return false;
1590   }
1591
1592   AvailableValue AV;
1593   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1594     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1595
1596     // Replace the load!
1597     patchAndReplaceAllUsesWith(L, AvailableValue);
1598     markInstructionForDeletion(L);
1599     ++NumGVNLoad;
1600     reportLoadElim(L, AvailableValue, ORE);
1601     // Tell MDA to rexamine the reused pointer since we might have more
1602     // information after forwarding it.
1603     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1604       MD->invalidateCachedPointerInfo(AvailableValue);
1605     return true;
1606   }
1607
1608   return false;
1609 }
1610
1611 /// Return a pair the first field showing the value number of \p Exp and the
1612 /// second field showing whether it is a value number newly created.
1613 std::pair<uint32_t, bool>
1614 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1615   uint32_t &e = expressionNumbering[Exp];
1616   bool CreateNewValNum = !e;
1617   if (CreateNewValNum) {
1618     Expressions.push_back(Exp);
1619     if (ExprIdx.size() < nextValueNumber + 1)
1620       ExprIdx.resize(nextValueNumber * 2);
1621     e = nextValueNumber;
1622     ExprIdx[nextValueNumber++] = nextExprNumber++;
1623   }
1624   return {e, CreateNewValNum};
1625 }
1626
1627 /// Return whether all the values related with the same \p num are
1628 /// defined in \p BB.
1629 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1630                                      GVN &Gvn) {
1631   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1632   while (Vals && Vals->BB == BB)
1633     Vals = Vals->Next;
1634   return !Vals;
1635 }
1636
1637 /// Wrap phiTranslateImpl to provide caching functionality.
1638 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1639                                        const BasicBlock *PhiBlock, uint32_t Num,
1640                                        GVN &Gvn) {
1641   auto FindRes = PhiTranslateTable.find({Num, Pred});
1642   if (FindRes != PhiTranslateTable.end())
1643     return FindRes->second;
1644   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1645   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1646   return NewNum;
1647 }
1648
1649 // Return true if the value number \p Num and NewNum have equal value.
1650 // Return false if the result is unknown.
1651 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
1652                                        const BasicBlock *Pred,
1653                                        const BasicBlock *PhiBlock, GVN &Gvn) {
1654   CallInst *Call = nullptr;
1655   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1656   while (Vals) {
1657     Call = dyn_cast<CallInst>(Vals->Val);
1658     if (Call && Call->getParent() == PhiBlock)
1659       break;
1660     Vals = Vals->Next;
1661   }
1662
1663   if (AA->doesNotAccessMemory(Call))
1664     return true;
1665
1666   if (!MD || !AA->onlyReadsMemory(Call))
1667     return false;
1668
1669   MemDepResult local_dep = MD->getDependency(Call);
1670   if (!local_dep.isNonLocal())
1671     return false;
1672
1673   const MemoryDependenceResults::NonLocalDepInfo &deps =
1674       MD->getNonLocalCallDependency(Call);
1675
1676   // Check to see if the Call has no function local clobber.
1677   for (unsigned i = 0; i < deps.size(); i++) {
1678     if (deps[i].getResult().isNonFuncLocal())
1679       return true;
1680   }
1681   return false;
1682 }
1683
1684 /// Translate value number \p Num using phis, so that it has the values of
1685 /// the phis in BB.
1686 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1687                                            const BasicBlock *PhiBlock,
1688                                            uint32_t Num, GVN &Gvn) {
1689   if (PHINode *PN = NumberingPhi[Num]) {
1690     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1691       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1692         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1693           return TransVal;
1694     }
1695     return Num;
1696   }
1697
1698   // If there is any value related with Num is defined in a BB other than
1699   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1700   // a backedge. We can do an early exit in that case to save compile time.
1701   if (!areAllValsInBB(Num, PhiBlock, Gvn))
1702     return Num;
1703
1704   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1705     return Num;
1706   Expression Exp = Expressions[ExprIdx[Num]];
1707
1708   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1709     // For InsertValue and ExtractValue, some varargs are index numbers
1710     // instead of value numbers. Those index numbers should not be
1711     // translated.
1712     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1713         (i > 0 && Exp.opcode == Instruction::ExtractValue))
1714       continue;
1715     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1716   }
1717
1718   if (Exp.commutative) {
1719     assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1720     if (Exp.varargs[0] > Exp.varargs[1]) {
1721       std::swap(Exp.varargs[0], Exp.varargs[1]);
1722       uint32_t Opcode = Exp.opcode >> 8;
1723       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1724         Exp.opcode = (Opcode << 8) |
1725                      CmpInst::getSwappedPredicate(
1726                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1727     }
1728   }
1729
1730   if (uint32_t NewNum = expressionNumbering[Exp]) {
1731     if (Exp.opcode == Instruction::Call && NewNum != Num)
1732       return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
1733     return NewNum;
1734   }
1735   return Num;
1736 }
1737
1738 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1739 /// again.
1740 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1741                                                const BasicBlock &CurrBlock) {
1742   for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1743     auto FindRes = PhiTranslateTable.find({Num, Pred});
1744     if (FindRes != PhiTranslateTable.end())
1745       PhiTranslateTable.erase(FindRes);
1746   }
1747 }
1748
1749 // In order to find a leader for a given value number at a
1750 // specific basic block, we first obtain the list of all Values for that number,
1751 // and then scan the list to find one whose block dominates the block in
1752 // question.  This is fast because dominator tree queries consist of only
1753 // a few comparisons of DFS numbers.
1754 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1755   LeaderTableEntry Vals = LeaderTable[num];
1756   if (!Vals.Val) return nullptr;
1757
1758   Value *Val = nullptr;
1759   if (DT->dominates(Vals.BB, BB)) {
1760     Val = Vals.Val;
1761     if (isa<Constant>(Val)) return Val;
1762   }
1763
1764   LeaderTableEntry* Next = Vals.Next;
1765   while (Next) {
1766     if (DT->dominates(Next->BB, BB)) {
1767       if (isa<Constant>(Next->Val)) return Next->Val;
1768       if (!Val) Val = Next->Val;
1769     }
1770
1771     Next = Next->Next;
1772   }
1773
1774   return Val;
1775 }
1776
1777 /// There is an edge from 'Src' to 'Dst'.  Return
1778 /// true if every path from the entry block to 'Dst' passes via this edge.  In
1779 /// particular 'Dst' must not be reachable via another edge from 'Src'.
1780 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1781                                        DominatorTree *DT) {
1782   // While in theory it is interesting to consider the case in which Dst has
1783   // more than one predecessor, because Dst might be part of a loop which is
1784   // only reachable from Src, in practice it is pointless since at the time
1785   // GVN runs all such loops have preheaders, which means that Dst will have
1786   // been changed to have only one predecessor, namely Src.
1787   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1788   assert((!Pred || Pred == E.getStart()) &&
1789          "No edge between these basic blocks!");
1790   return Pred != nullptr;
1791 }
1792
1793 void GVN::assignBlockRPONumber(Function &F) {
1794   BlockRPONumber.clear();
1795   uint32_t NextBlockNumber = 1;
1796   ReversePostOrderTraversal<Function *> RPOT(&F);
1797   for (BasicBlock *BB : RPOT)
1798     BlockRPONumber[BB] = NextBlockNumber++;
1799   InvalidBlockRPONumbers = false;
1800 }
1801
1802 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
1803   bool Changed = false;
1804   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1805     Value *Operand = Instr->getOperand(OpNum); 
1806     auto it = ReplaceOperandsWithMap.find(Operand);
1807     if (it != ReplaceOperandsWithMap.end()) {
1808       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
1809                         << *it->second << " in instruction " << *Instr << '\n');
1810       Instr->setOperand(OpNum, it->second);
1811       Changed = true;
1812     }
1813   }
1814   return Changed;
1815 }
1816
1817 /// The given values are known to be equal in every block
1818 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1819 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
1820 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1821 /// value starting from the end of Root.Start.
1822 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1823                             bool DominatesByEdge) {
1824   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1825   Worklist.push_back(std::make_pair(LHS, RHS));
1826   bool Changed = false;
1827   // For speed, compute a conservative fast approximation to
1828   // DT->dominates(Root, Root.getEnd());
1829   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1830
1831   while (!Worklist.empty()) {
1832     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1833     LHS = Item.first; RHS = Item.second;
1834
1835     if (LHS == RHS)
1836       continue;
1837     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1838
1839     // Don't try to propagate equalities between constants.
1840     if (isa<Constant>(LHS) && isa<Constant>(RHS))
1841       continue;
1842
1843     // Prefer a constant on the right-hand side, or an Argument if no constants.
1844     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1845       std::swap(LHS, RHS);
1846     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1847
1848     // If there is no obvious reason to prefer the left-hand side over the
1849     // right-hand side, ensure the longest lived term is on the right-hand side,
1850     // so the shortest lived term will be replaced by the longest lived.
1851     // This tends to expose more simplifications.
1852     uint32_t LVN = VN.lookupOrAdd(LHS);
1853     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1854         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1855       // Move the 'oldest' value to the right-hand side, using the value number
1856       // as a proxy for age.
1857       uint32_t RVN = VN.lookupOrAdd(RHS);
1858       if (LVN < RVN) {
1859         std::swap(LHS, RHS);
1860         LVN = RVN;
1861       }
1862     }
1863
1864     // If value numbering later sees that an instruction in the scope is equal
1865     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
1866     // the invariant that instructions only occur in the leader table for their
1867     // own value number (this is used by removeFromLeaderTable), do not do this
1868     // if RHS is an instruction (if an instruction in the scope is morphed into
1869     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1870     // using the leader table is about compiling faster, not optimizing better).
1871     // The leader table only tracks basic blocks, not edges. Only add to if we
1872     // have the simple case where the edge dominates the end.
1873     if (RootDominatesEnd && !isa<Instruction>(RHS))
1874       addToLeaderTable(LVN, RHS, Root.getEnd());
1875
1876     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1877     // LHS always has at least one use that is not dominated by Root, this will
1878     // never do anything if LHS has only one use.
1879     if (!LHS->hasOneUse()) {
1880       unsigned NumReplacements =
1881           DominatesByEdge
1882               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1883               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1884
1885       Changed |= NumReplacements > 0;
1886       NumGVNEqProp += NumReplacements;
1887       // Cached information for anything that uses LHS will be invalid.
1888       if (MD)
1889         MD->invalidateCachedPointerInfo(LHS);
1890     }
1891
1892     // Now try to deduce additional equalities from this one. For example, if
1893     // the known equality was "(A != B)" == "false" then it follows that A and B
1894     // are equal in the scope. Only boolean equalities with an explicit true or
1895     // false RHS are currently supported.
1896     if (!RHS->getType()->isIntegerTy(1))
1897       // Not a boolean equality - bail out.
1898       continue;
1899     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1900     if (!CI)
1901       // RHS neither 'true' nor 'false' - bail out.
1902       continue;
1903     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1904     bool isKnownTrue = CI->isMinusOne();
1905     bool isKnownFalse = !isKnownTrue;
1906
1907     // If "A && B" is known true then both A and B are known true.  If "A || B"
1908     // is known false then both A and B are known false.
1909     Value *A, *B;
1910     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1911         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1912       Worklist.push_back(std::make_pair(A, RHS));
1913       Worklist.push_back(std::make_pair(B, RHS));
1914       continue;
1915     }
1916
1917     // If we are propagating an equality like "(A == B)" == "true" then also
1918     // propagate the equality A == B.  When propagating a comparison such as
1919     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1920     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1921       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1922
1923       // If "A == B" is known true, or "A != B" is known false, then replace
1924       // A with B everywhere in the scope.  For floating point operations, we
1925       // have to be careful since equality does not always imply equivalance.  
1926       if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
1927           (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
1928         Worklist.push_back(std::make_pair(Op0, Op1));
1929
1930       // If "A >= B" is known true, replace "A < B" with false everywhere.
1931       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1932       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1933       // Since we don't have the instruction "A < B" immediately to hand, work
1934       // out the value number that it would have and use that to find an
1935       // appropriate instruction (if any).
1936       uint32_t NextNum = VN.getNextUnusedValueNumber();
1937       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1938       // If the number we were assigned was brand new then there is no point in
1939       // looking for an instruction realizing it: there cannot be one!
1940       if (Num < NextNum) {
1941         Value *NotCmp = findLeader(Root.getEnd(), Num);
1942         if (NotCmp && isa<Instruction>(NotCmp)) {
1943           unsigned NumReplacements =
1944               DominatesByEdge
1945                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1946                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1947                                              Root.getStart());
1948           Changed |= NumReplacements > 0;
1949           NumGVNEqProp += NumReplacements;
1950           // Cached information for anything that uses NotCmp will be invalid.
1951           if (MD)
1952             MD->invalidateCachedPointerInfo(NotCmp);
1953         }
1954       }
1955       // Ensure that any instruction in scope that gets the "A < B" value number
1956       // is replaced with false.
1957       // The leader table only tracks basic blocks, not edges. Only add to if we
1958       // have the simple case where the edge dominates the end.
1959       if (RootDominatesEnd)
1960         addToLeaderTable(Num, NotVal, Root.getEnd());
1961
1962       continue;
1963     }
1964   }
1965
1966   return Changed;
1967 }
1968
1969 /// When calculating availability, handle an instruction
1970 /// by inserting it into the appropriate sets
1971 bool GVN::processInstruction(Instruction *I) {
1972   // Ignore dbg info intrinsics.
1973   if (isa<DbgInfoIntrinsic>(I))
1974     return false;
1975
1976   // If the instruction can be easily simplified then do so now in preference
1977   // to value numbering it.  Value numbering often exposes redundancies, for
1978   // example if it determines that %y is equal to %x then the instruction
1979   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1980   const DataLayout &DL = I->getModule()->getDataLayout();
1981   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1982     bool Changed = false;
1983     if (!I->use_empty()) {
1984       I->replaceAllUsesWith(V);
1985       Changed = true;
1986     }
1987     if (isInstructionTriviallyDead(I, TLI)) {
1988       markInstructionForDeletion(I);
1989       Changed = true;
1990     }
1991     if (Changed) {
1992       if (MD && V->getType()->isPtrOrPtrVectorTy())
1993         MD->invalidateCachedPointerInfo(V);
1994       ++NumGVNSimpl;
1995       return true;
1996     }
1997   }
1998
1999   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
2000     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
2001       return processAssumeIntrinsic(IntrinsicI);
2002
2003   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2004     if (processLoad(LI))
2005       return true;
2006
2007     unsigned Num = VN.lookupOrAdd(LI);
2008     addToLeaderTable(Num, LI, LI->getParent());
2009     return false;
2010   }
2011
2012   // For conditional branches, we can perform simple conditional propagation on
2013   // the condition value itself.
2014   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2015     if (!BI->isConditional())
2016       return false;
2017
2018     if (isa<Constant>(BI->getCondition()))
2019       return processFoldableCondBr(BI);
2020
2021     Value *BranchCond = BI->getCondition();
2022     BasicBlock *TrueSucc = BI->getSuccessor(0);
2023     BasicBlock *FalseSucc = BI->getSuccessor(1);
2024     // Avoid multiple edges early.
2025     if (TrueSucc == FalseSucc)
2026       return false;
2027
2028     BasicBlock *Parent = BI->getParent();
2029     bool Changed = false;
2030
2031     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2032     BasicBlockEdge TrueE(Parent, TrueSucc);
2033     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2034
2035     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2036     BasicBlockEdge FalseE(Parent, FalseSucc);
2037     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2038
2039     return Changed;
2040   }
2041
2042   // For switches, propagate the case values into the case destinations.
2043   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2044     Value *SwitchCond = SI->getCondition();
2045     BasicBlock *Parent = SI->getParent();
2046     bool Changed = false;
2047
2048     // Remember how many outgoing edges there are to every successor.
2049     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2050     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2051       ++SwitchEdges[SI->getSuccessor(i)];
2052
2053     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2054          i != e; ++i) {
2055       BasicBlock *Dst = i->getCaseSuccessor();
2056       // If there is only a single edge, propagate the case value into it.
2057       if (SwitchEdges.lookup(Dst) == 1) {
2058         BasicBlockEdge E(Parent, Dst);
2059         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2060       }
2061     }
2062     return Changed;
2063   }
2064
2065   // Instructions with void type don't return a value, so there's
2066   // no point in trying to find redundancies in them.
2067   if (I->getType()->isVoidTy())
2068     return false;
2069
2070   uint32_t NextNum = VN.getNextUnusedValueNumber();
2071   unsigned Num = VN.lookupOrAdd(I);
2072
2073   // Allocations are always uniquely numbered, so we can save time and memory
2074   // by fast failing them.
2075   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2076     addToLeaderTable(Num, I, I->getParent());
2077     return false;
2078   }
2079
2080   // If the number we were assigned was a brand new VN, then we don't
2081   // need to do a lookup to see if the number already exists
2082   // somewhere in the domtree: it can't!
2083   if (Num >= NextNum) {
2084     addToLeaderTable(Num, I, I->getParent());
2085     return false;
2086   }
2087
2088   // Perform fast-path value-number based elimination of values inherited from
2089   // dominators.
2090   Value *Repl = findLeader(I->getParent(), Num);
2091   if (!Repl) {
2092     // Failure, just remember this instance for future use.
2093     addToLeaderTable(Num, I, I->getParent());
2094     return false;
2095   } else if (Repl == I) {
2096     // If I was the result of a shortcut PRE, it might already be in the table
2097     // and the best replacement for itself. Nothing to do.
2098     return false;
2099   }
2100
2101   // Remove it!
2102   patchAndReplaceAllUsesWith(I, Repl);
2103   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2104     MD->invalidateCachedPointerInfo(Repl);
2105   markInstructionForDeletion(I);
2106   return true;
2107 }
2108
2109 /// runOnFunction - This is the main transformation entry point for a function.
2110 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2111                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2112                   MemoryDependenceResults *RunMD, LoopInfo *LI,
2113                   OptimizationRemarkEmitter *RunORE) {
2114   AC = &RunAC;
2115   DT = &RunDT;
2116   VN.setDomTree(DT);
2117   TLI = &RunTLI;
2118   VN.setAliasAnalysis(&RunAA);
2119   MD = RunMD;
2120   ImplicitControlFlowTracking ImplicitCFT(DT);
2121   ICF = &ImplicitCFT;
2122   this->LI = LI;
2123   VN.setMemDep(MD);
2124   ORE = RunORE;
2125   InvalidBlockRPONumbers = true;
2126
2127   bool Changed = false;
2128   bool ShouldContinue = true;
2129
2130   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2131   // Merge unconditional branches, allowing PRE to catch more
2132   // optimization opportunities.
2133   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2134     BasicBlock *BB = &*FI++;
2135
2136     bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
2137     if (removedBlock)
2138       ++NumGVNBlocks;
2139
2140     Changed |= removedBlock;
2141   }
2142
2143   unsigned Iteration = 0;
2144   while (ShouldContinue) {
2145     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2146     ShouldContinue = iterateOnFunction(F);
2147     Changed |= ShouldContinue;
2148     ++Iteration;
2149   }
2150
2151   if (EnablePRE) {
2152     // Fabricate val-num for dead-code in order to suppress assertion in
2153     // performPRE().
2154     assignValNumForDeadCode();
2155     bool PREChanged = true;
2156     while (PREChanged) {
2157       PREChanged = performPRE(F);
2158       Changed |= PREChanged;
2159     }
2160   }
2161
2162   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2163   // computations into blocks where they become fully redundant.  Note that
2164   // we can't do this until PRE's critical edge splitting updates memdep.
2165   // Actually, when this happens, we should just fully integrate PRE into GVN.
2166
2167   cleanupGlobalSets();
2168   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2169   // iteration.
2170   DeadBlocks.clear();
2171
2172   return Changed;
2173 }
2174
2175 bool GVN::processBlock(BasicBlock *BB) {
2176   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2177   // (and incrementing BI before processing an instruction).
2178   assert(InstrsToErase.empty() &&
2179          "We expect InstrsToErase to be empty across iterations");
2180   if (DeadBlocks.count(BB))
2181     return false;
2182
2183   // Clearing map before every BB because it can be used only for single BB.
2184   ReplaceOperandsWithMap.clear();
2185   bool ChangedFunction = false;
2186
2187   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2188        BI != BE;) {
2189     if (!ReplaceOperandsWithMap.empty())
2190       ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2191     ChangedFunction |= processInstruction(&*BI);
2192
2193     if (InstrsToErase.empty()) {
2194       ++BI;
2195       continue;
2196     }
2197
2198     // If we need some instructions deleted, do it now.
2199     NumGVNInstr += InstrsToErase.size();
2200
2201     // Avoid iterator invalidation.
2202     bool AtStart = BI == BB->begin();
2203     if (!AtStart)
2204       --BI;
2205
2206     for (auto *I : InstrsToErase) {
2207       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2208       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2209       salvageDebugInfo(*I);
2210       if (MD) MD->removeInstruction(I);
2211       LLVM_DEBUG(verifyRemoved(I));
2212       ICF->removeInstruction(I);
2213       I->eraseFromParent();
2214     }
2215     InstrsToErase.clear();
2216
2217     if (AtStart)
2218       BI = BB->begin();
2219     else
2220       ++BI;
2221   }
2222
2223   return ChangedFunction;
2224 }
2225
2226 // Instantiate an expression in a predecessor that lacked it.
2227 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2228                                     BasicBlock *Curr, unsigned int ValNo) {
2229   // Because we are going top-down through the block, all value numbers
2230   // will be available in the predecessor by the time we need them.  Any
2231   // that weren't originally present will have been instantiated earlier
2232   // in this loop.
2233   bool success = true;
2234   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2235     Value *Op = Instr->getOperand(i);
2236     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2237       continue;
2238     // This could be a newly inserted instruction, in which case, we won't
2239     // find a value number, and should give up before we hurt ourselves.
2240     // FIXME: Rewrite the infrastructure to let it easier to value number
2241     // and process newly inserted instructions.
2242     if (!VN.exists(Op)) {
2243       success = false;
2244       break;
2245     }
2246     uint32_t TValNo =
2247         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2248     if (Value *V = findLeader(Pred, TValNo)) {
2249       Instr->setOperand(i, V);
2250     } else {
2251       success = false;
2252       break;
2253     }
2254   }
2255
2256   // Fail out if we encounter an operand that is not available in
2257   // the PRE predecessor.  This is typically because of loads which
2258   // are not value numbered precisely.
2259   if (!success)
2260     return false;
2261
2262   Instr->insertBefore(Pred->getTerminator());
2263   Instr->setName(Instr->getName() + ".pre");
2264   Instr->setDebugLoc(Instr->getDebugLoc());
2265
2266   unsigned Num = VN.lookupOrAdd(Instr);
2267   VN.add(Instr, Num);
2268
2269   // Update the availability map to include the new instruction.
2270   addToLeaderTable(Num, Instr, Pred);
2271   return true;
2272 }
2273
2274 bool GVN::performScalarPRE(Instruction *CurInst) {
2275   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2276       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2277       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2278       isa<DbgInfoIntrinsic>(CurInst))
2279     return false;
2280
2281   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2282   // sinking the compare again, and it would force the code generator to
2283   // move the i1 from processor flags or predicate registers into a general
2284   // purpose register.
2285   if (isa<CmpInst>(CurInst))
2286     return false;
2287
2288   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2289   // sinking the addressing mode computation back to its uses. Extending the
2290   // GEP's live range increases the register pressure, and therefore it can
2291   // introduce unnecessary spills.
2292   //
2293   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2294   // to the load by moving it to the predecessor block if necessary.
2295   if (isa<GetElementPtrInst>(CurInst))
2296     return false;
2297
2298   // We don't currently value number ANY inline asm calls.
2299   if (auto *CallB = dyn_cast<CallBase>(CurInst))
2300     if (CallB->isInlineAsm())
2301       return false;
2302
2303   uint32_t ValNo = VN.lookup(CurInst);
2304
2305   // Look for the predecessors for PRE opportunities.  We're
2306   // only trying to solve the basic diamond case, where
2307   // a value is computed in the successor and one predecessor,
2308   // but not the other.  We also explicitly disallow cases
2309   // where the successor is its own predecessor, because they're
2310   // more complicated to get right.
2311   unsigned NumWith = 0;
2312   unsigned NumWithout = 0;
2313   BasicBlock *PREPred = nullptr;
2314   BasicBlock *CurrentBlock = CurInst->getParent();
2315
2316   // Update the RPO numbers for this function.
2317   if (InvalidBlockRPONumbers)
2318     assignBlockRPONumber(*CurrentBlock->getParent());
2319
2320   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2321   for (BasicBlock *P : predecessors(CurrentBlock)) {
2322     // We're not interested in PRE where blocks with predecessors that are
2323     // not reachable.
2324     if (!DT->isReachableFromEntry(P)) {
2325       NumWithout = 2;
2326       break;
2327     }
2328     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2329     // when CurInst has operand defined in CurrentBlock (so it may be defined
2330     // by phi in the loop header).
2331     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2332            "Invalid BlockRPONumber map.");
2333     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2334         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2335           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2336             return Inst->getParent() == CurrentBlock;
2337           return false;
2338         })) {
2339       NumWithout = 2;
2340       break;
2341     }
2342
2343     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2344     Value *predV = findLeader(P, TValNo);
2345     if (!predV) {
2346       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2347       PREPred = P;
2348       ++NumWithout;
2349     } else if (predV == CurInst) {
2350       /* CurInst dominates this predecessor. */
2351       NumWithout = 2;
2352       break;
2353     } else {
2354       predMap.push_back(std::make_pair(predV, P));
2355       ++NumWith;
2356     }
2357   }
2358
2359   // Don't do PRE when it might increase code size, i.e. when
2360   // we would need to insert instructions in more than one pred.
2361   if (NumWithout > 1 || NumWith == 0)
2362     return false;
2363
2364   // We may have a case where all predecessors have the instruction,
2365   // and we just need to insert a phi node. Otherwise, perform
2366   // insertion.
2367   Instruction *PREInstr = nullptr;
2368
2369   if (NumWithout != 0) {
2370     if (!isSafeToSpeculativelyExecute(CurInst)) {
2371       // It is only valid to insert a new instruction if the current instruction
2372       // is always executed. An instruction with implicit control flow could
2373       // prevent us from doing it. If we cannot speculate the execution, then
2374       // PRE should be prohibited.
2375       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2376         return false;
2377     }
2378
2379     // Don't do PRE across indirect branch.
2380     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2381       return false;
2382
2383     // Don't do PRE across callbr.
2384     // FIXME: Can we do this across the fallthrough edge?
2385     if (isa<CallBrInst>(PREPred->getTerminator()))
2386       return false;
2387
2388     // We can't do PRE safely on a critical edge, so instead we schedule
2389     // the edge to be split and perform the PRE the next time we iterate
2390     // on the function.
2391     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2392     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2393       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2394       return false;
2395     }
2396     // We need to insert somewhere, so let's give it a shot
2397     PREInstr = CurInst->clone();
2398     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2399       // If we failed insertion, make sure we remove the instruction.
2400       LLVM_DEBUG(verifyRemoved(PREInstr));
2401       PREInstr->deleteValue();
2402       return false;
2403     }
2404   }
2405
2406   // Either we should have filled in the PRE instruction, or we should
2407   // not have needed insertions.
2408   assert(PREInstr != nullptr || NumWithout == 0);
2409
2410   ++NumGVNPRE;
2411
2412   // Create a PHI to make the value available in this block.
2413   PHINode *Phi =
2414       PHINode::Create(CurInst->getType(), predMap.size(),
2415                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2416   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2417     if (Value *V = predMap[i].first) {
2418       // If we use an existing value in this phi, we have to patch the original
2419       // value because the phi will be used to replace a later value.
2420       patchReplacementInstruction(CurInst, V);
2421       Phi->addIncoming(V, predMap[i].second);
2422     } else
2423       Phi->addIncoming(PREInstr, PREPred);
2424   }
2425
2426   VN.add(Phi, ValNo);
2427   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2428   // be changed, so erase the related stale entries in phi translate cache.
2429   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2430   addToLeaderTable(ValNo, Phi, CurrentBlock);
2431   Phi->setDebugLoc(CurInst->getDebugLoc());
2432   CurInst->replaceAllUsesWith(Phi);
2433   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2434     MD->invalidateCachedPointerInfo(Phi);
2435   VN.erase(CurInst);
2436   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2437
2438   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2439   if (MD)
2440     MD->removeInstruction(CurInst);
2441   LLVM_DEBUG(verifyRemoved(CurInst));
2442   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2443   // some assertion failures.
2444   ICF->removeInstruction(CurInst);
2445   CurInst->eraseFromParent();
2446   ++NumGVNInstr;
2447
2448   return true;
2449 }
2450
2451 /// Perform a purely local form of PRE that looks for diamond
2452 /// control flow patterns and attempts to perform simple PRE at the join point.
2453 bool GVN::performPRE(Function &F) {
2454   bool Changed = false;
2455   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2456     // Nothing to PRE in the entry block.
2457     if (CurrentBlock == &F.getEntryBlock())
2458       continue;
2459
2460     // Don't perform PRE on an EH pad.
2461     if (CurrentBlock->isEHPad())
2462       continue;
2463
2464     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2465                               BE = CurrentBlock->end();
2466          BI != BE;) {
2467       Instruction *CurInst = &*BI++;
2468       Changed |= performScalarPRE(CurInst);
2469     }
2470   }
2471
2472   if (splitCriticalEdges())
2473     Changed = true;
2474
2475   return Changed;
2476 }
2477
2478 /// Split the critical edge connecting the given two blocks, and return
2479 /// the block inserted to the critical edge.
2480 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2481   BasicBlock *BB =
2482       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT, LI));
2483   if (MD)
2484     MD->invalidateCachedPredecessors();
2485   InvalidBlockRPONumbers = true;
2486   return BB;
2487 }
2488
2489 /// Split critical edges found during the previous
2490 /// iteration that may enable further optimization.
2491 bool GVN::splitCriticalEdges() {
2492   if (toSplit.empty())
2493     return false;
2494   do {
2495     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2496     SplitCriticalEdge(Edge.first, Edge.second,
2497                       CriticalEdgeSplittingOptions(DT, LI));
2498   } while (!toSplit.empty());
2499   if (MD) MD->invalidateCachedPredecessors();
2500   InvalidBlockRPONumbers = true;
2501   return true;
2502 }
2503
2504 /// Executes one iteration of GVN
2505 bool GVN::iterateOnFunction(Function &F) {
2506   cleanupGlobalSets();
2507
2508   // Top-down walk of the dominator tree
2509   bool Changed = false;
2510   // Needed for value numbering with phi construction to work.
2511   // RPOT walks the graph in its constructor and will not be invalidated during
2512   // processBlock.
2513   ReversePostOrderTraversal<Function *> RPOT(&F);
2514
2515   for (BasicBlock *BB : RPOT)
2516     Changed |= processBlock(BB);
2517
2518   return Changed;
2519 }
2520
2521 void GVN::cleanupGlobalSets() {
2522   VN.clear();
2523   LeaderTable.clear();
2524   BlockRPONumber.clear();
2525   TableAllocator.Reset();
2526   ICF->clear();
2527   InvalidBlockRPONumbers = true;
2528 }
2529
2530 /// Verify that the specified instruction does not occur in our
2531 /// internal data structures.
2532 void GVN::verifyRemoved(const Instruction *Inst) const {
2533   VN.verifyRemoved(Inst);
2534
2535   // Walk through the value number scope to make sure the instruction isn't
2536   // ferreted away in it.
2537   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2538        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2539     const LeaderTableEntry *Node = &I->second;
2540     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2541
2542     while (Node->Next) {
2543       Node = Node->Next;
2544       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2545     }
2546   }
2547 }
2548
2549 /// BB is declared dead, which implied other blocks become dead as well. This
2550 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2551 /// live successors, update their phi nodes by replacing the operands
2552 /// corresponding to dead blocks with UndefVal.
2553 void GVN::addDeadBlock(BasicBlock *BB) {
2554   SmallVector<BasicBlock *, 4> NewDead;
2555   SmallSetVector<BasicBlock *, 4> DF;
2556
2557   NewDead.push_back(BB);
2558   while (!NewDead.empty()) {
2559     BasicBlock *D = NewDead.pop_back_val();
2560     if (DeadBlocks.count(D))
2561       continue;
2562
2563     // All blocks dominated by D are dead.
2564     SmallVector<BasicBlock *, 8> Dom;
2565     DT->getDescendants(D, Dom);
2566     DeadBlocks.insert(Dom.begin(), Dom.end());
2567
2568     // Figure out the dominance-frontier(D).
2569     for (BasicBlock *B : Dom) {
2570       for (BasicBlock *S : successors(B)) {
2571         if (DeadBlocks.count(S))
2572           continue;
2573
2574         bool AllPredDead = true;
2575         for (BasicBlock *P : predecessors(S))
2576           if (!DeadBlocks.count(P)) {
2577             AllPredDead = false;
2578             break;
2579           }
2580
2581         if (!AllPredDead) {
2582           // S could be proved dead later on. That is why we don't update phi
2583           // operands at this moment.
2584           DF.insert(S);
2585         } else {
2586           // While S is not dominated by D, it is dead by now. This could take
2587           // place if S already have a dead predecessor before D is declared
2588           // dead.
2589           NewDead.push_back(S);
2590         }
2591       }
2592     }
2593   }
2594
2595   // For the dead blocks' live successors, update their phi nodes by replacing
2596   // the operands corresponding to dead blocks with UndefVal.
2597   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2598         I != E; I++) {
2599     BasicBlock *B = *I;
2600     if (DeadBlocks.count(B))
2601       continue;
2602
2603     // First, split the critical edges. This might also create additional blocks
2604     // to preserve LoopSimplify form and adjust edges accordingly.
2605     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2606     for (BasicBlock *P : Preds) {
2607       if (!DeadBlocks.count(P))
2608         continue;
2609
2610       if (llvm::any_of(successors(P),
2611                        [B](BasicBlock *Succ) { return Succ == B; }) &&
2612           isCriticalEdge(P->getTerminator(), B)) {
2613         if (BasicBlock *S = splitCriticalEdges(P, B))
2614           DeadBlocks.insert(P = S);
2615       }
2616     }
2617
2618     // Now undef the incoming values from the dead predecessors.
2619     for (BasicBlock *P : predecessors(B)) {
2620       if (!DeadBlocks.count(P))
2621         continue;
2622       for (PHINode &Phi : B->phis()) {
2623         Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
2624         if (MD)
2625           MD->invalidateCachedPointerInfo(&Phi);
2626       }
2627     }
2628   }
2629 }
2630
2631 // If the given branch is recognized as a foldable branch (i.e. conditional
2632 // branch with constant condition), it will perform following analyses and
2633 // transformation.
2634 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2635 //     R be the target of the dead out-coming edge.
2636 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2637 //     edge. The result of this step will be {X| X is dominated by R}
2638 //  2) Identify those blocks which haves at least one dead predecessor. The
2639 //     result of this step will be dominance-frontier(R).
2640 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2641 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2642 //
2643 // Return true iff *NEW* dead code are found.
2644 bool GVN::processFoldableCondBr(BranchInst *BI) {
2645   if (!BI || BI->isUnconditional())
2646     return false;
2647
2648   // If a branch has two identical successors, we cannot declare either dead.
2649   if (BI->getSuccessor(0) == BI->getSuccessor(1))
2650     return false;
2651
2652   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2653   if (!Cond)
2654     return false;
2655
2656   BasicBlock *DeadRoot =
2657       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2658   if (DeadBlocks.count(DeadRoot))
2659     return false;
2660
2661   if (!DeadRoot->getSinglePredecessor())
2662     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2663
2664   addDeadBlock(DeadRoot);
2665   return true;
2666 }
2667
2668 // performPRE() will trigger assert if it comes across an instruction without
2669 // associated val-num. As it normally has far more live instructions than dead
2670 // instructions, it makes more sense just to "fabricate" a val-number for the
2671 // dead code than checking if instruction involved is dead or not.
2672 void GVN::assignValNumForDeadCode() {
2673   for (BasicBlock *BB : DeadBlocks) {
2674     for (Instruction &Inst : *BB) {
2675       unsigned ValNum = VN.lookupOrAdd(&Inst);
2676       addToLeaderTable(ValNum, &Inst, BB);
2677     }
2678   }
2679 }
2680
2681 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2682 public:
2683   static char ID; // Pass identification, replacement for typeid
2684
2685   explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
2686       : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
2687     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2688   }
2689
2690   bool runOnFunction(Function &F) override {
2691     if (skipFunction(F))
2692       return false;
2693
2694     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2695
2696     return Impl.runImpl(
2697         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2698         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2699         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2700         getAnalysis<AAResultsWrapperPass>().getAAResults(),
2701         NoMemDepAnalysis
2702             ? nullptr
2703             : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2704         LIWP ? &LIWP->getLoopInfo() : nullptr,
2705         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2706   }
2707
2708   void getAnalysisUsage(AnalysisUsage &AU) const override {
2709     AU.addRequired<AssumptionCacheTracker>();
2710     AU.addRequired<DominatorTreeWrapperPass>();
2711     AU.addRequired<TargetLibraryInfoWrapperPass>();
2712     AU.addRequired<LoopInfoWrapperPass>();
2713     if (!NoMemDepAnalysis)
2714       AU.addRequired<MemoryDependenceWrapperPass>();
2715     AU.addRequired<AAResultsWrapperPass>();
2716
2717     AU.addPreserved<DominatorTreeWrapperPass>();
2718     AU.addPreserved<GlobalsAAWrapperPass>();
2719     AU.addPreserved<TargetLibraryInfoWrapperPass>();
2720     AU.addPreserved<LoopInfoWrapperPass>();
2721     AU.addPreservedID(LoopSimplifyID);
2722     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2723   }
2724
2725 private:
2726   bool NoMemDepAnalysis;
2727   GVN Impl;
2728 };
2729
2730 char GVNLegacyPass::ID = 0;
2731
2732 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2733 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2734 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2735 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2736 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2737 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2738 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2739 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2740 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2741
2742 // The public interface to this file...
2743 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
2744   return new GVNLegacyPass(NoMemDepAnalysis);
2745 }