]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Scalar/GVN.cpp
MFC r356004:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Scalar / GVN.cpp
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions.  It also performs simple dead load elimination.
11 //
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/CFG.h"
32 #include "llvm/Analysis/DomTreeUpdater.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/MemoryBuiltins.h"
37 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
38 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
39 #include "llvm/Analysis/PHITransAddr.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/SSAUpdater.h"
76 #include "llvm/Transforms/Utils/VNCoercion.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstdint>
80 #include <utility>
81 #include <vector>
82
83 using namespace llvm;
84 using namespace llvm::gvn;
85 using namespace llvm::VNCoercion;
86 using namespace PatternMatch;
87
88 #define DEBUG_TYPE "gvn"
89
90 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
91 STATISTIC(NumGVNLoad,   "Number of loads deleted");
92 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
93 STATISTIC(NumGVNBlocks, "Number of blocks merged");
94 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
95 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
96 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
97
98 static cl::opt<bool> EnablePRE("enable-pre",
99                                cl::init(true), cl::Hidden);
100 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
101 static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
102
103 // Maximum allowed recursion depth.
104 static cl::opt<uint32_t>
105 MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
106                 cl::desc("Max recurse depth in GVN (default = 1000)"));
107
108 static cl::opt<uint32_t> MaxNumDeps(
109     "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
110     cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
111
112 struct llvm::GVN::Expression {
113   uint32_t opcode;
114   Type *type;
115   bool commutative = false;
116   SmallVector<uint32_t, 4> varargs;
117
118   Expression(uint32_t o = ~2U) : opcode(o) {}
119
120   bool operator==(const Expression &other) const {
121     if (opcode != other.opcode)
122       return false;
123     if (opcode == ~0U || opcode == ~1U)
124       return true;
125     if (type != other.type)
126       return false;
127     if (varargs != other.varargs)
128       return false;
129     return true;
130   }
131
132   friend hash_code hash_value(const Expression &Value) {
133     return hash_combine(
134         Value.opcode, Value.type,
135         hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
136   }
137 };
138
139 namespace llvm {
140
141 template <> struct DenseMapInfo<GVN::Expression> {
142   static inline GVN::Expression getEmptyKey() { return ~0U; }
143   static inline GVN::Expression getTombstoneKey() { return ~1U; }
144
145   static unsigned getHashValue(const GVN::Expression &e) {
146     using llvm::hash_value;
147
148     return static_cast<unsigned>(hash_value(e));
149   }
150
151   static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
152     return LHS == RHS;
153   }
154 };
155
156 } // end namespace llvm
157
158 /// Represents a particular available value that we know how to materialize.
159 /// Materialization of an AvailableValue never fails.  An AvailableValue is
160 /// implicitly associated with a rematerialization point which is the
161 /// location of the instruction from which it was formed.
162 struct llvm::gvn::AvailableValue {
163   enum ValType {
164     SimpleVal, // A simple offsetted value that is accessed.
165     LoadVal,   // A value produced by a load.
166     MemIntrin, // A memory intrinsic which is loaded from.
167     UndefVal   // A UndefValue representing a value from dead block (which
168                // is not yet physically removed from the CFG).
169   };
170
171   /// V - The value that is live out of the block.
172   PointerIntPair<Value *, 2, ValType> Val;
173
174   /// Offset - The byte offset in Val that is interesting for the load query.
175   unsigned Offset;
176
177   static AvailableValue get(Value *V, unsigned Offset = 0) {
178     AvailableValue Res;
179     Res.Val.setPointer(V);
180     Res.Val.setInt(SimpleVal);
181     Res.Offset = Offset;
182     return Res;
183   }
184
185   static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
186     AvailableValue Res;
187     Res.Val.setPointer(MI);
188     Res.Val.setInt(MemIntrin);
189     Res.Offset = Offset;
190     return Res;
191   }
192
193   static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
194     AvailableValue Res;
195     Res.Val.setPointer(LI);
196     Res.Val.setInt(LoadVal);
197     Res.Offset = Offset;
198     return Res;
199   }
200
201   static AvailableValue getUndef() {
202     AvailableValue Res;
203     Res.Val.setPointer(nullptr);
204     Res.Val.setInt(UndefVal);
205     Res.Offset = 0;
206     return Res;
207   }
208
209   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
210   bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
211   bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
212   bool isUndefValue() const { return Val.getInt() == UndefVal; }
213
214   Value *getSimpleValue() const {
215     assert(isSimpleValue() && "Wrong accessor");
216     return Val.getPointer();
217   }
218
219   LoadInst *getCoercedLoadValue() const {
220     assert(isCoercedLoadValue() && "Wrong accessor");
221     return cast<LoadInst>(Val.getPointer());
222   }
223
224   MemIntrinsic *getMemIntrinValue() const {
225     assert(isMemIntrinValue() && "Wrong accessor");
226     return cast<MemIntrinsic>(Val.getPointer());
227   }
228
229   /// Emit code at the specified insertion point to adjust the value defined
230   /// here to the specified type. This handles various coercion cases.
231   Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
232                                   GVN &gvn) const;
233 };
234
235 /// Represents an AvailableValue which can be rematerialized at the end of
236 /// the associated BasicBlock.
237 struct llvm::gvn::AvailableValueInBlock {
238   /// BB - The basic block in question.
239   BasicBlock *BB;
240
241   /// AV - The actual available value
242   AvailableValue AV;
243
244   static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
245     AvailableValueInBlock Res;
246     Res.BB = BB;
247     Res.AV = std::move(AV);
248     return Res;
249   }
250
251   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
252                                    unsigned Offset = 0) {
253     return get(BB, AvailableValue::get(V, Offset));
254   }
255
256   static AvailableValueInBlock getUndef(BasicBlock *BB) {
257     return get(BB, AvailableValue::getUndef());
258   }
259
260   /// Emit code at the end of this block to adjust the value defined here to
261   /// the specified type. This handles various coercion cases.
262   Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
263     return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
264   }
265 };
266
267 //===----------------------------------------------------------------------===//
268 //                     ValueTable Internal Functions
269 //===----------------------------------------------------------------------===//
270
271 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
272   Expression e;
273   e.type = I->getType();
274   e.opcode = I->getOpcode();
275   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
276        OI != OE; ++OI)
277     e.varargs.push_back(lookupOrAdd(*OI));
278   if (I->isCommutative()) {
279     // Ensure that commutative instructions that only differ by a permutation
280     // of their operands get the same value number by sorting the operand value
281     // numbers.  Since all commutative instructions have two operands it is more
282     // efficient to sort by hand rather than using, say, std::sort.
283     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
284     if (e.varargs[0] > e.varargs[1])
285       std::swap(e.varargs[0], e.varargs[1]);
286     e.commutative = true;
287   }
288
289   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
290     // Sort the operand value numbers so x<y and y>x get the same value number.
291     CmpInst::Predicate Predicate = C->getPredicate();
292     if (e.varargs[0] > e.varargs[1]) {
293       std::swap(e.varargs[0], e.varargs[1]);
294       Predicate = CmpInst::getSwappedPredicate(Predicate);
295     }
296     e.opcode = (C->getOpcode() << 8) | Predicate;
297     e.commutative = true;
298   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
299     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
300          II != IE; ++II)
301       e.varargs.push_back(*II);
302   }
303
304   return e;
305 }
306
307 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
308                                                CmpInst::Predicate Predicate,
309                                                Value *LHS, Value *RHS) {
310   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
311          "Not a comparison!");
312   Expression e;
313   e.type = CmpInst::makeCmpResultType(LHS->getType());
314   e.varargs.push_back(lookupOrAdd(LHS));
315   e.varargs.push_back(lookupOrAdd(RHS));
316
317   // Sort the operand value numbers so x<y and y>x get the same value number.
318   if (e.varargs[0] > e.varargs[1]) {
319     std::swap(e.varargs[0], e.varargs[1]);
320     Predicate = CmpInst::getSwappedPredicate(Predicate);
321   }
322   e.opcode = (Opcode << 8) | Predicate;
323   e.commutative = true;
324   return e;
325 }
326
327 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
328   assert(EI && "Not an ExtractValueInst?");
329   Expression e;
330   e.type = EI->getType();
331   e.opcode = 0;
332
333   WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
334   if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
335     // EI is an extract from one of our with.overflow intrinsics. Synthesize
336     // a semantically equivalent expression instead of an extract value
337     // expression.
338     e.opcode = WO->getBinaryOp();
339     e.varargs.push_back(lookupOrAdd(WO->getLHS()));
340     e.varargs.push_back(lookupOrAdd(WO->getRHS()));
341     return e;
342   }
343
344   // Not a recognised intrinsic. Fall back to producing an extract value
345   // expression.
346   e.opcode = EI->getOpcode();
347   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
348        OI != OE; ++OI)
349     e.varargs.push_back(lookupOrAdd(*OI));
350
351   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
352          II != IE; ++II)
353     e.varargs.push_back(*II);
354
355   return e;
356 }
357
358 //===----------------------------------------------------------------------===//
359 //                     ValueTable External Functions
360 //===----------------------------------------------------------------------===//
361
362 GVN::ValueTable::ValueTable() = default;
363 GVN::ValueTable::ValueTable(const ValueTable &) = default;
364 GVN::ValueTable::ValueTable(ValueTable &&) = default;
365 GVN::ValueTable::~ValueTable() = default;
366
367 /// add - Insert a value into the table with a specified value number.
368 void GVN::ValueTable::add(Value *V, uint32_t num) {
369   valueNumbering.insert(std::make_pair(V, num));
370   if (PHINode *PN = dyn_cast<PHINode>(V))
371     NumberingPhi[num] = PN;
372 }
373
374 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
375   if (AA->doesNotAccessMemory(C)) {
376     Expression exp = createExpr(C);
377     uint32_t e = assignExpNewValueNum(exp).first;
378     valueNumbering[C] = e;
379     return e;
380   } else if (MD && AA->onlyReadsMemory(C)) {
381     Expression exp = createExpr(C);
382     auto ValNum = assignExpNewValueNum(exp);
383     if (ValNum.second) {
384       valueNumbering[C] = ValNum.first;
385       return ValNum.first;
386     }
387
388     MemDepResult local_dep = MD->getDependency(C);
389
390     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
391       valueNumbering[C] =  nextValueNumber;
392       return nextValueNumber++;
393     }
394
395     if (local_dep.isDef()) {
396       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
397
398       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
399         valueNumbering[C] = nextValueNumber;
400         return nextValueNumber++;
401       }
402
403       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
404         uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
405         uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
406         if (c_vn != cd_vn) {
407           valueNumbering[C] = nextValueNumber;
408           return nextValueNumber++;
409         }
410       }
411
412       uint32_t v = lookupOrAdd(local_cdep);
413       valueNumbering[C] = v;
414       return v;
415     }
416
417     // Non-local case.
418     const MemoryDependenceResults::NonLocalDepInfo &deps =
419         MD->getNonLocalCallDependency(C);
420     // FIXME: Move the checking logic to MemDep!
421     CallInst* cdep = nullptr;
422
423     // Check to see if we have a single dominating call instruction that is
424     // identical to C.
425     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
426       const NonLocalDepEntry *I = &deps[i];
427       if (I->getResult().isNonLocal())
428         continue;
429
430       // We don't handle non-definitions.  If we already have a call, reject
431       // instruction dependencies.
432       if (!I->getResult().isDef() || cdep != nullptr) {
433         cdep = nullptr;
434         break;
435       }
436
437       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
438       // FIXME: All duplicated with non-local case.
439       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
440         cdep = NonLocalDepCall;
441         continue;
442       }
443
444       cdep = nullptr;
445       break;
446     }
447
448     if (!cdep) {
449       valueNumbering[C] = nextValueNumber;
450       return nextValueNumber++;
451     }
452
453     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
454       valueNumbering[C] = nextValueNumber;
455       return nextValueNumber++;
456     }
457     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
458       uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
459       uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
460       if (c_vn != cd_vn) {
461         valueNumbering[C] = nextValueNumber;
462         return nextValueNumber++;
463       }
464     }
465
466     uint32_t v = lookupOrAdd(cdep);
467     valueNumbering[C] = v;
468     return v;
469   } else {
470     valueNumbering[C] = nextValueNumber;
471     return nextValueNumber++;
472   }
473 }
474
475 /// Returns true if a value number exists for the specified value.
476 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
477
478 /// lookup_or_add - Returns the value number for the specified value, assigning
479 /// it a new number if it did not have one before.
480 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
481   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
482   if (VI != valueNumbering.end())
483     return VI->second;
484
485   if (!isa<Instruction>(V)) {
486     valueNumbering[V] = nextValueNumber;
487     return nextValueNumber++;
488   }
489
490   Instruction* I = cast<Instruction>(V);
491   Expression exp;
492   switch (I->getOpcode()) {
493     case Instruction::Call:
494       return lookupOrAddCall(cast<CallInst>(I));
495     case Instruction::FNeg:
496     case Instruction::Add:
497     case Instruction::FAdd:
498     case Instruction::Sub:
499     case Instruction::FSub:
500     case Instruction::Mul:
501     case Instruction::FMul:
502     case Instruction::UDiv:
503     case Instruction::SDiv:
504     case Instruction::FDiv:
505     case Instruction::URem:
506     case Instruction::SRem:
507     case Instruction::FRem:
508     case Instruction::Shl:
509     case Instruction::LShr:
510     case Instruction::AShr:
511     case Instruction::And:
512     case Instruction::Or:
513     case Instruction::Xor:
514     case Instruction::ICmp:
515     case Instruction::FCmp:
516     case Instruction::Trunc:
517     case Instruction::ZExt:
518     case Instruction::SExt:
519     case Instruction::FPToUI:
520     case Instruction::FPToSI:
521     case Instruction::UIToFP:
522     case Instruction::SIToFP:
523     case Instruction::FPTrunc:
524     case Instruction::FPExt:
525     case Instruction::PtrToInt:
526     case Instruction::IntToPtr:
527     case Instruction::AddrSpaceCast:
528     case Instruction::BitCast:
529     case Instruction::Select:
530     case Instruction::ExtractElement:
531     case Instruction::InsertElement:
532     case Instruction::ShuffleVector:
533     case Instruction::InsertValue:
534     case Instruction::GetElementPtr:
535       exp = createExpr(I);
536       break;
537     case Instruction::ExtractValue:
538       exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
539       break;
540     case Instruction::PHI:
541       valueNumbering[V] = nextValueNumber;
542       NumberingPhi[nextValueNumber] = cast<PHINode>(V);
543       return nextValueNumber++;
544     default:
545       valueNumbering[V] = nextValueNumber;
546       return nextValueNumber++;
547   }
548
549   uint32_t e = assignExpNewValueNum(exp).first;
550   valueNumbering[V] = e;
551   return e;
552 }
553
554 /// Returns the value number of the specified value. Fails if
555 /// the value has not yet been numbered.
556 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
557   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
558   if (Verify) {
559     assert(VI != valueNumbering.end() && "Value not numbered?");
560     return VI->second;
561   }
562   return (VI != valueNumbering.end()) ? VI->second : 0;
563 }
564
565 /// Returns the value number of the given comparison,
566 /// assigning it a new number if it did not have one before.  Useful when
567 /// we deduced the result of a comparison, but don't immediately have an
568 /// instruction realizing that comparison to hand.
569 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
570                                          CmpInst::Predicate Predicate,
571                                          Value *LHS, Value *RHS) {
572   Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
573   return assignExpNewValueNum(exp).first;
574 }
575
576 /// Remove all entries from the ValueTable.
577 void GVN::ValueTable::clear() {
578   valueNumbering.clear();
579   expressionNumbering.clear();
580   NumberingPhi.clear();
581   PhiTranslateTable.clear();
582   nextValueNumber = 1;
583   Expressions.clear();
584   ExprIdx.clear();
585   nextExprNumber = 0;
586 }
587
588 /// Remove a value from the value numbering.
589 void GVN::ValueTable::erase(Value *V) {
590   uint32_t Num = valueNumbering.lookup(V);
591   valueNumbering.erase(V);
592   // If V is PHINode, V <--> value number is an one-to-one mapping.
593   if (isa<PHINode>(V))
594     NumberingPhi.erase(Num);
595 }
596
597 /// verifyRemoved - Verify that the value is removed from all internal data
598 /// structures.
599 void GVN::ValueTable::verifyRemoved(const Value *V) const {
600   for (DenseMap<Value*, uint32_t>::const_iterator
601          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
602     assert(I->first != V && "Inst still occurs in value numbering map!");
603   }
604 }
605
606 //===----------------------------------------------------------------------===//
607 //                                GVN Pass
608 //===----------------------------------------------------------------------===//
609
610 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
611   // FIXME: The order of evaluation of these 'getResult' calls is very
612   // significant! Re-ordering these variables will cause GVN when run alone to
613   // be less effective! We should fix memdep and basic-aa to not exhibit this
614   // behavior, but until then don't change the order here.
615   auto &AC = AM.getResult<AssumptionAnalysis>(F);
616   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
617   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
618   auto &AA = AM.getResult<AAManager>(F);
619   auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
620   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
621   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
622   bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
623   if (!Changed)
624     return PreservedAnalyses::all();
625   PreservedAnalyses PA;
626   PA.preserve<DominatorTreeAnalysis>();
627   PA.preserve<GlobalsAA>();
628   PA.preserve<TargetLibraryAnalysis>();
629   return PA;
630 }
631
632 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
633 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
634   errs() << "{\n";
635   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
636        E = d.end(); I != E; ++I) {
637       errs() << I->first << "\n";
638       I->second->dump();
639   }
640   errs() << "}\n";
641 }
642 #endif
643
644 /// Return true if we can prove that the value
645 /// we're analyzing is fully available in the specified block.  As we go, keep
646 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
647 /// map is actually a tri-state map with the following values:
648 ///   0) we know the block *is not* fully available.
649 ///   1) we know the block *is* fully available.
650 ///   2) we do not know whether the block is fully available or not, but we are
651 ///      currently speculating that it will be.
652 ///   3) we are speculating for this block and have used that to speculate for
653 ///      other blocks.
654 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
655                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
656                             uint32_t RecurseDepth) {
657   if (RecurseDepth > MaxRecurseDepth)
658     return false;
659
660   // Optimistically assume that the block is fully available and check to see
661   // if we already know about this block in one lookup.
662   std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
663     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
664
665   // If the entry already existed for this block, return the precomputed value.
666   if (!IV.second) {
667     // If this is a speculative "available" value, mark it as being used for
668     // speculation of other blocks.
669     if (IV.first->second == 2)
670       IV.first->second = 3;
671     return IV.first->second != 0;
672   }
673
674   // Otherwise, see if it is fully available in all predecessors.
675   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
676
677   // If this block has no predecessors, it isn't live-in here.
678   if (PI == PE)
679     goto SpeculationFailure;
680
681   for (; PI != PE; ++PI)
682     // If the value isn't fully available in one of our predecessors, then it
683     // isn't fully available in this block either.  Undo our previous
684     // optimistic assumption and bail out.
685     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
686       goto SpeculationFailure;
687
688   return true;
689
690 // If we get here, we found out that this is not, after
691 // all, a fully-available block.  We have a problem if we speculated on this and
692 // used the speculation to mark other blocks as available.
693 SpeculationFailure:
694   char &BBVal = FullyAvailableBlocks[BB];
695
696   // If we didn't speculate on this, just return with it set to false.
697   if (BBVal == 2) {
698     BBVal = 0;
699     return false;
700   }
701
702   // If we did speculate on this value, we could have blocks set to 1 that are
703   // incorrect.  Walk the (transitive) successors of this block and mark them as
704   // 0 if set to one.
705   SmallVector<BasicBlock*, 32> BBWorklist;
706   BBWorklist.push_back(BB);
707
708   do {
709     BasicBlock *Entry = BBWorklist.pop_back_val();
710     // Note that this sets blocks to 0 (unavailable) if they happen to not
711     // already be in FullyAvailableBlocks.  This is safe.
712     char &EntryVal = FullyAvailableBlocks[Entry];
713     if (EntryVal == 0) continue;  // Already unavailable.
714
715     // Mark as unavailable.
716     EntryVal = 0;
717
718     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
719   } while (!BBWorklist.empty());
720
721   return false;
722 }
723
724 /// Given a set of loads specified by ValuesPerBlock,
725 /// construct SSA form, allowing us to eliminate LI.  This returns the value
726 /// that should be used at LI's definition site.
727 static Value *ConstructSSAForLoadSet(LoadInst *LI,
728                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
729                                      GVN &gvn) {
730   // Check for the fully redundant, dominating load case.  In this case, we can
731   // just use the dominating value directly.
732   if (ValuesPerBlock.size() == 1 &&
733       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
734                                                LI->getParent())) {
735     assert(!ValuesPerBlock[0].AV.isUndefValue() &&
736            "Dead BB dominate this block");
737     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
738   }
739
740   // Otherwise, we have to construct SSA form.
741   SmallVector<PHINode*, 8> NewPHIs;
742   SSAUpdater SSAUpdate(&NewPHIs);
743   SSAUpdate.Initialize(LI->getType(), LI->getName());
744
745   for (const AvailableValueInBlock &AV : ValuesPerBlock) {
746     BasicBlock *BB = AV.BB;
747
748     if (SSAUpdate.HasValueForBlock(BB))
749       continue;
750
751     // If the value is the load that we will be eliminating, and the block it's
752     // available in is the block that the load is in, then don't add it as
753     // SSAUpdater will resolve the value to the relevant phi which may let it
754     // avoid phi construction entirely if there's actually only one value.
755     if (BB == LI->getParent() &&
756         ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
757          (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
758       continue;
759
760     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
761   }
762
763   // Perform PHI construction.
764   return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
765 }
766
767 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
768                                                 Instruction *InsertPt,
769                                                 GVN &gvn) const {
770   Value *Res;
771   Type *LoadTy = LI->getType();
772   const DataLayout &DL = LI->getModule()->getDataLayout();
773   if (isSimpleValue()) {
774     Res = getSimpleValue();
775     if (Res->getType() != LoadTy) {
776       Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
777
778       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
779                         << "  " << *getSimpleValue() << '\n'
780                         << *Res << '\n'
781                         << "\n\n\n");
782     }
783   } else if (isCoercedLoadValue()) {
784     LoadInst *Load = getCoercedLoadValue();
785     if (Load->getType() == LoadTy && Offset == 0) {
786       Res = Load;
787     } else {
788       Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
789       // We would like to use gvn.markInstructionForDeletion here, but we can't
790       // because the load is already memoized into the leader map table that GVN
791       // tracks.  It is potentially possible to remove the load from the table,
792       // but then there all of the operations based on it would need to be
793       // rehashed.  Just leave the dead load around.
794       gvn.getMemDep().removeInstruction(Load);
795       LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
796                         << "  " << *getCoercedLoadValue() << '\n'
797                         << *Res << '\n'
798                         << "\n\n\n");
799     }
800   } else if (isMemIntrinValue()) {
801     Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
802                                  InsertPt, DL);
803     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
804                       << "  " << *getMemIntrinValue() << '\n'
805                       << *Res << '\n'
806                       << "\n\n\n");
807   } else {
808     assert(isUndefValue() && "Should be UndefVal");
809     LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
810     return UndefValue::get(LoadTy);
811   }
812   assert(Res && "failed to materialize?");
813   return Res;
814 }
815
816 static bool isLifetimeStart(const Instruction *Inst) {
817   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
818     return II->getIntrinsicID() == Intrinsic::lifetime_start;
819   return false;
820 }
821
822 /// Try to locate the three instruction involved in a missed
823 /// load-elimination case that is due to an intervening store.
824 static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
825                                    DominatorTree *DT,
826                                    OptimizationRemarkEmitter *ORE) {
827   using namespace ore;
828
829   User *OtherAccess = nullptr;
830
831   OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
832   R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
833     << setExtraArgs();
834
835   for (auto *U : LI->getPointerOperand()->users())
836     if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
837         DT->dominates(cast<Instruction>(U), LI)) {
838       // FIXME: for now give up if there are multiple memory accesses that
839       // dominate the load.  We need further analysis to decide which one is
840       // that we're forwarding from.
841       if (OtherAccess)
842         OtherAccess = nullptr;
843       else
844         OtherAccess = U;
845     }
846
847   if (OtherAccess)
848     R << " in favor of " << NV("OtherAccess", OtherAccess);
849
850   R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
851
852   ORE->emit(R);
853 }
854
855 bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
856                                   Value *Address, AvailableValue &Res) {
857   assert((DepInfo.isDef() || DepInfo.isClobber()) &&
858          "expected a local dependence");
859   assert(LI->isUnordered() && "rules below are incorrect for ordered access");
860
861   const DataLayout &DL = LI->getModule()->getDataLayout();
862
863   Instruction *DepInst = DepInfo.getInst();
864   if (DepInfo.isClobber()) {
865     // If the dependence is to a store that writes to a superset of the bits
866     // read by the load, we can extract the bits we need for the load from the
867     // stored value.
868     if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
869       // Can't forward from non-atomic to atomic without violating memory model.
870       if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
871         int Offset =
872           analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
873         if (Offset != -1) {
874           Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
875           return true;
876         }
877       }
878     }
879
880     // Check to see if we have something like this:
881     //    load i32* P
882     //    load i8* (P+1)
883     // if we have this, replace the later with an extraction from the former.
884     if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
885       // If this is a clobber and L is the first instruction in its block, then
886       // we have the first instruction in the entry block.
887       // Can't forward from non-atomic to atomic without violating memory model.
888       if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
889         int Offset =
890           analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
891
892         if (Offset != -1) {
893           Res = AvailableValue::getLoad(DepLI, Offset);
894           return true;
895         }
896       }
897     }
898
899     // If the clobbering value is a memset/memcpy/memmove, see if we can
900     // forward a value on from it.
901     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
902       if (Address && !LI->isAtomic()) {
903         int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
904                                                       DepMI, DL);
905         if (Offset != -1) {
906           Res = AvailableValue::getMI(DepMI, Offset);
907           return true;
908         }
909       }
910     }
911     // Nothing known about this clobber, have to be conservative
912     LLVM_DEBUG(
913         // fast print dep, using operator<< on instruction is too slow.
914         dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
915         dbgs() << " is clobbered by " << *DepInst << '\n';);
916     if (ORE->allowExtraAnalysis(DEBUG_TYPE))
917       reportMayClobberedLoad(LI, DepInfo, DT, ORE);
918
919     return false;
920   }
921   assert(DepInfo.isDef() && "follows from above");
922
923   // Loading the allocation -> undef.
924   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
925       // Loading immediately after lifetime begin -> undef.
926       isLifetimeStart(DepInst)) {
927     Res = AvailableValue::get(UndefValue::get(LI->getType()));
928     return true;
929   }
930
931   // Loading from calloc (which zero initializes memory) -> zero
932   if (isCallocLikeFn(DepInst, TLI)) {
933     Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
934     return true;
935   }
936
937   if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
938     // Reject loads and stores that are to the same address but are of
939     // different types if we have to. If the stored value is larger or equal to
940     // the loaded value, we can reuse it.
941     if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(),
942                                          DL))
943       return false;
944
945     // Can't forward from non-atomic to atomic without violating memory model.
946     if (S->isAtomic() < LI->isAtomic())
947       return false;
948
949     Res = AvailableValue::get(S->getValueOperand());
950     return true;
951   }
952
953   if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
954     // If the types mismatch and we can't handle it, reject reuse of the load.
955     // If the stored value is larger or equal to the loaded value, we can reuse
956     // it.
957     if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
958       return false;
959
960     // Can't forward from non-atomic to atomic without violating memory model.
961     if (LD->isAtomic() < LI->isAtomic())
962       return false;
963
964     Res = AvailableValue::getLoad(LD);
965     return true;
966   }
967
968   // Unknown def - must be conservative
969   LLVM_DEBUG(
970       // fast print dep, using operator<< on instruction is too slow.
971       dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
972       dbgs() << " has unknown def " << *DepInst << '\n';);
973   return false;
974 }
975
976 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
977                                   AvailValInBlkVect &ValuesPerBlock,
978                                   UnavailBlkVect &UnavailableBlocks) {
979   // Filter out useless results (non-locals, etc).  Keep track of the blocks
980   // where we have a value available in repl, also keep track of whether we see
981   // dependencies that produce an unknown value for the load (such as a call
982   // that could potentially clobber the load).
983   unsigned NumDeps = Deps.size();
984   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
985     BasicBlock *DepBB = Deps[i].getBB();
986     MemDepResult DepInfo = Deps[i].getResult();
987
988     if (DeadBlocks.count(DepBB)) {
989       // Dead dependent mem-op disguise as a load evaluating the same value
990       // as the load in question.
991       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
992       continue;
993     }
994
995     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
996       UnavailableBlocks.push_back(DepBB);
997       continue;
998     }
999
1000     // The address being loaded in this non-local block may not be the same as
1001     // the pointer operand of the load if PHI translation occurs.  Make sure
1002     // to consider the right address.
1003     Value *Address = Deps[i].getAddress();
1004
1005     AvailableValue AV;
1006     if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1007       // subtlety: because we know this was a non-local dependency, we know
1008       // it's safe to materialize anywhere between the instruction within
1009       // DepInfo and the end of it's block.
1010       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1011                                                           std::move(AV)));
1012     } else {
1013       UnavailableBlocks.push_back(DepBB);
1014     }
1015   }
1016
1017   assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1018          "post condition violation");
1019 }
1020
1021 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1022                          UnavailBlkVect &UnavailableBlocks) {
1023   // Okay, we have *some* definitions of the value.  This means that the value
1024   // is available in some of our (transitive) predecessors.  Lets think about
1025   // doing PRE of this load.  This will involve inserting a new load into the
1026   // predecessor when it's not available.  We could do this in general, but
1027   // prefer to not increase code size.  As such, we only do this when we know
1028   // that we only have to insert *one* load (which means we're basically moving
1029   // the load, not inserting a new one).
1030
1031   SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1032                                         UnavailableBlocks.end());
1033
1034   // Let's find the first basic block with more than one predecessor.  Walk
1035   // backwards through predecessors if needed.
1036   BasicBlock *LoadBB = LI->getParent();
1037   BasicBlock *TmpBB = LoadBB;
1038   bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1039
1040   // Check that there is no implicit control flow instructions above our load in
1041   // its block. If there is an instruction that doesn't always pass the
1042   // execution to the following instruction, then moving through it may become
1043   // invalid. For example:
1044   //
1045   // int arr[LEN];
1046   // int index = ???;
1047   // ...
1048   // guard(0 <= index && index < LEN);
1049   // use(arr[index]);
1050   //
1051   // It is illegal to move the array access to any point above the guard,
1052   // because if the index is out of bounds we should deoptimize rather than
1053   // access the array.
1054   // Check that there is no guard in this block above our instruction.
1055   if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
1056     return false;
1057   while (TmpBB->getSinglePredecessor()) {
1058     TmpBB = TmpBB->getSinglePredecessor();
1059     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1060       return false;
1061     if (Blockers.count(TmpBB))
1062       return false;
1063
1064     // If any of these blocks has more than one successor (i.e. if the edge we
1065     // just traversed was critical), then there are other paths through this
1066     // block along which the load may not be anticipated.  Hoisting the load
1067     // above this block would be adding the load to execution paths along
1068     // which it was not previously executed.
1069     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1070       return false;
1071
1072     // Check that there is no implicit control flow in a block above.
1073     if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
1074       return false;
1075   }
1076
1077   assert(TmpBB);
1078   LoadBB = TmpBB;
1079
1080   // Check to see how many predecessors have the loaded value fully
1081   // available.
1082   MapVector<BasicBlock *, Value *> PredLoads;
1083   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1084   for (const AvailableValueInBlock &AV : ValuesPerBlock)
1085     FullyAvailableBlocks[AV.BB] = true;
1086   for (BasicBlock *UnavailableBB : UnavailableBlocks)
1087     FullyAvailableBlocks[UnavailableBB] = false;
1088
1089   SmallVector<BasicBlock *, 4> CriticalEdgePred;
1090   for (BasicBlock *Pred : predecessors(LoadBB)) {
1091     // If any predecessor block is an EH pad that does not allow non-PHI
1092     // instructions before the terminator, we can't PRE the load.
1093     if (Pred->getTerminator()->isEHPad()) {
1094       LLVM_DEBUG(
1095           dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1096                  << Pred->getName() << "': " << *LI << '\n');
1097       return false;
1098     }
1099
1100     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1101       continue;
1102     }
1103
1104     if (Pred->getTerminator()->getNumSuccessors() != 1) {
1105       if (isa<IndirectBrInst>(Pred->getTerminator())) {
1106         LLVM_DEBUG(
1107             dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1108                    << Pred->getName() << "': " << *LI << '\n');
1109         return false;
1110       }
1111
1112       // FIXME: Can we support the fallthrough edge?
1113       if (isa<CallBrInst>(Pred->getTerminator())) {
1114         LLVM_DEBUG(
1115             dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1116                    << Pred->getName() << "': " << *LI << '\n');
1117         return false;
1118       }
1119
1120       if (LoadBB->isEHPad()) {
1121         LLVM_DEBUG(
1122             dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1123                    << Pred->getName() << "': " << *LI << '\n');
1124         return false;
1125       }
1126
1127       CriticalEdgePred.push_back(Pred);
1128     } else {
1129       // Only add the predecessors that will not be split for now.
1130       PredLoads[Pred] = nullptr;
1131     }
1132   }
1133
1134   // Decide whether PRE is profitable for this load.
1135   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1136   assert(NumUnavailablePreds != 0 &&
1137          "Fully available value should already be eliminated!");
1138
1139   // If this load is unavailable in multiple predecessors, reject it.
1140   // FIXME: If we could restructure the CFG, we could make a common pred with
1141   // all the preds that don't have an available LI and insert a new load into
1142   // that one block.
1143   if (NumUnavailablePreds != 1)
1144       return false;
1145
1146   // Split critical edges, and update the unavailable predecessors accordingly.
1147   for (BasicBlock *OrigPred : CriticalEdgePred) {
1148     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1149     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1150     PredLoads[NewPred] = nullptr;
1151     LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1152                       << LoadBB->getName() << '\n');
1153   }
1154
1155   // Check if the load can safely be moved to all the unavailable predecessors.
1156   bool CanDoPRE = true;
1157   const DataLayout &DL = LI->getModule()->getDataLayout();
1158   SmallVector<Instruction*, 8> NewInsts;
1159   for (auto &PredLoad : PredLoads) {
1160     BasicBlock *UnavailablePred = PredLoad.first;
1161
1162     // Do PHI translation to get its value in the predecessor if necessary.  The
1163     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1164
1165     // If all preds have a single successor, then we know it is safe to insert
1166     // the load on the pred (?!?), so we can insert code to materialize the
1167     // pointer if it is not available.
1168     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1169     Value *LoadPtr = nullptr;
1170     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1171                                                 *DT, NewInsts);
1172
1173     // If we couldn't find or insert a computation of this phi translated value,
1174     // we fail PRE.
1175     if (!LoadPtr) {
1176       LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1177                         << *LI->getPointerOperand() << "\n");
1178       CanDoPRE = false;
1179       break;
1180     }
1181
1182     PredLoad.second = LoadPtr;
1183   }
1184
1185   if (!CanDoPRE) {
1186     while (!NewInsts.empty()) {
1187       Instruction *I = NewInsts.pop_back_val();
1188       markInstructionForDeletion(I);
1189     }
1190     // HINT: Don't revert the edge-splitting as following transformation may
1191     // also need to split these critical edges.
1192     return !CriticalEdgePred.empty();
1193   }
1194
1195   // Okay, we can eliminate this load by inserting a reload in the predecessor
1196   // and using PHI construction to get the value in the other predecessors, do
1197   // it.
1198   LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1199   LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
1200              << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
1201              << '\n');
1202
1203   // Assign value numbers to the new instructions.
1204   for (Instruction *I : NewInsts) {
1205     // Instructions that have been inserted in predecessor(s) to materialize
1206     // the load address do not retain their original debug locations. Doing
1207     // so could lead to confusing (but correct) source attributions.
1208     if (const DebugLoc &DL = I->getDebugLoc())
1209       I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1210
1211     // FIXME: We really _ought_ to insert these value numbers into their
1212     // parent's availability map.  However, in doing so, we risk getting into
1213     // ordering issues.  If a block hasn't been processed yet, we would be
1214     // marking a value as AVAIL-IN, which isn't what we intend.
1215     VN.lookupOrAdd(I);
1216   }
1217
1218   for (const auto &PredLoad : PredLoads) {
1219     BasicBlock *UnavailablePred = PredLoad.first;
1220     Value *LoadPtr = PredLoad.second;
1221
1222     auto *NewLoad =
1223         new LoadInst(LI->getType(), LoadPtr, LI->getName() + ".pre",
1224                      LI->isVolatile(), LI->getAlignment(), LI->getOrdering(),
1225                      LI->getSyncScopeID(), UnavailablePred->getTerminator());
1226     NewLoad->setDebugLoc(LI->getDebugLoc());
1227
1228     // Transfer the old load's AA tags to the new load.
1229     AAMDNodes Tags;
1230     LI->getAAMetadata(Tags);
1231     if (Tags)
1232       NewLoad->setAAMetadata(Tags);
1233
1234     if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1235       NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1236     if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1237       NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1238     if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1239       NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1240
1241     // We do not propagate the old load's debug location, because the new
1242     // load now lives in a different BB, and we want to avoid a jumpy line
1243     // table.
1244     // FIXME: How do we retain source locations without causing poor debugging
1245     // behavior?
1246
1247     // Add the newly created load.
1248     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1249                                                         NewLoad));
1250     MD->invalidateCachedPointerInfo(LoadPtr);
1251     LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1252   }
1253
1254   // Perform PHI construction.
1255   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1256   LI->replaceAllUsesWith(V);
1257   if (isa<PHINode>(V))
1258     V->takeName(LI);
1259   if (Instruction *I = dyn_cast<Instruction>(V))
1260     I->setDebugLoc(LI->getDebugLoc());
1261   if (V->getType()->isPtrOrPtrVectorTy())
1262     MD->invalidateCachedPointerInfo(V);
1263   markInstructionForDeletion(LI);
1264   ORE->emit([&]() {
1265     return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1266            << "load eliminated by PRE";
1267   });
1268   ++NumPRELoad;
1269   return true;
1270 }
1271
1272 static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1273                            OptimizationRemarkEmitter *ORE) {
1274   using namespace ore;
1275
1276   ORE->emit([&]() {
1277     return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1278            << "load of type " << NV("Type", LI->getType()) << " eliminated"
1279            << setExtraArgs() << " in favor of "
1280            << NV("InfavorOfValue", AvailableValue);
1281   });
1282 }
1283
1284 /// Attempt to eliminate a load whose dependencies are
1285 /// non-local by performing PHI construction.
1286 bool GVN::processNonLocalLoad(LoadInst *LI) {
1287   // non-local speculations are not allowed under asan.
1288   if (LI->getParent()->getParent()->hasFnAttribute(
1289           Attribute::SanitizeAddress) ||
1290       LI->getParent()->getParent()->hasFnAttribute(
1291           Attribute::SanitizeHWAddress))
1292     return false;
1293
1294   // Step 1: Find the non-local dependencies of the load.
1295   LoadDepVect Deps;
1296   MD->getNonLocalPointerDependency(LI, Deps);
1297
1298   // If we had to process more than one hundred blocks to find the
1299   // dependencies, this load isn't worth worrying about.  Optimizing
1300   // it will be too expensive.
1301   unsigned NumDeps = Deps.size();
1302   if (NumDeps > MaxNumDeps)
1303     return false;
1304
1305   // If we had a phi translation failure, we'll have a single entry which is a
1306   // clobber in the current block.  Reject this early.
1307   if (NumDeps == 1 &&
1308       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1309     LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
1310                dbgs() << " has unknown dependencies\n";);
1311     return false;
1312   }
1313
1314   // If this load follows a GEP, see if we can PRE the indices before analyzing.
1315   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1316     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1317                                         OE = GEP->idx_end();
1318          OI != OE; ++OI)
1319       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1320         performScalarPRE(I);
1321   }
1322
1323   // Step 2: Analyze the availability of the load
1324   AvailValInBlkVect ValuesPerBlock;
1325   UnavailBlkVect UnavailableBlocks;
1326   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1327
1328   // If we have no predecessors that produce a known value for this load, exit
1329   // early.
1330   if (ValuesPerBlock.empty())
1331     return false;
1332
1333   // Step 3: Eliminate fully redundancy.
1334   //
1335   // If all of the instructions we depend on produce a known value for this
1336   // load, then it is fully redundant and we can use PHI insertion to compute
1337   // its value.  Insert PHIs and remove the fully redundant value now.
1338   if (UnavailableBlocks.empty()) {
1339     LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1340
1341     // Perform PHI construction.
1342     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1343     LI->replaceAllUsesWith(V);
1344
1345     if (isa<PHINode>(V))
1346       V->takeName(LI);
1347     if (Instruction *I = dyn_cast<Instruction>(V))
1348       // If instruction I has debug info, then we should not update it.
1349       // Also, if I has a null DebugLoc, then it is still potentially incorrect
1350       // to propagate LI's DebugLoc because LI may not post-dominate I.
1351       if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1352         I->setDebugLoc(LI->getDebugLoc());
1353     if (V->getType()->isPtrOrPtrVectorTy())
1354       MD->invalidateCachedPointerInfo(V);
1355     markInstructionForDeletion(LI);
1356     ++NumGVNLoad;
1357     reportLoadElim(LI, V, ORE);
1358     return true;
1359   }
1360
1361   // Step 4: Eliminate partial redundancy.
1362   if (!EnablePRE || !EnableLoadPRE)
1363     return false;
1364
1365   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1366 }
1367
1368 bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1369   assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1370          "This function can only be called with llvm.assume intrinsic");
1371   Value *V = IntrinsicI->getArgOperand(0);
1372
1373   if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1374     if (Cond->isZero()) {
1375       Type *Int8Ty = Type::getInt8Ty(V->getContext());
1376       // Insert a new store to null instruction before the load to indicate that
1377       // this code is not reachable.  FIXME: We could insert unreachable
1378       // instruction directly because we can modify the CFG.
1379       new StoreInst(UndefValue::get(Int8Ty),
1380                     Constant::getNullValue(Int8Ty->getPointerTo()),
1381                     IntrinsicI);
1382     }
1383     markInstructionForDeletion(IntrinsicI);
1384     return false;
1385   } else if (isa<Constant>(V)) {
1386     // If it's not false, and constant, it must evaluate to true. This means our
1387     // assume is assume(true), and thus, pointless, and we don't want to do
1388     // anything more here.
1389     return false;
1390   }
1391
1392   Constant *True = ConstantInt::getTrue(V->getContext());
1393   bool Changed = false;
1394
1395   for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1396     BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1397
1398     // This property is only true in dominated successors, propagateEquality
1399     // will check dominance for us.
1400     Changed |= propagateEquality(V, True, Edge, false);
1401   }
1402
1403   // We can replace assume value with true, which covers cases like this:
1404   // call void @llvm.assume(i1 %cmp)
1405   // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1406   ReplaceWithConstMap[V] = True;
1407
1408   // If one of *cmp *eq operand is const, adding it to map will cover this:
1409   // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1410   // call void @llvm.assume(i1 %cmp)
1411   // ret float %0 ; will change it to ret float 3.000000e+00
1412   if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1413     if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
1414         CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1415         (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1416          CmpI->getFastMathFlags().noNaNs())) {
1417       Value *CmpLHS = CmpI->getOperand(0);
1418       Value *CmpRHS = CmpI->getOperand(1);
1419       if (isa<Constant>(CmpLHS))
1420         std::swap(CmpLHS, CmpRHS);
1421       auto *RHSConst = dyn_cast<Constant>(CmpRHS);
1422
1423       // If only one operand is constant.
1424       if (RHSConst != nullptr && !isa<Constant>(CmpLHS))
1425         ReplaceWithConstMap[CmpLHS] = RHSConst;
1426     }
1427   }
1428   return Changed;
1429 }
1430
1431 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1432   patchReplacementInstruction(I, Repl);
1433   I->replaceAllUsesWith(Repl);
1434 }
1435
1436 /// Attempt to eliminate a load, first by eliminating it
1437 /// locally, and then attempting non-local elimination if that fails.
1438 bool GVN::processLoad(LoadInst *L) {
1439   if (!MD)
1440     return false;
1441
1442   // This code hasn't been audited for ordered or volatile memory access
1443   if (!L->isUnordered())
1444     return false;
1445
1446   if (L->use_empty()) {
1447     markInstructionForDeletion(L);
1448     return true;
1449   }
1450
1451   // ... to a pointer that has been loaded from before...
1452   MemDepResult Dep = MD->getDependency(L);
1453
1454   // If it is defined in another block, try harder.
1455   if (Dep.isNonLocal())
1456     return processNonLocalLoad(L);
1457
1458   // Only handle the local case below
1459   if (!Dep.isDef() && !Dep.isClobber()) {
1460     // This might be a NonFuncLocal or an Unknown
1461     LLVM_DEBUG(
1462         // fast print dep, using operator<< on instruction is too slow.
1463         dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1464         dbgs() << " has unknown dependence\n";);
1465     return false;
1466   }
1467
1468   AvailableValue AV;
1469   if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1470     Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1471
1472     // Replace the load!
1473     patchAndReplaceAllUsesWith(L, AvailableValue);
1474     markInstructionForDeletion(L);
1475     ++NumGVNLoad;
1476     reportLoadElim(L, AvailableValue, ORE);
1477     // Tell MDA to rexamine the reused pointer since we might have more
1478     // information after forwarding it.
1479     if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1480       MD->invalidateCachedPointerInfo(AvailableValue);
1481     return true;
1482   }
1483
1484   return false;
1485 }
1486
1487 /// Return a pair the first field showing the value number of \p Exp and the
1488 /// second field showing whether it is a value number newly created.
1489 std::pair<uint32_t, bool>
1490 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1491   uint32_t &e = expressionNumbering[Exp];
1492   bool CreateNewValNum = !e;
1493   if (CreateNewValNum) {
1494     Expressions.push_back(Exp);
1495     if (ExprIdx.size() < nextValueNumber + 1)
1496       ExprIdx.resize(nextValueNumber * 2);
1497     e = nextValueNumber;
1498     ExprIdx[nextValueNumber++] = nextExprNumber++;
1499   }
1500   return {e, CreateNewValNum};
1501 }
1502
1503 /// Return whether all the values related with the same \p num are
1504 /// defined in \p BB.
1505 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1506                                      GVN &Gvn) {
1507   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1508   while (Vals && Vals->BB == BB)
1509     Vals = Vals->Next;
1510   return !Vals;
1511 }
1512
1513 /// Wrap phiTranslateImpl to provide caching functionality.
1514 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1515                                        const BasicBlock *PhiBlock, uint32_t Num,
1516                                        GVN &Gvn) {
1517   auto FindRes = PhiTranslateTable.find({Num, Pred});
1518   if (FindRes != PhiTranslateTable.end())
1519     return FindRes->second;
1520   uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1521   PhiTranslateTable.insert({{Num, Pred}, NewNum});
1522   return NewNum;
1523 }
1524
1525 // Return true if the value number \p Num and NewNum have equal value.
1526 // Return false if the result is unknown.
1527 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
1528                                        const BasicBlock *Pred,
1529                                        const BasicBlock *PhiBlock, GVN &Gvn) {
1530   CallInst *Call = nullptr;
1531   LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1532   while (Vals) {
1533     Call = dyn_cast<CallInst>(Vals->Val);
1534     if (Call && Call->getParent() == PhiBlock)
1535       break;
1536     Vals = Vals->Next;
1537   }
1538
1539   if (AA->doesNotAccessMemory(Call))
1540     return true;
1541
1542   if (!MD || !AA->onlyReadsMemory(Call))
1543     return false;
1544
1545   MemDepResult local_dep = MD->getDependency(Call);
1546   if (!local_dep.isNonLocal())
1547     return false;
1548
1549   const MemoryDependenceResults::NonLocalDepInfo &deps =
1550       MD->getNonLocalCallDependency(Call);
1551
1552   // Check to see if the Call has no function local clobber.
1553   for (unsigned i = 0; i < deps.size(); i++) {
1554     if (deps[i].getResult().isNonFuncLocal())
1555       return true;
1556   }
1557   return false;
1558 }
1559
1560 /// Translate value number \p Num using phis, so that it has the values of
1561 /// the phis in BB.
1562 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1563                                            const BasicBlock *PhiBlock,
1564                                            uint32_t Num, GVN &Gvn) {
1565   if (PHINode *PN = NumberingPhi[Num]) {
1566     for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1567       if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1568         if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1569           return TransVal;
1570     }
1571     return Num;
1572   }
1573
1574   // If there is any value related with Num is defined in a BB other than
1575   // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1576   // a backedge. We can do an early exit in that case to save compile time.
1577   if (!areAllValsInBB(Num, PhiBlock, Gvn))
1578     return Num;
1579
1580   if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1581     return Num;
1582   Expression Exp = Expressions[ExprIdx[Num]];
1583
1584   for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1585     // For InsertValue and ExtractValue, some varargs are index numbers
1586     // instead of value numbers. Those index numbers should not be
1587     // translated.
1588     if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1589         (i > 0 && Exp.opcode == Instruction::ExtractValue))
1590       continue;
1591     Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1592   }
1593
1594   if (Exp.commutative) {
1595     assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1596     if (Exp.varargs[0] > Exp.varargs[1]) {
1597       std::swap(Exp.varargs[0], Exp.varargs[1]);
1598       uint32_t Opcode = Exp.opcode >> 8;
1599       if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1600         Exp.opcode = (Opcode << 8) |
1601                      CmpInst::getSwappedPredicate(
1602                          static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1603     }
1604   }
1605
1606   if (uint32_t NewNum = expressionNumbering[Exp]) {
1607     if (Exp.opcode == Instruction::Call && NewNum != Num)
1608       return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
1609     return NewNum;
1610   }
1611   return Num;
1612 }
1613
1614 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1615 /// again.
1616 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1617                                                const BasicBlock &CurrBlock) {
1618   for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1619     auto FindRes = PhiTranslateTable.find({Num, Pred});
1620     if (FindRes != PhiTranslateTable.end())
1621       PhiTranslateTable.erase(FindRes);
1622   }
1623 }
1624
1625 // In order to find a leader for a given value number at a
1626 // specific basic block, we first obtain the list of all Values for that number,
1627 // and then scan the list to find one whose block dominates the block in
1628 // question.  This is fast because dominator tree queries consist of only
1629 // a few comparisons of DFS numbers.
1630 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1631   LeaderTableEntry Vals = LeaderTable[num];
1632   if (!Vals.Val) return nullptr;
1633
1634   Value *Val = nullptr;
1635   if (DT->dominates(Vals.BB, BB)) {
1636     Val = Vals.Val;
1637     if (isa<Constant>(Val)) return Val;
1638   }
1639
1640   LeaderTableEntry* Next = Vals.Next;
1641   while (Next) {
1642     if (DT->dominates(Next->BB, BB)) {
1643       if (isa<Constant>(Next->Val)) return Next->Val;
1644       if (!Val) Val = Next->Val;
1645     }
1646
1647     Next = Next->Next;
1648   }
1649
1650   return Val;
1651 }
1652
1653 /// There is an edge from 'Src' to 'Dst'.  Return
1654 /// true if every path from the entry block to 'Dst' passes via this edge.  In
1655 /// particular 'Dst' must not be reachable via another edge from 'Src'.
1656 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1657                                        DominatorTree *DT) {
1658   // While in theory it is interesting to consider the case in which Dst has
1659   // more than one predecessor, because Dst might be part of a loop which is
1660   // only reachable from Src, in practice it is pointless since at the time
1661   // GVN runs all such loops have preheaders, which means that Dst will have
1662   // been changed to have only one predecessor, namely Src.
1663   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1664   assert((!Pred || Pred == E.getStart()) &&
1665          "No edge between these basic blocks!");
1666   return Pred != nullptr;
1667 }
1668
1669 void GVN::assignBlockRPONumber(Function &F) {
1670   BlockRPONumber.clear();
1671   uint32_t NextBlockNumber = 1;
1672   ReversePostOrderTraversal<Function *> RPOT(&F);
1673   for (BasicBlock *BB : RPOT)
1674     BlockRPONumber[BB] = NextBlockNumber++;
1675   InvalidBlockRPONumbers = false;
1676 }
1677
1678 // Tries to replace instruction with const, using information from
1679 // ReplaceWithConstMap.
1680 bool GVN::replaceOperandsWithConsts(Instruction *Instr) const {
1681   bool Changed = false;
1682   for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1683     Value *Operand = Instr->getOperand(OpNum);
1684     auto it = ReplaceWithConstMap.find(Operand);
1685     if (it != ReplaceWithConstMap.end()) {
1686       assert(!isa<Constant>(Operand) &&
1687              "Replacing constants with constants is invalid");
1688       LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
1689                         << *it->second << " in instruction " << *Instr << '\n');
1690       Instr->setOperand(OpNum, it->second);
1691       Changed = true;
1692     }
1693   }
1694   return Changed;
1695 }
1696
1697 /// The given values are known to be equal in every block
1698 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1699 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
1700 /// If DominatesByEdge is false, then it means that we will propagate the RHS
1701 /// value starting from the end of Root.Start.
1702 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1703                             bool DominatesByEdge) {
1704   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1705   Worklist.push_back(std::make_pair(LHS, RHS));
1706   bool Changed = false;
1707   // For speed, compute a conservative fast approximation to
1708   // DT->dominates(Root, Root.getEnd());
1709   const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1710
1711   while (!Worklist.empty()) {
1712     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1713     LHS = Item.first; RHS = Item.second;
1714
1715     if (LHS == RHS)
1716       continue;
1717     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1718
1719     // Don't try to propagate equalities between constants.
1720     if (isa<Constant>(LHS) && isa<Constant>(RHS))
1721       continue;
1722
1723     // Prefer a constant on the right-hand side, or an Argument if no constants.
1724     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1725       std::swap(LHS, RHS);
1726     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1727
1728     // If there is no obvious reason to prefer the left-hand side over the
1729     // right-hand side, ensure the longest lived term is on the right-hand side,
1730     // so the shortest lived term will be replaced by the longest lived.
1731     // This tends to expose more simplifications.
1732     uint32_t LVN = VN.lookupOrAdd(LHS);
1733     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1734         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1735       // Move the 'oldest' value to the right-hand side, using the value number
1736       // as a proxy for age.
1737       uint32_t RVN = VN.lookupOrAdd(RHS);
1738       if (LVN < RVN) {
1739         std::swap(LHS, RHS);
1740         LVN = RVN;
1741       }
1742     }
1743
1744     // If value numbering later sees that an instruction in the scope is equal
1745     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
1746     // the invariant that instructions only occur in the leader table for their
1747     // own value number (this is used by removeFromLeaderTable), do not do this
1748     // if RHS is an instruction (if an instruction in the scope is morphed into
1749     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1750     // using the leader table is about compiling faster, not optimizing better).
1751     // The leader table only tracks basic blocks, not edges. Only add to if we
1752     // have the simple case where the edge dominates the end.
1753     if (RootDominatesEnd && !isa<Instruction>(RHS))
1754       addToLeaderTable(LVN, RHS, Root.getEnd());
1755
1756     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1757     // LHS always has at least one use that is not dominated by Root, this will
1758     // never do anything if LHS has only one use.
1759     if (!LHS->hasOneUse()) {
1760       unsigned NumReplacements =
1761           DominatesByEdge
1762               ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1763               : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1764
1765       Changed |= NumReplacements > 0;
1766       NumGVNEqProp += NumReplacements;
1767       // Cached information for anything that uses LHS will be invalid.
1768       if (MD)
1769         MD->invalidateCachedPointerInfo(LHS);
1770     }
1771
1772     // Now try to deduce additional equalities from this one. For example, if
1773     // the known equality was "(A != B)" == "false" then it follows that A and B
1774     // are equal in the scope. Only boolean equalities with an explicit true or
1775     // false RHS are currently supported.
1776     if (!RHS->getType()->isIntegerTy(1))
1777       // Not a boolean equality - bail out.
1778       continue;
1779     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1780     if (!CI)
1781       // RHS neither 'true' nor 'false' - bail out.
1782       continue;
1783     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1784     bool isKnownTrue = CI->isMinusOne();
1785     bool isKnownFalse = !isKnownTrue;
1786
1787     // If "A && B" is known true then both A and B are known true.  If "A || B"
1788     // is known false then both A and B are known false.
1789     Value *A, *B;
1790     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1791         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1792       Worklist.push_back(std::make_pair(A, RHS));
1793       Worklist.push_back(std::make_pair(B, RHS));
1794       continue;
1795     }
1796
1797     // If we are propagating an equality like "(A == B)" == "true" then also
1798     // propagate the equality A == B.  When propagating a comparison such as
1799     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1800     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1801       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1802
1803       // If "A == B" is known true, or "A != B" is known false, then replace
1804       // A with B everywhere in the scope.
1805       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
1806           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
1807         Worklist.push_back(std::make_pair(Op0, Op1));
1808
1809       // Handle the floating point versions of equality comparisons too.
1810       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
1811           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
1812
1813         // Floating point -0.0 and 0.0 compare equal, so we can only
1814         // propagate values if we know that we have a constant and that
1815         // its value is non-zero.
1816
1817         // FIXME: We should do this optimization if 'no signed zeros' is
1818         // applicable via an instruction-level fast-math-flag or some other
1819         // indicator that relaxed FP semantics are being used.
1820
1821         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
1822           Worklist.push_back(std::make_pair(Op0, Op1));
1823       }
1824
1825       // If "A >= B" is known true, replace "A < B" with false everywhere.
1826       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1827       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1828       // Since we don't have the instruction "A < B" immediately to hand, work
1829       // out the value number that it would have and use that to find an
1830       // appropriate instruction (if any).
1831       uint32_t NextNum = VN.getNextUnusedValueNumber();
1832       uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1833       // If the number we were assigned was brand new then there is no point in
1834       // looking for an instruction realizing it: there cannot be one!
1835       if (Num < NextNum) {
1836         Value *NotCmp = findLeader(Root.getEnd(), Num);
1837         if (NotCmp && isa<Instruction>(NotCmp)) {
1838           unsigned NumReplacements =
1839               DominatesByEdge
1840                   ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1841                   : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1842                                              Root.getStart());
1843           Changed |= NumReplacements > 0;
1844           NumGVNEqProp += NumReplacements;
1845           // Cached information for anything that uses NotCmp will be invalid.
1846           if (MD)
1847             MD->invalidateCachedPointerInfo(NotCmp);
1848         }
1849       }
1850       // Ensure that any instruction in scope that gets the "A < B" value number
1851       // is replaced with false.
1852       // The leader table only tracks basic blocks, not edges. Only add to if we
1853       // have the simple case where the edge dominates the end.
1854       if (RootDominatesEnd)
1855         addToLeaderTable(Num, NotVal, Root.getEnd());
1856
1857       continue;
1858     }
1859   }
1860
1861   return Changed;
1862 }
1863
1864 /// When calculating availability, handle an instruction
1865 /// by inserting it into the appropriate sets
1866 bool GVN::processInstruction(Instruction *I) {
1867   // Ignore dbg info intrinsics.
1868   if (isa<DbgInfoIntrinsic>(I))
1869     return false;
1870
1871   // If the instruction can be easily simplified then do so now in preference
1872   // to value numbering it.  Value numbering often exposes redundancies, for
1873   // example if it determines that %y is equal to %x then the instruction
1874   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1875   const DataLayout &DL = I->getModule()->getDataLayout();
1876   if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1877     bool Changed = false;
1878     if (!I->use_empty()) {
1879       I->replaceAllUsesWith(V);
1880       Changed = true;
1881     }
1882     if (isInstructionTriviallyDead(I, TLI)) {
1883       markInstructionForDeletion(I);
1884       Changed = true;
1885     }
1886     if (Changed) {
1887       if (MD && V->getType()->isPtrOrPtrVectorTy())
1888         MD->invalidateCachedPointerInfo(V);
1889       ++NumGVNSimpl;
1890       return true;
1891     }
1892   }
1893
1894   if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
1895     if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
1896       return processAssumeIntrinsic(IntrinsicI);
1897
1898   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1899     if (processLoad(LI))
1900       return true;
1901
1902     unsigned Num = VN.lookupOrAdd(LI);
1903     addToLeaderTable(Num, LI, LI->getParent());
1904     return false;
1905   }
1906
1907   // For conditional branches, we can perform simple conditional propagation on
1908   // the condition value itself.
1909   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1910     if (!BI->isConditional())
1911       return false;
1912
1913     if (isa<Constant>(BI->getCondition()))
1914       return processFoldableCondBr(BI);
1915
1916     Value *BranchCond = BI->getCondition();
1917     BasicBlock *TrueSucc = BI->getSuccessor(0);
1918     BasicBlock *FalseSucc = BI->getSuccessor(1);
1919     // Avoid multiple edges early.
1920     if (TrueSucc == FalseSucc)
1921       return false;
1922
1923     BasicBlock *Parent = BI->getParent();
1924     bool Changed = false;
1925
1926     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
1927     BasicBlockEdge TrueE(Parent, TrueSucc);
1928     Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
1929
1930     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
1931     BasicBlockEdge FalseE(Parent, FalseSucc);
1932     Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
1933
1934     return Changed;
1935   }
1936
1937   // For switches, propagate the case values into the case destinations.
1938   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1939     Value *SwitchCond = SI->getCondition();
1940     BasicBlock *Parent = SI->getParent();
1941     bool Changed = false;
1942
1943     // Remember how many outgoing edges there are to every successor.
1944     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
1945     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
1946       ++SwitchEdges[SI->getSuccessor(i)];
1947
1948     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1949          i != e; ++i) {
1950       BasicBlock *Dst = i->getCaseSuccessor();
1951       // If there is only a single edge, propagate the case value into it.
1952       if (SwitchEdges.lookup(Dst) == 1) {
1953         BasicBlockEdge E(Parent, Dst);
1954         Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
1955       }
1956     }
1957     return Changed;
1958   }
1959
1960   // Instructions with void type don't return a value, so there's
1961   // no point in trying to find redundancies in them.
1962   if (I->getType()->isVoidTy())
1963     return false;
1964
1965   uint32_t NextNum = VN.getNextUnusedValueNumber();
1966   unsigned Num = VN.lookupOrAdd(I);
1967
1968   // Allocations are always uniquely numbered, so we can save time and memory
1969   // by fast failing them.
1970   if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
1971     addToLeaderTable(Num, I, I->getParent());
1972     return false;
1973   }
1974
1975   // If the number we were assigned was a brand new VN, then we don't
1976   // need to do a lookup to see if the number already exists
1977   // somewhere in the domtree: it can't!
1978   if (Num >= NextNum) {
1979     addToLeaderTable(Num, I, I->getParent());
1980     return false;
1981   }
1982
1983   // Perform fast-path value-number based elimination of values inherited from
1984   // dominators.
1985   Value *Repl = findLeader(I->getParent(), Num);
1986   if (!Repl) {
1987     // Failure, just remember this instance for future use.
1988     addToLeaderTable(Num, I, I->getParent());
1989     return false;
1990   } else if (Repl == I) {
1991     // If I was the result of a shortcut PRE, it might already be in the table
1992     // and the best replacement for itself. Nothing to do.
1993     return false;
1994   }
1995
1996   // Remove it!
1997   patchAndReplaceAllUsesWith(I, Repl);
1998   if (MD && Repl->getType()->isPtrOrPtrVectorTy())
1999     MD->invalidateCachedPointerInfo(Repl);
2000   markInstructionForDeletion(I);
2001   return true;
2002 }
2003
2004 /// runOnFunction - This is the main transformation entry point for a function.
2005 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2006                   const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2007                   MemoryDependenceResults *RunMD, LoopInfo *LI,
2008                   OptimizationRemarkEmitter *RunORE) {
2009   AC = &RunAC;
2010   DT = &RunDT;
2011   VN.setDomTree(DT);
2012   TLI = &RunTLI;
2013   VN.setAliasAnalysis(&RunAA);
2014   MD = RunMD;
2015   ImplicitControlFlowTracking ImplicitCFT(DT);
2016   ICF = &ImplicitCFT;
2017   VN.setMemDep(MD);
2018   ORE = RunORE;
2019   InvalidBlockRPONumbers = true;
2020
2021   bool Changed = false;
2022   bool ShouldContinue = true;
2023
2024   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2025   // Merge unconditional branches, allowing PRE to catch more
2026   // optimization opportunities.
2027   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2028     BasicBlock *BB = &*FI++;
2029
2030     bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
2031     if (removedBlock)
2032       ++NumGVNBlocks;
2033
2034     Changed |= removedBlock;
2035   }
2036
2037   unsigned Iteration = 0;
2038   while (ShouldContinue) {
2039     LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2040     ShouldContinue = iterateOnFunction(F);
2041     Changed |= ShouldContinue;
2042     ++Iteration;
2043   }
2044
2045   if (EnablePRE) {
2046     // Fabricate val-num for dead-code in order to suppress assertion in
2047     // performPRE().
2048     assignValNumForDeadCode();
2049     bool PREChanged = true;
2050     while (PREChanged) {
2051       PREChanged = performPRE(F);
2052       Changed |= PREChanged;
2053     }
2054   }
2055
2056   // FIXME: Should perform GVN again after PRE does something.  PRE can move
2057   // computations into blocks where they become fully redundant.  Note that
2058   // we can't do this until PRE's critical edge splitting updates memdep.
2059   // Actually, when this happens, we should just fully integrate PRE into GVN.
2060
2061   cleanupGlobalSets();
2062   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2063   // iteration.
2064   DeadBlocks.clear();
2065
2066   return Changed;
2067 }
2068
2069 bool GVN::processBlock(BasicBlock *BB) {
2070   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2071   // (and incrementing BI before processing an instruction).
2072   assert(InstrsToErase.empty() &&
2073          "We expect InstrsToErase to be empty across iterations");
2074   if (DeadBlocks.count(BB))
2075     return false;
2076
2077   // Clearing map before every BB because it can be used only for single BB.
2078   ReplaceWithConstMap.clear();
2079   bool ChangedFunction = false;
2080
2081   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2082        BI != BE;) {
2083     if (!ReplaceWithConstMap.empty())
2084       ChangedFunction |= replaceOperandsWithConsts(&*BI);
2085     ChangedFunction |= processInstruction(&*BI);
2086
2087     if (InstrsToErase.empty()) {
2088       ++BI;
2089       continue;
2090     }
2091
2092     // If we need some instructions deleted, do it now.
2093     NumGVNInstr += InstrsToErase.size();
2094
2095     // Avoid iterator invalidation.
2096     bool AtStart = BI == BB->begin();
2097     if (!AtStart)
2098       --BI;
2099
2100     for (auto *I : InstrsToErase) {
2101       assert(I->getParent() == BB && "Removing instruction from wrong block?");
2102       LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2103       salvageDebugInfo(*I);
2104       if (MD) MD->removeInstruction(I);
2105       LLVM_DEBUG(verifyRemoved(I));
2106       ICF->removeInstruction(I);
2107       I->eraseFromParent();
2108     }
2109     InstrsToErase.clear();
2110
2111     if (AtStart)
2112       BI = BB->begin();
2113     else
2114       ++BI;
2115   }
2116
2117   return ChangedFunction;
2118 }
2119
2120 // Instantiate an expression in a predecessor that lacked it.
2121 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2122                                     BasicBlock *Curr, unsigned int ValNo) {
2123   // Because we are going top-down through the block, all value numbers
2124   // will be available in the predecessor by the time we need them.  Any
2125   // that weren't originally present will have been instantiated earlier
2126   // in this loop.
2127   bool success = true;
2128   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2129     Value *Op = Instr->getOperand(i);
2130     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2131       continue;
2132     // This could be a newly inserted instruction, in which case, we won't
2133     // find a value number, and should give up before we hurt ourselves.
2134     // FIXME: Rewrite the infrastructure to let it easier to value number
2135     // and process newly inserted instructions.
2136     if (!VN.exists(Op)) {
2137       success = false;
2138       break;
2139     }
2140     uint32_t TValNo =
2141         VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2142     if (Value *V = findLeader(Pred, TValNo)) {
2143       Instr->setOperand(i, V);
2144     } else {
2145       success = false;
2146       break;
2147     }
2148   }
2149
2150   // Fail out if we encounter an operand that is not available in
2151   // the PRE predecessor.  This is typically because of loads which
2152   // are not value numbered precisely.
2153   if (!success)
2154     return false;
2155
2156   Instr->insertBefore(Pred->getTerminator());
2157   Instr->setName(Instr->getName() + ".pre");
2158   Instr->setDebugLoc(Instr->getDebugLoc());
2159
2160   unsigned Num = VN.lookupOrAdd(Instr);
2161   VN.add(Instr, Num);
2162
2163   // Update the availability map to include the new instruction.
2164   addToLeaderTable(Num, Instr, Pred);
2165   return true;
2166 }
2167
2168 bool GVN::performScalarPRE(Instruction *CurInst) {
2169   if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2170       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2171       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2172       isa<DbgInfoIntrinsic>(CurInst))
2173     return false;
2174
2175   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2176   // sinking the compare again, and it would force the code generator to
2177   // move the i1 from processor flags or predicate registers into a general
2178   // purpose register.
2179   if (isa<CmpInst>(CurInst))
2180     return false;
2181
2182   // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2183   // sinking the addressing mode computation back to its uses. Extending the
2184   // GEP's live range increases the register pressure, and therefore it can
2185   // introduce unnecessary spills.
2186   //
2187   // This doesn't prevent Load PRE. PHI translation will make the GEP available
2188   // to the load by moving it to the predecessor block if necessary.
2189   if (isa<GetElementPtrInst>(CurInst))
2190     return false;
2191
2192   // We don't currently value number ANY inline asm calls.
2193   if (auto *CallB = dyn_cast<CallBase>(CurInst))
2194     if (CallB->isInlineAsm())
2195       return false;
2196
2197   uint32_t ValNo = VN.lookup(CurInst);
2198
2199   // Look for the predecessors for PRE opportunities.  We're
2200   // only trying to solve the basic diamond case, where
2201   // a value is computed in the successor and one predecessor,
2202   // but not the other.  We also explicitly disallow cases
2203   // where the successor is its own predecessor, because they're
2204   // more complicated to get right.
2205   unsigned NumWith = 0;
2206   unsigned NumWithout = 0;
2207   BasicBlock *PREPred = nullptr;
2208   BasicBlock *CurrentBlock = CurInst->getParent();
2209
2210   // Update the RPO numbers for this function.
2211   if (InvalidBlockRPONumbers)
2212     assignBlockRPONumber(*CurrentBlock->getParent());
2213
2214   SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2215   for (BasicBlock *P : predecessors(CurrentBlock)) {
2216     // We're not interested in PRE where blocks with predecessors that are
2217     // not reachable.
2218     if (!DT->isReachableFromEntry(P)) {
2219       NumWithout = 2;
2220       break;
2221     }
2222     // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2223     // when CurInst has operand defined in CurrentBlock (so it may be defined
2224     // by phi in the loop header).
2225     assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2226            "Invalid BlockRPONumber map.");
2227     if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2228         llvm::any_of(CurInst->operands(), [&](const Use &U) {
2229           if (auto *Inst = dyn_cast<Instruction>(U.get()))
2230             return Inst->getParent() == CurrentBlock;
2231           return false;
2232         })) {
2233       NumWithout = 2;
2234       break;
2235     }
2236
2237     uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2238     Value *predV = findLeader(P, TValNo);
2239     if (!predV) {
2240       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2241       PREPred = P;
2242       ++NumWithout;
2243     } else if (predV == CurInst) {
2244       /* CurInst dominates this predecessor. */
2245       NumWithout = 2;
2246       break;
2247     } else {
2248       predMap.push_back(std::make_pair(predV, P));
2249       ++NumWith;
2250     }
2251   }
2252
2253   // Don't do PRE when it might increase code size, i.e. when
2254   // we would need to insert instructions in more than one pred.
2255   if (NumWithout > 1 || NumWith == 0)
2256     return false;
2257
2258   // We may have a case where all predecessors have the instruction,
2259   // and we just need to insert a phi node. Otherwise, perform
2260   // insertion.
2261   Instruction *PREInstr = nullptr;
2262
2263   if (NumWithout != 0) {
2264     if (!isSafeToSpeculativelyExecute(CurInst)) {
2265       // It is only valid to insert a new instruction if the current instruction
2266       // is always executed. An instruction with implicit control flow could
2267       // prevent us from doing it. If we cannot speculate the execution, then
2268       // PRE should be prohibited.
2269       if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2270         return false;
2271     }
2272
2273     // Don't do PRE across indirect branch.
2274     if (isa<IndirectBrInst>(PREPred->getTerminator()))
2275       return false;
2276
2277     // Don't do PRE across callbr.
2278     // FIXME: Can we do this across the fallthrough edge?
2279     if (isa<CallBrInst>(PREPred->getTerminator()))
2280       return false;
2281
2282     // We can't do PRE safely on a critical edge, so instead we schedule
2283     // the edge to be split and perform the PRE the next time we iterate
2284     // on the function.
2285     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2286     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2287       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2288       return false;
2289     }
2290     // We need to insert somewhere, so let's give it a shot
2291     PREInstr = CurInst->clone();
2292     if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2293       // If we failed insertion, make sure we remove the instruction.
2294       LLVM_DEBUG(verifyRemoved(PREInstr));
2295       PREInstr->deleteValue();
2296       return false;
2297     }
2298   }
2299
2300   // Either we should have filled in the PRE instruction, or we should
2301   // not have needed insertions.
2302   assert(PREInstr != nullptr || NumWithout == 0);
2303
2304   ++NumGVNPRE;
2305
2306   // Create a PHI to make the value available in this block.
2307   PHINode *Phi =
2308       PHINode::Create(CurInst->getType(), predMap.size(),
2309                       CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2310   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2311     if (Value *V = predMap[i].first) {
2312       // If we use an existing value in this phi, we have to patch the original
2313       // value because the phi will be used to replace a later value.
2314       patchReplacementInstruction(CurInst, V);
2315       Phi->addIncoming(V, predMap[i].second);
2316     } else
2317       Phi->addIncoming(PREInstr, PREPred);
2318   }
2319
2320   VN.add(Phi, ValNo);
2321   // After creating a new PHI for ValNo, the phi translate result for ValNo will
2322   // be changed, so erase the related stale entries in phi translate cache.
2323   VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2324   addToLeaderTable(ValNo, Phi, CurrentBlock);
2325   Phi->setDebugLoc(CurInst->getDebugLoc());
2326   CurInst->replaceAllUsesWith(Phi);
2327   if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2328     MD->invalidateCachedPointerInfo(Phi);
2329   VN.erase(CurInst);
2330   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2331
2332   LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2333   if (MD)
2334     MD->removeInstruction(CurInst);
2335   LLVM_DEBUG(verifyRemoved(CurInst));
2336   // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2337   // some assertion failures.
2338   ICF->removeInstruction(CurInst);
2339   CurInst->eraseFromParent();
2340   ++NumGVNInstr;
2341
2342   return true;
2343 }
2344
2345 /// Perform a purely local form of PRE that looks for diamond
2346 /// control flow patterns and attempts to perform simple PRE at the join point.
2347 bool GVN::performPRE(Function &F) {
2348   bool Changed = false;
2349   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2350     // Nothing to PRE in the entry block.
2351     if (CurrentBlock == &F.getEntryBlock())
2352       continue;
2353
2354     // Don't perform PRE on an EH pad.
2355     if (CurrentBlock->isEHPad())
2356       continue;
2357
2358     for (BasicBlock::iterator BI = CurrentBlock->begin(),
2359                               BE = CurrentBlock->end();
2360          BI != BE;) {
2361       Instruction *CurInst = &*BI++;
2362       Changed |= performScalarPRE(CurInst);
2363     }
2364   }
2365
2366   if (splitCriticalEdges())
2367     Changed = true;
2368
2369   return Changed;
2370 }
2371
2372 /// Split the critical edge connecting the given two blocks, and return
2373 /// the block inserted to the critical edge.
2374 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2375   BasicBlock *BB =
2376       SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT));
2377   if (MD)
2378     MD->invalidateCachedPredecessors();
2379   InvalidBlockRPONumbers = true;
2380   return BB;
2381 }
2382
2383 /// Split critical edges found during the previous
2384 /// iteration that may enable further optimization.
2385 bool GVN::splitCriticalEdges() {
2386   if (toSplit.empty())
2387     return false;
2388   do {
2389     std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2390     SplitCriticalEdge(Edge.first, Edge.second,
2391                       CriticalEdgeSplittingOptions(DT));
2392   } while (!toSplit.empty());
2393   if (MD) MD->invalidateCachedPredecessors();
2394   InvalidBlockRPONumbers = true;
2395   return true;
2396 }
2397
2398 /// Executes one iteration of GVN
2399 bool GVN::iterateOnFunction(Function &F) {
2400   cleanupGlobalSets();
2401
2402   // Top-down walk of the dominator tree
2403   bool Changed = false;
2404   // Needed for value numbering with phi construction to work.
2405   // RPOT walks the graph in its constructor and will not be invalidated during
2406   // processBlock.
2407   ReversePostOrderTraversal<Function *> RPOT(&F);
2408
2409   for (BasicBlock *BB : RPOT)
2410     Changed |= processBlock(BB);
2411
2412   return Changed;
2413 }
2414
2415 void GVN::cleanupGlobalSets() {
2416   VN.clear();
2417   LeaderTable.clear();
2418   BlockRPONumber.clear();
2419   TableAllocator.Reset();
2420   ICF->clear();
2421   InvalidBlockRPONumbers = true;
2422 }
2423
2424 /// Verify that the specified instruction does not occur in our
2425 /// internal data structures.
2426 void GVN::verifyRemoved(const Instruction *Inst) const {
2427   VN.verifyRemoved(Inst);
2428
2429   // Walk through the value number scope to make sure the instruction isn't
2430   // ferreted away in it.
2431   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2432        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2433     const LeaderTableEntry *Node = &I->second;
2434     assert(Node->Val != Inst && "Inst still in value numbering scope!");
2435
2436     while (Node->Next) {
2437       Node = Node->Next;
2438       assert(Node->Val != Inst && "Inst still in value numbering scope!");
2439     }
2440   }
2441 }
2442
2443 /// BB is declared dead, which implied other blocks become dead as well. This
2444 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2445 /// live successors, update their phi nodes by replacing the operands
2446 /// corresponding to dead blocks with UndefVal.
2447 void GVN::addDeadBlock(BasicBlock *BB) {
2448   SmallVector<BasicBlock *, 4> NewDead;
2449   SmallSetVector<BasicBlock *, 4> DF;
2450
2451   NewDead.push_back(BB);
2452   while (!NewDead.empty()) {
2453     BasicBlock *D = NewDead.pop_back_val();
2454     if (DeadBlocks.count(D))
2455       continue;
2456
2457     // All blocks dominated by D are dead.
2458     SmallVector<BasicBlock *, 8> Dom;
2459     DT->getDescendants(D, Dom);
2460     DeadBlocks.insert(Dom.begin(), Dom.end());
2461
2462     // Figure out the dominance-frontier(D).
2463     for (BasicBlock *B : Dom) {
2464       for (BasicBlock *S : successors(B)) {
2465         if (DeadBlocks.count(S))
2466           continue;
2467
2468         bool AllPredDead = true;
2469         for (BasicBlock *P : predecessors(S))
2470           if (!DeadBlocks.count(P)) {
2471             AllPredDead = false;
2472             break;
2473           }
2474
2475         if (!AllPredDead) {
2476           // S could be proved dead later on. That is why we don't update phi
2477           // operands at this moment.
2478           DF.insert(S);
2479         } else {
2480           // While S is not dominated by D, it is dead by now. This could take
2481           // place if S already have a dead predecessor before D is declared
2482           // dead.
2483           NewDead.push_back(S);
2484         }
2485       }
2486     }
2487   }
2488
2489   // For the dead blocks' live successors, update their phi nodes by replacing
2490   // the operands corresponding to dead blocks with UndefVal.
2491   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2492         I != E; I++) {
2493     BasicBlock *B = *I;
2494     if (DeadBlocks.count(B))
2495       continue;
2496
2497     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2498     for (BasicBlock *P : Preds) {
2499       if (!DeadBlocks.count(P))
2500         continue;
2501
2502       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2503         if (BasicBlock *S = splitCriticalEdges(P, B))
2504           DeadBlocks.insert(P = S);
2505       }
2506
2507       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2508         PHINode &Phi = cast<PHINode>(*II);
2509         Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
2510         if (MD)
2511           MD->invalidateCachedPointerInfo(&Phi);
2512       }
2513     }
2514   }
2515 }
2516
2517 // If the given branch is recognized as a foldable branch (i.e. conditional
2518 // branch with constant condition), it will perform following analyses and
2519 // transformation.
2520 //  1) If the dead out-coming edge is a critical-edge, split it. Let
2521 //     R be the target of the dead out-coming edge.
2522 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
2523 //     edge. The result of this step will be {X| X is dominated by R}
2524 //  2) Identify those blocks which haves at least one dead predecessor. The
2525 //     result of this step will be dominance-frontier(R).
2526 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2527 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2528 //
2529 // Return true iff *NEW* dead code are found.
2530 bool GVN::processFoldableCondBr(BranchInst *BI) {
2531   if (!BI || BI->isUnconditional())
2532     return false;
2533
2534   // If a branch has two identical successors, we cannot declare either dead.
2535   if (BI->getSuccessor(0) == BI->getSuccessor(1))
2536     return false;
2537
2538   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2539   if (!Cond)
2540     return false;
2541
2542   BasicBlock *DeadRoot =
2543       Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2544   if (DeadBlocks.count(DeadRoot))
2545     return false;
2546
2547   if (!DeadRoot->getSinglePredecessor())
2548     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2549
2550   addDeadBlock(DeadRoot);
2551   return true;
2552 }
2553
2554 // performPRE() will trigger assert if it comes across an instruction without
2555 // associated val-num. As it normally has far more live instructions than dead
2556 // instructions, it makes more sense just to "fabricate" a val-number for the
2557 // dead code than checking if instruction involved is dead or not.
2558 void GVN::assignValNumForDeadCode() {
2559   for (BasicBlock *BB : DeadBlocks) {
2560     for (Instruction &Inst : *BB) {
2561       unsigned ValNum = VN.lookupOrAdd(&Inst);
2562       addToLeaderTable(ValNum, &Inst, BB);
2563     }
2564   }
2565 }
2566
2567 class llvm::gvn::GVNLegacyPass : public FunctionPass {
2568 public:
2569   static char ID; // Pass identification, replacement for typeid
2570
2571   explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
2572       : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
2573     initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2574   }
2575
2576   bool runOnFunction(Function &F) override {
2577     if (skipFunction(F))
2578       return false;
2579
2580     auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2581
2582     return Impl.runImpl(
2583         F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2584         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2585         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
2586         getAnalysis<AAResultsWrapperPass>().getAAResults(),
2587         NoMemDepAnalysis ? nullptr
2588                 : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2589         LIWP ? &LIWP->getLoopInfo() : nullptr,
2590         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2591   }
2592
2593   void getAnalysisUsage(AnalysisUsage &AU) const override {
2594     AU.addRequired<AssumptionCacheTracker>();
2595     AU.addRequired<DominatorTreeWrapperPass>();
2596     AU.addRequired<TargetLibraryInfoWrapperPass>();
2597     if (!NoMemDepAnalysis)
2598       AU.addRequired<MemoryDependenceWrapperPass>();
2599     AU.addRequired<AAResultsWrapperPass>();
2600
2601     AU.addPreserved<DominatorTreeWrapperPass>();
2602     AU.addPreserved<GlobalsAAWrapperPass>();
2603     AU.addPreserved<TargetLibraryInfoWrapperPass>();
2604     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2605   }
2606
2607 private:
2608   bool NoMemDepAnalysis;
2609   GVN Impl;
2610 };
2611
2612 char GVNLegacyPass::ID = 0;
2613
2614 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2615 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2616 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2617 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2618 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2619 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2620 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2621 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2622 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2623
2624 // The public interface to this file...
2625 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
2626   return new GVNLegacyPass(NoMemDepAnalysis);
2627 }