]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Scalar / InferAddressSpaces.cpp
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90
91 #include "llvm/ADT/ArrayRef.h"
92 #include "llvm/ADT/DenseMap.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/None.h"
95 #include "llvm/ADT/Optional.h"
96 #include "llvm/ADT/SetVector.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Function.h"
104 #include "llvm/IR/IRBuilder.h"
105 #include "llvm/IR/InstIterator.h"
106 #include "llvm/IR/Instruction.h"
107 #include "llvm/IR/Instructions.h"
108 #include "llvm/IR/IntrinsicInst.h"
109 #include "llvm/IR/Intrinsics.h"
110 #include "llvm/IR/LLVMContext.h"
111 #include "llvm/IR/Operator.h"
112 #include "llvm/IR/Type.h"
113 #include "llvm/IR/Use.h"
114 #include "llvm/IR/User.h"
115 #include "llvm/IR/Value.h"
116 #include "llvm/IR/ValueHandle.h"
117 #include "llvm/Pass.h"
118 #include "llvm/Support/Casting.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/raw_ostream.h"
123 #include "llvm/Transforms/Scalar.h"
124 #include "llvm/Transforms/Utils/ValueMapper.h"
125 #include <cassert>
126 #include <iterator>
127 #include <limits>
128 #include <utility>
129 #include <vector>
130
131 #define DEBUG_TYPE "infer-address-spaces"
132
133 using namespace llvm;
134
135 static const unsigned UninitializedAddressSpace =
136     std::numeric_limits<unsigned>::max();
137
138 namespace {
139
140 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
141
142 /// InferAddressSpaces
143 class InferAddressSpaces : public FunctionPass {
144   const TargetTransformInfo *TTI = nullptr;
145
146   /// Target specific address space which uses of should be replaced if
147   /// possible.
148   unsigned FlatAddrSpace = 0;
149
150 public:
151   static char ID;
152
153   InferAddressSpaces() :
154     FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
155   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
156
157   void getAnalysisUsage(AnalysisUsage &AU) const override {
158     AU.setPreservesCFG();
159     AU.addRequired<TargetTransformInfoWrapperPass>();
160   }
161
162   bool runOnFunction(Function &F) override;
163
164 private:
165   // Returns the new address space of V if updated; otherwise, returns None.
166   Optional<unsigned>
167   updateAddressSpace(const Value &V,
168                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
169
170   // Tries to infer the specific address space of each address expression in
171   // Postorder.
172   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
173                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
174
175   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
176
177   // Changes the flat address expressions in function F to point to specific
178   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
179   // all flat expressions in the use-def graph of function F.
180   bool rewriteWithNewAddressSpaces(
181       const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
182       const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
183
184   void appendsFlatAddressExpressionToPostorderStack(
185     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
186     DenseSet<Value *> &Visited) const;
187
188   bool rewriteIntrinsicOperands(IntrinsicInst *II,
189                                 Value *OldV, Value *NewV) const;
190   void collectRewritableIntrinsicOperands(
191     IntrinsicInst *II,
192     std::vector<std::pair<Value *, bool>> &PostorderStack,
193     DenseSet<Value *> &Visited) const;
194
195   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
196
197   Value *cloneValueWithNewAddressSpace(
198     Value *V, unsigned NewAddrSpace,
199     const ValueToValueMapTy &ValueWithNewAddrSpace,
200     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
201   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
202 };
203
204 } // end anonymous namespace
205
206 char InferAddressSpaces::ID = 0;
207
208 namespace llvm {
209
210 void initializeInferAddressSpacesPass(PassRegistry &);
211
212 } // end namespace llvm
213
214 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
215                 false, false)
216
217 // Returns true if V is an address expression.
218 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
219 // getelementptr operators.
220 static bool isAddressExpression(const Value &V) {
221   if (!isa<Operator>(V))
222     return false;
223
224   const Operator &Op = cast<Operator>(V);
225   switch (Op.getOpcode()) {
226   case Instruction::PHI:
227     assert(Op.getType()->isPointerTy());
228     return true;
229   case Instruction::BitCast:
230   case Instruction::AddrSpaceCast:
231   case Instruction::GetElementPtr:
232     return true;
233   case Instruction::Select:
234     return Op.getType()->isPointerTy();
235   default:
236     return false;
237   }
238 }
239
240 // Returns the pointer operands of V.
241 //
242 // Precondition: V is an address expression.
243 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
244   const Operator &Op = cast<Operator>(V);
245   switch (Op.getOpcode()) {
246   case Instruction::PHI: {
247     auto IncomingValues = cast<PHINode>(Op).incoming_values();
248     return SmallVector<Value *, 2>(IncomingValues.begin(),
249                                    IncomingValues.end());
250   }
251   case Instruction::BitCast:
252   case Instruction::AddrSpaceCast:
253   case Instruction::GetElementPtr:
254     return {Op.getOperand(0)};
255   case Instruction::Select:
256     return {Op.getOperand(1), Op.getOperand(2)};
257   default:
258     llvm_unreachable("Unexpected instruction type.");
259   }
260 }
261
262 // TODO: Move logic to TTI?
263 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
264                                                   Value *OldV,
265                                                   Value *NewV) const {
266   Module *M = II->getParent()->getParent()->getParent();
267
268   switch (II->getIntrinsicID()) {
269   case Intrinsic::objectsize: {
270     Type *DestTy = II->getType();
271     Type *SrcTy = NewV->getType();
272     Function *NewDecl =
273         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
274     II->setArgOperand(0, NewV);
275     II->setCalledFunction(NewDecl);
276     return true;
277   }
278   default:
279     return TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
280   }
281 }
282
283 void InferAddressSpaces::collectRewritableIntrinsicOperands(
284     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
285     DenseSet<Value *> &Visited) const {
286   auto IID = II->getIntrinsicID();
287   switch (IID) {
288   case Intrinsic::objectsize:
289     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
290                                                  PostorderStack, Visited);
291     break;
292   default:
293     SmallVector<int, 2> OpIndexes;
294     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
295       for (int Idx : OpIndexes) {
296         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
297                                                      PostorderStack, Visited);
298       }
299     }
300     break;
301   }
302 }
303
304 // Returns all flat address expressions in function F. The elements are
305 // If V is an unvisited flat address expression, appends V to PostorderStack
306 // and marks it as visited.
307 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
308     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
309     DenseSet<Value *> &Visited) const {
310   assert(V->getType()->isPointerTy());
311
312   // Generic addressing expressions may be hidden in nested constant
313   // expressions.
314   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
315     // TODO: Look in non-address parts, like icmp operands.
316     if (isAddressExpression(*CE) && Visited.insert(CE).second)
317       PostorderStack.push_back(std::make_pair(CE, false));
318
319     return;
320   }
321
322   if (isAddressExpression(*V) &&
323       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
324     if (Visited.insert(V).second) {
325       PostorderStack.push_back(std::make_pair(V, false));
326
327       Operator *Op = cast<Operator>(V);
328       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
329         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
330           if (isAddressExpression(*CE) && Visited.insert(CE).second)
331             PostorderStack.emplace_back(CE, false);
332         }
333       }
334     }
335   }
336 }
337
338 // Returns all flat address expressions in function F. The elements are ordered
339 // ordered in postorder.
340 std::vector<WeakTrackingVH>
341 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
342   // This function implements a non-recursive postorder traversal of a partial
343   // use-def graph of function F.
344   std::vector<std::pair<Value *, bool>> PostorderStack;
345   // The set of visited expressions.
346   DenseSet<Value *> Visited;
347
348   auto PushPtrOperand = [&](Value *Ptr) {
349     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
350                                                  Visited);
351   };
352
353   // Look at operations that may be interesting accelerate by moving to a known
354   // address space. We aim at generating after loads and stores, but pure
355   // addressing calculations may also be faster.
356   for (Instruction &I : instructions(F)) {
357     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
358       if (!GEP->getType()->isVectorTy())
359         PushPtrOperand(GEP->getPointerOperand());
360     } else if (auto *LI = dyn_cast<LoadInst>(&I))
361       PushPtrOperand(LI->getPointerOperand());
362     else if (auto *SI = dyn_cast<StoreInst>(&I))
363       PushPtrOperand(SI->getPointerOperand());
364     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
365       PushPtrOperand(RMW->getPointerOperand());
366     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
367       PushPtrOperand(CmpX->getPointerOperand());
368     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
369       // For memset/memcpy/memmove, any pointer operand can be replaced.
370       PushPtrOperand(MI->getRawDest());
371
372       // Handle 2nd operand for memcpy/memmove.
373       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
374         PushPtrOperand(MTI->getRawSource());
375     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
376       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
377     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
378       // FIXME: Handle vectors of pointers
379       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
380         PushPtrOperand(Cmp->getOperand(0));
381         PushPtrOperand(Cmp->getOperand(1));
382       }
383     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
384       if (!ASC->getType()->isVectorTy())
385         PushPtrOperand(ASC->getPointerOperand());
386     }
387   }
388
389   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
390   while (!PostorderStack.empty()) {
391     Value *TopVal = PostorderStack.back().first;
392     // If the operands of the expression on the top are already explored,
393     // adds that expression to the resultant postorder.
394     if (PostorderStack.back().second) {
395       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
396         Postorder.push_back(TopVal);
397       PostorderStack.pop_back();
398       continue;
399     }
400     // Otherwise, adds its operands to the stack and explores them.
401     PostorderStack.back().second = true;
402     for (Value *PtrOperand : getPointerOperands(*TopVal)) {
403       appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
404                                                    Visited);
405     }
406   }
407   return Postorder;
408 }
409
410 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
411 // of OperandUse.get() in the new address space. If the clone is not ready yet,
412 // returns an undef in the new address space as a placeholder.
413 static Value *operandWithNewAddressSpaceOrCreateUndef(
414     const Use &OperandUse, unsigned NewAddrSpace,
415     const ValueToValueMapTy &ValueWithNewAddrSpace,
416     SmallVectorImpl<const Use *> *UndefUsesToFix) {
417   Value *Operand = OperandUse.get();
418
419   Type *NewPtrTy =
420       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
421
422   if (Constant *C = dyn_cast<Constant>(Operand))
423     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
424
425   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
426     return NewOperand;
427
428   UndefUsesToFix->push_back(&OperandUse);
429   return UndefValue::get(NewPtrTy);
430 }
431
432 // Returns a clone of `I` with its operands converted to those specified in
433 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
434 // operand whose address space needs to be modified might not exist in
435 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
436 // adds that operand use to UndefUsesToFix so that caller can fix them later.
437 //
438 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
439 // from a pointer whose type already matches. Therefore, this function returns a
440 // Value* instead of an Instruction*.
441 static Value *cloneInstructionWithNewAddressSpace(
442     Instruction *I, unsigned NewAddrSpace,
443     const ValueToValueMapTy &ValueWithNewAddrSpace,
444     SmallVectorImpl<const Use *> *UndefUsesToFix) {
445   Type *NewPtrType =
446       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
447
448   if (I->getOpcode() == Instruction::AddrSpaceCast) {
449     Value *Src = I->getOperand(0);
450     // Because `I` is flat, the source address space must be specific.
451     // Therefore, the inferred address space must be the source space, according
452     // to our algorithm.
453     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
454     if (Src->getType() != NewPtrType)
455       return new BitCastInst(Src, NewPtrType);
456     return Src;
457   }
458
459   // Computes the converted pointer operands.
460   SmallVector<Value *, 4> NewPointerOperands;
461   for (const Use &OperandUse : I->operands()) {
462     if (!OperandUse.get()->getType()->isPointerTy())
463       NewPointerOperands.push_back(nullptr);
464     else
465       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
466                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
467   }
468
469   switch (I->getOpcode()) {
470   case Instruction::BitCast:
471     return new BitCastInst(NewPointerOperands[0], NewPtrType);
472   case Instruction::PHI: {
473     assert(I->getType()->isPointerTy());
474     PHINode *PHI = cast<PHINode>(I);
475     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
476     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
477       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
478       NewPHI->addIncoming(NewPointerOperands[OperandNo],
479                           PHI->getIncomingBlock(Index));
480     }
481     return NewPHI;
482   }
483   case Instruction::GetElementPtr: {
484     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
485     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
486         GEP->getSourceElementType(), NewPointerOperands[0],
487         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
488     NewGEP->setIsInBounds(GEP->isInBounds());
489     return NewGEP;
490   }
491   case Instruction::Select:
492     assert(I->getType()->isPointerTy());
493     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
494                               NewPointerOperands[2], "", nullptr, I);
495   default:
496     llvm_unreachable("Unexpected opcode");
497   }
498 }
499
500 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
501 // constant expression `CE` with its operands replaced as specified in
502 // ValueWithNewAddrSpace.
503 static Value *cloneConstantExprWithNewAddressSpace(
504   ConstantExpr *CE, unsigned NewAddrSpace,
505   const ValueToValueMapTy &ValueWithNewAddrSpace) {
506   Type *TargetType =
507     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
508
509   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
510     // Because CE is flat, the source address space must be specific.
511     // Therefore, the inferred address space must be the source space according
512     // to our algorithm.
513     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
514            NewAddrSpace);
515     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
516   }
517
518   if (CE->getOpcode() == Instruction::BitCast) {
519     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
520       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
521     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
522   }
523
524   if (CE->getOpcode() == Instruction::Select) {
525     Constant *Src0 = CE->getOperand(1);
526     Constant *Src1 = CE->getOperand(2);
527     if (Src0->getType()->getPointerAddressSpace() ==
528         Src1->getType()->getPointerAddressSpace()) {
529
530       return ConstantExpr::getSelect(
531           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
532           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
533     }
534   }
535
536   // Computes the operands of the new constant expression.
537   bool IsNew = false;
538   SmallVector<Constant *, 4> NewOperands;
539   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
540     Constant *Operand = CE->getOperand(Index);
541     // If the address space of `Operand` needs to be modified, the new operand
542     // with the new address space should already be in ValueWithNewAddrSpace
543     // because (1) the constant expressions we consider (i.e. addrspacecast,
544     // bitcast, and getelementptr) do not incur cycles in the data flow graph
545     // and (2) this function is called on constant expressions in postorder.
546     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
547       IsNew = true;
548       NewOperands.push_back(cast<Constant>(NewOperand));
549       continue;
550     }
551     if (auto CExpr = dyn_cast<ConstantExpr>(Operand))
552       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
553               CExpr, NewAddrSpace, ValueWithNewAddrSpace)) {
554         IsNew = true;
555         NewOperands.push_back(cast<Constant>(NewOperand));
556         continue;
557       }
558     // Otherwise, reuses the old operand.
559     NewOperands.push_back(Operand);
560   }
561
562   // If !IsNew, we will replace the Value with itself. However, replaced values
563   // are assumed to wrapped in a addrspace cast later so drop it now.
564   if (!IsNew)
565     return nullptr;
566
567   if (CE->getOpcode() == Instruction::GetElementPtr) {
568     // Needs to specify the source type while constructing a getelementptr
569     // constant expression.
570     return CE->getWithOperands(
571       NewOperands, TargetType, /*OnlyIfReduced=*/false,
572       NewOperands[0]->getType()->getPointerElementType());
573   }
574
575   return CE->getWithOperands(NewOperands, TargetType);
576 }
577
578 // Returns a clone of the value `V`, with its operands replaced as specified in
579 // ValueWithNewAddrSpace. This function is called on every flat address
580 // expression whose address space needs to be modified, in postorder.
581 //
582 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
583 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
584   Value *V, unsigned NewAddrSpace,
585   const ValueToValueMapTy &ValueWithNewAddrSpace,
586   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
587   // All values in Postorder are flat address expressions.
588   assert(isAddressExpression(*V) &&
589          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
590
591   if (Instruction *I = dyn_cast<Instruction>(V)) {
592     Value *NewV = cloneInstructionWithNewAddressSpace(
593       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
594     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
595       if (NewI->getParent() == nullptr) {
596         NewI->insertBefore(I);
597         NewI->takeName(I);
598       }
599     }
600     return NewV;
601   }
602
603   return cloneConstantExprWithNewAddressSpace(
604     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
605 }
606
607 // Defines the join operation on the address space lattice (see the file header
608 // comments).
609 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
610                                                unsigned AS2) const {
611   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
612     return FlatAddrSpace;
613
614   if (AS1 == UninitializedAddressSpace)
615     return AS2;
616   if (AS2 == UninitializedAddressSpace)
617     return AS1;
618
619   // The join of two different specific address spaces is flat.
620   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
621 }
622
623 bool InferAddressSpaces::runOnFunction(Function &F) {
624   if (skipFunction(F))
625     return false;
626
627   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
628
629   if (FlatAddrSpace == UninitializedAddressSpace) {
630     FlatAddrSpace = TTI->getFlatAddressSpace();
631     if (FlatAddrSpace == UninitializedAddressSpace)
632       return false;
633   }
634
635   // Collects all flat address expressions in postorder.
636   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
637
638   // Runs a data-flow analysis to refine the address spaces of every expression
639   // in Postorder.
640   ValueToAddrSpaceMapTy InferredAddrSpace;
641   inferAddressSpaces(Postorder, &InferredAddrSpace);
642
643   // Changes the address spaces of the flat address expressions who are inferred
644   // to point to a specific address space.
645   return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace, &F);
646 }
647
648 // Constants need to be tracked through RAUW to handle cases with nested
649 // constant expressions, so wrap values in WeakTrackingVH.
650 void InferAddressSpaces::inferAddressSpaces(
651     ArrayRef<WeakTrackingVH> Postorder,
652     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
653   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
654   // Initially, all expressions are in the uninitialized address space.
655   for (Value *V : Postorder)
656     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
657
658   while (!Worklist.empty()) {
659     Value *V = Worklist.pop_back_val();
660
661     // Tries to update the address space of the stack top according to the
662     // address spaces of its operands.
663     LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
664     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
665     if (!NewAS.hasValue())
666       continue;
667     // If any updates are made, grabs its users to the worklist because
668     // their address spaces can also be possibly updated.
669     LLVM_DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
670     (*InferredAddrSpace)[V] = NewAS.getValue();
671
672     for (Value *User : V->users()) {
673       // Skip if User is already in the worklist.
674       if (Worklist.count(User))
675         continue;
676
677       auto Pos = InferredAddrSpace->find(User);
678       // Our algorithm only updates the address spaces of flat address
679       // expressions, which are those in InferredAddrSpace.
680       if (Pos == InferredAddrSpace->end())
681         continue;
682
683       // Function updateAddressSpace moves the address space down a lattice
684       // path. Therefore, nothing to do if User is already inferred as flat (the
685       // bottom element in the lattice).
686       if (Pos->second == FlatAddrSpace)
687         continue;
688
689       Worklist.insert(User);
690     }
691   }
692 }
693
694 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
695     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
696   assert(InferredAddrSpace.count(&V));
697
698   // The new inferred address space equals the join of the address spaces
699   // of all its pointer operands.
700   unsigned NewAS = UninitializedAddressSpace;
701
702   const Operator &Op = cast<Operator>(V);
703   if (Op.getOpcode() == Instruction::Select) {
704     Value *Src0 = Op.getOperand(1);
705     Value *Src1 = Op.getOperand(2);
706
707     auto I = InferredAddrSpace.find(Src0);
708     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
709       I->second : Src0->getType()->getPointerAddressSpace();
710
711     auto J = InferredAddrSpace.find(Src1);
712     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
713       J->second : Src1->getType()->getPointerAddressSpace();
714
715     auto *C0 = dyn_cast<Constant>(Src0);
716     auto *C1 = dyn_cast<Constant>(Src1);
717
718     // If one of the inputs is a constant, we may be able to do a constant
719     // addrspacecast of it. Defer inferring the address space until the input
720     // address space is known.
721     if ((C1 && Src0AS == UninitializedAddressSpace) ||
722         (C0 && Src1AS == UninitializedAddressSpace))
723       return None;
724
725     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
726       NewAS = Src1AS;
727     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
728       NewAS = Src0AS;
729     else
730       NewAS = joinAddressSpaces(Src0AS, Src1AS);
731   } else {
732     for (Value *PtrOperand : getPointerOperands(V)) {
733       auto I = InferredAddrSpace.find(PtrOperand);
734       unsigned OperandAS = I != InferredAddrSpace.end() ?
735         I->second : PtrOperand->getType()->getPointerAddressSpace();
736
737       // join(flat, *) = flat. So we can break if NewAS is already flat.
738       NewAS = joinAddressSpaces(NewAS, OperandAS);
739       if (NewAS == FlatAddrSpace)
740         break;
741     }
742   }
743
744   unsigned OldAS = InferredAddrSpace.lookup(&V);
745   assert(OldAS != FlatAddrSpace);
746   if (OldAS == NewAS)
747     return None;
748   return NewAS;
749 }
750
751 /// \p returns true if \p U is the pointer operand of a memory instruction with
752 /// a single pointer operand that can have its address space changed by simply
753 /// mutating the use to a new value. If the memory instruction is volatile,
754 /// return true only if the target allows the memory instruction to be volatile
755 /// in the new address space.
756 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
757                                              Use &U, unsigned AddrSpace) {
758   User *Inst = U.getUser();
759   unsigned OpNo = U.getOperandNo();
760   bool VolatileIsAllowed = false;
761   if (auto *I = dyn_cast<Instruction>(Inst))
762     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
763
764   if (auto *LI = dyn_cast<LoadInst>(Inst))
765     return OpNo == LoadInst::getPointerOperandIndex() &&
766            (VolatileIsAllowed || !LI->isVolatile());
767
768   if (auto *SI = dyn_cast<StoreInst>(Inst))
769     return OpNo == StoreInst::getPointerOperandIndex() &&
770            (VolatileIsAllowed || !SI->isVolatile());
771
772   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
773     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
774            (VolatileIsAllowed || !RMW->isVolatile());
775
776   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
777     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
778            (VolatileIsAllowed || !CmpX->isVolatile());
779
780   return false;
781 }
782
783 /// Update memory intrinsic uses that require more complex processing than
784 /// simple memory instructions. Thse require re-mangling and may have multiple
785 /// pointer operands.
786 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
787                                      Value *NewV) {
788   IRBuilder<> B(MI);
789   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
790   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
791   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
792
793   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
794     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(),
795                    MaybeAlign(MSI->getDestAlignment()),
796                    false, // isVolatile
797                    TBAA, ScopeMD, NoAliasMD);
798   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
799     Value *Src = MTI->getRawSource();
800     Value *Dest = MTI->getRawDest();
801
802     // Be careful in case this is a self-to-self copy.
803     if (Src == OldV)
804       Src = NewV;
805
806     if (Dest == OldV)
807       Dest = NewV;
808
809     if (isa<MemCpyInst>(MTI)) {
810       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
811       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
812                      MTI->getLength(),
813                      false, // isVolatile
814                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
815     } else {
816       assert(isa<MemMoveInst>(MTI));
817       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
818                       MTI->getLength(),
819                       false, // isVolatile
820                       TBAA, ScopeMD, NoAliasMD);
821     }
822   } else
823     llvm_unreachable("unhandled MemIntrinsic");
824
825   MI->eraseFromParent();
826   return true;
827 }
828
829 // \p returns true if it is OK to change the address space of constant \p C with
830 // a ConstantExpr addrspacecast.
831 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
832   assert(NewAS != UninitializedAddressSpace);
833
834   unsigned SrcAS = C->getType()->getPointerAddressSpace();
835   if (SrcAS == NewAS || isa<UndefValue>(C))
836     return true;
837
838   // Prevent illegal casts between different non-flat address spaces.
839   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
840     return false;
841
842   if (isa<ConstantPointerNull>(C))
843     return true;
844
845   if (auto *Op = dyn_cast<Operator>(C)) {
846     // If we already have a constant addrspacecast, it should be safe to cast it
847     // off.
848     if (Op->getOpcode() == Instruction::AddrSpaceCast)
849       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
850
851     if (Op->getOpcode() == Instruction::IntToPtr &&
852         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
853       return true;
854   }
855
856   return false;
857 }
858
859 static Value::use_iterator skipToNextUser(Value::use_iterator I,
860                                           Value::use_iterator End) {
861   User *CurUser = I->getUser();
862   ++I;
863
864   while (I != End && I->getUser() == CurUser)
865     ++I;
866
867   return I;
868 }
869
870 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
871     const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
872     const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
873   // For each address expression to be modified, creates a clone of it with its
874   // pointer operands converted to the new address space. Since the pointer
875   // operands are converted, the clone is naturally in the new address space by
876   // construction.
877   ValueToValueMapTy ValueWithNewAddrSpace;
878   SmallVector<const Use *, 32> UndefUsesToFix;
879   for (Value* V : Postorder) {
880     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
881     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
882       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
883         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
884     }
885   }
886
887   if (ValueWithNewAddrSpace.empty())
888     return false;
889
890   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
891   for (const Use *UndefUse : UndefUsesToFix) {
892     User *V = UndefUse->getUser();
893     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
894     unsigned OperandNo = UndefUse->getOperandNo();
895     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
896     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
897   }
898
899   SmallVector<Instruction *, 16> DeadInstructions;
900
901   // Replaces the uses of the old address expressions with the new ones.
902   for (const WeakTrackingVH &WVH : Postorder) {
903     assert(WVH && "value was unexpectedly deleted");
904     Value *V = WVH;
905     Value *NewV = ValueWithNewAddrSpace.lookup(V);
906     if (NewV == nullptr)
907       continue;
908
909     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
910                       << *NewV << '\n');
911
912     if (Constant *C = dyn_cast<Constant>(V)) {
913       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
914                                                          C->getType());
915       if (C != Replace) {
916         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
917                           << ": " << *Replace << '\n');
918         C->replaceAllUsesWith(Replace);
919         V = Replace;
920       }
921     }
922
923     Value::use_iterator I, E, Next;
924     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
925       Use &U = *I;
926
927       // Some users may see the same pointer operand in multiple operands. Skip
928       // to the next instruction.
929       I = skipToNextUser(I, E);
930
931       if (isSimplePointerUseValidToReplace(
932               TTI, U, V->getType()->getPointerAddressSpace())) {
933         // If V is used as the pointer operand of a compatible memory operation,
934         // sets the pointer operand to NewV. This replacement does not change
935         // the element type, so the resultant load/store is still valid.
936         U.set(NewV);
937         continue;
938       }
939
940       User *CurUser = U.getUser();
941       // Handle more complex cases like intrinsic that need to be remangled.
942       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
943         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
944           continue;
945       }
946
947       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
948         if (rewriteIntrinsicOperands(II, V, NewV))
949           continue;
950       }
951
952       if (isa<Instruction>(CurUser)) {
953         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
954           // If we can infer that both pointers are in the same addrspace,
955           // transform e.g.
956           //   %cmp = icmp eq float* %p, %q
957           // into
958           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
959
960           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
961           int SrcIdx = U.getOperandNo();
962           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
963           Value *OtherSrc = Cmp->getOperand(OtherIdx);
964
965           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
966             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
967               Cmp->setOperand(OtherIdx, OtherNewV);
968               Cmp->setOperand(SrcIdx, NewV);
969               continue;
970             }
971           }
972
973           // Even if the type mismatches, we can cast the constant.
974           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
975             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
976               Cmp->setOperand(SrcIdx, NewV);
977               Cmp->setOperand(OtherIdx,
978                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
979               continue;
980             }
981           }
982         }
983
984         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
985           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
986           if (ASC->getDestAddressSpace() == NewAS) {
987             if (ASC->getType()->getPointerElementType() !=
988                 NewV->getType()->getPointerElementType()) {
989               NewV = CastInst::Create(Instruction::BitCast, NewV,
990                                       ASC->getType(), "", ASC);
991             }
992             ASC->replaceAllUsesWith(NewV);
993             DeadInstructions.push_back(ASC);
994             continue;
995           }
996         }
997
998         // Otherwise, replaces the use with flat(NewV).
999         if (Instruction *Inst = dyn_cast<Instruction>(V)) {
1000           // Don't create a copy of the original addrspacecast.
1001           if (U == V && isa<AddrSpaceCastInst>(V))
1002             continue;
1003
1004           BasicBlock::iterator InsertPos = std::next(Inst->getIterator());
1005           while (isa<PHINode>(InsertPos))
1006             ++InsertPos;
1007           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1008         } else {
1009           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1010                                                V->getType()));
1011         }
1012       }
1013     }
1014
1015     if (V->use_empty()) {
1016       if (Instruction *I = dyn_cast<Instruction>(V))
1017         DeadInstructions.push_back(I);
1018     }
1019   }
1020
1021   for (Instruction *I : DeadInstructions)
1022     RecursivelyDeleteTriviallyDeadInstructions(I);
1023
1024   return true;
1025 }
1026
1027 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1028   return new InferAddressSpaces(AddressSpace);
1029 }