]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Scalar / LoopInterchange.cpp
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include <cassert>
47 #include <utility>
48 #include <vector>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "loop-interchange"
53
54 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
55
56 static cl::opt<int> LoopInterchangeCostThreshold(
57     "loop-interchange-threshold", cl::init(0), cl::Hidden,
58     cl::desc("Interchange if you gain more than this number"));
59
60 namespace {
61
62 using LoopVector = SmallVector<Loop *, 8>;
63
64 // TODO: Check if we can use a sparse matrix here.
65 using CharMatrix = std::vector<std::vector<char>>;
66
67 } // end anonymous namespace
68
69 // Maximum number of dependencies that can be handled in the dependency matrix.
70 static const unsigned MaxMemInstrCount = 100;
71
72 // Maximum loop depth supported.
73 static const unsigned MaxLoopNestDepth = 10;
74
75 #ifdef DUMP_DEP_MATRICIES
76 static void printDepMatrix(CharMatrix &DepMatrix) {
77   for (auto &Row : DepMatrix) {
78     for (auto D : Row)
79       LLVM_DEBUG(dbgs() << D << " ");
80     LLVM_DEBUG(dbgs() << "\n");
81   }
82 }
83 #endif
84
85 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
86                                      Loop *L, DependenceInfo *DI) {
87   using ValueVector = SmallVector<Value *, 16>;
88
89   ValueVector MemInstr;
90
91   // For each block.
92   for (BasicBlock *BB : L->blocks()) {
93     // Scan the BB and collect legal loads and stores.
94     for (Instruction &I : *BB) {
95       if (!isa<Instruction>(I))
96         return false;
97       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
98         if (!Ld->isSimple())
99           return false;
100         MemInstr.push_back(&I);
101       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
102         if (!St->isSimple())
103           return false;
104         MemInstr.push_back(&I);
105       }
106     }
107   }
108
109   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
110                     << " Loads and Stores to analyze\n");
111
112   ValueVector::iterator I, IE, J, JE;
113
114   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
115     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
116       std::vector<char> Dep;
117       Instruction *Src = cast<Instruction>(*I);
118       Instruction *Dst = cast<Instruction>(*J);
119       if (Src == Dst)
120         continue;
121       // Ignore Input dependencies.
122       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
123         continue;
124       // Track Output, Flow, and Anti dependencies.
125       if (auto D = DI->depends(Src, Dst, true)) {
126         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
127         LLVM_DEBUG(StringRef DepType =
128                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
129                    dbgs() << "Found " << DepType
130                           << " dependency between Src and Dst\n"
131                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
132         unsigned Levels = D->getLevels();
133         char Direction;
134         for (unsigned II = 1; II <= Levels; ++II) {
135           const SCEV *Distance = D->getDistance(II);
136           const SCEVConstant *SCEVConst =
137               dyn_cast_or_null<SCEVConstant>(Distance);
138           if (SCEVConst) {
139             const ConstantInt *CI = SCEVConst->getValue();
140             if (CI->isNegative())
141               Direction = '<';
142             else if (CI->isZero())
143               Direction = '=';
144             else
145               Direction = '>';
146             Dep.push_back(Direction);
147           } else if (D->isScalar(II)) {
148             Direction = 'S';
149             Dep.push_back(Direction);
150           } else {
151             unsigned Dir = D->getDirection(II);
152             if (Dir == Dependence::DVEntry::LT ||
153                 Dir == Dependence::DVEntry::LE)
154               Direction = '<';
155             else if (Dir == Dependence::DVEntry::GT ||
156                      Dir == Dependence::DVEntry::GE)
157               Direction = '>';
158             else if (Dir == Dependence::DVEntry::EQ)
159               Direction = '=';
160             else
161               Direction = '*';
162             Dep.push_back(Direction);
163           }
164         }
165         while (Dep.size() != Level) {
166           Dep.push_back('I');
167         }
168
169         DepMatrix.push_back(Dep);
170         if (DepMatrix.size() > MaxMemInstrCount) {
171           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
172                             << " dependencies inside loop\n");
173           return false;
174         }
175       }
176     }
177   }
178
179   return true;
180 }
181
182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
183 // matrix by exchanging the two columns.
184 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
185                                     unsigned ToIndx) {
186   unsigned numRows = DepMatrix.size();
187   for (unsigned i = 0; i < numRows; ++i) {
188     char TmpVal = DepMatrix[i][ToIndx];
189     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
190     DepMatrix[i][FromIndx] = TmpVal;
191   }
192 }
193
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
195 // '>'
196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
197                                    unsigned Column) {
198   for (unsigned i = 0; i <= Column; ++i) {
199     if (DepMatrix[Row][i] == '<')
200       return false;
201     if (DepMatrix[Row][i] == '>')
202       return true;
203   }
204   // All dependencies were '=','S' or 'I'
205   return false;
206 }
207
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
210                                  unsigned Column) {
211   for (unsigned i = 0; i < Column; ++i) {
212     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
213         DepMatrix[Row][i] != 'I')
214       return false;
215   }
216   return true;
217 }
218
219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
220                                 unsigned OuterLoopId, char InnerDep,
221                                 char OuterDep) {
222   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
223     return false;
224
225   if (InnerDep == OuterDep)
226     return true;
227
228   // It is legal to interchange if and only if after interchange no row has a
229   // '>' direction as the leftmost non-'='.
230
231   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
232     return true;
233
234   if (InnerDep == '<')
235     return true;
236
237   if (InnerDep == '>') {
238     // If OuterLoopId represents outermost loop then interchanging will make the
239     // 1st dependency as '>'
240     if (OuterLoopId == 0)
241       return false;
242
243     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244     // interchanging will result in this row having an outermost non '='
245     // dependency of '>'
246     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
247       return true;
248   }
249
250   return false;
251 }
252
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
258                                       unsigned InnerLoopId,
259                                       unsigned OuterLoopId) {
260   unsigned NumRows = DepMatrix.size();
261   // For each row check if it is valid to interchange.
262   for (unsigned Row = 0; Row < NumRows; ++Row) {
263     char InnerDep = DepMatrix[Row][InnerLoopId];
264     char OuterDep = DepMatrix[Row][OuterLoopId];
265     if (InnerDep == '*' || OuterDep == '*')
266       return false;
267     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
268       return false;
269   }
270   return true;
271 }
272
273 static LoopVector populateWorklist(Loop &L) {
274   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275                     << L.getHeader()->getParent()->getName() << " Loop: %"
276                     << L.getHeader()->getName() << '\n');
277   LoopVector LoopList;
278   Loop *CurrentLoop = &L;
279   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
280   while (!Vec->empty()) {
281     // The current loop has multiple subloops in it hence it is not tightly
282     // nested.
283     // Discard all loops above it added into Worklist.
284     if (Vec->size() != 1)
285       return {};
286
287     LoopList.push_back(CurrentLoop);
288     CurrentLoop = Vec->front();
289     Vec = &CurrentLoop->getSubLoops();
290   }
291   LoopList.push_back(CurrentLoop);
292   return LoopList;
293 }
294
295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
296   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
297   if (InnerIndexVar)
298     return InnerIndexVar;
299   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
300     return nullptr;
301   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
302     PHINode *PhiVar = cast<PHINode>(I);
303     Type *PhiTy = PhiVar->getType();
304     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
305         !PhiTy->isPointerTy())
306       return nullptr;
307     const SCEVAddRecExpr *AddRec =
308         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
309     if (!AddRec || !AddRec->isAffine())
310       continue;
311     const SCEV *Step = AddRec->getStepRecurrence(*SE);
312     if (!isa<SCEVConstant>(Step))
313       continue;
314     // Found the induction variable.
315     // FIXME: Handle loops with more than one induction variable. Note that,
316     // currently, legality makes sure we have only one induction variable.
317     return PhiVar;
318   }
319   return nullptr;
320 }
321
322 namespace {
323
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality {
326 public:
327   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
328                           OptimizationRemarkEmitter *ORE)
329       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
330
331   /// Check if the loops can be interchanged.
332   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
333                            CharMatrix &DepMatrix);
334
335   /// Check if the loop structure is understood. We do not handle triangular
336   /// loops for now.
337   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
338
339   bool currentLimitations();
340
341   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
342     return OuterInnerReductions;
343   }
344
345 private:
346   bool tightlyNested(Loop *Outer, Loop *Inner);
347   bool containsUnsafeInstructions(BasicBlock *BB);
348
349   /// Discover induction and reduction PHIs in the header of \p L. Induction
350   /// PHIs are added to \p Inductions, reductions are added to
351   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352   /// to be passed as \p InnerLoop.
353   bool findInductionAndReductions(Loop *L,
354                                   SmallVector<PHINode *, 8> &Inductions,
355                                   Loop *InnerLoop);
356
357   Loop *OuterLoop;
358   Loop *InnerLoop;
359
360   ScalarEvolution *SE;
361
362   /// Interface to emit optimization remarks.
363   OptimizationRemarkEmitter *ORE;
364
365   /// Set of reduction PHIs taking part of a reduction across the inner and
366   /// outer loop.
367   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
368 };
369
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375                                OptimizationRemarkEmitter *ORE)
376       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
377
378   /// Check if the loop interchange is profitable.
379   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380                     CharMatrix &DepMatrix);
381
382 private:
383   int getInstrOrderCost();
384
385   Loop *OuterLoop;
386   Loop *InnerLoop;
387
388   /// Scev analysis.
389   ScalarEvolution *SE;
390
391   /// Interface to emit optimization remarks.
392   OptimizationRemarkEmitter *ORE;
393 };
394
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
398   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399                            LoopInfo *LI, DominatorTree *DT,
400                            BasicBlock *LoopNestExit,
401                            const LoopInterchangeLegality &LIL)
402       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
403         LoopExit(LoopNestExit), LIL(LIL) {}
404
405   /// Interchange OuterLoop and InnerLoop.
406   bool transform();
407   void restructureLoops(Loop *NewInner, Loop *NewOuter,
408                         BasicBlock *OrigInnerPreHeader,
409                         BasicBlock *OrigOuterPreHeader);
410   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
411
412 private:
413   void splitInnerLoopLatch(Instruction *);
414   void splitInnerLoopHeader();
415   bool adjustLoopLinks();
416   void adjustLoopPreheaders();
417   bool adjustLoopBranches();
418
419   Loop *OuterLoop;
420   Loop *InnerLoop;
421
422   /// Scev analysis.
423   ScalarEvolution *SE;
424
425   LoopInfo *LI;
426   DominatorTree *DT;
427   BasicBlock *LoopExit;
428
429   const LoopInterchangeLegality &LIL;
430 };
431
432 // Main LoopInterchange Pass.
433 struct LoopInterchange : public LoopPass {
434   static char ID;
435   ScalarEvolution *SE = nullptr;
436   LoopInfo *LI = nullptr;
437   DependenceInfo *DI = nullptr;
438   DominatorTree *DT = nullptr;
439
440   /// Interface to emit optimization remarks.
441   OptimizationRemarkEmitter *ORE;
442
443   LoopInterchange() : LoopPass(ID) {
444     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
445   }
446
447   void getAnalysisUsage(AnalysisUsage &AU) const override {
448     AU.addRequired<DependenceAnalysisWrapperPass>();
449     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
450
451     getLoopAnalysisUsage(AU);
452   }
453
454   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
455     if (skipLoop(L) || L->getParentLoop())
456       return false;
457
458     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
459     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
460     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
461     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
462     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
463
464     return processLoopList(populateWorklist(*L));
465   }
466
467   bool isComputableLoopNest(LoopVector LoopList) {
468     for (Loop *L : LoopList) {
469       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
470       if (ExitCountOuter == SE->getCouldNotCompute()) {
471         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
472         return false;
473       }
474       if (L->getNumBackEdges() != 1) {
475         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
476         return false;
477       }
478       if (!L->getExitingBlock()) {
479         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
480         return false;
481       }
482     }
483     return true;
484   }
485
486   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
487     // TODO: Add a better heuristic to select the loop to be interchanged based
488     // on the dependence matrix. Currently we select the innermost loop.
489     return LoopList.size() - 1;
490   }
491
492   bool processLoopList(LoopVector LoopList) {
493     bool Changed = false;
494     unsigned LoopNestDepth = LoopList.size();
495     if (LoopNestDepth < 2) {
496       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
497       return false;
498     }
499     if (LoopNestDepth > MaxLoopNestDepth) {
500       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
501                         << MaxLoopNestDepth << "\n");
502       return false;
503     }
504     if (!isComputableLoopNest(LoopList)) {
505       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
506       return false;
507     }
508
509     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
510                       << "\n");
511
512     CharMatrix DependencyMatrix;
513     Loop *OuterMostLoop = *(LoopList.begin());
514     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
515                                   OuterMostLoop, DI)) {
516       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
517       return false;
518     }
519 #ifdef DUMP_DEP_MATRICIES
520     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
521     printDepMatrix(DependencyMatrix);
522 #endif
523
524     // Get the Outermost loop exit.
525     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
526     if (!LoopNestExit) {
527       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
528       return false;
529     }
530
531     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
532     // Move the selected loop outwards to the best possible position.
533     for (unsigned i = SelecLoopId; i > 0; i--) {
534       bool Interchanged =
535           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
536       if (!Interchanged)
537         return Changed;
538       // Loops interchanged reflect the same in LoopList
539       std::swap(LoopList[i - 1], LoopList[i]);
540
541       // Update the DependencyMatrix
542       interChangeDependencies(DependencyMatrix, i, i - 1);
543 #ifdef DUMP_DEP_MATRICIES
544       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
545       printDepMatrix(DependencyMatrix);
546 #endif
547       Changed |= Interchanged;
548     }
549     return Changed;
550   }
551
552   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
553                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
554                    std::vector<std::vector<char>> &DependencyMatrix) {
555     LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
556                       << " and OuterLoopId = " << OuterLoopId << "\n");
557     Loop *InnerLoop = LoopList[InnerLoopId];
558     Loop *OuterLoop = LoopList[OuterLoopId];
559
560     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
561     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
562       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
563       return false;
564     }
565     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
566     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
567     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
568       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
569       return false;
570     }
571
572     ORE->emit([&]() {
573       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
574                                 InnerLoop->getStartLoc(),
575                                 InnerLoop->getHeader())
576              << "Loop interchanged with enclosing loop.";
577     });
578
579     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
580                                  LIL);
581     LIT.transform();
582     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
583     LoopsInterchanged++;
584     return true;
585   }
586 };
587
588 } // end anonymous namespace
589
590 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
591   return any_of(*BB, [](const Instruction &I) {
592     return I.mayHaveSideEffects() || I.mayReadFromMemory();
593   });
594 }
595
596 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
597   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
598   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
599   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
600
601   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
602
603   // A perfectly nested loop will not have any branch in between the outer and
604   // inner block i.e. outer header will branch to either inner preheader and
605   // outerloop latch.
606   BranchInst *OuterLoopHeaderBI =
607       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
608   if (!OuterLoopHeaderBI)
609     return false;
610
611   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
612     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
613         Succ != OuterLoopLatch)
614       return false;
615
616   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
617   // We do not have any basic block in between now make sure the outer header
618   // and outer loop latch doesn't contain any unsafe instructions.
619   if (containsUnsafeInstructions(OuterLoopHeader) ||
620       containsUnsafeInstructions(OuterLoopLatch))
621     return false;
622
623   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
624   // We have a perfect loop nest.
625   return true;
626 }
627
628 bool LoopInterchangeLegality::isLoopStructureUnderstood(
629     PHINode *InnerInduction) {
630   unsigned Num = InnerInduction->getNumOperands();
631   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
632   for (unsigned i = 0; i < Num; ++i) {
633     Value *Val = InnerInduction->getOperand(i);
634     if (isa<Constant>(Val))
635       continue;
636     Instruction *I = dyn_cast<Instruction>(Val);
637     if (!I)
638       return false;
639     // TODO: Handle triangular loops.
640     // e.g. for(int i=0;i<N;i++)
641     //        for(int j=i;j<N;j++)
642     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
643     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
644             InnerLoopPreheader &&
645         !OuterLoop->isLoopInvariant(I)) {
646       return false;
647     }
648   }
649   return true;
650 }
651
652 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
653 // value.
654 static Value *followLCSSA(Value *SV) {
655   PHINode *PHI = dyn_cast<PHINode>(SV);
656   if (!PHI)
657     return SV;
658
659   if (PHI->getNumIncomingValues() != 1)
660     return SV;
661   return followLCSSA(PHI->getIncomingValue(0));
662 }
663
664 // Check V's users to see if it is involved in a reduction in L.
665 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
666   for (Value *User : V->users()) {
667     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
668       if (PHI->getNumIncomingValues() == 1)
669         continue;
670       RecurrenceDescriptor RD;
671       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
672         return PHI;
673       return nullptr;
674     }
675   }
676
677   return nullptr;
678 }
679
680 bool LoopInterchangeLegality::findInductionAndReductions(
681     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
682   if (!L->getLoopLatch() || !L->getLoopPredecessor())
683     return false;
684   for (PHINode &PHI : L->getHeader()->phis()) {
685     RecurrenceDescriptor RD;
686     InductionDescriptor ID;
687     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
688       Inductions.push_back(&PHI);
689     else {
690       // PHIs in inner loops need to be part of a reduction in the outer loop,
691       // discovered when checking the PHIs of the outer loop earlier.
692       if (!InnerLoop) {
693         if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) {
694           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
695                                "across the outer loop.\n");
696           return false;
697         }
698       } else {
699         assert(PHI.getNumIncomingValues() == 2 &&
700                "Phis in loop header should have exactly 2 incoming values");
701         // Check if we have a PHI node in the outer loop that has a reduction
702         // result from the inner loop as an incoming value.
703         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
704         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
705         if (!InnerRedPhi ||
706             !llvm::any_of(InnerRedPhi->incoming_values(),
707                           [&PHI](Value *V) { return V == &PHI; })) {
708           LLVM_DEBUG(
709               dbgs()
710               << "Failed to recognize PHI as an induction or reduction.\n");
711           return false;
712         }
713         OuterInnerReductions.insert(&PHI);
714         OuterInnerReductions.insert(InnerRedPhi);
715       }
716     }
717   }
718   return true;
719 }
720
721 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
722   for (PHINode &PHI : Block->phis()) {
723     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
724     if (PHI.getNumIncomingValues() > 1)
725       return false;
726     Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
727     if (!Ins)
728       return false;
729     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
730     // exits lcssa phi else it would not be tightly nested.
731     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
732       return false;
733   }
734   return true;
735 }
736
737 // This function indicates the current limitations in the transform as a result
738 // of which we do not proceed.
739 bool LoopInterchangeLegality::currentLimitations() {
740   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
741   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
742
743   // transform currently expects the loop latches to also be the exiting
744   // blocks.
745   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
746       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
747       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
748       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
749     LLVM_DEBUG(
750         dbgs() << "Loops where the latch is not the exiting block are not"
751                << " supported currently.\n");
752     ORE->emit([&]() {
753       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
754                                       OuterLoop->getStartLoc(),
755                                       OuterLoop->getHeader())
756              << "Loops where the latch is not the exiting block cannot be"
757                 " interchange currently.";
758     });
759     return true;
760   }
761
762   PHINode *InnerInductionVar;
763   SmallVector<PHINode *, 8> Inductions;
764   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
765     LLVM_DEBUG(
766         dbgs() << "Only outer loops with induction or reduction PHI nodes "
767                << "are supported currently.\n");
768     ORE->emit([&]() {
769       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
770                                       OuterLoop->getStartLoc(),
771                                       OuterLoop->getHeader())
772              << "Only outer loops with induction or reduction PHI nodes can be"
773                 " interchanged currently.";
774     });
775     return true;
776   }
777
778   // TODO: Currently we handle only loops with 1 induction variable.
779   if (Inductions.size() != 1) {
780     LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
781                       << "supported currently.\n");
782     ORE->emit([&]() {
783       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
784                                       OuterLoop->getStartLoc(),
785                                       OuterLoop->getHeader())
786              << "Only outer loops with 1 induction variable can be "
787                 "interchanged currently.";
788     });
789     return true;
790   }
791
792   Inductions.clear();
793   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
794     LLVM_DEBUG(
795         dbgs() << "Only inner loops with induction or reduction PHI nodes "
796                << "are supported currently.\n");
797     ORE->emit([&]() {
798       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
799                                       InnerLoop->getStartLoc(),
800                                       InnerLoop->getHeader())
801              << "Only inner loops with induction or reduction PHI nodes can be"
802                 " interchange currently.";
803     });
804     return true;
805   }
806
807   // TODO: Currently we handle only loops with 1 induction variable.
808   if (Inductions.size() != 1) {
809     LLVM_DEBUG(
810         dbgs() << "We currently only support loops with 1 induction variable."
811                << "Failed to interchange due to current limitation\n");
812     ORE->emit([&]() {
813       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
814                                       InnerLoop->getStartLoc(),
815                                       InnerLoop->getHeader())
816              << "Only inner loops with 1 induction variable can be "
817                 "interchanged currently.";
818     });
819     return true;
820   }
821   InnerInductionVar = Inductions.pop_back_val();
822
823   // TODO: Triangular loops are not handled for now.
824   if (!isLoopStructureUnderstood(InnerInductionVar)) {
825     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
826     ORE->emit([&]() {
827       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
828                                       InnerLoop->getStartLoc(),
829                                       InnerLoop->getHeader())
830              << "Inner loop structure not understood currently.";
831     });
832     return true;
833   }
834
835   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
836   BasicBlock *InnerExit = InnerLoop->getExitBlock();
837   if (!containsSafePHI(InnerExit, false)) {
838     LLVM_DEBUG(
839         dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
840     ORE->emit([&]() {
841       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
842                                       InnerLoop->getStartLoc(),
843                                       InnerLoop->getHeader())
844              << "Only inner loops with LCSSA PHIs can be interchange "
845                 "currently.";
846     });
847     return true;
848   }
849
850   // TODO: Current limitation: Since we split the inner loop latch at the point
851   // were induction variable is incremented (induction.next); We cannot have
852   // more than 1 user of induction.next since it would result in broken code
853   // after split.
854   // e.g.
855   // for(i=0;i<N;i++) {
856   //    for(j = 0;j<M;j++) {
857   //      A[j+1][i+2] = A[j][i]+k;
858   //  }
859   // }
860   Instruction *InnerIndexVarInc = nullptr;
861   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
862     InnerIndexVarInc =
863         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
864   else
865     InnerIndexVarInc =
866         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
867
868   if (!InnerIndexVarInc) {
869     LLVM_DEBUG(
870         dbgs() << "Did not find an instruction to increment the induction "
871                << "variable.\n");
872     ORE->emit([&]() {
873       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
874                                       InnerLoop->getStartLoc(),
875                                       InnerLoop->getHeader())
876              << "The inner loop does not increment the induction variable.";
877     });
878     return true;
879   }
880
881   // Since we split the inner loop latch on this induction variable. Make sure
882   // we do not have any instruction between the induction variable and branch
883   // instruction.
884
885   bool FoundInduction = false;
886   for (const Instruction &I :
887        llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
888     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
889         isa<ZExtInst>(I))
890       continue;
891
892     // We found an instruction. If this is not induction variable then it is not
893     // safe to split this loop latch.
894     if (!I.isIdenticalTo(InnerIndexVarInc)) {
895       LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
896                         << "variable increment and branch.\n");
897       ORE->emit([&]() {
898         return OptimizationRemarkMissed(
899                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
900                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
901                << "Found unsupported instruction between induction variable "
902                   "increment and branch.";
903       });
904       return true;
905     }
906
907     FoundInduction = true;
908     break;
909   }
910   // The loop latch ended and we didn't find the induction variable return as
911   // current limitation.
912   if (!FoundInduction) {
913     LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
914     ORE->emit([&]() {
915       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
916                                       InnerLoop->getStartLoc(),
917                                       InnerLoop->getHeader())
918              << "Did not find the induction variable.";
919     });
920     return true;
921   }
922   return false;
923 }
924
925 // We currently support LCSSA PHI nodes in the outer loop exit, if their
926 // incoming values do not come from the outer loop latch or if the
927 // outer loop latch has a single predecessor. In that case, the value will
928 // be available if both the inner and outer loop conditions are true, which
929 // will still be true after interchanging. If we have multiple predecessor,
930 // that may not be the case, e.g. because the outer loop latch may be executed
931 // if the inner loop is not executed.
932 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
933   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
934   for (PHINode &PHI : LoopNestExit->phis()) {
935     //  FIXME: We currently are not able to detect floating point reductions
936     //         and have to use floating point PHIs as a proxy to prevent
937     //         interchanging in the presence of floating point reductions.
938     if (PHI.getType()->isFloatingPointTy())
939       return false;
940     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
941      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
942      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
943        continue;
944
945      // The incoming value is defined in the outer loop latch. Currently we
946      // only support that in case the outer loop latch has a single predecessor.
947      // This guarantees that the outer loop latch is executed if and only if
948      // the inner loop is executed (because tightlyNested() guarantees that the
949      // outer loop header only branches to the inner loop or the outer loop
950      // latch).
951      // FIXME: We could weaken this logic and allow multiple predecessors,
952      //        if the values are produced outside the loop latch. We would need
953      //        additional logic to update the PHI nodes in the exit block as
954      //        well.
955      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
956        return false;
957     }
958   }
959   return true;
960 }
961
962 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
963                                                   unsigned OuterLoopId,
964                                                   CharMatrix &DepMatrix) {
965   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
966     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
967                       << " and OuterLoopId = " << OuterLoopId
968                       << " due to dependence\n");
969     ORE->emit([&]() {
970       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
971                                       InnerLoop->getStartLoc(),
972                                       InnerLoop->getHeader())
973              << "Cannot interchange loops due to dependences.";
974     });
975     return false;
976   }
977   // Check if outer and inner loop contain legal instructions only.
978   for (auto *BB : OuterLoop->blocks())
979     for (Instruction &I : BB->instructionsWithoutDebug())
980       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
981         // readnone functions do not prevent interchanging.
982         if (CI->doesNotReadMemory())
983           continue;
984         LLVM_DEBUG(
985             dbgs() << "Loops with call instructions cannot be interchanged "
986                    << "safely.");
987         ORE->emit([&]() {
988           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
989                                           CI->getDebugLoc(),
990                                           CI->getParent())
991                  << "Cannot interchange loops due to call instruction.";
992         });
993
994         return false;
995       }
996
997   // TODO: The loops could not be interchanged due to current limitations in the
998   // transform module.
999   if (currentLimitations()) {
1000     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1001     return false;
1002   }
1003
1004   // Check if the loops are tightly nested.
1005   if (!tightlyNested(OuterLoop, InnerLoop)) {
1006     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1007     ORE->emit([&]() {
1008       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1009                                       InnerLoop->getStartLoc(),
1010                                       InnerLoop->getHeader())
1011              << "Cannot interchange loops because they are not tightly "
1012                 "nested.";
1013     });
1014     return false;
1015   }
1016
1017   if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1018     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1019     ORE->emit([&]() {
1020       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1021                                       OuterLoop->getStartLoc(),
1022                                       OuterLoop->getHeader())
1023              << "Found unsupported PHI node in loop exit.";
1024     });
1025     return false;
1026   }
1027
1028   return true;
1029 }
1030
1031 int LoopInterchangeProfitability::getInstrOrderCost() {
1032   unsigned GoodOrder, BadOrder;
1033   BadOrder = GoodOrder = 0;
1034   for (BasicBlock *BB : InnerLoop->blocks()) {
1035     for (Instruction &Ins : *BB) {
1036       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1037         unsigned NumOp = GEP->getNumOperands();
1038         bool FoundInnerInduction = false;
1039         bool FoundOuterInduction = false;
1040         for (unsigned i = 0; i < NumOp; ++i) {
1041           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1042           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1043           if (!AR)
1044             continue;
1045
1046           // If we find the inner induction after an outer induction e.g.
1047           // for(int i=0;i<N;i++)
1048           //   for(int j=0;j<N;j++)
1049           //     A[i][j] = A[i-1][j-1]+k;
1050           // then it is a good order.
1051           if (AR->getLoop() == InnerLoop) {
1052             // We found an InnerLoop induction after OuterLoop induction. It is
1053             // a good order.
1054             FoundInnerInduction = true;
1055             if (FoundOuterInduction) {
1056               GoodOrder++;
1057               break;
1058             }
1059           }
1060           // If we find the outer induction after an inner induction e.g.
1061           // for(int i=0;i<N;i++)
1062           //   for(int j=0;j<N;j++)
1063           //     A[j][i] = A[j-1][i-1]+k;
1064           // then it is a bad order.
1065           if (AR->getLoop() == OuterLoop) {
1066             // We found an OuterLoop induction after InnerLoop induction. It is
1067             // a bad order.
1068             FoundOuterInduction = true;
1069             if (FoundInnerInduction) {
1070               BadOrder++;
1071               break;
1072             }
1073           }
1074         }
1075       }
1076     }
1077   }
1078   return GoodOrder - BadOrder;
1079 }
1080
1081 static bool isProfitableForVectorization(unsigned InnerLoopId,
1082                                          unsigned OuterLoopId,
1083                                          CharMatrix &DepMatrix) {
1084   // TODO: Improve this heuristic to catch more cases.
1085   // If the inner loop is loop independent or doesn't carry any dependency it is
1086   // profitable to move this to outer position.
1087   for (auto &Row : DepMatrix) {
1088     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1089       return false;
1090     // TODO: We need to improve this heuristic.
1091     if (Row[OuterLoopId] != '=')
1092       return false;
1093   }
1094   // If outer loop has dependence and inner loop is loop independent then it is
1095   // profitable to interchange to enable parallelism.
1096   // If there are no dependences, interchanging will not improve anything.
1097   return !DepMatrix.empty();
1098 }
1099
1100 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1101                                                 unsigned OuterLoopId,
1102                                                 CharMatrix &DepMatrix) {
1103   // TODO: Add better profitability checks.
1104   // e.g
1105   // 1) Construct dependency matrix and move the one with no loop carried dep
1106   //    inside to enable vectorization.
1107
1108   // This is rough cost estimation algorithm. It counts the good and bad order
1109   // of induction variables in the instruction and allows reordering if number
1110   // of bad orders is more than good.
1111   int Cost = getInstrOrderCost();
1112   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1113   if (Cost < -LoopInterchangeCostThreshold)
1114     return true;
1115
1116   // It is not profitable as per current cache profitability model. But check if
1117   // we can move this loop outside to improve parallelism.
1118   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1119     return true;
1120
1121   ORE->emit([&]() {
1122     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1123                                     InnerLoop->getStartLoc(),
1124                                     InnerLoop->getHeader())
1125            << "Interchanging loops is too costly (cost="
1126            << ore::NV("Cost", Cost) << ", threshold="
1127            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1128            << ") and it does not improve parallelism.";
1129   });
1130   return false;
1131 }
1132
1133 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1134                                                Loop *InnerLoop) {
1135   for (Loop *L : *OuterLoop)
1136     if (L == InnerLoop) {
1137       OuterLoop->removeChildLoop(L);
1138       return;
1139     }
1140   llvm_unreachable("Couldn't find loop");
1141 }
1142
1143 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1144 /// new inner and outer loop after interchanging: NewInner is the original
1145 /// outer loop and NewOuter is the original inner loop.
1146 ///
1147 /// Before interchanging, we have the following structure
1148 /// Outer preheader
1149 //  Outer header
1150 //    Inner preheader
1151 //    Inner header
1152 //      Inner body
1153 //      Inner latch
1154 //   outer bbs
1155 //   Outer latch
1156 //
1157 // After interchanging:
1158 // Inner preheader
1159 // Inner header
1160 //   Outer preheader
1161 //   Outer header
1162 //     Inner body
1163 //     outer bbs
1164 //     Outer latch
1165 //   Inner latch
1166 void LoopInterchangeTransform::restructureLoops(
1167     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1168     BasicBlock *OrigOuterPreHeader) {
1169   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1170   // The original inner loop preheader moves from the new inner loop to
1171   // the parent loop, if there is one.
1172   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1173   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1174
1175   // Switch the loop levels.
1176   if (OuterLoopParent) {
1177     // Remove the loop from its parent loop.
1178     removeChildLoop(OuterLoopParent, NewInner);
1179     removeChildLoop(NewInner, NewOuter);
1180     OuterLoopParent->addChildLoop(NewOuter);
1181   } else {
1182     removeChildLoop(NewInner, NewOuter);
1183     LI->changeTopLevelLoop(NewInner, NewOuter);
1184   }
1185   while (!NewOuter->empty())
1186     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1187   NewOuter->addChildLoop(NewInner);
1188
1189   // BBs from the original inner loop.
1190   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1191
1192   // Add BBs from the original outer loop to the original inner loop (excluding
1193   // BBs already in inner loop)
1194   for (BasicBlock *BB : NewInner->blocks())
1195     if (LI->getLoopFor(BB) == NewInner)
1196       NewOuter->addBlockEntry(BB);
1197
1198   // Now remove inner loop header and latch from the new inner loop and move
1199   // other BBs (the loop body) to the new inner loop.
1200   BasicBlock *OuterHeader = NewOuter->getHeader();
1201   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1202   for (BasicBlock *BB : OrigInnerBBs) {
1203     // Nothing will change for BBs in child loops.
1204     if (LI->getLoopFor(BB) != NewOuter)
1205       continue;
1206     // Remove the new outer loop header and latch from the new inner loop.
1207     if (BB == OuterHeader || BB == OuterLatch)
1208       NewInner->removeBlockFromLoop(BB);
1209     else
1210       LI->changeLoopFor(BB, NewInner);
1211   }
1212
1213   // The preheader of the original outer loop becomes part of the new
1214   // outer loop.
1215   NewOuter->addBlockEntry(OrigOuterPreHeader);
1216   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1217
1218   // Tell SE that we move the loops around.
1219   SE->forgetLoop(NewOuter);
1220   SE->forgetLoop(NewInner);
1221 }
1222
1223 bool LoopInterchangeTransform::transform() {
1224   bool Transformed = false;
1225   Instruction *InnerIndexVar;
1226
1227   if (InnerLoop->getSubLoops().empty()) {
1228     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1229     LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n");
1230     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1231     if (!InductionPHI) {
1232       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1233       return false;
1234     }
1235
1236     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1237       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1238     else
1239       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1240
1241     // Ensure that InductionPHI is the first Phi node.
1242     if (&InductionPHI->getParent()->front() != InductionPHI)
1243       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1244
1245     // Split at the place were the induction variable is
1246     // incremented/decremented.
1247     // TODO: This splitting logic may not work always. Fix this.
1248     splitInnerLoopLatch(InnerIndexVar);
1249     LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1250
1251     // Splits the inner loops phi nodes out into a separate basic block.
1252     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1253     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1254     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1255   }
1256
1257   Transformed |= adjustLoopLinks();
1258   if (!Transformed) {
1259     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1260     return false;
1261   }
1262
1263   return true;
1264 }
1265
1266 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1267   SplitBlock(InnerLoop->getLoopLatch(), Inc, DT, LI);
1268 }
1269
1270 /// \brief Move all instructions except the terminator from FromBB right before
1271 /// InsertBefore
1272 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1273   auto &ToList = InsertBefore->getParent()->getInstList();
1274   auto &FromList = FromBB->getInstList();
1275
1276   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1277                 FromBB->getTerminator()->getIterator());
1278 }
1279
1280 /// Update BI to jump to NewBB instead of OldBB. Records updates to
1281 /// the dominator tree in DTUpdates, if DT should be preserved.
1282 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1283                             BasicBlock *NewBB,
1284                             std::vector<DominatorTree::UpdateType> &DTUpdates) {
1285   assert(llvm::count_if(successors(BI),
1286                         [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1287          "BI must jump to OldBB at most once.");
1288   for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1289     if (BI->getSuccessor(i) == OldBB) {
1290       BI->setSuccessor(i, NewBB);
1291
1292       DTUpdates.push_back(
1293           {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1294       DTUpdates.push_back(
1295           {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1296       break;
1297     }
1298   }
1299 }
1300
1301 // Move Lcssa PHIs to the right place.
1302 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1303                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1304                           BasicBlock *OuterLatch, BasicBlock *OuterExit) {
1305
1306   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1307   // defined either in the header or latch. Those blocks will become header and
1308   // latch of the new outer loop, and the only possible users can PHI nodes
1309   // in the exit block of the loop nest or the outer loop header (reduction
1310   // PHIs, in that case, the incoming value must be defined in the inner loop
1311   // header). We can just substitute the user with the incoming value and remove
1312   // the PHI.
1313   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1314     assert(P.getNumIncomingValues() == 1 &&
1315            "Only loops with a single exit are supported!");
1316
1317     // Incoming values are guaranteed be instructions currently.
1318     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1319     // Skip phis with incoming values from the inner loop body, excluding the
1320     // header and latch.
1321     if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1322       continue;
1323
1324     assert(all_of(P.users(),
1325                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1326                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1327                             IncI->getParent() == InnerHeader) ||
1328                            cast<PHINode>(U)->getParent() == OuterExit;
1329                   }) &&
1330            "Can only replace phis iff the uses are in the loop nest exit or "
1331            "the incoming value is defined in the inner header (it will "
1332            "dominate all loop blocks after interchanging)");
1333     P.replaceAllUsesWith(IncI);
1334     P.eraseFromParent();
1335   }
1336
1337   SmallVector<PHINode *, 8> LcssaInnerExit;
1338   for (PHINode &P : InnerExit->phis())
1339     LcssaInnerExit.push_back(&P);
1340
1341   SmallVector<PHINode *, 8> LcssaInnerLatch;
1342   for (PHINode &P : InnerLatch->phis())
1343     LcssaInnerLatch.push_back(&P);
1344
1345   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1346   // If a PHI node has users outside of InnerExit, it has a use outside the
1347   // interchanged loop and we have to preserve it. We move these to
1348   // InnerLatch, which will become the new exit block for the innermost
1349   // loop after interchanging.
1350   for (PHINode *P : LcssaInnerExit)
1351     P->moveBefore(InnerLatch->getFirstNonPHI());
1352
1353   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1354   // and we have to move them to the new inner latch.
1355   for (PHINode *P : LcssaInnerLatch)
1356     P->moveBefore(InnerExit->getFirstNonPHI());
1357
1358   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1359   // incoming values from the outer latch or header, we have to add a new PHI
1360   // in the inner loop latch, which became the exit block of the outer loop,
1361   // after interchanging.
1362   if (OuterExit) {
1363     for (PHINode &P : OuterExit->phis()) {
1364       if (P.getNumIncomingValues() != 1)
1365         continue;
1366       // Skip Phis with incoming values not defined in the outer loop's header
1367       // and latch. Also skip incoming phis defined in the latch. Those should
1368       // already have been updated.
1369       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1370       if (!I || ((I->getParent() != OuterLatch || isa<PHINode>(I)) &&
1371                  I->getParent() != OuterHeader))
1372         continue;
1373
1374       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1375       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1376       NewPhi->setIncomingBlock(0, OuterLatch);
1377       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1378       P.setIncomingValue(0, NewPhi);
1379     }
1380   }
1381
1382   // Now adjust the incoming blocks for the LCSSA PHIs.
1383   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1384   // with the new latch.
1385   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1386 }
1387
1388 bool LoopInterchangeTransform::adjustLoopBranches() {
1389   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1390   std::vector<DominatorTree::UpdateType> DTUpdates;
1391
1392   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1393   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1394
1395   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1396          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1397          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1398   // Ensure that both preheaders do not contain PHI nodes and have single
1399   // predecessors. This allows us to move them easily. We use
1400   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1401   // preheaders do not satisfy those conditions.
1402   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1403       !OuterLoopPreHeader->getUniquePredecessor())
1404     OuterLoopPreHeader =
1405         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1406   if (InnerLoopPreHeader == OuterLoop->getHeader())
1407     InnerLoopPreHeader =
1408         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1409
1410   // Adjust the loop preheader
1411   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1412   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1413   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1414   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1415   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1416   BasicBlock *InnerLoopLatchPredecessor =
1417       InnerLoopLatch->getUniquePredecessor();
1418   BasicBlock *InnerLoopLatchSuccessor;
1419   BasicBlock *OuterLoopLatchSuccessor;
1420
1421   BranchInst *OuterLoopLatchBI =
1422       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1423   BranchInst *InnerLoopLatchBI =
1424       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1425   BranchInst *OuterLoopHeaderBI =
1426       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1427   BranchInst *InnerLoopHeaderBI =
1428       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1429
1430   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1431       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1432       !InnerLoopHeaderBI)
1433     return false;
1434
1435   BranchInst *InnerLoopLatchPredecessorBI =
1436       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1437   BranchInst *OuterLoopPredecessorBI =
1438       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1439
1440   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1441     return false;
1442   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1443   if (!InnerLoopHeaderSuccessor)
1444     return false;
1445
1446   // Adjust Loop Preheader and headers
1447   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1448                   InnerLoopPreHeader, DTUpdates);
1449   updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1450   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1451                   InnerLoopHeaderSuccessor, DTUpdates);
1452
1453   // Adjust reduction PHI's now that the incoming block has changed.
1454   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1455                                                OuterLoopHeader);
1456
1457   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1458                   OuterLoopPreHeader, DTUpdates);
1459
1460   // -------------Adjust loop latches-----------
1461   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1462     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1463   else
1464     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1465
1466   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1467                   InnerLoopLatchSuccessor, DTUpdates);
1468
1469
1470   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1471     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1472   else
1473     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1474
1475   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1476                   OuterLoopLatchSuccessor, DTUpdates);
1477   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1478                   DTUpdates);
1479
1480   DT->applyUpdates(DTUpdates);
1481   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1482                    OuterLoopPreHeader);
1483
1484   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1485                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock());
1486   // For PHIs in the exit block of the outer loop, outer's latch has been
1487   // replaced by Inners'.
1488   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1489
1490   // Now update the reduction PHIs in the inner and outer loop headers.
1491   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1492   for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
1493     InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1494   for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
1495     OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1496
1497   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1498   (void)OuterInnerReductions;
1499
1500   // Now move the remaining reduction PHIs from outer to inner loop header and
1501   // vice versa. The PHI nodes must be part of a reduction across the inner and
1502   // outer loop and all the remains to do is and updating the incoming blocks.
1503   for (PHINode *PHI : OuterLoopPHIs) {
1504     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1505     assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
1506            "Expected a reduction PHI node");
1507   }
1508   for (PHINode *PHI : InnerLoopPHIs) {
1509     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1510     assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
1511            "Expected a reduction PHI node");
1512   }
1513
1514   // Update the incoming blocks for moved PHI nodes.
1515   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1516   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1517   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1518   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1519
1520   return true;
1521 }
1522
1523 void LoopInterchangeTransform::adjustLoopPreheaders() {
1524   // We have interchanged the preheaders so we need to interchange the data in
1525   // the preheader as well.
1526   // This is because the content of inner preheader was previously executed
1527   // inside the outer loop.
1528   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1529   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1530   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1531   BranchInst *InnerTermBI =
1532       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1533
1534   // These instructions should now be executed inside the loop.
1535   // Move instruction into a new block after outer header.
1536   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1537   // These instructions were not executed previously in the loop so move them to
1538   // the older inner loop preheader.
1539   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1540 }
1541
1542 bool LoopInterchangeTransform::adjustLoopLinks() {
1543   // Adjust all branches in the inner and outer loop.
1544   bool Changed = adjustLoopBranches();
1545   if (Changed)
1546     adjustLoopPreheaders();
1547   return Changed;
1548 }
1549
1550 char LoopInterchange::ID = 0;
1551
1552 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1553                       "Interchanges loops for cache reuse", false, false)
1554 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1555 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1556 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1557
1558 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1559                     "Interchanges loops for cache reuse", false, false)
1560
1561 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }