]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Scalar/PlaceSafepoints.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Scalar / PlaceSafepoints.cpp
1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Place garbage collection safepoints at appropriate locations in the IR. This
10 // does not make relocation semantics or variable liveness explicit.  That's
11 // done by RewriteStatepointsForGC.
12 //
13 // Terminology:
14 // - A call is said to be "parseable" if there is a stack map generated for the
15 // return PC of the call.  A runtime can determine where values listed in the
16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
17 // on the stack when the code is suspended inside such a call.  Every parse
18 // point is represented by a call wrapped in an gc.statepoint intrinsic.
19 // - A "poll" is an explicit check in the generated code to determine if the
20 // runtime needs the generated code to cooperate by calling a helper routine
21 // and thus suspending its execution at a known state. The call to the helper
22 // routine will be parseable.  The (gc & runtime specific) logic of a poll is
23 // assumed to be provided in a function of the name "gc.safepoint_poll".
24 //
25 // We aim to insert polls such that running code can quickly be brought to a
26 // well defined state for inspection by the collector.  In the current
27 // implementation, this is done via the insertion of poll sites at method entry
28 // and the backedge of most loops.  We try to avoid inserting more polls than
29 // are necessary to ensure a finite period between poll sites.  This is not
30 // because the poll itself is expensive in the generated code; it's not.  Polls
31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
32 // perturbing the optimization of the method as much as we can.
33 //
34 // We also need to make most call sites parseable.  The callee might execute a
35 // poll (or otherwise be inspected by the GC).  If so, the entire stack
36 // (including the suspended frame of the current method) must be parseable.
37 //
38 // This pass will insert:
39 // - Call parse points ("call safepoints") for any call which may need to
40 // reach a safepoint during the execution of the callee function.
41 // - Backedge safepoint polls and entry safepoint polls to ensure that
42 // executing code reaches a safepoint poll in a finite amount of time.
43 //
44 // We do not currently support return statepoints, but adding them would not
45 // be hard.  They are not required for correctness - entry safepoints are an
46 // alternative - but some GCs may prefer them.  Patches welcome.
47 //
48 //===----------------------------------------------------------------------===//
49
50 #include "llvm/Pass.h"
51
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/Analysis/CFG.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/LegacyPassManager.h"
61 #include "llvm/IR/Statepoint.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67
68 #define DEBUG_TYPE "safepoint-placement"
69
70 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
71 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
72
73 STATISTIC(CallInLoop,
74           "Number of loops without safepoints due to calls in loop");
75 STATISTIC(FiniteExecution,
76           "Number of loops without safepoints finite execution");
77
78 using namespace llvm;
79
80 // Ignore opportunities to avoid placing safepoints on backedges, useful for
81 // validation
82 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
83                                   cl::init(false));
84
85 /// How narrow does the trip count of a loop have to be to have to be considered
86 /// "counted"?  Counted loops do not get safepoints at backedges.
87 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
88                                          cl::Hidden, cl::init(32));
89
90 // If true, split the backedge of a loop when placing the safepoint, otherwise
91 // split the latch block itself.  Both are useful to support for
92 // experimentation, but in practice, it looks like splitting the backedge
93 // optimizes better.
94 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
95                                    cl::init(false));
96
97 namespace {
98
99 /// An analysis pass whose purpose is to identify each of the backedges in
100 /// the function which require a safepoint poll to be inserted.
101 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
102   static char ID;
103
104   /// The output of the pass - gives a list of each backedge (described by
105   /// pointing at the branch) which need a poll inserted.
106   std::vector<Instruction *> PollLocations;
107
108   /// True unless we're running spp-no-calls in which case we need to disable
109   /// the call-dependent placement opts.
110   bool CallSafepointsEnabled;
111
112   ScalarEvolution *SE = nullptr;
113   DominatorTree *DT = nullptr;
114   LoopInfo *LI = nullptr;
115   TargetLibraryInfo *TLI = nullptr;
116
117   PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
118       : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
119     initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
120   }
121
122   bool runOnLoop(Loop *);
123   void runOnLoopAndSubLoops(Loop *L) {
124     // Visit all the subloops
125     for (Loop *I : *L)
126       runOnLoopAndSubLoops(I);
127     runOnLoop(L);
128   }
129
130   bool runOnFunction(Function &F) override {
131     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
132     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
133     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
134     TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
135     for (Loop *I : *LI) {
136       runOnLoopAndSubLoops(I);
137     }
138     return false;
139   }
140
141   void getAnalysisUsage(AnalysisUsage &AU) const override {
142     AU.addRequired<DominatorTreeWrapperPass>();
143     AU.addRequired<ScalarEvolutionWrapperPass>();
144     AU.addRequired<LoopInfoWrapperPass>();
145     AU.addRequired<TargetLibraryInfoWrapperPass>();
146     // We no longer modify the IR at all in this pass.  Thus all
147     // analysis are preserved.
148     AU.setPreservesAll();
149   }
150 };
151 }
152
153 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
154 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
155 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
156
157 namespace {
158 struct PlaceSafepoints : public FunctionPass {
159   static char ID; // Pass identification, replacement for typeid
160
161   PlaceSafepoints() : FunctionPass(ID) {
162     initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
163   }
164   bool runOnFunction(Function &F) override;
165
166   void getAnalysisUsage(AnalysisUsage &AU) const override {
167     // We modify the graph wholesale (inlining, block insertion, etc).  We
168     // preserve nothing at the moment.  We could potentially preserve dom tree
169     // if that was worth doing
170     AU.addRequired<TargetLibraryInfoWrapperPass>();
171   }
172 };
173 }
174
175 // Insert a safepoint poll immediately before the given instruction.  Does
176 // not handle the parsability of state at the runtime call, that's the
177 // callers job.
178 static void
179 InsertSafepointPoll(Instruction *InsertBefore,
180                     std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
181                     const TargetLibraryInfo &TLI);
182
183 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
184   if (callsGCLeafFunction(Call, TLI))
185     return false;
186   if (auto *CI = dyn_cast<CallInst>(Call)) {
187     if (CI->isInlineAsm())
188       return false;
189   }
190
191   return !(isStatepoint(Call) || isGCRelocate(Call) || isGCResult(Call));
192 }
193
194 /// Returns true if this loop is known to contain a call safepoint which
195 /// must unconditionally execute on any iteration of the loop which returns
196 /// to the loop header via an edge from Pred.  Returns a conservative correct
197 /// answer; i.e. false is always valid.
198 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
199                                                BasicBlock *Pred,
200                                                DominatorTree &DT,
201                                                const TargetLibraryInfo &TLI) {
202   // In general, we're looking for any cut of the graph which ensures
203   // there's a call safepoint along every edge between Header and Pred.
204   // For the moment, we look only for the 'cuts' that consist of a single call
205   // instruction in a block which is dominated by the Header and dominates the
206   // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
207   // of such dominating blocks gets substantially more occurrences than just
208   // checking the Pred and Header blocks themselves.  This may be due to the
209   // density of loop exit conditions caused by range and null checks.
210   // TODO: structure this as an analysis pass, cache the result for subloops,
211   // avoid dom tree recalculations
212   assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
213
214   BasicBlock *Current = Pred;
215   while (true) {
216     for (Instruction &I : *Current) {
217       if (auto *Call = dyn_cast<CallBase>(&I))
218         // Note: Technically, needing a safepoint isn't quite the right
219         // condition here.  We should instead be checking if the target method
220         // has an
221         // unconditional poll. In practice, this is only a theoretical concern
222         // since we don't have any methods with conditional-only safepoint
223         // polls.
224         if (needsStatepoint(Call, TLI))
225           return true;
226     }
227
228     if (Current == Header)
229       break;
230     Current = DT.getNode(Current)->getIDom()->getBlock();
231   }
232
233   return false;
234 }
235
236 /// Returns true if this loop is known to terminate in a finite number of
237 /// iterations.  Note that this function may return false for a loop which
238 /// does actual terminate in a finite constant number of iterations due to
239 /// conservatism in the analysis.
240 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
241                                     BasicBlock *Pred) {
242   // A conservative bound on the loop as a whole.
243   const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
244   if (MaxTrips != SE->getCouldNotCompute() &&
245       SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
246           CountedLoopTripWidth))
247     return true;
248
249   // If this is a conditional branch to the header with the alternate path
250   // being outside the loop, we can ask questions about the execution frequency
251   // of the exit block.
252   if (L->isLoopExiting(Pred)) {
253     // This returns an exact expression only.  TODO: We really only need an
254     // upper bound here, but SE doesn't expose that.
255     const SCEV *MaxExec = SE->getExitCount(L, Pred);
256     if (MaxExec != SE->getCouldNotCompute() &&
257         SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
258             CountedLoopTripWidth))
259         return true;
260   }
261
262   return /* not finite */ false;
263 }
264
265 static void scanOneBB(Instruction *Start, Instruction *End,
266                       std::vector<CallInst *> &Calls,
267                       DenseSet<BasicBlock *> &Seen,
268                       std::vector<BasicBlock *> &Worklist) {
269   for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
270                                         BBE1 = BasicBlock::iterator(End);
271        BBI != BBE0 && BBI != BBE1; BBI++) {
272     if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
273       Calls.push_back(CI);
274
275     // FIXME: This code does not handle invokes
276     assert(!isa<InvokeInst>(&*BBI) &&
277            "support for invokes in poll code needed");
278
279     // Only add the successor blocks if we reach the terminator instruction
280     // without encountering end first
281     if (BBI->isTerminator()) {
282       BasicBlock *BB = BBI->getParent();
283       for (BasicBlock *Succ : successors(BB)) {
284         if (Seen.insert(Succ).second) {
285           Worklist.push_back(Succ);
286         }
287       }
288     }
289   }
290 }
291
292 static void scanInlinedCode(Instruction *Start, Instruction *End,
293                             std::vector<CallInst *> &Calls,
294                             DenseSet<BasicBlock *> &Seen) {
295   Calls.clear();
296   std::vector<BasicBlock *> Worklist;
297   Seen.insert(Start->getParent());
298   scanOneBB(Start, End, Calls, Seen, Worklist);
299   while (!Worklist.empty()) {
300     BasicBlock *BB = Worklist.back();
301     Worklist.pop_back();
302     scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
303   }
304 }
305
306 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
307   // Loop through all loop latches (branches controlling backedges).  We need
308   // to place a safepoint on every backedge (potentially).
309   // Note: In common usage, there will be only one edge due to LoopSimplify
310   // having run sometime earlier in the pipeline, but this code must be correct
311   // w.r.t. loops with multiple backedges.
312   BasicBlock *Header = L->getHeader();
313   SmallVector<BasicBlock*, 16> LoopLatches;
314   L->getLoopLatches(LoopLatches);
315   for (BasicBlock *Pred : LoopLatches) {
316     assert(L->contains(Pred));
317
318     // Make a policy decision about whether this loop needs a safepoint or
319     // not.  Note that this is about unburdening the optimizer in loops, not
320     // avoiding the runtime cost of the actual safepoint.
321     if (!AllBackedges) {
322       if (mustBeFiniteCountedLoop(L, SE, Pred)) {
323         LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
324         FiniteExecution++;
325         continue;
326       }
327       if (CallSafepointsEnabled &&
328           containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
329         // Note: This is only semantically legal since we won't do any further
330         // IPO or inlining before the actual call insertion..  If we hadn't, we
331         // might latter loose this call safepoint.
332         LLVM_DEBUG(
333             dbgs()
334             << "skipping safepoint placement due to unconditional call\n");
335         CallInLoop++;
336         continue;
337       }
338     }
339
340     // TODO: We can create an inner loop which runs a finite number of
341     // iterations with an outer loop which contains a safepoint.  This would
342     // not help runtime performance that much, but it might help our ability to
343     // optimize the inner loop.
344
345     // Safepoint insertion would involve creating a new basic block (as the
346     // target of the current backedge) which does the safepoint (of all live
347     // variables) and branches to the true header
348     Instruction *Term = Pred->getTerminator();
349
350     LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
351
352     PollLocations.push_back(Term);
353   }
354
355   return false;
356 }
357
358 /// Returns true if an entry safepoint is not required before this callsite in
359 /// the caller function.
360 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
361   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
362     switch (II->getIntrinsicID()) {
363     case Intrinsic::experimental_gc_statepoint:
364     case Intrinsic::experimental_patchpoint_void:
365     case Intrinsic::experimental_patchpoint_i64:
366       // The can wrap an actual call which may grow the stack by an unbounded
367       // amount or run forever.
368       return false;
369     default:
370       // Most LLVM intrinsics are things which do not expand to actual calls, or
371       // at least if they do, are leaf functions that cause only finite stack
372       // growth.  In particular, the optimizer likes to form things like memsets
373       // out of stores in the original IR.  Another important example is
374       // llvm.localescape which must occur in the entry block.  Inserting a
375       // safepoint before it is not legal since it could push the localescape
376       // out of the entry block.
377       return true;
378     }
379   }
380   return false;
381 }
382
383 static Instruction *findLocationForEntrySafepoint(Function &F,
384                                                   DominatorTree &DT) {
385
386   // Conceptually, this poll needs to be on method entry, but in
387   // practice, we place it as late in the entry block as possible.  We
388   // can place it as late as we want as long as it dominates all calls
389   // that can grow the stack.  This, combined with backedge polls,
390   // give us all the progress guarantees we need.
391
392   // hasNextInstruction and nextInstruction are used to iterate
393   // through a "straight line" execution sequence.
394
395   auto HasNextInstruction = [](Instruction *I) {
396     if (!I->isTerminator())
397       return true;
398
399     BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
400     return nextBB && (nextBB->getUniquePredecessor() != nullptr);
401   };
402
403   auto NextInstruction = [&](Instruction *I) {
404     assert(HasNextInstruction(I) &&
405            "first check if there is a next instruction!");
406
407     if (I->isTerminator())
408       return &I->getParent()->getUniqueSuccessor()->front();
409     return &*++I->getIterator();
410   };
411
412   Instruction *Cursor = nullptr;
413   for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
414        Cursor = NextInstruction(Cursor)) {
415
416     // We need to ensure a safepoint poll occurs before any 'real' call.  The
417     // easiest way to ensure finite execution between safepoints in the face of
418     // recursive and mutually recursive functions is to enforce that each take
419     // a safepoint.  Additionally, we need to ensure a poll before any call
420     // which can grow the stack by an unbounded amount.  This isn't required
421     // for GC semantics per se, but is a common requirement for languages
422     // which detect stack overflow via guard pages and then throw exceptions.
423     if (auto *Call = dyn_cast<CallBase>(Cursor)) {
424       if (doesNotRequireEntrySafepointBefore(Call))
425         continue;
426       break;
427     }
428   }
429
430   assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
431          "either we stopped because of a call, or because of terminator");
432
433   return Cursor;
434 }
435
436 static const char *const GCSafepointPollName = "gc.safepoint_poll";
437
438 static bool isGCSafepointPoll(Function &F) {
439   return F.getName().equals(GCSafepointPollName);
440 }
441
442 /// Returns true if this function should be rewritten to include safepoint
443 /// polls and parseable call sites.  The main point of this function is to be
444 /// an extension point for custom logic.
445 static bool shouldRewriteFunction(Function &F) {
446   // TODO: This should check the GCStrategy
447   if (F.hasGC()) {
448     const auto &FunctionGCName = F.getGC();
449     const StringRef StatepointExampleName("statepoint-example");
450     const StringRef CoreCLRName("coreclr");
451     return (StatepointExampleName == FunctionGCName) ||
452            (CoreCLRName == FunctionGCName);
453   } else
454     return false;
455 }
456
457 // TODO: These should become properties of the GCStrategy, possibly with
458 // command line overrides.
459 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
460 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
461 static bool enableCallSafepoints(Function &F) { return !NoCall; }
462
463 bool PlaceSafepoints::runOnFunction(Function &F) {
464   if (F.isDeclaration() || F.empty()) {
465     // This is a declaration, nothing to do.  Must exit early to avoid crash in
466     // dom tree calculation
467     return false;
468   }
469
470   if (isGCSafepointPoll(F)) {
471     // Given we're inlining this inside of safepoint poll insertion, this
472     // doesn't make any sense.  Note that we do make any contained calls
473     // parseable after we inline a poll.
474     return false;
475   }
476
477   if (!shouldRewriteFunction(F))
478     return false;
479
480   const TargetLibraryInfo &TLI =
481       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
482
483   bool Modified = false;
484
485   // In various bits below, we rely on the fact that uses are reachable from
486   // defs.  When there are basic blocks unreachable from the entry, dominance
487   // and reachablity queries return non-sensical results.  Thus, we preprocess
488   // the function to ensure these properties hold.
489   Modified |= removeUnreachableBlocks(F);
490
491   // STEP 1 - Insert the safepoint polling locations.  We do not need to
492   // actually insert parse points yet.  That will be done for all polls and
493   // calls in a single pass.
494
495   DominatorTree DT;
496   DT.recalculate(F);
497
498   SmallVector<Instruction *, 16> PollsNeeded;
499   std::vector<CallBase *> ParsePointNeeded;
500
501   if (enableBackedgeSafepoints(F)) {
502     // Construct a pass manager to run the LoopPass backedge logic.  We
503     // need the pass manager to handle scheduling all the loop passes
504     // appropriately.  Doing this by hand is painful and just not worth messing
505     // with for the moment.
506     legacy::FunctionPassManager FPM(F.getParent());
507     bool CanAssumeCallSafepoints = enableCallSafepoints(F);
508     auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
509     FPM.add(PBS);
510     FPM.run(F);
511
512     // We preserve dominance information when inserting the poll, otherwise
513     // we'd have to recalculate this on every insert
514     DT.recalculate(F);
515
516     auto &PollLocations = PBS->PollLocations;
517
518     auto OrderByBBName = [](Instruction *a, Instruction *b) {
519       return a->getParent()->getName() < b->getParent()->getName();
520     };
521     // We need the order of list to be stable so that naming ends up stable
522     // when we split edges.  This makes test cases much easier to write.
523     llvm::sort(PollLocations, OrderByBBName);
524
525     // We can sometimes end up with duplicate poll locations.  This happens if
526     // a single loop is visited more than once.   The fact this happens seems
527     // wrong, but it does happen for the split-backedge.ll test case.
528     PollLocations.erase(std::unique(PollLocations.begin(),
529                                     PollLocations.end()),
530                         PollLocations.end());
531
532     // Insert a poll at each point the analysis pass identified
533     // The poll location must be the terminator of a loop latch block.
534     for (Instruction *Term : PollLocations) {
535       // We are inserting a poll, the function is modified
536       Modified = true;
537
538       if (SplitBackedge) {
539         // Split the backedge of the loop and insert the poll within that new
540         // basic block.  This creates a loop with two latches per original
541         // latch (which is non-ideal), but this appears to be easier to
542         // optimize in practice than inserting the poll immediately before the
543         // latch test.
544
545         // Since this is a latch, at least one of the successors must dominate
546         // it. Its possible that we have a) duplicate edges to the same header
547         // and b) edges to distinct loop headers.  We need to insert pools on
548         // each.
549         SetVector<BasicBlock *> Headers;
550         for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
551           BasicBlock *Succ = Term->getSuccessor(i);
552           if (DT.dominates(Succ, Term->getParent())) {
553             Headers.insert(Succ);
554           }
555         }
556         assert(!Headers.empty() && "poll location is not a loop latch?");
557
558         // The split loop structure here is so that we only need to recalculate
559         // the dominator tree once.  Alternatively, we could just keep it up to
560         // date and use a more natural merged loop.
561         SetVector<BasicBlock *> SplitBackedges;
562         for (BasicBlock *Header : Headers) {
563           BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
564           PollsNeeded.push_back(NewBB->getTerminator());
565           NumBackedgeSafepoints++;
566         }
567       } else {
568         // Split the latch block itself, right before the terminator.
569         PollsNeeded.push_back(Term);
570         NumBackedgeSafepoints++;
571       }
572     }
573   }
574
575   if (enableEntrySafepoints(F)) {
576     if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
577       PollsNeeded.push_back(Location);
578       Modified = true;
579       NumEntrySafepoints++;
580     }
581     // TODO: else we should assert that there was, in fact, a policy choice to
582     // not insert a entry safepoint poll.
583   }
584
585   // Now that we've identified all the needed safepoint poll locations, insert
586   // safepoint polls themselves.
587   for (Instruction *PollLocation : PollsNeeded) {
588     std::vector<CallBase *> RuntimeCalls;
589     InsertSafepointPoll(PollLocation, RuntimeCalls, TLI);
590     ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
591                             RuntimeCalls.end());
592   }
593
594   return Modified;
595 }
596
597 char PlaceBackedgeSafepointsImpl::ID = 0;
598 char PlaceSafepoints::ID = 0;
599
600 FunctionPass *llvm::createPlaceSafepointsPass() {
601   return new PlaceSafepoints();
602 }
603
604 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
605                       "place-backedge-safepoints-impl",
606                       "Place Backedge Safepoints", false, false)
607 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
608 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
609 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
610 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
611                     "place-backedge-safepoints-impl",
612                     "Place Backedge Safepoints", false, false)
613
614 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
615                       false, false)
616 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
617                     false, false)
618
619 static void
620 InsertSafepointPoll(Instruction *InsertBefore,
621                     std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
622                     const TargetLibraryInfo &TLI) {
623   BasicBlock *OrigBB = InsertBefore->getParent();
624   Module *M = InsertBefore->getModule();
625   assert(M && "must be part of a module");
626
627   // Inline the safepoint poll implementation - this will get all the branch,
628   // control flow, etc..  Most importantly, it will introduce the actual slow
629   // path call - where we need to insert a safepoint (parsepoint).
630
631   auto *F = M->getFunction(GCSafepointPollName);
632   assert(F && "gc.safepoint_poll function is missing");
633   assert(F->getValueType() ==
634          FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
635          "gc.safepoint_poll declared with wrong type");
636   assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
637   CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
638
639   // Record some information about the call site we're replacing
640   BasicBlock::iterator Before(PollCall), After(PollCall);
641   bool IsBegin = false;
642   if (Before == OrigBB->begin())
643     IsBegin = true;
644   else
645     Before--;
646
647   After++;
648   assert(After != OrigBB->end() && "must have successor");
649
650   // Do the actual inlining
651   InlineFunctionInfo IFI;
652   bool InlineStatus = InlineFunction(PollCall, IFI);
653   assert(InlineStatus && "inline must succeed");
654   (void)InlineStatus; // suppress warning in release-asserts
655
656   // Check post-conditions
657   assert(IFI.StaticAllocas.empty() && "can't have allocs");
658
659   std::vector<CallInst *> Calls; // new calls
660   DenseSet<BasicBlock *> BBs;    // new BBs + insertee
661
662   // Include only the newly inserted instructions, Note: begin may not be valid
663   // if we inserted to the beginning of the basic block
664   BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
665
666   // If your poll function includes an unreachable at the end, that's not
667   // valid.  Bugpoint likes to create this, so check for it.
668   assert(isPotentiallyReachable(&*Start, &*After) &&
669          "malformed poll function");
670
671   scanInlinedCode(&*Start, &*After, Calls, BBs);
672   assert(!Calls.empty() && "slow path not found for safepoint poll");
673
674   // Record the fact we need a parsable state at the runtime call contained in
675   // the poll function.  This is required so that the runtime knows how to
676   // parse the last frame when we actually take  the safepoint (i.e. execute
677   // the slow path)
678   assert(ParsePointsNeeded.empty());
679   for (auto *CI : Calls) {
680     // No safepoint needed or wanted
681     if (!needsStatepoint(CI, TLI))
682       continue;
683
684     // These are likely runtime calls.  Should we assert that via calling
685     // convention or something?
686     ParsePointsNeeded.push_back(CI);
687   }
688   assert(ParsePointsNeeded.size() <= Calls.size());
689 }