]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Scalar / SimpleLoopUnswitch.cpp
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/Utils/Local.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/GenericDomTree.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Cloning.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/ValueMapper.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <iterator>
57 #include <numeric>
58 #include <utility>
59
60 #define DEBUG_TYPE "simple-loop-unswitch"
61
62 using namespace llvm;
63
64 STATISTIC(NumBranches, "Number of branches unswitched");
65 STATISTIC(NumSwitches, "Number of switches unswitched");
66 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
67 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
68 STATISTIC(
69     NumCostMultiplierSkipped,
70     "Number of unswitch candidates that had their cost multiplier skipped");
71
72 static cl::opt<bool> EnableNonTrivialUnswitch(
73     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
74     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
75              "following the configuration passed into the pass."));
76
77 static cl::opt<int>
78     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
79                       cl::desc("The cost threshold for unswitching a loop."));
80
81 static cl::opt<bool> EnableUnswitchCostMultiplier(
82     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
83     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
84              "explosion in nontrivial unswitch."));
85 static cl::opt<int> UnswitchSiblingsToplevelDiv(
86     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
87     cl::desc("Toplevel siblings divisor for cost multiplier."));
88 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
89     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
90     cl::desc("Number of unswitch candidates that are ignored when calculating "
91              "cost multiplier."));
92 static cl::opt<bool> UnswitchGuards(
93     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
94     cl::desc("If enabled, simple loop unswitching will also consider "
95              "llvm.experimental.guard intrinsics as unswitch candidates."));
96
97 /// Collect all of the loop invariant input values transitively used by the
98 /// homogeneous instruction graph from a given root.
99 ///
100 /// This essentially walks from a root recursively through loop variant operands
101 /// which have the exact same opcode and finds all inputs which are loop
102 /// invariant. For some operations these can be re-associated and unswitched out
103 /// of the loop entirely.
104 static TinyPtrVector<Value *>
105 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
106                                          LoopInfo &LI) {
107   assert(!L.isLoopInvariant(&Root) &&
108          "Only need to walk the graph if root itself is not invariant.");
109   TinyPtrVector<Value *> Invariants;
110
111   // Build a worklist and recurse through operators collecting invariants.
112   SmallVector<Instruction *, 4> Worklist;
113   SmallPtrSet<Instruction *, 8> Visited;
114   Worklist.push_back(&Root);
115   Visited.insert(&Root);
116   do {
117     Instruction &I = *Worklist.pop_back_val();
118     for (Value *OpV : I.operand_values()) {
119       // Skip constants as unswitching isn't interesting for them.
120       if (isa<Constant>(OpV))
121         continue;
122
123       // Add it to our result if loop invariant.
124       if (L.isLoopInvariant(OpV)) {
125         Invariants.push_back(OpV);
126         continue;
127       }
128
129       // If not an instruction with the same opcode, nothing we can do.
130       Instruction *OpI = dyn_cast<Instruction>(OpV);
131       if (!OpI || OpI->getOpcode() != Root.getOpcode())
132         continue;
133
134       // Visit this operand.
135       if (Visited.insert(OpI).second)
136         Worklist.push_back(OpI);
137     }
138   } while (!Worklist.empty());
139
140   return Invariants;
141 }
142
143 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
144                                      Constant &Replacement) {
145   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
146
147   // Replace uses of LIC in the loop with the given constant.
148   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
149     // Grab the use and walk past it so we can clobber it in the use list.
150     Use *U = &*UI++;
151     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
152
153     // Replace this use within the loop body.
154     if (UserI && L.contains(UserI))
155       U->set(&Replacement);
156   }
157 }
158
159 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
160 /// incoming values along this edge.
161 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
162                                          BasicBlock &ExitBB) {
163   for (Instruction &I : ExitBB) {
164     auto *PN = dyn_cast<PHINode>(&I);
165     if (!PN)
166       // No more PHIs to check.
167       return true;
168
169     // If the incoming value for this edge isn't loop invariant the unswitch
170     // won't be trivial.
171     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
172       return false;
173   }
174   llvm_unreachable("Basic blocks should never be empty!");
175 }
176
177 /// Insert code to test a set of loop invariant values, and conditionally branch
178 /// on them.
179 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
180                                                   ArrayRef<Value *> Invariants,
181                                                   bool Direction,
182                                                   BasicBlock &UnswitchedSucc,
183                                                   BasicBlock &NormalSucc) {
184   IRBuilder<> IRB(&BB);
185   
186   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
187     IRB.CreateAnd(Invariants);
188   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
189                    Direction ? &NormalSucc : &UnswitchedSucc);
190 }
191
192 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
193 ///
194 /// Requires that the loop exit and unswitched basic block are the same, and
195 /// that the exiting block was a unique predecessor of that block. Rewrites the
196 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
197 /// PHI nodes from the old preheader that now contains the unswitched
198 /// terminator.
199 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
200                                                   BasicBlock &OldExitingBB,
201                                                   BasicBlock &OldPH) {
202   for (PHINode &PN : UnswitchedBB.phis()) {
203     // When the loop exit is directly unswitched we just need to update the
204     // incoming basic block. We loop to handle weird cases with repeated
205     // incoming blocks, but expect to typically only have one operand here.
206     for (auto i : seq<int>(0, PN.getNumOperands())) {
207       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
208              "Found incoming block different from unique predecessor!");
209       PN.setIncomingBlock(i, &OldPH);
210     }
211   }
212 }
213
214 /// Rewrite the PHI nodes in the loop exit basic block and the split off
215 /// unswitched block.
216 ///
217 /// Because the exit block remains an exit from the loop, this rewrites the
218 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
219 /// nodes into the unswitched basic block to select between the value in the
220 /// old preheader and the loop exit.
221 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
222                                                       BasicBlock &UnswitchedBB,
223                                                       BasicBlock &OldExitingBB,
224                                                       BasicBlock &OldPH,
225                                                       bool FullUnswitch) {
226   assert(&ExitBB != &UnswitchedBB &&
227          "Must have different loop exit and unswitched blocks!");
228   Instruction *InsertPt = &*UnswitchedBB.begin();
229   for (PHINode &PN : ExitBB.phis()) {
230     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
231                                   PN.getName() + ".split", InsertPt);
232
233     // Walk backwards over the old PHI node's inputs to minimize the cost of
234     // removing each one. We have to do this weird loop manually so that we
235     // create the same number of new incoming edges in the new PHI as we expect
236     // each case-based edge to be included in the unswitched switch in some
237     // cases.
238     // FIXME: This is really, really gross. It would be much cleaner if LLVM
239     // allowed us to create a single entry for a predecessor block without
240     // having separate entries for each "edge" even though these edges are
241     // required to produce identical results.
242     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
243       if (PN.getIncomingBlock(i) != &OldExitingBB)
244         continue;
245
246       Value *Incoming = PN.getIncomingValue(i);
247       if (FullUnswitch)
248         // No more edge from the old exiting block to the exit block.
249         PN.removeIncomingValue(i);
250
251       NewPN->addIncoming(Incoming, &OldPH);
252     }
253
254     // Now replace the old PHI with the new one and wire the old one in as an
255     // input to the new one.
256     PN.replaceAllUsesWith(NewPN);
257     NewPN->addIncoming(&PN, &ExitBB);
258   }
259 }
260
261 /// Hoist the current loop up to the innermost loop containing a remaining exit.
262 ///
263 /// Because we've removed an exit from the loop, we may have changed the set of
264 /// loops reachable and need to move the current loop up the loop nest or even
265 /// to an entirely separate nest.
266 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
267                                  DominatorTree &DT, LoopInfo &LI,
268                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
269   // If the loop is already at the top level, we can't hoist it anywhere.
270   Loop *OldParentL = L.getParentLoop();
271   if (!OldParentL)
272     return;
273
274   SmallVector<BasicBlock *, 4> Exits;
275   L.getExitBlocks(Exits);
276   Loop *NewParentL = nullptr;
277   for (auto *ExitBB : Exits)
278     if (Loop *ExitL = LI.getLoopFor(ExitBB))
279       if (!NewParentL || NewParentL->contains(ExitL))
280         NewParentL = ExitL;
281
282   if (NewParentL == OldParentL)
283     return;
284
285   // The new parent loop (if different) should always contain the old one.
286   if (NewParentL)
287     assert(NewParentL->contains(OldParentL) &&
288            "Can only hoist this loop up the nest!");
289
290   // The preheader will need to move with the body of this loop. However,
291   // because it isn't in this loop we also need to update the primary loop map.
292   assert(OldParentL == LI.getLoopFor(&Preheader) &&
293          "Parent loop of this loop should contain this loop's preheader!");
294   LI.changeLoopFor(&Preheader, NewParentL);
295
296   // Remove this loop from its old parent.
297   OldParentL->removeChildLoop(&L);
298
299   // Add the loop either to the new parent or as a top-level loop.
300   if (NewParentL)
301     NewParentL->addChildLoop(&L);
302   else
303     LI.addTopLevelLoop(&L);
304
305   // Remove this loops blocks from the old parent and every other loop up the
306   // nest until reaching the new parent. Also update all of these
307   // no-longer-containing loops to reflect the nesting change.
308   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
309        OldContainingL = OldContainingL->getParentLoop()) {
310     llvm::erase_if(OldContainingL->getBlocksVector(),
311                    [&](const BasicBlock *BB) {
312                      return BB == &Preheader || L.contains(BB);
313                    });
314
315     OldContainingL->getBlocksSet().erase(&Preheader);
316     for (BasicBlock *BB : L.blocks())
317       OldContainingL->getBlocksSet().erase(BB);
318
319     // Because we just hoisted a loop out of this one, we have essentially
320     // created new exit paths from it. That means we need to form LCSSA PHI
321     // nodes for values used in the no-longer-nested loop.
322     formLCSSA(*OldContainingL, DT, &LI, SE);
323
324     // We shouldn't need to form dedicated exits because the exit introduced
325     // here is the (just split by unswitching) preheader. However, after trivial
326     // unswitching it is possible to get new non-dedicated exits out of parent
327     // loop so let's conservatively form dedicated exit blocks and figure out
328     // if we can optimize later.
329     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
330                             /*PreserveLCSSA*/ true);
331   }
332 }
333
334 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
335 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
336 // as exiting block.
337 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
338   Loop *TopMost = LI.getLoopFor(ExitBB);
339   Loop *Current = TopMost;
340   while (Current) {
341     if (Current->isLoopExiting(ExitBB))
342       TopMost = Current;
343     Current = Current->getParentLoop();
344   }
345   return TopMost;
346 }
347
348 /// Unswitch a trivial branch if the condition is loop invariant.
349 ///
350 /// This routine should only be called when loop code leading to the branch has
351 /// been validated as trivial (no side effects). This routine checks if the
352 /// condition is invariant and one of the successors is a loop exit. This
353 /// allows us to unswitch without duplicating the loop, making it trivial.
354 ///
355 /// If this routine fails to unswitch the branch it returns false.
356 ///
357 /// If the branch can be unswitched, this routine splits the preheader and
358 /// hoists the branch above that split. Preserves loop simplified form
359 /// (splitting the exit block as necessary). It simplifies the branch within
360 /// the loop to an unconditional branch but doesn't remove it entirely. Further
361 /// cleanup can be done with some simplify-cfg like pass.
362 ///
363 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
364 /// invalidated by this.
365 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
366                                   LoopInfo &LI, ScalarEvolution *SE,
367                                   MemorySSAUpdater *MSSAU) {
368   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
369   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
370
371   // The loop invariant values that we want to unswitch.
372   TinyPtrVector<Value *> Invariants;
373
374   // When true, we're fully unswitching the branch rather than just unswitching
375   // some input conditions to the branch.
376   bool FullUnswitch = false;
377
378   if (L.isLoopInvariant(BI.getCondition())) {
379     Invariants.push_back(BI.getCondition());
380     FullUnswitch = true;
381   } else {
382     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
383       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
384     if (Invariants.empty())
385       // Couldn't find invariant inputs!
386       return false;
387   }
388
389   // Check that one of the branch's successors exits, and which one.
390   bool ExitDirection = true;
391   int LoopExitSuccIdx = 0;
392   auto *LoopExitBB = BI.getSuccessor(0);
393   if (L.contains(LoopExitBB)) {
394     ExitDirection = false;
395     LoopExitSuccIdx = 1;
396     LoopExitBB = BI.getSuccessor(1);
397     if (L.contains(LoopExitBB))
398       return false;
399   }
400   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
401   auto *ParentBB = BI.getParent();
402   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
403     return false;
404
405   // When unswitching only part of the branch's condition, we need the exit
406   // block to be reached directly from the partially unswitched input. This can
407   // be done when the exit block is along the true edge and the branch condition
408   // is a graph of `or` operations, or the exit block is along the false edge
409   // and the condition is a graph of `and` operations.
410   if (!FullUnswitch) {
411     if (ExitDirection) {
412       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
413         return false;
414     } else {
415       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
416         return false;
417     }
418   }
419
420   LLVM_DEBUG({
421     dbgs() << "    unswitching trivial invariant conditions for: " << BI
422            << "\n";
423     for (Value *Invariant : Invariants) {
424       dbgs() << "      " << *Invariant << " == true";
425       if (Invariant != Invariants.back())
426         dbgs() << " ||";
427       dbgs() << "\n";
428     }
429   });
430
431   // If we have scalar evolutions, we need to invalidate them including this
432   // loop, the loop containing the exit block and the topmost parent loop
433   // exiting via LoopExitBB.
434   if (SE) {
435     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
436       SE->forgetLoop(ExitL);
437     else
438       // Forget the entire nest as this exits the entire nest.
439       SE->forgetTopmostLoop(&L);
440   }
441
442   if (MSSAU && VerifyMemorySSA)
443     MSSAU->getMemorySSA()->verifyMemorySSA();
444
445   // Split the preheader, so that we know that there is a safe place to insert
446   // the conditional branch. We will change the preheader to have a conditional
447   // branch on LoopCond.
448   BasicBlock *OldPH = L.getLoopPreheader();
449   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
450
451   // Now that we have a place to insert the conditional branch, create a place
452   // to branch to: this is the exit block out of the loop that we are
453   // unswitching. We need to split this if there are other loop predecessors.
454   // Because the loop is in simplified form, *any* other predecessor is enough.
455   BasicBlock *UnswitchedBB;
456   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
457     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
458            "A branch's parent isn't a predecessor!");
459     UnswitchedBB = LoopExitBB;
460   } else {
461     UnswitchedBB =
462         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
463   }
464
465   if (MSSAU && VerifyMemorySSA)
466     MSSAU->getMemorySSA()->verifyMemorySSA();
467
468   // Actually move the invariant uses into the unswitched position. If possible,
469   // we do this by moving the instructions, but when doing partial unswitching
470   // we do it by building a new merge of the values in the unswitched position.
471   OldPH->getTerminator()->eraseFromParent();
472   if (FullUnswitch) {
473     // If fully unswitching, we can use the existing branch instruction.
474     // Splice it into the old PH to gate reaching the new preheader and re-point
475     // its successors.
476     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
477                                 BI);
478     if (MSSAU) {
479       // Temporarily clone the terminator, to make MSSA update cheaper by
480       // separating "insert edge" updates from "remove edge" ones.
481       ParentBB->getInstList().push_back(BI.clone());
482     } else {
483       // Create a new unconditional branch that will continue the loop as a new
484       // terminator.
485       BranchInst::Create(ContinueBB, ParentBB);
486     }
487     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
488     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
489   } else {
490     // Only unswitching a subset of inputs to the condition, so we will need to
491     // build a new branch that merges the invariant inputs.
492     if (ExitDirection)
493       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
494                  Instruction::Or &&
495              "Must have an `or` of `i1`s for the condition!");
496     else
497       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
498                  Instruction::And &&
499              "Must have an `and` of `i1`s for the condition!");
500     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
501                                           *UnswitchedBB, *NewPH);
502   }
503
504   // Update the dominator tree with the added edge.
505   DT.insertEdge(OldPH, UnswitchedBB);
506
507   // After the dominator tree was updated with the added edge, update MemorySSA
508   // if available.
509   if (MSSAU) {
510     SmallVector<CFGUpdate, 1> Updates;
511     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
512     MSSAU->applyInsertUpdates(Updates, DT);
513   }
514
515   // Finish updating dominator tree and memory ssa for full unswitch.
516   if (FullUnswitch) {
517     if (MSSAU) {
518       // Remove the cloned branch instruction.
519       ParentBB->getTerminator()->eraseFromParent();
520       // Create unconditional branch now.
521       BranchInst::Create(ContinueBB, ParentBB);
522       MSSAU->removeEdge(ParentBB, LoopExitBB);
523     }
524     DT.deleteEdge(ParentBB, LoopExitBB);
525   }
526
527   if (MSSAU && VerifyMemorySSA)
528     MSSAU->getMemorySSA()->verifyMemorySSA();
529
530   // Rewrite the relevant PHI nodes.
531   if (UnswitchedBB == LoopExitBB)
532     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
533   else
534     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
535                                               *ParentBB, *OldPH, FullUnswitch);
536
537   // The constant we can replace all of our invariants with inside the loop
538   // body. If any of the invariants have a value other than this the loop won't
539   // be entered.
540   ConstantInt *Replacement = ExitDirection
541                                  ? ConstantInt::getFalse(BI.getContext())
542                                  : ConstantInt::getTrue(BI.getContext());
543
544   // Since this is an i1 condition we can also trivially replace uses of it
545   // within the loop with a constant.
546   for (Value *Invariant : Invariants)
547     replaceLoopInvariantUses(L, Invariant, *Replacement);
548
549   // If this was full unswitching, we may have changed the nesting relationship
550   // for this loop so hoist it to its correct parent if needed.
551   if (FullUnswitch)
552     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
553
554   if (MSSAU && VerifyMemorySSA)
555     MSSAU->getMemorySSA()->verifyMemorySSA();
556
557   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
558   ++NumTrivial;
559   ++NumBranches;
560   return true;
561 }
562
563 /// Unswitch a trivial switch if the condition is loop invariant.
564 ///
565 /// This routine should only be called when loop code leading to the switch has
566 /// been validated as trivial (no side effects). This routine checks if the
567 /// condition is invariant and that at least one of the successors is a loop
568 /// exit. This allows us to unswitch without duplicating the loop, making it
569 /// trivial.
570 ///
571 /// If this routine fails to unswitch the switch it returns false.
572 ///
573 /// If the switch can be unswitched, this routine splits the preheader and
574 /// copies the switch above that split. If the default case is one of the
575 /// exiting cases, it copies the non-exiting cases and points them at the new
576 /// preheader. If the default case is not exiting, it copies the exiting cases
577 /// and points the default at the preheader. It preserves loop simplified form
578 /// (splitting the exit blocks as necessary). It simplifies the switch within
579 /// the loop by removing now-dead cases. If the default case is one of those
580 /// unswitched, it replaces its destination with a new basic block containing
581 /// only unreachable. Such basic blocks, while technically loop exits, are not
582 /// considered for unswitching so this is a stable transform and the same
583 /// switch will not be revisited. If after unswitching there is only a single
584 /// in-loop successor, the switch is further simplified to an unconditional
585 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
586 ///
587 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
588 /// invalidated by this.
589 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
590                                   LoopInfo &LI, ScalarEvolution *SE,
591                                   MemorySSAUpdater *MSSAU) {
592   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
593   Value *LoopCond = SI.getCondition();
594
595   // If this isn't switching on an invariant condition, we can't unswitch it.
596   if (!L.isLoopInvariant(LoopCond))
597     return false;
598
599   auto *ParentBB = SI.getParent();
600
601   SmallVector<int, 4> ExitCaseIndices;
602   for (auto Case : SI.cases()) {
603     auto *SuccBB = Case.getCaseSuccessor();
604     if (!L.contains(SuccBB) &&
605         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
606       ExitCaseIndices.push_back(Case.getCaseIndex());
607   }
608   BasicBlock *DefaultExitBB = nullptr;
609   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
610       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
611   if (!L.contains(SI.getDefaultDest()) &&
612       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
613       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
614     DefaultExitBB = SI.getDefaultDest();
615   } else if (ExitCaseIndices.empty())
616     return false;
617
618   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
619
620   if (MSSAU && VerifyMemorySSA)
621     MSSAU->getMemorySSA()->verifyMemorySSA();
622
623   // We may need to invalidate SCEVs for the outermost loop reached by any of
624   // the exits.
625   Loop *OuterL = &L;
626
627   if (DefaultExitBB) {
628     // Clear out the default destination temporarily to allow accurate
629     // predecessor lists to be examined below.
630     SI.setDefaultDest(nullptr);
631     // Check the loop containing this exit.
632     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
633     if (!ExitL || ExitL->contains(OuterL))
634       OuterL = ExitL;
635   }
636
637   // Store the exit cases into a separate data structure and remove them from
638   // the switch.
639   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
640                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
641               4> ExitCases;
642   ExitCases.reserve(ExitCaseIndices.size());
643   SwitchInstProfUpdateWrapper SIW(SI);
644   // We walk the case indices backwards so that we remove the last case first
645   // and don't disrupt the earlier indices.
646   for (unsigned Index : reverse(ExitCaseIndices)) {
647     auto CaseI = SI.case_begin() + Index;
648     // Compute the outer loop from this exit.
649     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
650     if (!ExitL || ExitL->contains(OuterL))
651       OuterL = ExitL;
652     // Save the value of this case.
653     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
654     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
655     // Delete the unswitched cases.
656     SIW.removeCase(CaseI);
657   }
658
659   if (SE) {
660     if (OuterL)
661       SE->forgetLoop(OuterL);
662     else
663       SE->forgetTopmostLoop(&L);
664   }
665
666   // Check if after this all of the remaining cases point at the same
667   // successor.
668   BasicBlock *CommonSuccBB = nullptr;
669   if (SI.getNumCases() > 0 &&
670       std::all_of(std::next(SI.case_begin()), SI.case_end(),
671                   [&SI](const SwitchInst::CaseHandle &Case) {
672                     return Case.getCaseSuccessor() ==
673                            SI.case_begin()->getCaseSuccessor();
674                   }))
675     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
676   if (!DefaultExitBB) {
677     // If we're not unswitching the default, we need it to match any cases to
678     // have a common successor or if we have no cases it is the common
679     // successor.
680     if (SI.getNumCases() == 0)
681       CommonSuccBB = SI.getDefaultDest();
682     else if (SI.getDefaultDest() != CommonSuccBB)
683       CommonSuccBB = nullptr;
684   }
685
686   // Split the preheader, so that we know that there is a safe place to insert
687   // the switch.
688   BasicBlock *OldPH = L.getLoopPreheader();
689   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
690   OldPH->getTerminator()->eraseFromParent();
691
692   // Now add the unswitched switch.
693   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
694   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
695
696   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
697   // First, we split any exit blocks with remaining in-loop predecessors. Then
698   // we update the PHIs in one of two ways depending on if there was a split.
699   // We walk in reverse so that we split in the same order as the cases
700   // appeared. This is purely for convenience of reading the resulting IR, but
701   // it doesn't cost anything really.
702   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
703   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
704   // Handle the default exit if necessary.
705   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
706   // ranges aren't quite powerful enough yet.
707   if (DefaultExitBB) {
708     if (pred_empty(DefaultExitBB)) {
709       UnswitchedExitBBs.insert(DefaultExitBB);
710       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
711     } else {
712       auto *SplitBB =
713           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
714       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
715                                                 *ParentBB, *OldPH,
716                                                 /*FullUnswitch*/ true);
717       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
718     }
719   }
720   // Note that we must use a reference in the for loop so that we update the
721   // container.
722   for (auto &ExitCase : reverse(ExitCases)) {
723     // Grab a reference to the exit block in the pair so that we can update it.
724     BasicBlock *ExitBB = std::get<1>(ExitCase);
725
726     // If this case is the last edge into the exit block, we can simply reuse it
727     // as it will no longer be a loop exit. No mapping necessary.
728     if (pred_empty(ExitBB)) {
729       // Only rewrite once.
730       if (UnswitchedExitBBs.insert(ExitBB).second)
731         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
732       continue;
733     }
734
735     // Otherwise we need to split the exit block so that we retain an exit
736     // block from the loop and a target for the unswitched condition.
737     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
738     if (!SplitExitBB) {
739       // If this is the first time we see this, do the split and remember it.
740       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
741       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
742                                                 *ParentBB, *OldPH,
743                                                 /*FullUnswitch*/ true);
744     }
745     // Update the case pair to point to the split block.
746     std::get<1>(ExitCase) = SplitExitBB;
747   }
748
749   // Now add the unswitched cases. We do this in reverse order as we built them
750   // in reverse order.
751   for (auto &ExitCase : reverse(ExitCases)) {
752     ConstantInt *CaseVal = std::get<0>(ExitCase);
753     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
754
755     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
756   }
757
758   // If the default was unswitched, re-point it and add explicit cases for
759   // entering the loop.
760   if (DefaultExitBB) {
761     NewSIW->setDefaultDest(DefaultExitBB);
762     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
763
764     // We removed all the exit cases, so we just copy the cases to the
765     // unswitched switch.
766     for (const auto &Case : SI.cases())
767       NewSIW.addCase(Case.getCaseValue(), NewPH,
768                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
769   } else if (DefaultCaseWeight) {
770     // We have to set branch weight of the default case.
771     uint64_t SW = *DefaultCaseWeight;
772     for (const auto &Case : SI.cases()) {
773       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
774       assert(W &&
775              "case weight must be defined as default case weight is defined");
776       SW += *W;
777     }
778     NewSIW.setSuccessorWeight(0, SW);
779   }
780
781   // If we ended up with a common successor for every path through the switch
782   // after unswitching, rewrite it to an unconditional branch to make it easy
783   // to recognize. Otherwise we potentially have to recognize the default case
784   // pointing at unreachable and other complexity.
785   if (CommonSuccBB) {
786     BasicBlock *BB = SI.getParent();
787     // We may have had multiple edges to this common successor block, so remove
788     // them as predecessors. We skip the first one, either the default or the
789     // actual first case.
790     bool SkippedFirst = DefaultExitBB == nullptr;
791     for (auto Case : SI.cases()) {
792       assert(Case.getCaseSuccessor() == CommonSuccBB &&
793              "Non-common successor!");
794       (void)Case;
795       if (!SkippedFirst) {
796         SkippedFirst = true;
797         continue;
798       }
799       CommonSuccBB->removePredecessor(BB,
800                                       /*KeepOneInputPHIs*/ true);
801     }
802     // Now nuke the switch and replace it with a direct branch.
803     SIW.eraseFromParent();
804     BranchInst::Create(CommonSuccBB, BB);
805   } else if (DefaultExitBB) {
806     assert(SI.getNumCases() > 0 &&
807            "If we had no cases we'd have a common successor!");
808     // Move the last case to the default successor. This is valid as if the
809     // default got unswitched it cannot be reached. This has the advantage of
810     // being simple and keeping the number of edges from this switch to
811     // successors the same, and avoiding any PHI update complexity.
812     auto LastCaseI = std::prev(SI.case_end());
813
814     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
815     SIW.setSuccessorWeight(
816         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
817     SIW.removeCase(LastCaseI);
818   }
819
820   // Walk the unswitched exit blocks and the unswitched split blocks and update
821   // the dominator tree based on the CFG edits. While we are walking unordered
822   // containers here, the API for applyUpdates takes an unordered list of
823   // updates and requires them to not contain duplicates.
824   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
825   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
826     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
827     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
828   }
829   for (auto SplitUnswitchedPair : SplitExitBBMap) {
830     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
831     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
832   }
833   DT.applyUpdates(DTUpdates);
834
835   if (MSSAU) {
836     MSSAU->applyUpdates(DTUpdates, DT);
837     if (VerifyMemorySSA)
838       MSSAU->getMemorySSA()->verifyMemorySSA();
839   }
840
841   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
842
843   // We may have changed the nesting relationship for this loop so hoist it to
844   // its correct parent if needed.
845   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
846
847   if (MSSAU && VerifyMemorySSA)
848     MSSAU->getMemorySSA()->verifyMemorySSA();
849
850   ++NumTrivial;
851   ++NumSwitches;
852   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
853   return true;
854 }
855
856 /// This routine scans the loop to find a branch or switch which occurs before
857 /// any side effects occur. These can potentially be unswitched without
858 /// duplicating the loop. If a branch or switch is successfully unswitched the
859 /// scanning continues to see if subsequent branches or switches have become
860 /// trivial. Once all trivial candidates have been unswitched, this routine
861 /// returns.
862 ///
863 /// The return value indicates whether anything was unswitched (and therefore
864 /// changed).
865 ///
866 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
867 /// invalidated by this.
868 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
869                                          LoopInfo &LI, ScalarEvolution *SE,
870                                          MemorySSAUpdater *MSSAU) {
871   bool Changed = false;
872
873   // If loop header has only one reachable successor we should keep looking for
874   // trivial condition candidates in the successor as well. An alternative is
875   // to constant fold conditions and merge successors into loop header (then we
876   // only need to check header's terminator). The reason for not doing this in
877   // LoopUnswitch pass is that it could potentially break LoopPassManager's
878   // invariants. Folding dead branches could either eliminate the current loop
879   // or make other loops unreachable. LCSSA form might also not be preserved
880   // after deleting branches. The following code keeps traversing loop header's
881   // successors until it finds the trivial condition candidate (condition that
882   // is not a constant). Since unswitching generates branches with constant
883   // conditions, this scenario could be very common in practice.
884   BasicBlock *CurrentBB = L.getHeader();
885   SmallPtrSet<BasicBlock *, 8> Visited;
886   Visited.insert(CurrentBB);
887   do {
888     // Check if there are any side-effecting instructions (e.g. stores, calls,
889     // volatile loads) in the part of the loop that the code *would* execute
890     // without unswitching.
891     if (MSSAU) // Possible early exit with MSSA
892       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
893         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
894           return Changed;
895     if (llvm::any_of(*CurrentBB,
896                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
897       return Changed;
898
899     Instruction *CurrentTerm = CurrentBB->getTerminator();
900
901     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
902       // Don't bother trying to unswitch past a switch with a constant
903       // condition. This should be removed prior to running this pass by
904       // simplify-cfg.
905       if (isa<Constant>(SI->getCondition()))
906         return Changed;
907
908       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
909         // Couldn't unswitch this one so we're done.
910         return Changed;
911
912       // Mark that we managed to unswitch something.
913       Changed = true;
914
915       // If unswitching turned the terminator into an unconditional branch then
916       // we can continue. The unswitching logic specifically works to fold any
917       // cases it can into an unconditional branch to make it easier to
918       // recognize here.
919       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
920       if (!BI || BI->isConditional())
921         return Changed;
922
923       CurrentBB = BI->getSuccessor(0);
924       continue;
925     }
926
927     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
928     if (!BI)
929       // We do not understand other terminator instructions.
930       return Changed;
931
932     // Don't bother trying to unswitch past an unconditional branch or a branch
933     // with a constant value. These should be removed by simplify-cfg prior to
934     // running this pass.
935     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
936       return Changed;
937
938     // Found a trivial condition candidate: non-foldable conditional branch. If
939     // we fail to unswitch this, we can't do anything else that is trivial.
940     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
941       return Changed;
942
943     // Mark that we managed to unswitch something.
944     Changed = true;
945
946     // If we only unswitched some of the conditions feeding the branch, we won't
947     // have collapsed it to a single successor.
948     BI = cast<BranchInst>(CurrentBB->getTerminator());
949     if (BI->isConditional())
950       return Changed;
951
952     // Follow the newly unconditional branch into its successor.
953     CurrentBB = BI->getSuccessor(0);
954
955     // When continuing, if we exit the loop or reach a previous visited block,
956     // then we can not reach any trivial condition candidates (unfoldable
957     // branch instructions or switch instructions) and no unswitch can happen.
958   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
959
960   return Changed;
961 }
962
963 /// Build the cloned blocks for an unswitched copy of the given loop.
964 ///
965 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
966 /// after the split block (`SplitBB`) that will be used to select between the
967 /// cloned and original loop.
968 ///
969 /// This routine handles cloning all of the necessary loop blocks and exit
970 /// blocks including rewriting their instructions and the relevant PHI nodes.
971 /// Any loop blocks or exit blocks which are dominated by a different successor
972 /// than the one for this clone of the loop blocks can be trivially skipped. We
973 /// use the `DominatingSucc` map to determine whether a block satisfies that
974 /// property with a simple map lookup.
975 ///
976 /// It also correctly creates the unconditional branch in the cloned
977 /// unswitched parent block to only point at the unswitched successor.
978 ///
979 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
980 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
981 /// the cloned blocks (and their loops) are left without full `LoopInfo`
982 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
983 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
984 /// instead the caller must recompute an accurate DT. It *does* correctly
985 /// update the `AssumptionCache` provided in `AC`.
986 static BasicBlock *buildClonedLoopBlocks(
987     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
988     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
989     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
990     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
991     ValueToValueMapTy &VMap,
992     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
993     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
994   SmallVector<BasicBlock *, 4> NewBlocks;
995   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
996
997   // We will need to clone a bunch of blocks, wrap up the clone operation in
998   // a helper.
999   auto CloneBlock = [&](BasicBlock *OldBB) {
1000     // Clone the basic block and insert it before the new preheader.
1001     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1002     NewBB->moveBefore(LoopPH);
1003
1004     // Record this block and the mapping.
1005     NewBlocks.push_back(NewBB);
1006     VMap[OldBB] = NewBB;
1007
1008     return NewBB;
1009   };
1010
1011   // We skip cloning blocks when they have a dominating succ that is not the
1012   // succ we are cloning for.
1013   auto SkipBlock = [&](BasicBlock *BB) {
1014     auto It = DominatingSucc.find(BB);
1015     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1016   };
1017
1018   // First, clone the preheader.
1019   auto *ClonedPH = CloneBlock(LoopPH);
1020
1021   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1022   for (auto *LoopBB : L.blocks())
1023     if (!SkipBlock(LoopBB))
1024       CloneBlock(LoopBB);
1025
1026   // Split all the loop exit edges so that when we clone the exit blocks, if
1027   // any of the exit blocks are *also* a preheader for some other loop, we
1028   // don't create multiple predecessors entering the loop header.
1029   for (auto *ExitBB : ExitBlocks) {
1030     if (SkipBlock(ExitBB))
1031       continue;
1032
1033     // When we are going to clone an exit, we don't need to clone all the
1034     // instructions in the exit block and we want to ensure we have an easy
1035     // place to merge the CFG, so split the exit first. This is always safe to
1036     // do because there cannot be any non-loop predecessors of a loop exit in
1037     // loop simplified form.
1038     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1039
1040     // Rearrange the names to make it easier to write test cases by having the
1041     // exit block carry the suffix rather than the merge block carrying the
1042     // suffix.
1043     MergeBB->takeName(ExitBB);
1044     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1045
1046     // Now clone the original exit block.
1047     auto *ClonedExitBB = CloneBlock(ExitBB);
1048     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1049            "Exit block should have been split to have one successor!");
1050     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1051            "Cloned exit block has the wrong successor!");
1052
1053     // Remap any cloned instructions and create a merge phi node for them.
1054     for (auto ZippedInsts : llvm::zip_first(
1055              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1056              llvm::make_range(ClonedExitBB->begin(),
1057                               std::prev(ClonedExitBB->end())))) {
1058       Instruction &I = std::get<0>(ZippedInsts);
1059       Instruction &ClonedI = std::get<1>(ZippedInsts);
1060
1061       // The only instructions in the exit block should be PHI nodes and
1062       // potentially a landing pad.
1063       assert(
1064           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1065           "Bad instruction in exit block!");
1066       // We should have a value map between the instruction and its clone.
1067       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1068
1069       auto *MergePN =
1070           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1071                           &*MergeBB->getFirstInsertionPt());
1072       I.replaceAllUsesWith(MergePN);
1073       MergePN->addIncoming(&I, ExitBB);
1074       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1075     }
1076   }
1077
1078   // Rewrite the instructions in the cloned blocks to refer to the instructions
1079   // in the cloned blocks. We have to do this as a second pass so that we have
1080   // everything available. Also, we have inserted new instructions which may
1081   // include assume intrinsics, so we update the assumption cache while
1082   // processing this.
1083   for (auto *ClonedBB : NewBlocks)
1084     for (Instruction &I : *ClonedBB) {
1085       RemapInstruction(&I, VMap,
1086                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1087       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1088         if (II->getIntrinsicID() == Intrinsic::assume)
1089           AC.registerAssumption(II);
1090     }
1091
1092   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1093   // have spurious incoming values.
1094   for (auto *LoopBB : L.blocks())
1095     if (SkipBlock(LoopBB))
1096       for (auto *SuccBB : successors(LoopBB))
1097         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1098           for (PHINode &PN : ClonedSuccBB->phis())
1099             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1100
1101   // Remove the cloned parent as a predecessor of any successor we ended up
1102   // cloning other than the unswitched one.
1103   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1104   for (auto *SuccBB : successors(ParentBB)) {
1105     if (SuccBB == UnswitchedSuccBB)
1106       continue;
1107
1108     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1109     if (!ClonedSuccBB)
1110       continue;
1111
1112     ClonedSuccBB->removePredecessor(ClonedParentBB,
1113                                     /*KeepOneInputPHIs*/ true);
1114   }
1115
1116   // Replace the cloned branch with an unconditional branch to the cloned
1117   // unswitched successor.
1118   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1119   ClonedParentBB->getTerminator()->eraseFromParent();
1120   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1121
1122   // If there are duplicate entries in the PHI nodes because of multiple edges
1123   // to the unswitched successor, we need to nuke all but one as we replaced it
1124   // with a direct branch.
1125   for (PHINode &PN : ClonedSuccBB->phis()) {
1126     bool Found = false;
1127     // Loop over the incoming operands backwards so we can easily delete as we
1128     // go without invalidating the index.
1129     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1130       if (PN.getIncomingBlock(i) != ClonedParentBB)
1131         continue;
1132       if (!Found) {
1133         Found = true;
1134         continue;
1135       }
1136       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1137     }
1138   }
1139
1140   // Record the domtree updates for the new blocks.
1141   SmallPtrSet<BasicBlock *, 4> SuccSet;
1142   for (auto *ClonedBB : NewBlocks) {
1143     for (auto *SuccBB : successors(ClonedBB))
1144       if (SuccSet.insert(SuccBB).second)
1145         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1146     SuccSet.clear();
1147   }
1148
1149   return ClonedPH;
1150 }
1151
1152 /// Recursively clone the specified loop and all of its children.
1153 ///
1154 /// The target parent loop for the clone should be provided, or can be null if
1155 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1156 /// with the provided value map. The entire original loop must be present in
1157 /// the value map. The cloned loop is returned.
1158 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1159                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1160   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1161     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1162     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1163     for (auto *BB : OrigL.blocks()) {
1164       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1165       ClonedL.addBlockEntry(ClonedBB);
1166       if (LI.getLoopFor(BB) == &OrigL)
1167         LI.changeLoopFor(ClonedBB, &ClonedL);
1168     }
1169   };
1170
1171   // We specially handle the first loop because it may get cloned into
1172   // a different parent and because we most commonly are cloning leaf loops.
1173   Loop *ClonedRootL = LI.AllocateLoop();
1174   if (RootParentL)
1175     RootParentL->addChildLoop(ClonedRootL);
1176   else
1177     LI.addTopLevelLoop(ClonedRootL);
1178   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1179
1180   if (OrigRootL.empty())
1181     return ClonedRootL;
1182
1183   // If we have a nest, we can quickly clone the entire loop nest using an
1184   // iterative approach because it is a tree. We keep the cloned parent in the
1185   // data structure to avoid repeatedly querying through a map to find it.
1186   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1187   // Build up the loops to clone in reverse order as we'll clone them from the
1188   // back.
1189   for (Loop *ChildL : llvm::reverse(OrigRootL))
1190     LoopsToClone.push_back({ClonedRootL, ChildL});
1191   do {
1192     Loop *ClonedParentL, *L;
1193     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1194     Loop *ClonedL = LI.AllocateLoop();
1195     ClonedParentL->addChildLoop(ClonedL);
1196     AddClonedBlocksToLoop(*L, *ClonedL);
1197     for (Loop *ChildL : llvm::reverse(*L))
1198       LoopsToClone.push_back({ClonedL, ChildL});
1199   } while (!LoopsToClone.empty());
1200
1201   return ClonedRootL;
1202 }
1203
1204 /// Build the cloned loops of an original loop from unswitching.
1205 ///
1206 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1207 /// operation. We need to re-verify that there even is a loop (as the backedge
1208 /// may not have been cloned), and even if there are remaining backedges the
1209 /// backedge set may be different. However, we know that each child loop is
1210 /// undisturbed, we only need to find where to place each child loop within
1211 /// either any parent loop or within a cloned version of the original loop.
1212 ///
1213 /// Because child loops may end up cloned outside of any cloned version of the
1214 /// original loop, multiple cloned sibling loops may be created. All of them
1215 /// are returned so that the newly introduced loop nest roots can be
1216 /// identified.
1217 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1218                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1219                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1220   Loop *ClonedL = nullptr;
1221
1222   auto *OrigPH = OrigL.getLoopPreheader();
1223   auto *OrigHeader = OrigL.getHeader();
1224
1225   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1226   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1227
1228   // We need to know the loops of the cloned exit blocks to even compute the
1229   // accurate parent loop. If we only clone exits to some parent of the
1230   // original parent, we want to clone into that outer loop. We also keep track
1231   // of the loops that our cloned exit blocks participate in.
1232   Loop *ParentL = nullptr;
1233   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1234   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1235   ClonedExitsInLoops.reserve(ExitBlocks.size());
1236   for (auto *ExitBB : ExitBlocks)
1237     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1238       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1239         ExitLoopMap[ClonedExitBB] = ExitL;
1240         ClonedExitsInLoops.push_back(ClonedExitBB);
1241         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1242           ParentL = ExitL;
1243       }
1244   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1245           ParentL->contains(OrigL.getParentLoop())) &&
1246          "The computed parent loop should always contain (or be) the parent of "
1247          "the original loop.");
1248
1249   // We build the set of blocks dominated by the cloned header from the set of
1250   // cloned blocks out of the original loop. While not all of these will
1251   // necessarily be in the cloned loop, it is enough to establish that they
1252   // aren't in unreachable cycles, etc.
1253   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1254   for (auto *BB : OrigL.blocks())
1255     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1256       ClonedLoopBlocks.insert(ClonedBB);
1257
1258   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1259   // skipped cloning some region of this loop which can in turn skip some of
1260   // the backedges so we have to rebuild the blocks in the loop based on the
1261   // backedges that remain after cloning.
1262   SmallVector<BasicBlock *, 16> Worklist;
1263   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1264   for (auto *Pred : predecessors(ClonedHeader)) {
1265     // The only possible non-loop header predecessor is the preheader because
1266     // we know we cloned the loop in simplified form.
1267     if (Pred == ClonedPH)
1268       continue;
1269
1270     // Because the loop was in simplified form, the only non-loop predecessor
1271     // should be the preheader.
1272     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1273                                            "header other than the preheader "
1274                                            "that is not part of the loop!");
1275
1276     // Insert this block into the loop set and on the first visit (and if it
1277     // isn't the header we're currently walking) put it into the worklist to
1278     // recurse through.
1279     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1280       Worklist.push_back(Pred);
1281   }
1282
1283   // If we had any backedges then there *is* a cloned loop. Put the header into
1284   // the loop set and then walk the worklist backwards to find all the blocks
1285   // that remain within the loop after cloning.
1286   if (!BlocksInClonedLoop.empty()) {
1287     BlocksInClonedLoop.insert(ClonedHeader);
1288
1289     while (!Worklist.empty()) {
1290       BasicBlock *BB = Worklist.pop_back_val();
1291       assert(BlocksInClonedLoop.count(BB) &&
1292              "Didn't put block into the loop set!");
1293
1294       // Insert any predecessors that are in the possible set into the cloned
1295       // set, and if the insert is successful, add them to the worklist. Note
1296       // that we filter on the blocks that are definitely reachable via the
1297       // backedge to the loop header so we may prune out dead code within the
1298       // cloned loop.
1299       for (auto *Pred : predecessors(BB))
1300         if (ClonedLoopBlocks.count(Pred) &&
1301             BlocksInClonedLoop.insert(Pred).second)
1302           Worklist.push_back(Pred);
1303     }
1304
1305     ClonedL = LI.AllocateLoop();
1306     if (ParentL) {
1307       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1308       ParentL->addChildLoop(ClonedL);
1309     } else {
1310       LI.addTopLevelLoop(ClonedL);
1311     }
1312     NonChildClonedLoops.push_back(ClonedL);
1313
1314     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1315     // We don't want to just add the cloned loop blocks based on how we
1316     // discovered them. The original order of blocks was carefully built in
1317     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1318     // that logic, we just re-walk the original blocks (and those of the child
1319     // loops) and filter them as we add them into the cloned loop.
1320     for (auto *BB : OrigL.blocks()) {
1321       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1322       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1323         continue;
1324
1325       // Directly add the blocks that are only in this loop.
1326       if (LI.getLoopFor(BB) == &OrigL) {
1327         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1328         continue;
1329       }
1330
1331       // We want to manually add it to this loop and parents.
1332       // Registering it with LoopInfo will happen when we clone the top
1333       // loop for this block.
1334       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1335         PL->addBlockEntry(ClonedBB);
1336     }
1337
1338     // Now add each child loop whose header remains within the cloned loop. All
1339     // of the blocks within the loop must satisfy the same constraints as the
1340     // header so once we pass the header checks we can just clone the entire
1341     // child loop nest.
1342     for (Loop *ChildL : OrigL) {
1343       auto *ClonedChildHeader =
1344           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1345       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1346         continue;
1347
1348 #ifndef NDEBUG
1349       // We should never have a cloned child loop header but fail to have
1350       // all of the blocks for that child loop.
1351       for (auto *ChildLoopBB : ChildL->blocks())
1352         assert(BlocksInClonedLoop.count(
1353                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1354                "Child cloned loop has a header within the cloned outer "
1355                "loop but not all of its blocks!");
1356 #endif
1357
1358       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1359     }
1360   }
1361
1362   // Now that we've handled all the components of the original loop that were
1363   // cloned into a new loop, we still need to handle anything from the original
1364   // loop that wasn't in a cloned loop.
1365
1366   // Figure out what blocks are left to place within any loop nest containing
1367   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1368   // them.
1369   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1370   if (BlocksInClonedLoop.empty())
1371     UnloopedBlockSet.insert(ClonedPH);
1372   for (auto *ClonedBB : ClonedLoopBlocks)
1373     if (!BlocksInClonedLoop.count(ClonedBB))
1374       UnloopedBlockSet.insert(ClonedBB);
1375
1376   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1377   // backwards across these to process them inside out. The order shouldn't
1378   // matter as we're just trying to build up the map from inside-out; we use
1379   // the map in a more stably ordered way below.
1380   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1381   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1382     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1383            ExitLoopMap.lookup(RHS)->getLoopDepth();
1384   });
1385
1386   // Populate the existing ExitLoopMap with everything reachable from each
1387   // exit, starting from the inner most exit.
1388   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1389     assert(Worklist.empty() && "Didn't clear worklist!");
1390
1391     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1392     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1393
1394     // Walk the CFG back until we hit the cloned PH adding everything reachable
1395     // and in the unlooped set to this exit block's loop.
1396     Worklist.push_back(ExitBB);
1397     do {
1398       BasicBlock *BB = Worklist.pop_back_val();
1399       // We can stop recursing at the cloned preheader (if we get there).
1400       if (BB == ClonedPH)
1401         continue;
1402
1403       for (BasicBlock *PredBB : predecessors(BB)) {
1404         // If this pred has already been moved to our set or is part of some
1405         // (inner) loop, no update needed.
1406         if (!UnloopedBlockSet.erase(PredBB)) {
1407           assert(
1408               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1409               "Predecessor not mapped to a loop!");
1410           continue;
1411         }
1412
1413         // We just insert into the loop set here. We'll add these blocks to the
1414         // exit loop after we build up the set in an order that doesn't rely on
1415         // predecessor order (which in turn relies on use list order).
1416         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1417         (void)Inserted;
1418         assert(Inserted && "Should only visit an unlooped block once!");
1419
1420         // And recurse through to its predecessors.
1421         Worklist.push_back(PredBB);
1422       }
1423     } while (!Worklist.empty());
1424   }
1425
1426   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1427   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1428   // in their original order adding them to the correct loop.
1429
1430   // We need a stable insertion order. We use the order of the original loop
1431   // order and map into the correct parent loop.
1432   for (auto *BB : llvm::concat<BasicBlock *const>(
1433            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1434     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1435       OuterL->addBasicBlockToLoop(BB, LI);
1436
1437 #ifndef NDEBUG
1438   for (auto &BBAndL : ExitLoopMap) {
1439     auto *BB = BBAndL.first;
1440     auto *OuterL = BBAndL.second;
1441     assert(LI.getLoopFor(BB) == OuterL &&
1442            "Failed to put all blocks into outer loops!");
1443   }
1444 #endif
1445
1446   // Now that all the blocks are placed into the correct containing loop in the
1447   // absence of child loops, find all the potentially cloned child loops and
1448   // clone them into whatever outer loop we placed their header into.
1449   for (Loop *ChildL : OrigL) {
1450     auto *ClonedChildHeader =
1451         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1452     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1453       continue;
1454
1455 #ifndef NDEBUG
1456     for (auto *ChildLoopBB : ChildL->blocks())
1457       assert(VMap.count(ChildLoopBB) &&
1458              "Cloned a child loop header but not all of that loops blocks!");
1459 #endif
1460
1461     NonChildClonedLoops.push_back(cloneLoopNest(
1462         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1463   }
1464 }
1465
1466 static void
1467 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1468                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1469                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1470   // Find all the dead clones, and remove them from their successors.
1471   SmallVector<BasicBlock *, 16> DeadBlocks;
1472   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1473     for (auto &VMap : VMaps)
1474       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1475         if (!DT.isReachableFromEntry(ClonedBB)) {
1476           for (BasicBlock *SuccBB : successors(ClonedBB))
1477             SuccBB->removePredecessor(ClonedBB);
1478           DeadBlocks.push_back(ClonedBB);
1479         }
1480
1481   // Remove all MemorySSA in the dead blocks
1482   if (MSSAU) {
1483     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1484                                                  DeadBlocks.end());
1485     MSSAU->removeBlocks(DeadBlockSet);
1486   }
1487
1488   // Drop any remaining references to break cycles.
1489   for (BasicBlock *BB : DeadBlocks)
1490     BB->dropAllReferences();
1491   // Erase them from the IR.
1492   for (BasicBlock *BB : DeadBlocks)
1493     BB->eraseFromParent();
1494 }
1495
1496 static void deleteDeadBlocksFromLoop(Loop &L,
1497                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1498                                      DominatorTree &DT, LoopInfo &LI,
1499                                      MemorySSAUpdater *MSSAU) {
1500   // Find all the dead blocks tied to this loop, and remove them from their
1501   // successors.
1502   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1503
1504   // Start with loop/exit blocks and get a transitive closure of reachable dead
1505   // blocks.
1506   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1507                                                 ExitBlocks.end());
1508   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1509   while (!DeathCandidates.empty()) {
1510     auto *BB = DeathCandidates.pop_back_val();
1511     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1512       for (BasicBlock *SuccBB : successors(BB)) {
1513         SuccBB->removePredecessor(BB);
1514         DeathCandidates.push_back(SuccBB);
1515       }
1516       DeadBlockSet.insert(BB);
1517     }
1518   }
1519
1520   // Remove all MemorySSA in the dead blocks
1521   if (MSSAU)
1522     MSSAU->removeBlocks(DeadBlockSet);
1523
1524   // Filter out the dead blocks from the exit blocks list so that it can be
1525   // used in the caller.
1526   llvm::erase_if(ExitBlocks,
1527                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1528
1529   // Walk from this loop up through its parents removing all of the dead blocks.
1530   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1531     for (auto *BB : DeadBlockSet)
1532       ParentL->getBlocksSet().erase(BB);
1533     llvm::erase_if(ParentL->getBlocksVector(),
1534                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1535   }
1536
1537   // Now delete the dead child loops. This raw delete will clear them
1538   // recursively.
1539   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1540     if (!DeadBlockSet.count(ChildL->getHeader()))
1541       return false;
1542
1543     assert(llvm::all_of(ChildL->blocks(),
1544                         [&](BasicBlock *ChildBB) {
1545                           return DeadBlockSet.count(ChildBB);
1546                         }) &&
1547            "If the child loop header is dead all blocks in the child loop must "
1548            "be dead as well!");
1549     LI.destroy(ChildL);
1550     return true;
1551   });
1552
1553   // Remove the loop mappings for the dead blocks and drop all the references
1554   // from these blocks to others to handle cyclic references as we start
1555   // deleting the blocks themselves.
1556   for (auto *BB : DeadBlockSet) {
1557     // Check that the dominator tree has already been updated.
1558     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1559     LI.changeLoopFor(BB, nullptr);
1560     BB->dropAllReferences();
1561   }
1562
1563   // Actually delete the blocks now that they've been fully unhooked from the
1564   // IR.
1565   for (auto *BB : DeadBlockSet)
1566     BB->eraseFromParent();
1567 }
1568
1569 /// Recompute the set of blocks in a loop after unswitching.
1570 ///
1571 /// This walks from the original headers predecessors to rebuild the loop. We
1572 /// take advantage of the fact that new blocks can't have been added, and so we
1573 /// filter by the original loop's blocks. This also handles potentially
1574 /// unreachable code that we don't want to explore but might be found examining
1575 /// the predecessors of the header.
1576 ///
1577 /// If the original loop is no longer a loop, this will return an empty set. If
1578 /// it remains a loop, all the blocks within it will be added to the set
1579 /// (including those blocks in inner loops).
1580 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1581                                                                  LoopInfo &LI) {
1582   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1583
1584   auto *PH = L.getLoopPreheader();
1585   auto *Header = L.getHeader();
1586
1587   // A worklist to use while walking backwards from the header.
1588   SmallVector<BasicBlock *, 16> Worklist;
1589
1590   // First walk the predecessors of the header to find the backedges. This will
1591   // form the basis of our walk.
1592   for (auto *Pred : predecessors(Header)) {
1593     // Skip the preheader.
1594     if (Pred == PH)
1595       continue;
1596
1597     // Because the loop was in simplified form, the only non-loop predecessor
1598     // is the preheader.
1599     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1600                                "than the preheader that is not part of the "
1601                                "loop!");
1602
1603     // Insert this block into the loop set and on the first visit and, if it
1604     // isn't the header we're currently walking, put it into the worklist to
1605     // recurse through.
1606     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1607       Worklist.push_back(Pred);
1608   }
1609
1610   // If no backedges were found, we're done.
1611   if (LoopBlockSet.empty())
1612     return LoopBlockSet;
1613
1614   // We found backedges, recurse through them to identify the loop blocks.
1615   while (!Worklist.empty()) {
1616     BasicBlock *BB = Worklist.pop_back_val();
1617     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1618
1619     // No need to walk past the header.
1620     if (BB == Header)
1621       continue;
1622
1623     // Because we know the inner loop structure remains valid we can use the
1624     // loop structure to jump immediately across the entire nested loop.
1625     // Further, because it is in loop simplified form, we can directly jump
1626     // to its preheader afterward.
1627     if (Loop *InnerL = LI.getLoopFor(BB))
1628       if (InnerL != &L) {
1629         assert(L.contains(InnerL) &&
1630                "Should not reach a loop *outside* this loop!");
1631         // The preheader is the only possible predecessor of the loop so
1632         // insert it into the set and check whether it was already handled.
1633         auto *InnerPH = InnerL->getLoopPreheader();
1634         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1635                                       "but not contain the inner loop "
1636                                       "preheader!");
1637         if (!LoopBlockSet.insert(InnerPH).second)
1638           // The only way to reach the preheader is through the loop body
1639           // itself so if it has been visited the loop is already handled.
1640           continue;
1641
1642         // Insert all of the blocks (other than those already present) into
1643         // the loop set. We expect at least the block that led us to find the
1644         // inner loop to be in the block set, but we may also have other loop
1645         // blocks if they were already enqueued as predecessors of some other
1646         // outer loop block.
1647         for (auto *InnerBB : InnerL->blocks()) {
1648           if (InnerBB == BB) {
1649             assert(LoopBlockSet.count(InnerBB) &&
1650                    "Block should already be in the set!");
1651             continue;
1652           }
1653
1654           LoopBlockSet.insert(InnerBB);
1655         }
1656
1657         // Add the preheader to the worklist so we will continue past the
1658         // loop body.
1659         Worklist.push_back(InnerPH);
1660         continue;
1661       }
1662
1663     // Insert any predecessors that were in the original loop into the new
1664     // set, and if the insert is successful, add them to the worklist.
1665     for (auto *Pred : predecessors(BB))
1666       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1667         Worklist.push_back(Pred);
1668   }
1669
1670   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1671
1672   // We've found all the blocks participating in the loop, return our completed
1673   // set.
1674   return LoopBlockSet;
1675 }
1676
1677 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1678 ///
1679 /// The removal may have removed some child loops entirely but cannot have
1680 /// disturbed any remaining child loops. However, they may need to be hoisted
1681 /// to the parent loop (or to be top-level loops). The original loop may be
1682 /// completely removed.
1683 ///
1684 /// The sibling loops resulting from this update are returned. If the original
1685 /// loop remains a valid loop, it will be the first entry in this list with all
1686 /// of the newly sibling loops following it.
1687 ///
1688 /// Returns true if the loop remains a loop after unswitching, and false if it
1689 /// is no longer a loop after unswitching (and should not continue to be
1690 /// referenced).
1691 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1692                                      LoopInfo &LI,
1693                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1694   auto *PH = L.getLoopPreheader();
1695
1696   // Compute the actual parent loop from the exit blocks. Because we may have
1697   // pruned some exits the loop may be different from the original parent.
1698   Loop *ParentL = nullptr;
1699   SmallVector<Loop *, 4> ExitLoops;
1700   SmallVector<BasicBlock *, 4> ExitsInLoops;
1701   ExitsInLoops.reserve(ExitBlocks.size());
1702   for (auto *ExitBB : ExitBlocks)
1703     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1704       ExitLoops.push_back(ExitL);
1705       ExitsInLoops.push_back(ExitBB);
1706       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1707         ParentL = ExitL;
1708     }
1709
1710   // Recompute the blocks participating in this loop. This may be empty if it
1711   // is no longer a loop.
1712   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1713
1714   // If we still have a loop, we need to re-set the loop's parent as the exit
1715   // block set changing may have moved it within the loop nest. Note that this
1716   // can only happen when this loop has a parent as it can only hoist the loop
1717   // *up* the nest.
1718   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1719     // Remove this loop's (original) blocks from all of the intervening loops.
1720     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1721          IL = IL->getParentLoop()) {
1722       IL->getBlocksSet().erase(PH);
1723       for (auto *BB : L.blocks())
1724         IL->getBlocksSet().erase(BB);
1725       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1726         return BB == PH || L.contains(BB);
1727       });
1728     }
1729
1730     LI.changeLoopFor(PH, ParentL);
1731     L.getParentLoop()->removeChildLoop(&L);
1732     if (ParentL)
1733       ParentL->addChildLoop(&L);
1734     else
1735       LI.addTopLevelLoop(&L);
1736   }
1737
1738   // Now we update all the blocks which are no longer within the loop.
1739   auto &Blocks = L.getBlocksVector();
1740   auto BlocksSplitI =
1741       LoopBlockSet.empty()
1742           ? Blocks.begin()
1743           : std::stable_partition(
1744                 Blocks.begin(), Blocks.end(),
1745                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1746
1747   // Before we erase the list of unlooped blocks, build a set of them.
1748   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1749   if (LoopBlockSet.empty())
1750     UnloopedBlocks.insert(PH);
1751
1752   // Now erase these blocks from the loop.
1753   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1754     L.getBlocksSet().erase(BB);
1755   Blocks.erase(BlocksSplitI, Blocks.end());
1756
1757   // Sort the exits in ascending loop depth, we'll work backwards across these
1758   // to process them inside out.
1759   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1760     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1761   });
1762
1763   // We'll build up a set for each exit loop.
1764   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1765   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1766
1767   auto RemoveUnloopedBlocksFromLoop =
1768       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1769         for (auto *BB : UnloopedBlocks)
1770           L.getBlocksSet().erase(BB);
1771         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1772           return UnloopedBlocks.count(BB);
1773         });
1774       };
1775
1776   SmallVector<BasicBlock *, 16> Worklist;
1777   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1778     assert(Worklist.empty() && "Didn't clear worklist!");
1779     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1780
1781     // Grab the next exit block, in decreasing loop depth order.
1782     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1783     Loop &ExitL = *LI.getLoopFor(ExitBB);
1784     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1785
1786     // Erase all of the unlooped blocks from the loops between the previous
1787     // exit loop and this exit loop. This works because the ExitInLoops list is
1788     // sorted in increasing order of loop depth and thus we visit loops in
1789     // decreasing order of loop depth.
1790     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1791       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1792
1793     // Walk the CFG back until we hit the cloned PH adding everything reachable
1794     // and in the unlooped set to this exit block's loop.
1795     Worklist.push_back(ExitBB);
1796     do {
1797       BasicBlock *BB = Worklist.pop_back_val();
1798       // We can stop recursing at the cloned preheader (if we get there).
1799       if (BB == PH)
1800         continue;
1801
1802       for (BasicBlock *PredBB : predecessors(BB)) {
1803         // If this pred has already been moved to our set or is part of some
1804         // (inner) loop, no update needed.
1805         if (!UnloopedBlocks.erase(PredBB)) {
1806           assert((NewExitLoopBlocks.count(PredBB) ||
1807                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1808                  "Predecessor not in a nested loop (or already visited)!");
1809           continue;
1810         }
1811
1812         // We just insert into the loop set here. We'll add these blocks to the
1813         // exit loop after we build up the set in a deterministic order rather
1814         // than the predecessor-influenced visit order.
1815         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1816         (void)Inserted;
1817         assert(Inserted && "Should only visit an unlooped block once!");
1818
1819         // And recurse through to its predecessors.
1820         Worklist.push_back(PredBB);
1821       }
1822     } while (!Worklist.empty());
1823
1824     // If blocks in this exit loop were directly part of the original loop (as
1825     // opposed to a child loop) update the map to point to this exit loop. This
1826     // just updates a map and so the fact that the order is unstable is fine.
1827     for (auto *BB : NewExitLoopBlocks)
1828       if (Loop *BBL = LI.getLoopFor(BB))
1829         if (BBL == &L || !L.contains(BBL))
1830           LI.changeLoopFor(BB, &ExitL);
1831
1832     // We will remove the remaining unlooped blocks from this loop in the next
1833     // iteration or below.
1834     NewExitLoopBlocks.clear();
1835   }
1836
1837   // Any remaining unlooped blocks are no longer part of any loop unless they
1838   // are part of some child loop.
1839   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1840     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1841   for (auto *BB : UnloopedBlocks)
1842     if (Loop *BBL = LI.getLoopFor(BB))
1843       if (BBL == &L || !L.contains(BBL))
1844         LI.changeLoopFor(BB, nullptr);
1845
1846   // Sink all the child loops whose headers are no longer in the loop set to
1847   // the parent (or to be top level loops). We reach into the loop and directly
1848   // update its subloop vector to make this batch update efficient.
1849   auto &SubLoops = L.getSubLoopsVector();
1850   auto SubLoopsSplitI =
1851       LoopBlockSet.empty()
1852           ? SubLoops.begin()
1853           : std::stable_partition(
1854                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1855                   return LoopBlockSet.count(SubL->getHeader());
1856                 });
1857   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1858     HoistedLoops.push_back(HoistedL);
1859     HoistedL->setParentLoop(nullptr);
1860
1861     // To compute the new parent of this hoisted loop we look at where we
1862     // placed the preheader above. We can't lookup the header itself because we
1863     // retained the mapping from the header to the hoisted loop. But the
1864     // preheader and header should have the exact same new parent computed
1865     // based on the set of exit blocks from the original loop as the preheader
1866     // is a predecessor of the header and so reached in the reverse walk. And
1867     // because the loops were all in simplified form the preheader of the
1868     // hoisted loop can't be part of some *other* loop.
1869     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1870       NewParentL->addChildLoop(HoistedL);
1871     else
1872       LI.addTopLevelLoop(HoistedL);
1873   }
1874   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1875
1876   // Actually delete the loop if nothing remained within it.
1877   if (Blocks.empty()) {
1878     assert(SubLoops.empty() &&
1879            "Failed to remove all subloops from the original loop!");
1880     if (Loop *ParentL = L.getParentLoop())
1881       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1882     else
1883       LI.removeLoop(llvm::find(LI, &L));
1884     LI.destroy(&L);
1885     return false;
1886   }
1887
1888   return true;
1889 }
1890
1891 /// Helper to visit a dominator subtree, invoking a callable on each node.
1892 ///
1893 /// Returning false at any point will stop walking past that node of the tree.
1894 template <typename CallableT>
1895 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1896   SmallVector<DomTreeNode *, 4> DomWorklist;
1897   DomWorklist.push_back(DT[BB]);
1898 #ifndef NDEBUG
1899   SmallPtrSet<DomTreeNode *, 4> Visited;
1900   Visited.insert(DT[BB]);
1901 #endif
1902   do {
1903     DomTreeNode *N = DomWorklist.pop_back_val();
1904
1905     // Visit this node.
1906     if (!Callable(N->getBlock()))
1907       continue;
1908
1909     // Accumulate the child nodes.
1910     for (DomTreeNode *ChildN : *N) {
1911       assert(Visited.insert(ChildN).second &&
1912              "Cannot visit a node twice when walking a tree!");
1913       DomWorklist.push_back(ChildN);
1914     }
1915   } while (!DomWorklist.empty());
1916 }
1917
1918 static void unswitchNontrivialInvariants(
1919     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1920     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1921     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1922     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1923   auto *ParentBB = TI.getParent();
1924   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1925   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1926
1927   // We can only unswitch switches, conditional branches with an invariant
1928   // condition, or combining invariant conditions with an instruction.
1929   assert((SI || (BI && BI->isConditional())) &&
1930          "Can only unswitch switches and conditional branch!");
1931   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1932   if (FullUnswitch)
1933     assert(Invariants.size() == 1 &&
1934            "Cannot have other invariants with full unswitching!");
1935   else
1936     assert(isa<Instruction>(BI->getCondition()) &&
1937            "Partial unswitching requires an instruction as the condition!");
1938
1939   if (MSSAU && VerifyMemorySSA)
1940     MSSAU->getMemorySSA()->verifyMemorySSA();
1941
1942   // Constant and BBs tracking the cloned and continuing successor. When we are
1943   // unswitching the entire condition, this can just be trivially chosen to
1944   // unswitch towards `true`. However, when we are unswitching a set of
1945   // invariants combined with `and` or `or`, the combining operation determines
1946   // the best direction to unswitch: we want to unswitch the direction that will
1947   // collapse the branch.
1948   bool Direction = true;
1949   int ClonedSucc = 0;
1950   if (!FullUnswitch) {
1951     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1952       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1953                  Instruction::And &&
1954              "Only `or` and `and` instructions can combine invariants being "
1955              "unswitched.");
1956       Direction = false;
1957       ClonedSucc = 1;
1958     }
1959   }
1960
1961   BasicBlock *RetainedSuccBB =
1962       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1963   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1964   if (BI)
1965     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1966   else
1967     for (auto Case : SI->cases())
1968       if (Case.getCaseSuccessor() != RetainedSuccBB)
1969         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1970
1971   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1972          "Should not unswitch the same successor we are retaining!");
1973
1974   // The branch should be in this exact loop. Any inner loop's invariant branch
1975   // should be handled by unswitching that inner loop. The caller of this
1976   // routine should filter out any candidates that remain (but were skipped for
1977   // whatever reason).
1978   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1979
1980   // Compute the parent loop now before we start hacking on things.
1981   Loop *ParentL = L.getParentLoop();
1982   // Get blocks in RPO order for MSSA update, before changing the CFG.
1983   LoopBlocksRPO LBRPO(&L);
1984   if (MSSAU)
1985     LBRPO.perform(&LI);
1986
1987   // Compute the outer-most loop containing one of our exit blocks. This is the
1988   // furthest up our loopnest which can be mutated, which we will use below to
1989   // update things.
1990   Loop *OuterExitL = &L;
1991   for (auto *ExitBB : ExitBlocks) {
1992     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1993     if (!NewOuterExitL) {
1994       // We exited the entire nest with this block, so we're done.
1995       OuterExitL = nullptr;
1996       break;
1997     }
1998     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1999       OuterExitL = NewOuterExitL;
2000   }
2001
2002   // At this point, we're definitely going to unswitch something so invalidate
2003   // any cached information in ScalarEvolution for the outer most loop
2004   // containing an exit block and all nested loops.
2005   if (SE) {
2006     if (OuterExitL)
2007       SE->forgetLoop(OuterExitL);
2008     else
2009       SE->forgetTopmostLoop(&L);
2010   }
2011
2012   // If the edge from this terminator to a successor dominates that successor,
2013   // store a map from each block in its dominator subtree to it. This lets us
2014   // tell when cloning for a particular successor if a block is dominated by
2015   // some *other* successor with a single data structure. We use this to
2016   // significantly reduce cloning.
2017   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2018   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2019            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2020     if (SuccBB->getUniquePredecessor() ||
2021         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2022           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2023         }))
2024       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2025         DominatingSucc[BB] = SuccBB;
2026         return true;
2027       });
2028
2029   // Split the preheader, so that we know that there is a safe place to insert
2030   // the conditional branch. We will change the preheader to have a conditional
2031   // branch on LoopCond. The original preheader will become the split point
2032   // between the unswitched versions, and we will have a new preheader for the
2033   // original loop.
2034   BasicBlock *SplitBB = L.getLoopPreheader();
2035   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2036
2037   // Keep track of the dominator tree updates needed.
2038   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2039
2040   // Clone the loop for each unswitched successor.
2041   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2042   VMaps.reserve(UnswitchedSuccBBs.size());
2043   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2044   for (auto *SuccBB : UnswitchedSuccBBs) {
2045     VMaps.emplace_back(new ValueToValueMapTy());
2046     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2047         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2048         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2049   }
2050
2051   // The stitching of the branched code back together depends on whether we're
2052   // doing full unswitching or not with the exception that we always want to
2053   // nuke the initial terminator placed in the split block.
2054   SplitBB->getTerminator()->eraseFromParent();
2055   if (FullUnswitch) {
2056     // Splice the terminator from the original loop and rewrite its
2057     // successors.
2058     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2059
2060     // Keep a clone of the terminator for MSSA updates.
2061     Instruction *NewTI = TI.clone();
2062     ParentBB->getInstList().push_back(NewTI);
2063
2064     // First wire up the moved terminator to the preheaders.
2065     if (BI) {
2066       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2067       BI->setSuccessor(ClonedSucc, ClonedPH);
2068       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2069       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2070     } else {
2071       assert(SI && "Must either be a branch or switch!");
2072
2073       // Walk the cases and directly update their successors.
2074       assert(SI->getDefaultDest() == RetainedSuccBB &&
2075              "Not retaining default successor!");
2076       SI->setDefaultDest(LoopPH);
2077       for (auto &Case : SI->cases())
2078         if (Case.getCaseSuccessor() == RetainedSuccBB)
2079           Case.setSuccessor(LoopPH);
2080         else
2081           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2082
2083       // We need to use the set to populate domtree updates as even when there
2084       // are multiple cases pointing at the same successor we only want to
2085       // remove and insert one edge in the domtree.
2086       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2087         DTUpdates.push_back(
2088             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2089     }
2090
2091     if (MSSAU) {
2092       DT.applyUpdates(DTUpdates);
2093       DTUpdates.clear();
2094
2095       // Remove all but one edge to the retained block and all unswitched
2096       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2097       // when we know we only keep a single edge for each case.
2098       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2099       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2100         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2101
2102       for (auto &VMap : VMaps)
2103         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2104                                    /*IgnoreIncomingWithNoClones=*/true);
2105       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2106
2107       // Remove all edges to unswitched blocks.
2108       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2109         MSSAU->removeEdge(ParentBB, SuccBB);
2110     }
2111
2112     // Now unhook the successor relationship as we'll be replacing
2113     // the terminator with a direct branch. This is much simpler for branches
2114     // than switches so we handle those first.
2115     if (BI) {
2116       // Remove the parent as a predecessor of the unswitched successor.
2117       assert(UnswitchedSuccBBs.size() == 1 &&
2118              "Only one possible unswitched block for a branch!");
2119       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2120       UnswitchedSuccBB->removePredecessor(ParentBB,
2121                                           /*KeepOneInputPHIs*/ true);
2122       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2123     } else {
2124       // Note that we actually want to remove the parent block as a predecessor
2125       // of *every* case successor. The case successor is either unswitched,
2126       // completely eliminating an edge from the parent to that successor, or it
2127       // is a duplicate edge to the retained successor as the retained successor
2128       // is always the default successor and as we'll replace this with a direct
2129       // branch we no longer need the duplicate entries in the PHI nodes.
2130       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2131       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2132              "Not retaining default successor!");
2133       for (auto &Case : NewSI->cases())
2134         Case.getCaseSuccessor()->removePredecessor(
2135             ParentBB,
2136             /*KeepOneInputPHIs*/ true);
2137
2138       // We need to use the set to populate domtree updates as even when there
2139       // are multiple cases pointing at the same successor we only want to
2140       // remove and insert one edge in the domtree.
2141       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2142         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2143     }
2144
2145     // After MSSAU update, remove the cloned terminator instruction NewTI.
2146     ParentBB->getTerminator()->eraseFromParent();
2147
2148     // Create a new unconditional branch to the continuing block (as opposed to
2149     // the one cloned).
2150     BranchInst::Create(RetainedSuccBB, ParentBB);
2151   } else {
2152     assert(BI && "Only branches have partial unswitching.");
2153     assert(UnswitchedSuccBBs.size() == 1 &&
2154            "Only one possible unswitched block for a branch!");
2155     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2156     // When doing a partial unswitch, we have to do a bit more work to build up
2157     // the branch in the split block.
2158     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2159                                           *ClonedPH, *LoopPH);
2160     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2161
2162     if (MSSAU) {
2163       DT.applyUpdates(DTUpdates);
2164       DTUpdates.clear();
2165
2166       // Perform MSSA cloning updates.
2167       for (auto &VMap : VMaps)
2168         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2169                                    /*IgnoreIncomingWithNoClones=*/true);
2170       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2171     }
2172   }
2173
2174   // Apply the updates accumulated above to get an up-to-date dominator tree.
2175   DT.applyUpdates(DTUpdates);
2176
2177   // Now that we have an accurate dominator tree, first delete the dead cloned
2178   // blocks so that we can accurately build any cloned loops. It is important to
2179   // not delete the blocks from the original loop yet because we still want to
2180   // reference the original loop to understand the cloned loop's structure.
2181   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2182
2183   // Build the cloned loop structure itself. This may be substantially
2184   // different from the original structure due to the simplified CFG. This also
2185   // handles inserting all the cloned blocks into the correct loops.
2186   SmallVector<Loop *, 4> NonChildClonedLoops;
2187   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2188     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2189
2190   // Now that our cloned loops have been built, we can update the original loop.
2191   // First we delete the dead blocks from it and then we rebuild the loop
2192   // structure taking these deletions into account.
2193   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2194
2195   if (MSSAU && VerifyMemorySSA)
2196     MSSAU->getMemorySSA()->verifyMemorySSA();
2197
2198   SmallVector<Loop *, 4> HoistedLoops;
2199   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2200
2201   if (MSSAU && VerifyMemorySSA)
2202     MSSAU->getMemorySSA()->verifyMemorySSA();
2203
2204   // This transformation has a high risk of corrupting the dominator tree, and
2205   // the below steps to rebuild loop structures will result in hard to debug
2206   // errors in that case so verify that the dominator tree is sane first.
2207   // FIXME: Remove this when the bugs stop showing up and rely on existing
2208   // verification steps.
2209   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2210
2211   if (BI) {
2212     // If we unswitched a branch which collapses the condition to a known
2213     // constant we want to replace all the uses of the invariants within both
2214     // the original and cloned blocks. We do this here so that we can use the
2215     // now updated dominator tree to identify which side the users are on.
2216     assert(UnswitchedSuccBBs.size() == 1 &&
2217            "Only one possible unswitched block for a branch!");
2218     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2219
2220     // When considering multiple partially-unswitched invariants
2221     // we cant just go replace them with constants in both branches.
2222     //
2223     // For 'AND' we infer that true branch ("continue") means true
2224     // for each invariant operand.
2225     // For 'OR' we can infer that false branch ("continue") means false
2226     // for each invariant operand.
2227     // So it happens that for multiple-partial case we dont replace
2228     // in the unswitched branch.
2229     bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2230
2231     ConstantInt *UnswitchedReplacement =
2232         Direction ? ConstantInt::getTrue(BI->getContext())
2233                   : ConstantInt::getFalse(BI->getContext());
2234     ConstantInt *ContinueReplacement =
2235         Direction ? ConstantInt::getFalse(BI->getContext())
2236                   : ConstantInt::getTrue(BI->getContext());
2237     for (Value *Invariant : Invariants)
2238       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2239            UI != UE;) {
2240         // Grab the use and walk past it so we can clobber it in the use list.
2241         Use *U = &*UI++;
2242         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2243         if (!UserI)
2244           continue;
2245
2246         // Replace it with the 'continue' side if in the main loop body, and the
2247         // unswitched if in the cloned blocks.
2248         if (DT.dominates(LoopPH, UserI->getParent()))
2249           U->set(ContinueReplacement);
2250         else if (ReplaceUnswitched &&
2251                  DT.dominates(ClonedPH, UserI->getParent()))
2252           U->set(UnswitchedReplacement);
2253       }
2254   }
2255
2256   // We can change which blocks are exit blocks of all the cloned sibling
2257   // loops, the current loop, and any parent loops which shared exit blocks
2258   // with the current loop. As a consequence, we need to re-form LCSSA for
2259   // them. But we shouldn't need to re-form LCSSA for any child loops.
2260   // FIXME: This could be made more efficient by tracking which exit blocks are
2261   // new, and focusing on them, but that isn't likely to be necessary.
2262   //
2263   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2264   // loop nest and update every loop that could have had its exits changed. We
2265   // also need to cover any intervening loops. We add all of these loops to
2266   // a list and sort them by loop depth to achieve this without updating
2267   // unnecessary loops.
2268   auto UpdateLoop = [&](Loop &UpdateL) {
2269 #ifndef NDEBUG
2270     UpdateL.verifyLoop();
2271     for (Loop *ChildL : UpdateL) {
2272       ChildL->verifyLoop();
2273       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2274              "Perturbed a child loop's LCSSA form!");
2275     }
2276 #endif
2277     // First build LCSSA for this loop so that we can preserve it when
2278     // forming dedicated exits. We don't want to perturb some other loop's
2279     // LCSSA while doing that CFG edit.
2280     formLCSSA(UpdateL, DT, &LI, SE);
2281
2282     // For loops reached by this loop's original exit blocks we may
2283     // introduced new, non-dedicated exits. At least try to re-form dedicated
2284     // exits for these loops. This may fail if they couldn't have dedicated
2285     // exits to start with.
2286     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2287   };
2288
2289   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2290   // and we can do it in any order as they don't nest relative to each other.
2291   //
2292   // Also check if any of the loops we have updated have become top-level loops
2293   // as that will necessitate widening the outer loop scope.
2294   for (Loop *UpdatedL :
2295        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2296     UpdateLoop(*UpdatedL);
2297     if (!UpdatedL->getParentLoop())
2298       OuterExitL = nullptr;
2299   }
2300   if (IsStillLoop) {
2301     UpdateLoop(L);
2302     if (!L.getParentLoop())
2303       OuterExitL = nullptr;
2304   }
2305
2306   // If the original loop had exit blocks, walk up through the outer most loop
2307   // of those exit blocks to update LCSSA and form updated dedicated exits.
2308   if (OuterExitL != &L)
2309     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2310          OuterL = OuterL->getParentLoop())
2311       UpdateLoop(*OuterL);
2312
2313 #ifndef NDEBUG
2314   // Verify the entire loop structure to catch any incorrect updates before we
2315   // progress in the pass pipeline.
2316   LI.verify(DT);
2317 #endif
2318
2319   // Now that we've unswitched something, make callbacks to report the changes.
2320   // For that we need to merge together the updated loops and the cloned loops
2321   // and check whether the original loop survived.
2322   SmallVector<Loop *, 4> SibLoops;
2323   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2324     if (UpdatedL->getParentLoop() == ParentL)
2325       SibLoops.push_back(UpdatedL);
2326   UnswitchCB(IsStillLoop, SibLoops);
2327
2328   if (MSSAU && VerifyMemorySSA)
2329     MSSAU->getMemorySSA()->verifyMemorySSA();
2330
2331   if (BI)
2332     ++NumBranches;
2333   else
2334     ++NumSwitches;
2335 }
2336
2337 /// Recursively compute the cost of a dominator subtree based on the per-block
2338 /// cost map provided.
2339 ///
2340 /// The recursive computation is memozied into the provided DT-indexed cost map
2341 /// to allow querying it for most nodes in the domtree without it becoming
2342 /// quadratic.
2343 static int
2344 computeDomSubtreeCost(DomTreeNode &N,
2345                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2346                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2347   // Don't accumulate cost (or recurse through) blocks not in our block cost
2348   // map and thus not part of the duplication cost being considered.
2349   auto BBCostIt = BBCostMap.find(N.getBlock());
2350   if (BBCostIt == BBCostMap.end())
2351     return 0;
2352
2353   // Lookup this node to see if we already computed its cost.
2354   auto DTCostIt = DTCostMap.find(&N);
2355   if (DTCostIt != DTCostMap.end())
2356     return DTCostIt->second;
2357
2358   // If not, we have to compute it. We can't use insert above and update
2359   // because computing the cost may insert more things into the map.
2360   int Cost = std::accumulate(
2361       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2362         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2363       });
2364   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2365   (void)Inserted;
2366   assert(Inserted && "Should not insert a node while visiting children!");
2367   return Cost;
2368 }
2369
2370 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2371 /// making the following replacement:
2372 ///
2373 ///   --code before guard--
2374 ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2375 ///   --code after guard--
2376 ///
2377 /// into
2378 ///
2379 ///   --code before guard--
2380 ///   br i1 %cond, label %guarded, label %deopt
2381 ///
2382 /// guarded:
2383 ///   --code after guard--
2384 ///
2385 /// deopt:
2386 ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2387 ///   unreachable
2388 ///
2389 /// It also makes all relevant DT and LI updates, so that all structures are in
2390 /// valid state after this transform.
2391 static BranchInst *
2392 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2393                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2394                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2395   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2396   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2397   BasicBlock *CheckBB = GI->getParent();
2398
2399   if (MSSAU && VerifyMemorySSA)
2400      MSSAU->getMemorySSA()->verifyMemorySSA();
2401
2402   // Remove all CheckBB's successors from DomTree. A block can be seen among
2403   // successors more than once, but for DomTree it should be added only once.
2404   SmallPtrSet<BasicBlock *, 4> Successors;
2405   for (auto *Succ : successors(CheckBB))
2406     if (Successors.insert(Succ).second)
2407       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2408
2409   Instruction *DeoptBlockTerm =
2410       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2411   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2412   // SplitBlockAndInsertIfThen inserts control flow that branches to
2413   // DeoptBlockTerm if the condition is true.  We want the opposite.
2414   CheckBI->swapSuccessors();
2415
2416   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2417   GuardedBlock->setName("guarded");
2418   CheckBI->getSuccessor(1)->setName("deopt");
2419   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2420
2421   // We now have a new exit block.
2422   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2423
2424   if (MSSAU)
2425     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2426
2427   GI->moveBefore(DeoptBlockTerm);
2428   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2429
2430   // Add new successors of CheckBB into DomTree.
2431   for (auto *Succ : successors(CheckBB))
2432     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2433
2434   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2435   // successors.
2436   for (auto *Succ : Successors)
2437     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2438
2439   // Make proper changes to DT.
2440   DT.applyUpdates(DTUpdates);
2441   // Inform LI of a new loop block.
2442   L.addBasicBlockToLoop(GuardedBlock, LI);
2443
2444   if (MSSAU) {
2445     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2446     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2447     if (VerifyMemorySSA)
2448       MSSAU->getMemorySSA()->verifyMemorySSA();
2449   }
2450
2451   ++NumGuards;
2452   return CheckBI;
2453 }
2454
2455 /// Cost multiplier is a way to limit potentially exponential behavior
2456 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2457 /// candidates available. Also accounting for the number of "sibling" loops with
2458 /// the idea to account for previous unswitches that already happened on this
2459 /// cluster of loops. There was an attempt to keep this formula simple,
2460 /// just enough to limit the worst case behavior. Even if it is not that simple
2461 /// now it is still not an attempt to provide a detailed heuristic size
2462 /// prediction.
2463 ///
2464 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2465 /// unswitch candidates, making adequate predictions instead of wild guesses.
2466 /// That requires knowing not just the number of "remaining" candidates but
2467 /// also costs of unswitching for each of these candidates.
2468 static int calculateUnswitchCostMultiplier(
2469     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2470     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2471         UnswitchCandidates) {
2472
2473   // Guards and other exiting conditions do not contribute to exponential
2474   // explosion as soon as they dominate the latch (otherwise there might be
2475   // another path to the latch remaining that does not allow to eliminate the
2476   // loop copy on unswitch).
2477   BasicBlock *Latch = L.getLoopLatch();
2478   BasicBlock *CondBlock = TI.getParent();
2479   if (DT.dominates(CondBlock, Latch) &&
2480       (isGuard(&TI) ||
2481        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2482          return L.contains(SuccBB);
2483        }) <= 1)) {
2484     NumCostMultiplierSkipped++;
2485     return 1;
2486   }
2487
2488   auto *ParentL = L.getParentLoop();
2489   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2490                                : std::distance(LI.begin(), LI.end()));
2491   // Count amount of clones that all the candidates might cause during
2492   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2493   int UnswitchedClones = 0;
2494   for (auto Candidate : UnswitchCandidates) {
2495     Instruction *CI = Candidate.first;
2496     BasicBlock *CondBlock = CI->getParent();
2497     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2498     if (isGuard(CI)) {
2499       if (!SkipExitingSuccessors)
2500         UnswitchedClones++;
2501       continue;
2502     }
2503     int NonExitingSuccessors = llvm::count_if(
2504         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2505           return !SkipExitingSuccessors || L.contains(SuccBB);
2506         });
2507     UnswitchedClones += Log2_32(NonExitingSuccessors);
2508   }
2509
2510   // Ignore up to the "unscaled candidates" number of unswitch candidates
2511   // when calculating the power-of-two scaling of the cost. The main idea
2512   // with this control is to allow a small number of unswitches to happen
2513   // and rely more on siblings multiplier (see below) when the number
2514   // of candidates is small.
2515   unsigned ClonesPower =
2516       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2517
2518   // Allowing top-level loops to spread a bit more than nested ones.
2519   int SiblingsMultiplier =
2520       std::max((ParentL ? SiblingsCount
2521                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2522                1);
2523   // Compute the cost multiplier in a way that won't overflow by saturating
2524   // at an upper bound.
2525   int CostMultiplier;
2526   if (ClonesPower > Log2_32(UnswitchThreshold) ||
2527       SiblingsMultiplier > UnswitchThreshold)
2528     CostMultiplier = UnswitchThreshold;
2529   else
2530     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2531                               (int)UnswitchThreshold);
2532
2533   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2534                     << " (siblings " << SiblingsMultiplier << " * clones "
2535                     << (1 << ClonesPower) << ")"
2536                     << " for unswitch candidate: " << TI << "\n");
2537   return CostMultiplier;
2538 }
2539
2540 static bool
2541 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2542                       AssumptionCache &AC, TargetTransformInfo &TTI,
2543                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2544                       ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2545   // Collect all invariant conditions within this loop (as opposed to an inner
2546   // loop which would be handled when visiting that inner loop).
2547   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2548       UnswitchCandidates;
2549
2550   // Whether or not we should also collect guards in the loop.
2551   bool CollectGuards = false;
2552   if (UnswitchGuards) {
2553     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2554         Intrinsic::getName(Intrinsic::experimental_guard));
2555     if (GuardDecl && !GuardDecl->use_empty())
2556       CollectGuards = true;
2557   }
2558
2559   for (auto *BB : L.blocks()) {
2560     if (LI.getLoopFor(BB) != &L)
2561       continue;
2562
2563     if (CollectGuards)
2564       for (auto &I : *BB)
2565         if (isGuard(&I)) {
2566           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2567           // TODO: Support AND, OR conditions and partial unswitching.
2568           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2569             UnswitchCandidates.push_back({&I, {Cond}});
2570         }
2571
2572     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2573       // We can only consider fully loop-invariant switch conditions as we need
2574       // to completely eliminate the switch after unswitching.
2575       if (!isa<Constant>(SI->getCondition()) &&
2576           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2577         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2578       continue;
2579     }
2580
2581     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2582     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2583         BI->getSuccessor(0) == BI->getSuccessor(1))
2584       continue;
2585
2586     if (L.isLoopInvariant(BI->getCondition())) {
2587       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2588       continue;
2589     }
2590
2591     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2592     if (CondI.getOpcode() != Instruction::And &&
2593       CondI.getOpcode() != Instruction::Or)
2594       continue;
2595
2596     TinyPtrVector<Value *> Invariants =
2597         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2598     if (Invariants.empty())
2599       continue;
2600
2601     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2602   }
2603
2604   // If we didn't find any candidates, we're done.
2605   if (UnswitchCandidates.empty())
2606     return false;
2607
2608   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2609   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2610   // irreducible control flow into reducible control flow and introduce new
2611   // loops "out of thin air". If we ever discover important use cases for doing
2612   // this, we can add support to loop unswitch, but it is a lot of complexity
2613   // for what seems little or no real world benefit.
2614   LoopBlocksRPO RPOT(&L);
2615   RPOT.perform(&LI);
2616   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2617     return false;
2618
2619   SmallVector<BasicBlock *, 4> ExitBlocks;
2620   L.getUniqueExitBlocks(ExitBlocks);
2621
2622   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2623   // don't know how to split those exit blocks.
2624   // FIXME: We should teach SplitBlock to handle this and remove this
2625   // restriction.
2626   for (auto *ExitBB : ExitBlocks)
2627     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2628       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2629       return false;
2630     }
2631
2632   LLVM_DEBUG(
2633       dbgs() << "Considering " << UnswitchCandidates.size()
2634              << " non-trivial loop invariant conditions for unswitching.\n");
2635
2636   // Given that unswitching these terminators will require duplicating parts of
2637   // the loop, so we need to be able to model that cost. Compute the ephemeral
2638   // values and set up a data structure to hold per-BB costs. We cache each
2639   // block's cost so that we don't recompute this when considering different
2640   // subsets of the loop for duplication during unswitching.
2641   SmallPtrSet<const Value *, 4> EphValues;
2642   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2643   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2644
2645   // Compute the cost of each block, as well as the total loop cost. Also, bail
2646   // out if we see instructions which are incompatible with loop unswitching
2647   // (convergent, noduplicate, or cross-basic-block tokens).
2648   // FIXME: We might be able to safely handle some of these in non-duplicated
2649   // regions.
2650   int LoopCost = 0;
2651   for (auto *BB : L.blocks()) {
2652     int Cost = 0;
2653     for (auto &I : *BB) {
2654       if (EphValues.count(&I))
2655         continue;
2656
2657       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2658         return false;
2659       if (auto CS = CallSite(&I))
2660         if (CS.isConvergent() || CS.cannotDuplicate())
2661           return false;
2662
2663       Cost += TTI.getUserCost(&I);
2664     }
2665     assert(Cost >= 0 && "Must not have negative costs!");
2666     LoopCost += Cost;
2667     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2668     BBCostMap[BB] = Cost;
2669   }
2670   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2671
2672   // Now we find the best candidate by searching for the one with the following
2673   // properties in order:
2674   //
2675   // 1) An unswitching cost below the threshold
2676   // 2) The smallest number of duplicated unswitch candidates (to avoid
2677   //    creating redundant subsequent unswitching)
2678   // 3) The smallest cost after unswitching.
2679   //
2680   // We prioritize reducing fanout of unswitch candidates provided the cost
2681   // remains below the threshold because this has a multiplicative effect.
2682   //
2683   // This requires memoizing each dominator subtree to avoid redundant work.
2684   //
2685   // FIXME: Need to actually do the number of candidates part above.
2686   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2687   // Given a terminator which might be unswitched, computes the non-duplicated
2688   // cost for that terminator.
2689   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2690     BasicBlock &BB = *TI.getParent();
2691     SmallPtrSet<BasicBlock *, 4> Visited;
2692
2693     int Cost = LoopCost;
2694     for (BasicBlock *SuccBB : successors(&BB)) {
2695       // Don't count successors more than once.
2696       if (!Visited.insert(SuccBB).second)
2697         continue;
2698
2699       // If this is a partial unswitch candidate, then it must be a conditional
2700       // branch with a condition of either `or` or `and`. In that case, one of
2701       // the successors is necessarily duplicated, so don't even try to remove
2702       // its cost.
2703       if (!FullUnswitch) {
2704         auto &BI = cast<BranchInst>(TI);
2705         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2706             Instruction::And) {
2707           if (SuccBB == BI.getSuccessor(1))
2708             continue;
2709         } else {
2710           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2711                      Instruction::Or &&
2712                  "Only `and` and `or` conditions can result in a partial "
2713                  "unswitch!");
2714           if (SuccBB == BI.getSuccessor(0))
2715             continue;
2716         }
2717       }
2718
2719       // This successor's domtree will not need to be duplicated after
2720       // unswitching if the edge to the successor dominates it (and thus the
2721       // entire tree). This essentially means there is no other path into this
2722       // subtree and so it will end up live in only one clone of the loop.
2723       if (SuccBB->getUniquePredecessor() ||
2724           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2725             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2726           })) {
2727         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2728         assert(Cost >= 0 &&
2729                "Non-duplicated cost should never exceed total loop cost!");
2730       }
2731     }
2732
2733     // Now scale the cost by the number of unique successors minus one. We
2734     // subtract one because there is already at least one copy of the entire
2735     // loop. This is computing the new cost of unswitching a condition.
2736     // Note that guards always have 2 unique successors that are implicit and
2737     // will be materialized if we decide to unswitch it.
2738     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2739     assert(SuccessorsCount > 1 &&
2740            "Cannot unswitch a condition without multiple distinct successors!");
2741     return Cost * (SuccessorsCount - 1);
2742   };
2743   Instruction *BestUnswitchTI = nullptr;
2744   int BestUnswitchCost = 0;
2745   ArrayRef<Value *> BestUnswitchInvariants;
2746   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2747     Instruction &TI = *TerminatorAndInvariants.first;
2748     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2749     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2750     int CandidateCost = ComputeUnswitchedCost(
2751         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2752                                      Invariants[0] == BI->getCondition()));
2753     // Calculate cost multiplier which is a tool to limit potentially
2754     // exponential behavior of loop-unswitch.
2755     if (EnableUnswitchCostMultiplier) {
2756       int CostMultiplier =
2757           calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2758       assert(
2759           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2760           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2761       CandidateCost *= CostMultiplier;
2762       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2763                         << " (multiplier: " << CostMultiplier << ")"
2764                         << " for unswitch candidate: " << TI << "\n");
2765     } else {
2766       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2767                         << " for unswitch candidate: " << TI << "\n");
2768     }
2769
2770     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2771       BestUnswitchTI = &TI;
2772       BestUnswitchCost = CandidateCost;
2773       BestUnswitchInvariants = Invariants;
2774     }
2775   }
2776   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2777
2778   if (BestUnswitchCost >= UnswitchThreshold) {
2779     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2780                       << BestUnswitchCost << "\n");
2781     return false;
2782   }
2783
2784   // If the best candidate is a guard, turn it into a branch.
2785   if (isGuard(BestUnswitchTI))
2786     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2787                                          ExitBlocks, DT, LI, MSSAU);
2788
2789   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2790                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2791                     << "\n");
2792   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2793                                ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2794   return true;
2795 }
2796
2797 /// Unswitch control flow predicated on loop invariant conditions.
2798 ///
2799 /// This first hoists all branches or switches which are trivial (IE, do not
2800 /// require duplicating any part of the loop) out of the loop body. It then
2801 /// looks at other loop invariant control flows and tries to unswitch those as
2802 /// well by cloning the loop if the result is small enough.
2803 ///
2804 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2805 /// updated based on the unswitch.
2806 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2807 ///
2808 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2809 /// true, we will attempt to do non-trivial unswitching as well as trivial
2810 /// unswitching.
2811 ///
2812 /// The `UnswitchCB` callback provided will be run after unswitching is
2813 /// complete, with the first parameter set to `true` if the provided loop
2814 /// remains a loop, and a list of new sibling loops created.
2815 ///
2816 /// If `SE` is non-null, we will update that analysis based on the unswitching
2817 /// done.
2818 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2819                          AssumptionCache &AC, TargetTransformInfo &TTI,
2820                          bool NonTrivial,
2821                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2822                          ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2823   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2824          "Loops must be in LCSSA form before unswitching.");
2825   bool Changed = false;
2826
2827   // Must be in loop simplified form: we need a preheader and dedicated exits.
2828   if (!L.isLoopSimplifyForm())
2829     return false;
2830
2831   // Try trivial unswitch first before loop over other basic blocks in the loop.
2832   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2833     // If we unswitched successfully we will want to clean up the loop before
2834     // processing it further so just mark it as unswitched and return.
2835     UnswitchCB(/*CurrentLoopValid*/ true, {});
2836     return true;
2837   }
2838
2839   // If we're not doing non-trivial unswitching, we're done. We both accept
2840   // a parameter but also check a local flag that can be used for testing
2841   // a debugging.
2842   if (!NonTrivial && !EnableNonTrivialUnswitch)
2843     return false;
2844
2845   // For non-trivial unswitching, because it often creates new loops, we rely on
2846   // the pass manager to iterate on the loops rather than trying to immediately
2847   // reach a fixed point. There is no substantial advantage to iterating
2848   // internally, and if any of the new loops are simplified enough to contain
2849   // trivial unswitching we want to prefer those.
2850
2851   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2852   // a partial unswitch when possible below the threshold.
2853   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2854     return true;
2855
2856   // No other opportunities to unswitch.
2857   return Changed;
2858 }
2859
2860 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2861                                               LoopStandardAnalysisResults &AR,
2862                                               LPMUpdater &U) {
2863   Function &F = *L.getHeader()->getParent();
2864   (void)F;
2865
2866   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2867                     << "\n");
2868
2869   // Save the current loop name in a variable so that we can report it even
2870   // after it has been deleted.
2871   std::string LoopName = L.getName();
2872
2873   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2874                                         ArrayRef<Loop *> NewLoops) {
2875     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2876     if (!NewLoops.empty())
2877       U.addSiblingLoops(NewLoops);
2878
2879     // If the current loop remains valid, we should revisit it to catch any
2880     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2881     if (CurrentLoopValid)
2882       U.revisitCurrentLoop();
2883     else
2884       U.markLoopAsDeleted(L, LoopName);
2885   };
2886
2887   Optional<MemorySSAUpdater> MSSAU;
2888   if (AR.MSSA) {
2889     MSSAU = MemorySSAUpdater(AR.MSSA);
2890     if (VerifyMemorySSA)
2891       AR.MSSA->verifyMemorySSA();
2892   }
2893   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2894                     &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2895     return PreservedAnalyses::all();
2896
2897   if (AR.MSSA && VerifyMemorySSA)
2898     AR.MSSA->verifyMemorySSA();
2899
2900   // Historically this pass has had issues with the dominator tree so verify it
2901   // in asserts builds.
2902   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2903
2904   auto PA = getLoopPassPreservedAnalyses();
2905   if (AR.MSSA)
2906     PA.preserve<MemorySSAAnalysis>();
2907   return PA;
2908 }
2909
2910 namespace {
2911
2912 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2913   bool NonTrivial;
2914
2915 public:
2916   static char ID; // Pass ID, replacement for typeid
2917
2918   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2919       : LoopPass(ID), NonTrivial(NonTrivial) {
2920     initializeSimpleLoopUnswitchLegacyPassPass(
2921         *PassRegistry::getPassRegistry());
2922   }
2923
2924   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2925
2926   void getAnalysisUsage(AnalysisUsage &AU) const override {
2927     AU.addRequired<AssumptionCacheTracker>();
2928     AU.addRequired<TargetTransformInfoWrapperPass>();
2929     if (EnableMSSALoopDependency) {
2930       AU.addRequired<MemorySSAWrapperPass>();
2931       AU.addPreserved<MemorySSAWrapperPass>();
2932     }
2933     getLoopAnalysisUsage(AU);
2934   }
2935 };
2936
2937 } // end anonymous namespace
2938
2939 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2940   if (skipLoop(L))
2941     return false;
2942
2943   Function &F = *L->getHeader()->getParent();
2944
2945   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2946                     << "\n");
2947
2948   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2949   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2950   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2951   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2952   MemorySSA *MSSA = nullptr;
2953   Optional<MemorySSAUpdater> MSSAU;
2954   if (EnableMSSALoopDependency) {
2955     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2956     MSSAU = MemorySSAUpdater(MSSA);
2957   }
2958
2959   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2960   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2961
2962   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2963                                ArrayRef<Loop *> NewLoops) {
2964     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2965     for (auto *NewL : NewLoops)
2966       LPM.addLoop(*NewL);
2967
2968     // If the current loop remains valid, re-add it to the queue. This is
2969     // a little wasteful as we'll finish processing the current loop as well,
2970     // but it is the best we can do in the old PM.
2971     if (CurrentLoopValid)
2972       LPM.addLoop(*L);
2973     else
2974       LPM.markLoopAsDeleted(*L);
2975   };
2976
2977   if (MSSA && VerifyMemorySSA)
2978     MSSA->verifyMemorySSA();
2979
2980   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2981                               MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2982
2983   if (MSSA && VerifyMemorySSA)
2984     MSSA->verifyMemorySSA();
2985
2986   // If anything was unswitched, also clear any cached information about this
2987   // loop.
2988   LPM.deleteSimpleAnalysisLoop(L);
2989
2990   // Historically this pass has had issues with the dominator tree so verify it
2991   // in asserts builds.
2992   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2993
2994   return Changed;
2995 }
2996
2997 char SimpleLoopUnswitchLegacyPass::ID = 0;
2998 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2999                       "Simple unswitch loops", false, false)
3000 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3001 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3002 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3003 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3004 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3005 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3006 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3007                     "Simple unswitch loops", false, false)
3008
3009 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3010   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3011 }