]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Utils / BasicBlockUtils.cpp
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "basicblock-utils"
53
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135
136   return !DeadBlocks.empty();
137 }
138
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin())) return;
142
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151
152     PN->eraseFromParent();
153   }
154 }
155
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157   // Recursively deleting a PHI may cause multiple PHIs to be deleted
158   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159   SmallVector<WeakTrackingVH, 8> PHIs;
160   for (PHINode &PN : BB->phis())
161     PHIs.push_back(&PN);
162
163   bool Changed = false;
164   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
167
168   return Changed;
169 }
170
171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
173                                      MemoryDependenceResults *MemDep,
174                                      bool PredecessorWithTwoSuccessors) {
175   if (BB->hasAddressTaken())
176     return false;
177
178   // Can't merge if there are multiple predecessors, or no predecessors.
179   BasicBlock *PredBB = BB->getUniquePredecessor();
180   if (!PredBB) return false;
181
182   // Don't break self-loops.
183   if (PredBB == BB) return false;
184   // Don't break unwinding instructions.
185   if (PredBB->getTerminator()->isExceptionalTerminator())
186     return false;
187
188   // Can't merge if there are multiple distinct successors.
189   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
190     return false;
191
192   // Currently only allow PredBB to have two predecessors, one being BB.
193   // Update BI to branch to BB's only successor instead of BB.
194   BranchInst *PredBB_BI;
195   BasicBlock *NewSucc = nullptr;
196   unsigned FallThruPath;
197   if (PredecessorWithTwoSuccessors) {
198     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
199       return false;
200     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
201     if (!BB_JmpI || !BB_JmpI->isUnconditional())
202       return false;
203     NewSucc = BB_JmpI->getSuccessor(0);
204     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
205   }
206
207   // Can't merge if there is PHI loop.
208   for (PHINode &PN : BB->phis())
209     for (Value *IncValue : PN.incoming_values())
210       if (IncValue == &PN)
211         return false;
212
213   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
214                     << PredBB->getName() << "\n");
215
216   // Begin by getting rid of unneeded PHIs.
217   SmallVector<AssertingVH<Value>, 4> IncomingValues;
218   if (isa<PHINode>(BB->front())) {
219     for (PHINode &PN : BB->phis())
220       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
221           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
222         IncomingValues.push_back(PN.getIncomingValue(0));
223     FoldSingleEntryPHINodes(BB, MemDep);
224   }
225
226   // DTU update: Collect all the edges that exit BB.
227   // These dominator edges will be redirected from Pred.
228   std::vector<DominatorTree::UpdateType> Updates;
229   if (DTU) {
230     Updates.reserve(1 + (2 * succ_size(BB)));
231     // Add insert edges first. Experimentally, for the particular case of two
232     // blocks that can be merged, with a single successor and single predecessor
233     // respectively, it is beneficial to have all insert updates first. Deleting
234     // edges first may lead to unreachable blocks, followed by inserting edges
235     // making the blocks reachable again. Such DT updates lead to high compile
236     // times. We add inserts before deletes here to reduce compile time.
237     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
238       // This successor of BB may already have PredBB as a predecessor.
239       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
240         Updates.push_back({DominatorTree::Insert, PredBB, *I});
241     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
242       Updates.push_back({DominatorTree::Delete, BB, *I});
243     Updates.push_back({DominatorTree::Delete, PredBB, BB});
244   }
245
246   Instruction *PTI = PredBB->getTerminator();
247   Instruction *STI = BB->getTerminator();
248   Instruction *Start = &*BB->begin();
249   // If there's nothing to move, mark the starting instruction as the last
250   // instruction in the block. Terminator instruction is handled separately.
251   if (Start == STI)
252     Start = PTI;
253
254   // Move all definitions in the successor to the predecessor...
255   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
256                                BB->begin(), STI->getIterator());
257
258   if (MSSAU)
259     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
260
261   // Make all PHI nodes that referred to BB now refer to Pred as their
262   // source...
263   BB->replaceAllUsesWith(PredBB);
264
265   if (PredecessorWithTwoSuccessors) {
266     // Delete the unconditional branch from BB.
267     BB->getInstList().pop_back();
268
269     // Update branch in the predecessor.
270     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
271   } else {
272     // Delete the unconditional branch from the predecessor.
273     PredBB->getInstList().pop_back();
274
275     // Move terminator instruction.
276     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
277
278     // Terminator may be a memory accessing instruction too.
279     if (MSSAU)
280       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
281               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
282         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
283   }
284   // Add unreachable to now empty BB.
285   new UnreachableInst(BB->getContext(), BB);
286
287   // Eliminate duplicate/redundant dbg.values. This seems to be a good place to
288   // do that since we might end up with redundant dbg.values describing the
289   // entry PHI node post-splice.
290   RemoveRedundantDbgInstrs(PredBB);
291
292   // Inherit predecessors name if it exists.
293   if (!PredBB->hasName())
294     PredBB->takeName(BB);
295
296   if (LI)
297     LI->removeBlock(BB);
298
299   if (MemDep)
300     MemDep->invalidateCachedPredecessors();
301
302   // Finally, erase the old block and update dominator info.
303   if (DTU) {
304     assert(BB->getInstList().size() == 1 &&
305            isa<UnreachableInst>(BB->getTerminator()) &&
306            "The successor list of BB isn't empty before "
307            "applying corresponding DTU updates.");
308     DTU->applyUpdatesPermissive(Updates);
309     DTU->deleteBB(BB);
310   } else {
311     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
312   }
313
314   return true;
315 }
316
317 /// Remove redundant instructions within sequences of consecutive dbg.value
318 /// instructions. This is done using a backward scan to keep the last dbg.value
319 /// describing a specific variable/fragment.
320 ///
321 /// BackwardScan strategy:
322 /// ----------------------
323 /// Given a sequence of consecutive DbgValueInst like this
324 ///
325 ///   dbg.value ..., "x", FragmentX1  (*)
326 ///   dbg.value ..., "y", FragmentY1
327 ///   dbg.value ..., "x", FragmentX2
328 ///   dbg.value ..., "x", FragmentX1  (**)
329 ///
330 /// then the instruction marked with (*) can be removed (it is guaranteed to be
331 /// obsoleted by the instruction marked with (**) as the latter instruction is
332 /// describing the same variable using the same fragment info).
333 ///
334 /// Possible improvements:
335 /// - Check fully overlapping fragments and not only identical fragments.
336 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
337 ///   instructions being part of the sequence of consecutive instructions.
338 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
339   SmallVector<DbgValueInst *, 8> ToBeRemoved;
340   SmallDenseSet<DebugVariable> VariableSet;
341   for (auto &I : reverse(*BB)) {
342     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
343       DebugVariable Key(DVI->getVariable(),
344                         DVI->getExpression(),
345                         DVI->getDebugLoc()->getInlinedAt());
346       auto R = VariableSet.insert(Key);
347       // If the same variable fragment is described more than once it is enough
348       // to keep the last one (i.e. the first found since we for reverse
349       // iteration).
350       if (!R.second)
351         ToBeRemoved.push_back(DVI);
352       continue;
353     }
354     // Sequence with consecutive dbg.value instrs ended. Clear the map to
355     // restart identifying redundant instructions if case we find another
356     // dbg.value sequence.
357     VariableSet.clear();
358   }
359
360   for (auto &Instr : ToBeRemoved)
361     Instr->eraseFromParent();
362
363   return !ToBeRemoved.empty();
364 }
365
366 /// Remove redundant dbg.value instructions using a forward scan. This can
367 /// remove a dbg.value instruction that is redundant due to indicating that a
368 /// variable has the same value as already being indicated by an earlier
369 /// dbg.value.
370 ///
371 /// ForwardScan strategy:
372 /// ---------------------
373 /// Given two identical dbg.value instructions, separated by a block of
374 /// instructions that isn't describing the same variable, like this
375 ///
376 ///   dbg.value X1, "x", FragmentX1  (**)
377 ///   <block of instructions, none being "dbg.value ..., "x", ...">
378 ///   dbg.value X1, "x", FragmentX1  (*)
379 ///
380 /// then the instruction marked with (*) can be removed. Variable "x" is already
381 /// described as being mapped to the SSA value X1.
382 ///
383 /// Possible improvements:
384 /// - Keep track of non-overlapping fragments.
385 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
386   SmallVector<DbgValueInst *, 8> ToBeRemoved;
387   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
388   for (auto &I : *BB) {
389     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
390       DebugVariable Key(DVI->getVariable(),
391                         NoneType(),
392                         DVI->getDebugLoc()->getInlinedAt());
393       auto VMI = VariableMap.find(Key);
394       // Update the map if we found a new value/expression describing the
395       // variable, or if the variable wasn't mapped already.
396       if (VMI == VariableMap.end() ||
397           VMI->second.first != DVI->getValue() ||
398           VMI->second.second != DVI->getExpression()) {
399         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
400         continue;
401       }
402       // Found an identical mapping. Remember the instruction for later removal.
403       ToBeRemoved.push_back(DVI);
404     }
405   }
406
407   for (auto &Instr : ToBeRemoved)
408     Instr->eraseFromParent();
409
410   return !ToBeRemoved.empty();
411 }
412
413 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
414   bool MadeChanges = false;
415   // By using the "backward scan" strategy before the "forward scan" strategy we
416   // can remove both dbg.value (2) and (3) in a situation like this:
417   //
418   //   (1) dbg.value V1, "x", DIExpression()
419   //       ...
420   //   (2) dbg.value V2, "x", DIExpression()
421   //   (3) dbg.value V1, "x", DIExpression()
422   //
423   // The backward scan will remove (2), it is made obsolete by (3). After
424   // getting (2) out of the way, the foward scan will remove (3) since "x"
425   // already is described as having the value V1 at (1).
426   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
427   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
428
429   if (MadeChanges)
430     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
431                       << BB->getName() << "\n");
432   return MadeChanges;
433 }
434
435 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
436                                 BasicBlock::iterator &BI, Value *V) {
437   Instruction &I = *BI;
438   // Replaces all of the uses of the instruction with uses of the value
439   I.replaceAllUsesWith(V);
440
441   // Make sure to propagate a name if there is one already.
442   if (I.hasName() && !V->hasName())
443     V->takeName(&I);
444
445   // Delete the unnecessary instruction now...
446   BI = BIL.erase(BI);
447 }
448
449 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
450                                BasicBlock::iterator &BI, Instruction *I) {
451   assert(I->getParent() == nullptr &&
452          "ReplaceInstWithInst: Instruction already inserted into basic block!");
453
454   // Copy debug location to newly added instruction, if it wasn't already set
455   // by the caller.
456   if (!I->getDebugLoc())
457     I->setDebugLoc(BI->getDebugLoc());
458
459   // Insert the new instruction into the basic block...
460   BasicBlock::iterator New = BIL.insert(BI, I);
461
462   // Replace all uses of the old instruction, and delete it.
463   ReplaceInstWithValue(BIL, BI, I);
464
465   // Move BI back to point to the newly inserted instruction
466   BI = New;
467 }
468
469 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
470   BasicBlock::iterator BI(From);
471   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
472 }
473
474 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
475                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
476   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
477
478   // If this is a critical edge, let SplitCriticalEdge do it.
479   Instruction *LatchTerm = BB->getTerminator();
480   if (SplitCriticalEdge(
481           LatchTerm, SuccNum,
482           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
483     return LatchTerm->getSuccessor(SuccNum);
484
485   // If the edge isn't critical, then BB has a single successor or Succ has a
486   // single pred.  Split the block.
487   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
488     // If the successor only has a single pred, split the top of the successor
489     // block.
490     assert(SP == BB && "CFG broken");
491     SP = nullptr;
492     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
493   }
494
495   // Otherwise, if BB has a single successor, split it at the bottom of the
496   // block.
497   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
498          "Should have a single succ!");
499   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
500 }
501
502 unsigned
503 llvm::SplitAllCriticalEdges(Function &F,
504                             const CriticalEdgeSplittingOptions &Options) {
505   unsigned NumBroken = 0;
506   for (BasicBlock &BB : F) {
507     Instruction *TI = BB.getTerminator();
508     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
509         !isa<CallBrInst>(TI))
510       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
511         if (SplitCriticalEdge(TI, i, Options))
512           ++NumBroken;
513   }
514   return NumBroken;
515 }
516
517 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
518                              DominatorTree *DT, LoopInfo *LI,
519                              MemorySSAUpdater *MSSAU, const Twine &BBName) {
520   BasicBlock::iterator SplitIt = SplitPt->getIterator();
521   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
522     ++SplitIt;
523   std::string Name = BBName.str();
524   BasicBlock *New = Old->splitBasicBlock(
525       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
526
527   // The new block lives in whichever loop the old one did. This preserves
528   // LCSSA as well, because we force the split point to be after any PHI nodes.
529   if (LI)
530     if (Loop *L = LI->getLoopFor(Old))
531       L->addBasicBlockToLoop(New, *LI);
532
533   if (DT)
534     // Old dominates New. New node dominates all other nodes dominated by Old.
535     if (DomTreeNode *OldNode = DT->getNode(Old)) {
536       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
537
538       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
539       for (DomTreeNode *I : Children)
540         DT->changeImmediateDominator(I, NewNode);
541     }
542
543   // Move MemoryAccesses still tracked in Old, but part of New now.
544   // Update accesses in successor blocks accordingly.
545   if (MSSAU)
546     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
547
548   return New;
549 }
550
551 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
552 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
553                                       ArrayRef<BasicBlock *> Preds,
554                                       DominatorTree *DT, LoopInfo *LI,
555                                       MemorySSAUpdater *MSSAU,
556                                       bool PreserveLCSSA, bool &HasLoopExit) {
557   // Update dominator tree if available.
558   if (DT) {
559     if (OldBB == DT->getRootNode()->getBlock()) {
560       assert(NewBB == &NewBB->getParent()->getEntryBlock());
561       DT->setNewRoot(NewBB);
562     } else {
563       // Split block expects NewBB to have a non-empty set of predecessors.
564       DT->splitBlock(NewBB);
565     }
566   }
567
568   // Update MemoryPhis after split if MemorySSA is available
569   if (MSSAU)
570     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
571
572   // The rest of the logic is only relevant for updating the loop structures.
573   if (!LI)
574     return;
575
576   assert(DT && "DT should be available to update LoopInfo!");
577   Loop *L = LI->getLoopFor(OldBB);
578
579   // If we need to preserve loop analyses, collect some information about how
580   // this split will affect loops.
581   bool IsLoopEntry = !!L;
582   bool SplitMakesNewLoopHeader = false;
583   for (BasicBlock *Pred : Preds) {
584     // Preds that are not reachable from entry should not be used to identify if
585     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
586     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
587     // as true and make the NewBB the header of some loop. This breaks LI.
588     if (!DT->isReachableFromEntry(Pred))
589       continue;
590     // If we need to preserve LCSSA, determine if any of the preds is a loop
591     // exit.
592     if (PreserveLCSSA)
593       if (Loop *PL = LI->getLoopFor(Pred))
594         if (!PL->contains(OldBB))
595           HasLoopExit = true;
596
597     // If we need to preserve LoopInfo, note whether any of the preds crosses
598     // an interesting loop boundary.
599     if (!L)
600       continue;
601     if (L->contains(Pred))
602       IsLoopEntry = false;
603     else
604       SplitMakesNewLoopHeader = true;
605   }
606
607   // Unless we have a loop for OldBB, nothing else to do here.
608   if (!L)
609     return;
610
611   if (IsLoopEntry) {
612     // Add the new block to the nearest enclosing loop (and not an adjacent
613     // loop). To find this, examine each of the predecessors and determine which
614     // loops enclose them, and select the most-nested loop which contains the
615     // loop containing the block being split.
616     Loop *InnermostPredLoop = nullptr;
617     for (BasicBlock *Pred : Preds) {
618       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
619         // Seek a loop which actually contains the block being split (to avoid
620         // adjacent loops).
621         while (PredLoop && !PredLoop->contains(OldBB))
622           PredLoop = PredLoop->getParentLoop();
623
624         // Select the most-nested of these loops which contains the block.
625         if (PredLoop && PredLoop->contains(OldBB) &&
626             (!InnermostPredLoop ||
627              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
628           InnermostPredLoop = PredLoop;
629       }
630     }
631
632     if (InnermostPredLoop)
633       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
634   } else {
635     L->addBasicBlockToLoop(NewBB, *LI);
636     if (SplitMakesNewLoopHeader)
637       L->moveToHeader(NewBB);
638   }
639 }
640
641 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
642 /// This also updates AliasAnalysis, if available.
643 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
644                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
645                            bool HasLoopExit) {
646   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
647   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
648   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
649     PHINode *PN = cast<PHINode>(I++);
650
651     // Check to see if all of the values coming in are the same.  If so, we
652     // don't need to create a new PHI node, unless it's needed for LCSSA.
653     Value *InVal = nullptr;
654     if (!HasLoopExit) {
655       InVal = PN->getIncomingValueForBlock(Preds[0]);
656       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
657         if (!PredSet.count(PN->getIncomingBlock(i)))
658           continue;
659         if (!InVal)
660           InVal = PN->getIncomingValue(i);
661         else if (InVal != PN->getIncomingValue(i)) {
662           InVal = nullptr;
663           break;
664         }
665       }
666     }
667
668     if (InVal) {
669       // If all incoming values for the new PHI would be the same, just don't
670       // make a new PHI.  Instead, just remove the incoming values from the old
671       // PHI.
672
673       // NOTE! This loop walks backwards for a reason! First off, this minimizes
674       // the cost of removal if we end up removing a large number of values, and
675       // second off, this ensures that the indices for the incoming values
676       // aren't invalidated when we remove one.
677       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
678         if (PredSet.count(PN->getIncomingBlock(i)))
679           PN->removeIncomingValue(i, false);
680
681       // Add an incoming value to the PHI node in the loop for the preheader
682       // edge.
683       PN->addIncoming(InVal, NewBB);
684       continue;
685     }
686
687     // If the values coming into the block are not the same, we need a new
688     // PHI.
689     // Create the new PHI node, insert it into NewBB at the end of the block
690     PHINode *NewPHI =
691         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
692
693     // NOTE! This loop walks backwards for a reason! First off, this minimizes
694     // the cost of removal if we end up removing a large number of values, and
695     // second off, this ensures that the indices for the incoming values aren't
696     // invalidated when we remove one.
697     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
698       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
699       if (PredSet.count(IncomingBB)) {
700         Value *V = PN->removeIncomingValue(i, false);
701         NewPHI->addIncoming(V, IncomingBB);
702       }
703     }
704
705     PN->addIncoming(NewPHI, NewBB);
706   }
707 }
708
709 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
710                                          ArrayRef<BasicBlock *> Preds,
711                                          const char *Suffix, DominatorTree *DT,
712                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
713                                          bool PreserveLCSSA) {
714   // Do not attempt to split that which cannot be split.
715   if (!BB->canSplitPredecessors())
716     return nullptr;
717
718   // For the landingpads we need to act a bit differently.
719   // Delegate this work to the SplitLandingPadPredecessors.
720   if (BB->isLandingPad()) {
721     SmallVector<BasicBlock*, 2> NewBBs;
722     std::string NewName = std::string(Suffix) + ".split-lp";
723
724     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
725                                 LI, MSSAU, PreserveLCSSA);
726     return NewBBs[0];
727   }
728
729   // Create new basic block, insert right before the original block.
730   BasicBlock *NewBB = BasicBlock::Create(
731       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
732
733   // The new block unconditionally branches to the old block.
734   BranchInst *BI = BranchInst::Create(BB, NewBB);
735   // Splitting the predecessors of a loop header creates a preheader block.
736   if (LI && LI->isLoopHeader(BB))
737     // Using the loop start line number prevents debuggers stepping into the
738     // loop body for this instruction.
739     BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
740   else
741     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
742
743   // Move the edges from Preds to point to NewBB instead of BB.
744   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
745     // This is slightly more strict than necessary; the minimum requirement
746     // is that there be no more than one indirectbr branching to BB. And
747     // all BlockAddress uses would need to be updated.
748     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
749            "Cannot split an edge from an IndirectBrInst");
750     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
751            "Cannot split an edge from a CallBrInst");
752     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
753   }
754
755   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
756   // node becomes an incoming value for BB's phi node.  However, if the Preds
757   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
758   // account for the newly created predecessor.
759   if (Preds.empty()) {
760     // Insert dummy values as the incoming value.
761     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
762       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
763   }
764
765   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
766   bool HasLoopExit = false;
767   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
768                             HasLoopExit);
769
770   if (!Preds.empty()) {
771     // Update the PHI nodes in BB with the values coming from NewBB.
772     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
773   }
774
775   return NewBB;
776 }
777
778 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
779                                        ArrayRef<BasicBlock *> Preds,
780                                        const char *Suffix1, const char *Suffix2,
781                                        SmallVectorImpl<BasicBlock *> &NewBBs,
782                                        DominatorTree *DT, LoopInfo *LI,
783                                        MemorySSAUpdater *MSSAU,
784                                        bool PreserveLCSSA) {
785   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
786
787   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
788   // it right before the original block.
789   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
790                                           OrigBB->getName() + Suffix1,
791                                           OrigBB->getParent(), OrigBB);
792   NewBBs.push_back(NewBB1);
793
794   // The new block unconditionally branches to the old block.
795   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
796   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
797
798   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
799   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
800     // This is slightly more strict than necessary; the minimum requirement
801     // is that there be no more than one indirectbr branching to BB. And
802     // all BlockAddress uses would need to be updated.
803     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
804            "Cannot split an edge from an IndirectBrInst");
805     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
806   }
807
808   bool HasLoopExit = false;
809   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
810                             HasLoopExit);
811
812   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
813   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
814
815   // Move the remaining edges from OrigBB to point to NewBB2.
816   SmallVector<BasicBlock*, 8> NewBB2Preds;
817   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
818        i != e; ) {
819     BasicBlock *Pred = *i++;
820     if (Pred == NewBB1) continue;
821     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
822            "Cannot split an edge from an IndirectBrInst");
823     NewBB2Preds.push_back(Pred);
824     e = pred_end(OrigBB);
825   }
826
827   BasicBlock *NewBB2 = nullptr;
828   if (!NewBB2Preds.empty()) {
829     // Create another basic block for the rest of OrigBB's predecessors.
830     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
831                                 OrigBB->getName() + Suffix2,
832                                 OrigBB->getParent(), OrigBB);
833     NewBBs.push_back(NewBB2);
834
835     // The new block unconditionally branches to the old block.
836     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
837     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
838
839     // Move the remaining edges from OrigBB to point to NewBB2.
840     for (BasicBlock *NewBB2Pred : NewBB2Preds)
841       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
842
843     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
844     HasLoopExit = false;
845     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
846                               PreserveLCSSA, HasLoopExit);
847
848     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
849     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
850   }
851
852   LandingPadInst *LPad = OrigBB->getLandingPadInst();
853   Instruction *Clone1 = LPad->clone();
854   Clone1->setName(Twine("lpad") + Suffix1);
855   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
856
857   if (NewBB2) {
858     Instruction *Clone2 = LPad->clone();
859     Clone2->setName(Twine("lpad") + Suffix2);
860     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
861
862     // Create a PHI node for the two cloned landingpad instructions only
863     // if the original landingpad instruction has some uses.
864     if (!LPad->use_empty()) {
865       assert(!LPad->getType()->isTokenTy() &&
866              "Split cannot be applied if LPad is token type. Otherwise an "
867              "invalid PHINode of token type would be created.");
868       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
869       PN->addIncoming(Clone1, NewBB1);
870       PN->addIncoming(Clone2, NewBB2);
871       LPad->replaceAllUsesWith(PN);
872     }
873     LPad->eraseFromParent();
874   } else {
875     // There is no second clone. Just replace the landing pad with the first
876     // clone.
877     LPad->replaceAllUsesWith(Clone1);
878     LPad->eraseFromParent();
879   }
880 }
881
882 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
883                                              BasicBlock *Pred,
884                                              DomTreeUpdater *DTU) {
885   Instruction *UncondBranch = Pred->getTerminator();
886   // Clone the return and add it to the end of the predecessor.
887   Instruction *NewRet = RI->clone();
888   Pred->getInstList().push_back(NewRet);
889
890   // If the return instruction returns a value, and if the value was a
891   // PHI node in "BB", propagate the right value into the return.
892   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
893        i != e; ++i) {
894     Value *V = *i;
895     Instruction *NewBC = nullptr;
896     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
897       // Return value might be bitcasted. Clone and insert it before the
898       // return instruction.
899       V = BCI->getOperand(0);
900       NewBC = BCI->clone();
901       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
902       *i = NewBC;
903     }
904     if (PHINode *PN = dyn_cast<PHINode>(V)) {
905       if (PN->getParent() == BB) {
906         if (NewBC)
907           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
908         else
909           *i = PN->getIncomingValueForBlock(Pred);
910       }
911     }
912   }
913
914   // Update any PHI nodes in the returning block to realize that we no
915   // longer branch to them.
916   BB->removePredecessor(Pred);
917   UncondBranch->eraseFromParent();
918
919   if (DTU)
920     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
921
922   return cast<ReturnInst>(NewRet);
923 }
924
925 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
926                                              Instruction *SplitBefore,
927                                              bool Unreachable,
928                                              MDNode *BranchWeights,
929                                              DominatorTree *DT, LoopInfo *LI,
930                                              BasicBlock *ThenBlock) {
931   BasicBlock *Head = SplitBefore->getParent();
932   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
933   Instruction *HeadOldTerm = Head->getTerminator();
934   LLVMContext &C = Head->getContext();
935   Instruction *CheckTerm;
936   bool CreateThenBlock = (ThenBlock == nullptr);
937   if (CreateThenBlock) {
938     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
939     if (Unreachable)
940       CheckTerm = new UnreachableInst(C, ThenBlock);
941     else
942       CheckTerm = BranchInst::Create(Tail, ThenBlock);
943     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
944   } else
945     CheckTerm = ThenBlock->getTerminator();
946   BranchInst *HeadNewTerm =
947     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
948   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
949   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
950
951   if (DT) {
952     if (DomTreeNode *OldNode = DT->getNode(Head)) {
953       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
954
955       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
956       for (DomTreeNode *Child : Children)
957         DT->changeImmediateDominator(Child, NewNode);
958
959       // Head dominates ThenBlock.
960       if (CreateThenBlock)
961         DT->addNewBlock(ThenBlock, Head);
962       else
963         DT->changeImmediateDominator(ThenBlock, Head);
964     }
965   }
966
967   if (LI) {
968     if (Loop *L = LI->getLoopFor(Head)) {
969       L->addBasicBlockToLoop(ThenBlock, *LI);
970       L->addBasicBlockToLoop(Tail, *LI);
971     }
972   }
973
974   return CheckTerm;
975 }
976
977 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
978                                          Instruction **ThenTerm,
979                                          Instruction **ElseTerm,
980                                          MDNode *BranchWeights) {
981   BasicBlock *Head = SplitBefore->getParent();
982   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
983   Instruction *HeadOldTerm = Head->getTerminator();
984   LLVMContext &C = Head->getContext();
985   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
986   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
987   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
988   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
989   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
990   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
991   BranchInst *HeadNewTerm =
992     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
993   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
994   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
995 }
996
997 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
998                              BasicBlock *&IfFalse) {
999   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1000   BasicBlock *Pred1 = nullptr;
1001   BasicBlock *Pred2 = nullptr;
1002
1003   if (SomePHI) {
1004     if (SomePHI->getNumIncomingValues() != 2)
1005       return nullptr;
1006     Pred1 = SomePHI->getIncomingBlock(0);
1007     Pred2 = SomePHI->getIncomingBlock(1);
1008   } else {
1009     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1010     if (PI == PE) // No predecessor
1011       return nullptr;
1012     Pred1 = *PI++;
1013     if (PI == PE) // Only one predecessor
1014       return nullptr;
1015     Pred2 = *PI++;
1016     if (PI != PE) // More than two predecessors
1017       return nullptr;
1018   }
1019
1020   // We can only handle branches.  Other control flow will be lowered to
1021   // branches if possible anyway.
1022   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1023   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1024   if (!Pred1Br || !Pred2Br)
1025     return nullptr;
1026
1027   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1028   // either are.
1029   if (Pred2Br->isConditional()) {
1030     // If both branches are conditional, we don't have an "if statement".  In
1031     // reality, we could transform this case, but since the condition will be
1032     // required anyway, we stand no chance of eliminating it, so the xform is
1033     // probably not profitable.
1034     if (Pred1Br->isConditional())
1035       return nullptr;
1036
1037     std::swap(Pred1, Pred2);
1038     std::swap(Pred1Br, Pred2Br);
1039   }
1040
1041   if (Pred1Br->isConditional()) {
1042     // The only thing we have to watch out for here is to make sure that Pred2
1043     // doesn't have incoming edges from other blocks.  If it does, the condition
1044     // doesn't dominate BB.
1045     if (!Pred2->getSinglePredecessor())
1046       return nullptr;
1047
1048     // If we found a conditional branch predecessor, make sure that it branches
1049     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1050     if (Pred1Br->getSuccessor(0) == BB &&
1051         Pred1Br->getSuccessor(1) == Pred2) {
1052       IfTrue = Pred1;
1053       IfFalse = Pred2;
1054     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1055                Pred1Br->getSuccessor(1) == BB) {
1056       IfTrue = Pred2;
1057       IfFalse = Pred1;
1058     } else {
1059       // We know that one arm of the conditional goes to BB, so the other must
1060       // go somewhere unrelated, and this must not be an "if statement".
1061       return nullptr;
1062     }
1063
1064     return Pred1Br->getCondition();
1065   }
1066
1067   // Ok, if we got here, both predecessors end with an unconditional branch to
1068   // BB.  Don't panic!  If both blocks only have a single (identical)
1069   // predecessor, and THAT is a conditional branch, then we're all ok!
1070   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1071   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1072     return nullptr;
1073
1074   // Otherwise, if this is a conditional branch, then we can use it!
1075   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1076   if (!BI) return nullptr;
1077
1078   assert(BI->isConditional() && "Two successors but not conditional?");
1079   if (BI->getSuccessor(0) == Pred1) {
1080     IfTrue = Pred1;
1081     IfFalse = Pred2;
1082   } else {
1083     IfTrue = Pred2;
1084     IfFalse = Pred1;
1085   }
1086   return BI->getCondition();
1087 }