]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp
zfs: merge openzfs/zfs@c3b60eded (zfs-2.1-release) into stable/13
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Utils / Local.cpp
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90
91 #define DEBUG_TYPE "local"
92
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94
95 // Max recursion depth for collectBitParts used when detecting bswap and
96 // bitreverse idioms
97 static const unsigned BitPartRecursionMaxDepth = 64;
98
99 //===----------------------------------------------------------------------===//
100 //  Local constant propagation.
101 //
102
103 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
104 /// constant value, convert it into an unconditional branch to the constant
105 /// destination.  This is a nontrivial operation because the successors of this
106 /// basic block must have their PHI nodes updated.
107 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
108 /// conditions and indirectbr addresses this might make dead if
109 /// DeleteDeadConditions is true.
110 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
111                                   const TargetLibraryInfo *TLI,
112                                   DomTreeUpdater *DTU) {
113   Instruction *T = BB->getTerminator();
114   IRBuilder<> Builder(T);
115
116   // Branch - See if we are conditional jumping on constant
117   if (auto *BI = dyn_cast<BranchInst>(T)) {
118     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
119     BasicBlock *Dest1 = BI->getSuccessor(0);
120     BasicBlock *Dest2 = BI->getSuccessor(1);
121
122     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
123       // Are we branching on constant?
124       // YES.  Change to unconditional branch...
125       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
126       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
127
128       // Let the basic block know that we are letting go of it.  Based on this,
129       // it will adjust it's PHI nodes.
130       OldDest->removePredecessor(BB);
131
132       // Replace the conditional branch with an unconditional one.
133       Builder.CreateBr(Destination);
134       BI->eraseFromParent();
135       if (DTU)
136         DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
137       return true;
138     }
139
140     if (Dest2 == Dest1) {       // Conditional branch to same location?
141       // This branch matches something like this:
142       //     br bool %cond, label %Dest, label %Dest
143       // and changes it into:  br label %Dest
144
145       // Let the basic block know that we are letting go of one copy of it.
146       assert(BI->getParent() && "Terminator not inserted in block!");
147       Dest1->removePredecessor(BI->getParent());
148
149       // Replace the conditional branch with an unconditional one.
150       Builder.CreateBr(Dest1);
151       Value *Cond = BI->getCondition();
152       BI->eraseFromParent();
153       if (DeleteDeadConditions)
154         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
155       return true;
156     }
157     return false;
158   }
159
160   if (auto *SI = dyn_cast<SwitchInst>(T)) {
161     // If we are switching on a constant, we can convert the switch to an
162     // unconditional branch.
163     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
164     BasicBlock *DefaultDest = SI->getDefaultDest();
165     BasicBlock *TheOnlyDest = DefaultDest;
166
167     // If the default is unreachable, ignore it when searching for TheOnlyDest.
168     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
169         SI->getNumCases() > 0) {
170       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
171     }
172
173     // Figure out which case it goes to.
174     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
175       // Found case matching a constant operand?
176       if (i->getCaseValue() == CI) {
177         TheOnlyDest = i->getCaseSuccessor();
178         break;
179       }
180
181       // Check to see if this branch is going to the same place as the default
182       // dest.  If so, eliminate it as an explicit compare.
183       if (i->getCaseSuccessor() == DefaultDest) {
184         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
185         unsigned NCases = SI->getNumCases();
186         // Fold the case metadata into the default if there will be any branches
187         // left, unless the metadata doesn't match the switch.
188         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
189           // Collect branch weights into a vector.
190           SmallVector<uint32_t, 8> Weights;
191           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
192                ++MD_i) {
193             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
194             Weights.push_back(CI->getValue().getZExtValue());
195           }
196           // Merge weight of this case to the default weight.
197           unsigned idx = i->getCaseIndex();
198           Weights[0] += Weights[idx+1];
199           // Remove weight for this case.
200           std::swap(Weights[idx+1], Weights.back());
201           Weights.pop_back();
202           SI->setMetadata(LLVMContext::MD_prof,
203                           MDBuilder(BB->getContext()).
204                           createBranchWeights(Weights));
205         }
206         // Remove this entry.
207         BasicBlock *ParentBB = SI->getParent();
208         DefaultDest->removePredecessor(ParentBB);
209         i = SI->removeCase(i);
210         e = SI->case_end();
211         if (DTU)
212           DTU->applyUpdatesPermissive(
213               {{DominatorTree::Delete, ParentBB, DefaultDest}});
214         continue;
215       }
216
217       // Otherwise, check to see if the switch only branches to one destination.
218       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
219       // destinations.
220       if (i->getCaseSuccessor() != TheOnlyDest)
221         TheOnlyDest = nullptr;
222
223       // Increment this iterator as we haven't removed the case.
224       ++i;
225     }
226
227     if (CI && !TheOnlyDest) {
228       // Branching on a constant, but not any of the cases, go to the default
229       // successor.
230       TheOnlyDest = SI->getDefaultDest();
231     }
232
233     // If we found a single destination that we can fold the switch into, do so
234     // now.
235     if (TheOnlyDest) {
236       // Insert the new branch.
237       Builder.CreateBr(TheOnlyDest);
238       BasicBlock *BB = SI->getParent();
239       std::vector <DominatorTree::UpdateType> Updates;
240       if (DTU)
241         Updates.reserve(SI->getNumSuccessors() - 1);
242
243       // Remove entries from PHI nodes which we no longer branch to...
244       for (BasicBlock *Succ : successors(SI)) {
245         // Found case matching a constant operand?
246         if (Succ == TheOnlyDest) {
247           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
248         } else {
249           Succ->removePredecessor(BB);
250           if (DTU)
251             Updates.push_back({DominatorTree::Delete, BB, Succ});
252         }
253       }
254
255       // Delete the old switch.
256       Value *Cond = SI->getCondition();
257       SI->eraseFromParent();
258       if (DeleteDeadConditions)
259         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
260       if (DTU)
261         DTU->applyUpdatesPermissive(Updates);
262       return true;
263     }
264
265     if (SI->getNumCases() == 1) {
266       // Otherwise, we can fold this switch into a conditional branch
267       // instruction if it has only one non-default destination.
268       auto FirstCase = *SI->case_begin();
269       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
270           FirstCase.getCaseValue(), "cond");
271
272       // Insert the new branch.
273       BranchInst *NewBr = Builder.CreateCondBr(Cond,
274                                                FirstCase.getCaseSuccessor(),
275                                                SI->getDefaultDest());
276       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
277       if (MD && MD->getNumOperands() == 3) {
278         ConstantInt *SICase =
279             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
280         ConstantInt *SIDef =
281             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
282         assert(SICase && SIDef);
283         // The TrueWeight should be the weight for the single case of SI.
284         NewBr->setMetadata(LLVMContext::MD_prof,
285                         MDBuilder(BB->getContext()).
286                         createBranchWeights(SICase->getValue().getZExtValue(),
287                                             SIDef->getValue().getZExtValue()));
288       }
289
290       // Update make.implicit metadata to the newly-created conditional branch.
291       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
292       if (MakeImplicitMD)
293         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
294
295       // Delete the old switch.
296       SI->eraseFromParent();
297       return true;
298     }
299     return false;
300   }
301
302   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
303     // indirectbr blockaddress(@F, @BB) -> br label @BB
304     if (auto *BA =
305           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
306       BasicBlock *TheOnlyDest = BA->getBasicBlock();
307       std::vector <DominatorTree::UpdateType> Updates;
308       if (DTU)
309         Updates.reserve(IBI->getNumDestinations() - 1);
310
311       // Insert the new branch.
312       Builder.CreateBr(TheOnlyDest);
313
314       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
315         if (IBI->getDestination(i) == TheOnlyDest) {
316           TheOnlyDest = nullptr;
317         } else {
318           BasicBlock *ParentBB = IBI->getParent();
319           BasicBlock *DestBB = IBI->getDestination(i);
320           DestBB->removePredecessor(ParentBB);
321           if (DTU)
322             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
323         }
324       }
325       Value *Address = IBI->getAddress();
326       IBI->eraseFromParent();
327       if (DeleteDeadConditions)
328         // Delete pointer cast instructions.
329         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
330
331       // Also zap the blockaddress constant if there are no users remaining,
332       // otherwise the destination is still marked as having its address taken.
333       if (BA->use_empty())
334         BA->destroyConstant();
335
336       // If we didn't find our destination in the IBI successor list, then we
337       // have undefined behavior.  Replace the unconditional branch with an
338       // 'unreachable' instruction.
339       if (TheOnlyDest) {
340         BB->getTerminator()->eraseFromParent();
341         new UnreachableInst(BB->getContext(), BB);
342       }
343
344       if (DTU)
345         DTU->applyUpdatesPermissive(Updates);
346       return true;
347     }
348   }
349
350   return false;
351 }
352
353 //===----------------------------------------------------------------------===//
354 //  Local dead code elimination.
355 //
356
357 /// isInstructionTriviallyDead - Return true if the result produced by the
358 /// instruction is not used, and the instruction has no side effects.
359 ///
360 bool llvm::isInstructionTriviallyDead(Instruction *I,
361                                       const TargetLibraryInfo *TLI) {
362   if (!I->use_empty())
363     return false;
364   return wouldInstructionBeTriviallyDead(I, TLI);
365 }
366
367 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
368                                            const TargetLibraryInfo *TLI) {
369   if (I->isTerminator())
370     return false;
371
372   // We don't want the landingpad-like instructions removed by anything this
373   // general.
374   if (I->isEHPad())
375     return false;
376
377   // We don't want debug info removed by anything this general, unless
378   // debug info is empty.
379   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
380     if (DDI->getAddress())
381       return false;
382     return true;
383   }
384   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
385     if (DVI->getValue())
386       return false;
387     return true;
388   }
389   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
390     if (DLI->getLabel())
391       return false;
392     return true;
393   }
394
395   if (!I->mayHaveSideEffects())
396     return true;
397
398   // Special case intrinsics that "may have side effects" but can be deleted
399   // when dead.
400   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
401     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
402     if (II->getIntrinsicID() == Intrinsic::stacksave ||
403         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
404       return true;
405
406     if (II->isLifetimeStartOrEnd()) {
407       auto *Arg = II->getArgOperand(1);
408       // Lifetime intrinsics are dead when their right-hand is undef.
409       if (isa<UndefValue>(Arg))
410         return true;
411       // If the right-hand is an alloc, global, or argument and the only uses
412       // are lifetime intrinsics then the intrinsics are dead.
413       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
414         return llvm::all_of(Arg->uses(), [](Use &Use) {
415           if (IntrinsicInst *IntrinsicUse =
416                   dyn_cast<IntrinsicInst>(Use.getUser()))
417             return IntrinsicUse->isLifetimeStartOrEnd();
418           return false;
419         });
420       return false;
421     }
422
423     // Assumptions are dead if their condition is trivially true.  Guards on
424     // true are operationally no-ops.  In the future we can consider more
425     // sophisticated tradeoffs for guards considering potential for check
426     // widening, but for now we keep things simple.
427     if ((II->getIntrinsicID() == Intrinsic::assume &&
428          isAssumeWithEmptyBundle(*II)) ||
429         II->getIntrinsicID() == Intrinsic::experimental_guard) {
430       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
431         return !Cond->isZero();
432
433       return false;
434     }
435   }
436
437   if (isAllocLikeFn(I, TLI))
438     return true;
439
440   if (CallInst *CI = isFreeCall(I, TLI))
441     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
442       return C->isNullValue() || isa<UndefValue>(C);
443
444   if (auto *Call = dyn_cast<CallBase>(I))
445     if (isMathLibCallNoop(Call, TLI))
446       return true;
447
448   return false;
449 }
450
451 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
452 /// trivially dead instruction, delete it.  If that makes any of its operands
453 /// trivially dead, delete them too, recursively.  Return true if any
454 /// instructions were deleted.
455 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
456     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
457   Instruction *I = dyn_cast<Instruction>(V);
458   if (!I || !isInstructionTriviallyDead(I, TLI))
459     return false;
460
461   SmallVector<WeakTrackingVH, 16> DeadInsts;
462   DeadInsts.push_back(I);
463   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
464
465   return true;
466 }
467
468 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
469     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
470     MemorySSAUpdater *MSSAU) {
471   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
472   for (; S != E; ++S) {
473     auto *I = cast<Instruction>(DeadInsts[S]);
474     if (!isInstructionTriviallyDead(I)) {
475       DeadInsts[S] = nullptr;
476       ++Alive;
477     }
478   }
479   if (Alive == E)
480     return false;
481   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
482   return true;
483 }
484
485 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
486     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
487     MemorySSAUpdater *MSSAU) {
488   // Process the dead instruction list until empty.
489   while (!DeadInsts.empty()) {
490     Value *V = DeadInsts.pop_back_val();
491     Instruction *I = cast_or_null<Instruction>(V);
492     if (!I)
493       continue;
494     assert(isInstructionTriviallyDead(I, TLI) &&
495            "Live instruction found in dead worklist!");
496     assert(I->use_empty() && "Instructions with uses are not dead.");
497
498     // Don't lose the debug info while deleting the instructions.
499     salvageDebugInfo(*I);
500
501     // Null out all of the instruction's operands to see if any operand becomes
502     // dead as we go.
503     for (Use &OpU : I->operands()) {
504       Value *OpV = OpU.get();
505       OpU.set(nullptr);
506
507       if (!OpV->use_empty())
508         continue;
509
510       // If the operand is an instruction that became dead as we nulled out the
511       // operand, and if it is 'trivially' dead, delete it in a future loop
512       // iteration.
513       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
514         if (isInstructionTriviallyDead(OpI, TLI))
515           DeadInsts.push_back(OpI);
516     }
517     if (MSSAU)
518       MSSAU->removeMemoryAccess(I);
519
520     I->eraseFromParent();
521   }
522 }
523
524 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
525   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
526   findDbgUsers(DbgUsers, I);
527   for (auto *DII : DbgUsers) {
528     Value *Undef = UndefValue::get(I->getType());
529     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
530                                             ValueAsMetadata::get(Undef)));
531   }
532   return !DbgUsers.empty();
533 }
534
535 /// areAllUsesEqual - Check whether the uses of a value are all the same.
536 /// This is similar to Instruction::hasOneUse() except this will also return
537 /// true when there are no uses or multiple uses that all refer to the same
538 /// value.
539 static bool areAllUsesEqual(Instruction *I) {
540   Value::user_iterator UI = I->user_begin();
541   Value::user_iterator UE = I->user_end();
542   if (UI == UE)
543     return true;
544
545   User *TheUse = *UI;
546   for (++UI; UI != UE; ++UI) {
547     if (*UI != TheUse)
548       return false;
549   }
550   return true;
551 }
552
553 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
554 /// dead PHI node, due to being a def-use chain of single-use nodes that
555 /// either forms a cycle or is terminated by a trivially dead instruction,
556 /// delete it.  If that makes any of its operands trivially dead, delete them
557 /// too, recursively.  Return true if a change was made.
558 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
559                                         const TargetLibraryInfo *TLI,
560                                         llvm::MemorySSAUpdater *MSSAU) {
561   SmallPtrSet<Instruction*, 4> Visited;
562   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
563        I = cast<Instruction>(*I->user_begin())) {
564     if (I->use_empty())
565       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
566
567     // If we find an instruction more than once, we're on a cycle that
568     // won't prove fruitful.
569     if (!Visited.insert(I).second) {
570       // Break the cycle and delete the instruction and its operands.
571       I->replaceAllUsesWith(UndefValue::get(I->getType()));
572       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
573       return true;
574     }
575   }
576   return false;
577 }
578
579 static bool
580 simplifyAndDCEInstruction(Instruction *I,
581                           SmallSetVector<Instruction *, 16> &WorkList,
582                           const DataLayout &DL,
583                           const TargetLibraryInfo *TLI) {
584   if (isInstructionTriviallyDead(I, TLI)) {
585     salvageDebugInfo(*I);
586
587     // Null out all of the instruction's operands to see if any operand becomes
588     // dead as we go.
589     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
590       Value *OpV = I->getOperand(i);
591       I->setOperand(i, nullptr);
592
593       if (!OpV->use_empty() || I == OpV)
594         continue;
595
596       // If the operand is an instruction that became dead as we nulled out the
597       // operand, and if it is 'trivially' dead, delete it in a future loop
598       // iteration.
599       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
600         if (isInstructionTriviallyDead(OpI, TLI))
601           WorkList.insert(OpI);
602     }
603
604     I->eraseFromParent();
605
606     return true;
607   }
608
609   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
610     // Add the users to the worklist. CAREFUL: an instruction can use itself,
611     // in the case of a phi node.
612     for (User *U : I->users()) {
613       if (U != I) {
614         WorkList.insert(cast<Instruction>(U));
615       }
616     }
617
618     // Replace the instruction with its simplified value.
619     bool Changed = false;
620     if (!I->use_empty()) {
621       I->replaceAllUsesWith(SimpleV);
622       Changed = true;
623     }
624     if (isInstructionTriviallyDead(I, TLI)) {
625       I->eraseFromParent();
626       Changed = true;
627     }
628     return Changed;
629   }
630   return false;
631 }
632
633 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
634 /// simplify any instructions in it and recursively delete dead instructions.
635 ///
636 /// This returns true if it changed the code, note that it can delete
637 /// instructions in other blocks as well in this block.
638 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
639                                        const TargetLibraryInfo *TLI) {
640   bool MadeChange = false;
641   const DataLayout &DL = BB->getModule()->getDataLayout();
642
643 #ifndef NDEBUG
644   // In debug builds, ensure that the terminator of the block is never replaced
645   // or deleted by these simplifications. The idea of simplification is that it
646   // cannot introduce new instructions, and there is no way to replace the
647   // terminator of a block without introducing a new instruction.
648   AssertingVH<Instruction> TerminatorVH(&BB->back());
649 #endif
650
651   SmallSetVector<Instruction *, 16> WorkList;
652   // Iterate over the original function, only adding insts to the worklist
653   // if they actually need to be revisited. This avoids having to pre-init
654   // the worklist with the entire function's worth of instructions.
655   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
656        BI != E;) {
657     assert(!BI->isTerminator());
658     Instruction *I = &*BI;
659     ++BI;
660
661     // We're visiting this instruction now, so make sure it's not in the
662     // worklist from an earlier visit.
663     if (!WorkList.count(I))
664       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
665   }
666
667   while (!WorkList.empty()) {
668     Instruction *I = WorkList.pop_back_val();
669     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
670   }
671   return MadeChange;
672 }
673
674 //===----------------------------------------------------------------------===//
675 //  Control Flow Graph Restructuring.
676 //
677
678 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
679                                         DomTreeUpdater *DTU) {
680   // This only adjusts blocks with PHI nodes.
681   if (!isa<PHINode>(BB->begin()))
682     return;
683
684   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
685   // them down.  This will leave us with single entry phi nodes and other phis
686   // that can be removed.
687   BB->removePredecessor(Pred, true);
688
689   WeakTrackingVH PhiIt = &BB->front();
690   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
691     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
692     Value *OldPhiIt = PhiIt;
693
694     if (!recursivelySimplifyInstruction(PN))
695       continue;
696
697     // If recursive simplification ended up deleting the next PHI node we would
698     // iterate to, then our iterator is invalid, restart scanning from the top
699     // of the block.
700     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
701   }
702   if (DTU)
703     DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
704 }
705
706 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
707                                        DomTreeUpdater *DTU) {
708
709   // If BB has single-entry PHI nodes, fold them.
710   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
711     Value *NewVal = PN->getIncomingValue(0);
712     // Replace self referencing PHI with undef, it must be dead.
713     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
714     PN->replaceAllUsesWith(NewVal);
715     PN->eraseFromParent();
716   }
717
718   BasicBlock *PredBB = DestBB->getSinglePredecessor();
719   assert(PredBB && "Block doesn't have a single predecessor!");
720
721   bool ReplaceEntryBB = false;
722   if (PredBB == &DestBB->getParent()->getEntryBlock())
723     ReplaceEntryBB = true;
724
725   // DTU updates: Collect all the edges that enter
726   // PredBB. These dominator edges will be redirected to DestBB.
727   SmallVector<DominatorTree::UpdateType, 32> Updates;
728
729   if (DTU) {
730     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
731     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
732       Updates.push_back({DominatorTree::Delete, *I, PredBB});
733       // This predecessor of PredBB may already have DestBB as a successor.
734       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
735         Updates.push_back({DominatorTree::Insert, *I, DestBB});
736     }
737   }
738
739   // Zap anything that took the address of DestBB.  Not doing this will give the
740   // address an invalid value.
741   if (DestBB->hasAddressTaken()) {
742     BlockAddress *BA = BlockAddress::get(DestBB);
743     Constant *Replacement =
744       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
745     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
746                                                      BA->getType()));
747     BA->destroyConstant();
748   }
749
750   // Anything that branched to PredBB now branches to DestBB.
751   PredBB->replaceAllUsesWith(DestBB);
752
753   // Splice all the instructions from PredBB to DestBB.
754   PredBB->getTerminator()->eraseFromParent();
755   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
756   new UnreachableInst(PredBB->getContext(), PredBB);
757
758   // If the PredBB is the entry block of the function, move DestBB up to
759   // become the entry block after we erase PredBB.
760   if (ReplaceEntryBB)
761     DestBB->moveAfter(PredBB);
762
763   if (DTU) {
764     assert(PredBB->getInstList().size() == 1 &&
765            isa<UnreachableInst>(PredBB->getTerminator()) &&
766            "The successor list of PredBB isn't empty before "
767            "applying corresponding DTU updates.");
768     DTU->applyUpdatesPermissive(Updates);
769     DTU->deleteBB(PredBB);
770     // Recalculation of DomTree is needed when updating a forward DomTree and
771     // the Entry BB is replaced.
772     if (ReplaceEntryBB && DTU->hasDomTree()) {
773       // The entry block was removed and there is no external interface for
774       // the dominator tree to be notified of this change. In this corner-case
775       // we recalculate the entire tree.
776       DTU->recalculate(*(DestBB->getParent()));
777     }
778   }
779
780   else {
781     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
782   }
783 }
784
785 /// Return true if we can choose one of these values to use in place of the
786 /// other. Note that we will always choose the non-undef value to keep.
787 static bool CanMergeValues(Value *First, Value *Second) {
788   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
789 }
790
791 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
792 /// branch to Succ, into Succ.
793 ///
794 /// Assumption: Succ is the single successor for BB.
795 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
796   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
797
798   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
799                     << Succ->getName() << "\n");
800   // Shortcut, if there is only a single predecessor it must be BB and merging
801   // is always safe
802   if (Succ->getSinglePredecessor()) return true;
803
804   // Make a list of the predecessors of BB
805   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
806
807   // Look at all the phi nodes in Succ, to see if they present a conflict when
808   // merging these blocks
809   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
810     PHINode *PN = cast<PHINode>(I);
811
812     // If the incoming value from BB is again a PHINode in
813     // BB which has the same incoming value for *PI as PN does, we can
814     // merge the phi nodes and then the blocks can still be merged
815     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
816     if (BBPN && BBPN->getParent() == BB) {
817       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
818         BasicBlock *IBB = PN->getIncomingBlock(PI);
819         if (BBPreds.count(IBB) &&
820             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
821                             PN->getIncomingValue(PI))) {
822           LLVM_DEBUG(dbgs()
823                      << "Can't fold, phi node " << PN->getName() << " in "
824                      << Succ->getName() << " is conflicting with "
825                      << BBPN->getName() << " with regard to common predecessor "
826                      << IBB->getName() << "\n");
827           return false;
828         }
829       }
830     } else {
831       Value* Val = PN->getIncomingValueForBlock(BB);
832       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
833         // See if the incoming value for the common predecessor is equal to the
834         // one for BB, in which case this phi node will not prevent the merging
835         // of the block.
836         BasicBlock *IBB = PN->getIncomingBlock(PI);
837         if (BBPreds.count(IBB) &&
838             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
839           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
840                             << " in " << Succ->getName()
841                             << " is conflicting with regard to common "
842                             << "predecessor " << IBB->getName() << "\n");
843           return false;
844         }
845       }
846     }
847   }
848
849   return true;
850 }
851
852 using PredBlockVector = SmallVector<BasicBlock *, 16>;
853 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
854
855 /// Determines the value to use as the phi node input for a block.
856 ///
857 /// Select between \p OldVal any value that we know flows from \p BB
858 /// to a particular phi on the basis of which one (if either) is not
859 /// undef. Update IncomingValues based on the selected value.
860 ///
861 /// \param OldVal The value we are considering selecting.
862 /// \param BB The block that the value flows in from.
863 /// \param IncomingValues A map from block-to-value for other phi inputs
864 /// that we have examined.
865 ///
866 /// \returns the selected value.
867 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
868                                           IncomingValueMap &IncomingValues) {
869   if (!isa<UndefValue>(OldVal)) {
870     assert((!IncomingValues.count(BB) ||
871             IncomingValues.find(BB)->second == OldVal) &&
872            "Expected OldVal to match incoming value from BB!");
873
874     IncomingValues.insert(std::make_pair(BB, OldVal));
875     return OldVal;
876   }
877
878   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
879   if (It != IncomingValues.end()) return It->second;
880
881   return OldVal;
882 }
883
884 /// Create a map from block to value for the operands of a
885 /// given phi.
886 ///
887 /// Create a map from block to value for each non-undef value flowing
888 /// into \p PN.
889 ///
890 /// \param PN The phi we are collecting the map for.
891 /// \param IncomingValues [out] The map from block to value for this phi.
892 static void gatherIncomingValuesToPhi(PHINode *PN,
893                                       IncomingValueMap &IncomingValues) {
894   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
895     BasicBlock *BB = PN->getIncomingBlock(i);
896     Value *V = PN->getIncomingValue(i);
897
898     if (!isa<UndefValue>(V))
899       IncomingValues.insert(std::make_pair(BB, V));
900   }
901 }
902
903 /// Replace the incoming undef values to a phi with the values
904 /// from a block-to-value map.
905 ///
906 /// \param PN The phi we are replacing the undefs in.
907 /// \param IncomingValues A map from block to value.
908 static void replaceUndefValuesInPhi(PHINode *PN,
909                                     const IncomingValueMap &IncomingValues) {
910   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
911     Value *V = PN->getIncomingValue(i);
912
913     if (!isa<UndefValue>(V)) continue;
914
915     BasicBlock *BB = PN->getIncomingBlock(i);
916     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
917     if (It == IncomingValues.end()) continue;
918
919     PN->setIncomingValue(i, It->second);
920   }
921 }
922
923 /// Replace a value flowing from a block to a phi with
924 /// potentially multiple instances of that value flowing from the
925 /// block's predecessors to the phi.
926 ///
927 /// \param BB The block with the value flowing into the phi.
928 /// \param BBPreds The predecessors of BB.
929 /// \param PN The phi that we are updating.
930 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
931                                                 const PredBlockVector &BBPreds,
932                                                 PHINode *PN) {
933   Value *OldVal = PN->removeIncomingValue(BB, false);
934   assert(OldVal && "No entry in PHI for Pred BB!");
935
936   IncomingValueMap IncomingValues;
937
938   // We are merging two blocks - BB, and the block containing PN - and
939   // as a result we need to redirect edges from the predecessors of BB
940   // to go to the block containing PN, and update PN
941   // accordingly. Since we allow merging blocks in the case where the
942   // predecessor and successor blocks both share some predecessors,
943   // and where some of those common predecessors might have undef
944   // values flowing into PN, we want to rewrite those values to be
945   // consistent with the non-undef values.
946
947   gatherIncomingValuesToPhi(PN, IncomingValues);
948
949   // If this incoming value is one of the PHI nodes in BB, the new entries
950   // in the PHI node are the entries from the old PHI.
951   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
952     PHINode *OldValPN = cast<PHINode>(OldVal);
953     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
954       // Note that, since we are merging phi nodes and BB and Succ might
955       // have common predecessors, we could end up with a phi node with
956       // identical incoming branches. This will be cleaned up later (and
957       // will trigger asserts if we try to clean it up now, without also
958       // simplifying the corresponding conditional branch).
959       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
960       Value *PredVal = OldValPN->getIncomingValue(i);
961       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
962                                                     IncomingValues);
963
964       // And add a new incoming value for this predecessor for the
965       // newly retargeted branch.
966       PN->addIncoming(Selected, PredBB);
967     }
968   } else {
969     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
970       // Update existing incoming values in PN for this
971       // predecessor of BB.
972       BasicBlock *PredBB = BBPreds[i];
973       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
974                                                     IncomingValues);
975
976       // And add a new incoming value for this predecessor for the
977       // newly retargeted branch.
978       PN->addIncoming(Selected, PredBB);
979     }
980   }
981
982   replaceUndefValuesInPhi(PN, IncomingValues);
983 }
984
985 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
986                                                    DomTreeUpdater *DTU) {
987   assert(BB != &BB->getParent()->getEntryBlock() &&
988          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
989
990   // We can't eliminate infinite loops.
991   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
992   if (BB == Succ) return false;
993
994   // Check to see if merging these blocks would cause conflicts for any of the
995   // phi nodes in BB or Succ. If not, we can safely merge.
996   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
997
998   // Check for cases where Succ has multiple predecessors and a PHI node in BB
999   // has uses which will not disappear when the PHI nodes are merged.  It is
1000   // possible to handle such cases, but difficult: it requires checking whether
1001   // BB dominates Succ, which is non-trivial to calculate in the case where
1002   // Succ has multiple predecessors.  Also, it requires checking whether
1003   // constructing the necessary self-referential PHI node doesn't introduce any
1004   // conflicts; this isn't too difficult, but the previous code for doing this
1005   // was incorrect.
1006   //
1007   // Note that if this check finds a live use, BB dominates Succ, so BB is
1008   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1009   // folding the branch isn't profitable in that case anyway.
1010   if (!Succ->getSinglePredecessor()) {
1011     BasicBlock::iterator BBI = BB->begin();
1012     while (isa<PHINode>(*BBI)) {
1013       for (Use &U : BBI->uses()) {
1014         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1015           if (PN->getIncomingBlock(U) != BB)
1016             return false;
1017         } else {
1018           return false;
1019         }
1020       }
1021       ++BBI;
1022     }
1023   }
1024
1025   // We cannot fold the block if it's a branch to an already present callbr
1026   // successor because that creates duplicate successors.
1027   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1028     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1029       if (Succ == CBI->getDefaultDest())
1030         return false;
1031       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1032         if (Succ == CBI->getIndirectDest(i))
1033           return false;
1034     }
1035   }
1036
1037   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1038
1039   SmallVector<DominatorTree::UpdateType, 32> Updates;
1040   if (DTU) {
1041     Updates.push_back({DominatorTree::Delete, BB, Succ});
1042     // All predecessors of BB will be moved to Succ.
1043     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1044       Updates.push_back({DominatorTree::Delete, *I, BB});
1045       // This predecessor of BB may already have Succ as a successor.
1046       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1047         Updates.push_back({DominatorTree::Insert, *I, Succ});
1048     }
1049   }
1050
1051   if (isa<PHINode>(Succ->begin())) {
1052     // If there is more than one pred of succ, and there are PHI nodes in
1053     // the successor, then we need to add incoming edges for the PHI nodes
1054     //
1055     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1056
1057     // Loop over all of the PHI nodes in the successor of BB.
1058     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1059       PHINode *PN = cast<PHINode>(I);
1060
1061       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1062     }
1063   }
1064
1065   if (Succ->getSinglePredecessor()) {
1066     // BB is the only predecessor of Succ, so Succ will end up with exactly
1067     // the same predecessors BB had.
1068
1069     // Copy over any phi, debug or lifetime instruction.
1070     BB->getTerminator()->eraseFromParent();
1071     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1072                                BB->getInstList());
1073   } else {
1074     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1075       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1076       assert(PN->use_empty() && "There shouldn't be any uses here!");
1077       PN->eraseFromParent();
1078     }
1079   }
1080
1081   // If the unconditional branch we replaced contains llvm.loop metadata, we
1082   // add the metadata to the branch instructions in the predecessors.
1083   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1084   Instruction *TI = BB->getTerminator();
1085   if (TI)
1086     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1087       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1088         BasicBlock *Pred = *PI;
1089         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1090       }
1091
1092   // Everything that jumped to BB now goes to Succ.
1093   BB->replaceAllUsesWith(Succ);
1094   if (!Succ->hasName()) Succ->takeName(BB);
1095
1096   // Clear the successor list of BB to match updates applying to DTU later.
1097   if (BB->getTerminator())
1098     BB->getInstList().pop_back();
1099   new UnreachableInst(BB->getContext(), BB);
1100   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1101                            "applying corresponding DTU updates.");
1102
1103   if (DTU) {
1104     DTU->applyUpdatesPermissive(Updates);
1105     DTU->deleteBB(BB);
1106   } else {
1107     BB->eraseFromParent(); // Delete the old basic block.
1108   }
1109   return true;
1110 }
1111
1112 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1113   // This implementation doesn't currently consider undef operands
1114   // specially. Theoretically, two phis which are identical except for
1115   // one having an undef where the other doesn't could be collapsed.
1116
1117   struct PHIDenseMapInfo {
1118     static PHINode *getEmptyKey() {
1119       return DenseMapInfo<PHINode *>::getEmptyKey();
1120     }
1121
1122     static PHINode *getTombstoneKey() {
1123       return DenseMapInfo<PHINode *>::getTombstoneKey();
1124     }
1125
1126     static unsigned getHashValue(PHINode *PN) {
1127       // Compute a hash value on the operands. Instcombine will likely have
1128       // sorted them, which helps expose duplicates, but we have to check all
1129       // the operands to be safe in case instcombine hasn't run.
1130       return static_cast<unsigned>(hash_combine(
1131           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1132           hash_combine_range(PN->block_begin(), PN->block_end())));
1133     }
1134
1135     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1136       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1137           RHS == getEmptyKey() || RHS == getTombstoneKey())
1138         return LHS == RHS;
1139       return LHS->isIdenticalTo(RHS);
1140     }
1141   };
1142
1143   // Set of unique PHINodes.
1144   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1145
1146   // Examine each PHI.
1147   bool Changed = false;
1148   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1149     auto Inserted = PHISet.insert(PN);
1150     if (!Inserted.second) {
1151       // A duplicate. Replace this PHI with its duplicate.
1152       PN->replaceAllUsesWith(*Inserted.first);
1153       PN->eraseFromParent();
1154       Changed = true;
1155
1156       // The RAUW can change PHIs that we already visited. Start over from the
1157       // beginning.
1158       PHISet.clear();
1159       I = BB->begin();
1160     }
1161   }
1162
1163   return Changed;
1164 }
1165
1166 /// enforceKnownAlignment - If the specified pointer points to an object that
1167 /// we control, modify the object's alignment to PrefAlign. This isn't
1168 /// often possible though. If alignment is important, a more reliable approach
1169 /// is to simply align all global variables and allocation instructions to
1170 /// their preferred alignment from the beginning.
1171 static Align enforceKnownAlignment(Value *V, Align Alignment, Align PrefAlign,
1172                                    const DataLayout &DL) {
1173   assert(PrefAlign > Alignment);
1174
1175   V = V->stripPointerCasts();
1176
1177   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1178     // TODO: ideally, computeKnownBits ought to have used
1179     // AllocaInst::getAlignment() in its computation already, making
1180     // the below max redundant. But, as it turns out,
1181     // stripPointerCasts recurses through infinite layers of bitcasts,
1182     // while computeKnownBits is not allowed to traverse more than 6
1183     // levels.
1184     Alignment = std::max(AI->getAlign(), Alignment);
1185     if (PrefAlign <= Alignment)
1186       return Alignment;
1187
1188     // If the preferred alignment is greater than the natural stack alignment
1189     // then don't round up. This avoids dynamic stack realignment.
1190     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1191       return Alignment;
1192     AI->setAlignment(PrefAlign);
1193     return PrefAlign;
1194   }
1195
1196   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1197     // TODO: as above, this shouldn't be necessary.
1198     Alignment = max(GO->getAlign(), Alignment);
1199     if (PrefAlign <= Alignment)
1200       return Alignment;
1201
1202     // If there is a large requested alignment and we can, bump up the alignment
1203     // of the global.  If the memory we set aside for the global may not be the
1204     // memory used by the final program then it is impossible for us to reliably
1205     // enforce the preferred alignment.
1206     if (!GO->canIncreaseAlignment())
1207       return Alignment;
1208
1209     GO->setAlignment(PrefAlign);
1210     return PrefAlign;
1211   }
1212
1213   return Alignment;
1214 }
1215
1216 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1217                                        const DataLayout &DL,
1218                                        const Instruction *CxtI,
1219                                        AssumptionCache *AC,
1220                                        const DominatorTree *DT) {
1221   assert(V->getType()->isPointerTy() &&
1222          "getOrEnforceKnownAlignment expects a pointer!");
1223
1224   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1225   unsigned TrailZ = Known.countMinTrailingZeros();
1226
1227   // Avoid trouble with ridiculously large TrailZ values, such as
1228   // those computed from a null pointer.
1229   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1230   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1231
1232   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1233
1234   if (PrefAlign && *PrefAlign > Alignment)
1235     Alignment = enforceKnownAlignment(V, Alignment, *PrefAlign, DL);
1236
1237   // We don't need to make any adjustment.
1238   return Alignment;
1239 }
1240
1241 ///===---------------------------------------------------------------------===//
1242 ///  Dbg Intrinsic utilities
1243 ///
1244
1245 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1246 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1247                              DIExpression *DIExpr,
1248                              PHINode *APN) {
1249   // Since we can't guarantee that the original dbg.declare instrinsic
1250   // is removed by LowerDbgDeclare(), we need to make sure that we are
1251   // not inserting the same dbg.value intrinsic over and over.
1252   SmallVector<DbgValueInst *, 1> DbgValues;
1253   findDbgValues(DbgValues, APN);
1254   for (auto *DVI : DbgValues) {
1255     assert(DVI->getValue() == APN);
1256     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1257       return true;
1258   }
1259   return false;
1260 }
1261
1262 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1263 /// (or fragment of the variable) described by \p DII.
1264 ///
1265 /// This is primarily intended as a helper for the different
1266 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1267 /// converted describes an alloca'd variable, so we need to use the
1268 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1269 /// identified as covering an n-bit fragment, if the store size of i1 is at
1270 /// least n bits.
1271 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1272   const DataLayout &DL = DII->getModule()->getDataLayout();
1273   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1274   if (auto FragmentSize = DII->getFragmentSizeInBits())
1275     return ValueSize >= *FragmentSize;
1276   // We can't always calculate the size of the DI variable (e.g. if it is a
1277   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1278   // intead.
1279   if (DII->isAddressOfVariable())
1280     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1281       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1282         return ValueSize >= *FragmentSize;
1283   // Could not determine size of variable. Conservatively return false.
1284   return false;
1285 }
1286
1287 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1288 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1289 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1290 /// case this DebugLoc leaks into any adjacent instructions.
1291 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1292   // Original dbg.declare must have a location.
1293   DebugLoc DeclareLoc = DII->getDebugLoc();
1294   MDNode *Scope = DeclareLoc.getScope();
1295   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1296   // Produce an unknown location with the correct scope / inlinedAt fields.
1297   return DebugLoc::get(0, 0, Scope, InlinedAt);
1298 }
1299
1300 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1301 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1302 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1303                                            StoreInst *SI, DIBuilder &Builder) {
1304   assert(DII->isAddressOfVariable());
1305   auto *DIVar = DII->getVariable();
1306   assert(DIVar && "Missing variable");
1307   auto *DIExpr = DII->getExpression();
1308   Value *DV = SI->getValueOperand();
1309
1310   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1311
1312   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1313     // FIXME: If storing to a part of the variable described by the dbg.declare,
1314     // then we want to insert a dbg.value for the corresponding fragment.
1315     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1316                       << *DII << '\n');
1317     // For now, when there is a store to parts of the variable (but we do not
1318     // know which part) we insert an dbg.value instrinsic to indicate that we
1319     // know nothing about the variable's content.
1320     DV = UndefValue::get(DV->getType());
1321     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1322     return;
1323   }
1324
1325   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1326 }
1327
1328 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1329 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1330 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1331                                            LoadInst *LI, DIBuilder &Builder) {
1332   auto *DIVar = DII->getVariable();
1333   auto *DIExpr = DII->getExpression();
1334   assert(DIVar && "Missing variable");
1335
1336   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1337     // FIXME: If only referring to a part of the variable described by the
1338     // dbg.declare, then we want to insert a dbg.value for the corresponding
1339     // fragment.
1340     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1341                       << *DII << '\n');
1342     return;
1343   }
1344
1345   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1346
1347   // We are now tracking the loaded value instead of the address. In the
1348   // future if multi-location support is added to the IR, it might be
1349   // preferable to keep tracking both the loaded value and the original
1350   // address in case the alloca can not be elided.
1351   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1352       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1353   DbgValue->insertAfter(LI);
1354 }
1355
1356 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1357 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1358 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1359                                            PHINode *APN, DIBuilder &Builder) {
1360   auto *DIVar = DII->getVariable();
1361   auto *DIExpr = DII->getExpression();
1362   assert(DIVar && "Missing variable");
1363
1364   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1365     return;
1366
1367   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1368     // FIXME: If only referring to a part of the variable described by the
1369     // dbg.declare, then we want to insert a dbg.value for the corresponding
1370     // fragment.
1371     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1372                       << *DII << '\n');
1373     return;
1374   }
1375
1376   BasicBlock *BB = APN->getParent();
1377   auto InsertionPt = BB->getFirstInsertionPt();
1378
1379   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1380
1381   // The block may be a catchswitch block, which does not have a valid
1382   // insertion point.
1383   // FIXME: Insert dbg.value markers in the successors when appropriate.
1384   if (InsertionPt != BB->end())
1385     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1386 }
1387
1388 /// Determine whether this alloca is either a VLA or an array.
1389 static bool isArray(AllocaInst *AI) {
1390   return AI->isArrayAllocation() ||
1391          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1392 }
1393
1394 /// Determine whether this alloca is a structure.
1395 static bool isStructure(AllocaInst *AI) {
1396   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1397 }
1398
1399 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1400 /// of llvm.dbg.value intrinsics.
1401 bool llvm::LowerDbgDeclare(Function &F) {
1402   bool Changed = false;
1403   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1404   SmallVector<DbgDeclareInst *, 4> Dbgs;
1405   for (auto &FI : F)
1406     for (Instruction &BI : FI)
1407       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1408         Dbgs.push_back(DDI);
1409
1410   if (Dbgs.empty())
1411     return Changed;
1412
1413   for (auto &I : Dbgs) {
1414     DbgDeclareInst *DDI = I;
1415     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1416     // If this is an alloca for a scalar variable, insert a dbg.value
1417     // at each load and store to the alloca and erase the dbg.declare.
1418     // The dbg.values allow tracking a variable even if it is not
1419     // stored on the stack, while the dbg.declare can only describe
1420     // the stack slot (and at a lexical-scope granularity). Later
1421     // passes will attempt to elide the stack slot.
1422     if (!AI || isArray(AI) || isStructure(AI))
1423       continue;
1424
1425     // A volatile load/store means that the alloca can't be elided anyway.
1426     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1427           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1428             return LI->isVolatile();
1429           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1430             return SI->isVolatile();
1431           return false;
1432         }))
1433       continue;
1434
1435     SmallVector<const Value *, 8> WorkList;
1436     WorkList.push_back(AI);
1437     while (!WorkList.empty()) {
1438       const Value *V = WorkList.pop_back_val();
1439       for (auto &AIUse : V->uses()) {
1440         User *U = AIUse.getUser();
1441         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1442           if (AIUse.getOperandNo() == 1)
1443             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1444         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1445           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1446         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1447           // This is a call by-value or some other instruction that takes a
1448           // pointer to the variable. Insert a *value* intrinsic that describes
1449           // the variable by dereferencing the alloca.
1450           if (!CI->isLifetimeStartOrEnd()) {
1451             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1452             auto *DerefExpr =
1453                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1454             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1455                                         NewLoc, CI);
1456           }
1457         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1458           if (BI->getType()->isPointerTy())
1459             WorkList.push_back(BI);
1460         }
1461       }
1462     }
1463     DDI->eraseFromParent();
1464     Changed = true;
1465   }
1466
1467   if (Changed)
1468   for (BasicBlock &BB : F)
1469     RemoveRedundantDbgInstrs(&BB);
1470
1471   return Changed;
1472 }
1473
1474 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1475 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1476                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1477   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1478   if (InsertedPHIs.size() == 0)
1479     return;
1480
1481   // Map existing PHI nodes to their dbg.values.
1482   ValueToValueMapTy DbgValueMap;
1483   for (auto &I : *BB) {
1484     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1485       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1486         DbgValueMap.insert({Loc, DbgII});
1487     }
1488   }
1489   if (DbgValueMap.size() == 0)
1490     return;
1491
1492   // Then iterate through the new PHIs and look to see if they use one of the
1493   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1494   // propagate the info through the new PHI.
1495   LLVMContext &C = BB->getContext();
1496   for (auto PHI : InsertedPHIs) {
1497     BasicBlock *Parent = PHI->getParent();
1498     // Avoid inserting an intrinsic into an EH block.
1499     if (Parent->getFirstNonPHI()->isEHPad())
1500       continue;
1501     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1502     for (auto VI : PHI->operand_values()) {
1503       auto V = DbgValueMap.find(VI);
1504       if (V != DbgValueMap.end()) {
1505         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1506         Instruction *NewDbgII = DbgII->clone();
1507         NewDbgII->setOperand(0, PhiMAV);
1508         auto InsertionPt = Parent->getFirstInsertionPt();
1509         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1510         NewDbgII->insertBefore(&*InsertionPt);
1511       }
1512     }
1513   }
1514 }
1515
1516 /// Finds all intrinsics declaring local variables as living in the memory that
1517 /// 'V' points to. This may include a mix of dbg.declare and
1518 /// dbg.addr intrinsics.
1519 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1520   // This function is hot. Check whether the value has any metadata to avoid a
1521   // DenseMap lookup.
1522   if (!V->isUsedByMetadata())
1523     return {};
1524   auto *L = LocalAsMetadata::getIfExists(V);
1525   if (!L)
1526     return {};
1527   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1528   if (!MDV)
1529     return {};
1530
1531   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1532   for (User *U : MDV->users()) {
1533     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1534       if (DII->isAddressOfVariable())
1535         Declares.push_back(DII);
1536   }
1537
1538   return Declares;
1539 }
1540
1541 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1542   TinyPtrVector<DbgDeclareInst *> DDIs;
1543   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1544     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1545       DDIs.push_back(DDI);
1546   return DDIs;
1547 }
1548
1549 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1550   // This function is hot. Check whether the value has any metadata to avoid a
1551   // DenseMap lookup.
1552   if (!V->isUsedByMetadata())
1553     return;
1554   if (auto *L = LocalAsMetadata::getIfExists(V))
1555     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1556       for (User *U : MDV->users())
1557         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1558           DbgValues.push_back(DVI);
1559 }
1560
1561 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1562                         Value *V) {
1563   // This function is hot. Check whether the value has any metadata to avoid a
1564   // DenseMap lookup.
1565   if (!V->isUsedByMetadata())
1566     return;
1567   if (auto *L = LocalAsMetadata::getIfExists(V))
1568     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1569       for (User *U : MDV->users())
1570         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1571           DbgUsers.push_back(DII);
1572 }
1573
1574 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1575                              DIBuilder &Builder, uint8_t DIExprFlags,
1576                              int Offset) {
1577   auto DbgAddrs = FindDbgAddrUses(Address);
1578   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1579     DebugLoc Loc = DII->getDebugLoc();
1580     auto *DIVar = DII->getVariable();
1581     auto *DIExpr = DII->getExpression();
1582     assert(DIVar && "Missing variable");
1583     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1584     // Insert llvm.dbg.declare immediately before DII, and remove old
1585     // llvm.dbg.declare.
1586     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1587     DII->eraseFromParent();
1588   }
1589   return !DbgAddrs.empty();
1590 }
1591
1592 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1593                                         DIBuilder &Builder, int Offset) {
1594   DebugLoc Loc = DVI->getDebugLoc();
1595   auto *DIVar = DVI->getVariable();
1596   auto *DIExpr = DVI->getExpression();
1597   assert(DIVar && "Missing variable");
1598
1599   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1600   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1601   // it and give up.
1602   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1603       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1604     return;
1605
1606   // Insert the offset before the first deref.
1607   // We could just change the offset argument of dbg.value, but it's unsigned...
1608   if (Offset)
1609     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1610
1611   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1612   DVI->eraseFromParent();
1613 }
1614
1615 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1616                                     DIBuilder &Builder, int Offset) {
1617   if (auto *L = LocalAsMetadata::getIfExists(AI))
1618     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1619       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1620         Use &U = *UI++;
1621         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1622           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1623       }
1624 }
1625
1626 /// Wrap \p V in a ValueAsMetadata instance.
1627 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1628   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1629 }
1630
1631 /// Where possible to salvage debug information for \p I do so
1632 /// and return True. If not possible mark undef and return False.
1633 void llvm::salvageDebugInfo(Instruction &I) {
1634   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1635   findDbgUsers(DbgUsers, &I);
1636   salvageDebugInfoForDbgValues(I, DbgUsers);
1637 }
1638
1639 void llvm::salvageDebugInfoForDbgValues(
1640     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1641   auto &Ctx = I.getContext();
1642   bool Salvaged = false;
1643   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1644
1645   for (auto *DII : DbgUsers) {
1646     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1647     // are implicitly pointing out the value as a DWARF memory location
1648     // description.
1649     bool StackValue = isa<DbgValueInst>(DII);
1650
1651     DIExpression *DIExpr =
1652         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1653
1654     // salvageDebugInfoImpl should fail on examining the first element of
1655     // DbgUsers, or none of them.
1656     if (!DIExpr)
1657       break;
1658
1659     DII->setOperand(0, wrapMD(I.getOperand(0)));
1660     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1661     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1662     Salvaged = true;
1663   }
1664
1665   if (Salvaged)
1666     return;
1667
1668   for (auto *DII : DbgUsers) {
1669     Value *Undef = UndefValue::get(I.getType());
1670     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1671                                             ValueAsMetadata::get(Undef)));
1672   }
1673 }
1674
1675 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1676                                          DIExpression *SrcDIExpr,
1677                                          bool WithStackValue) {
1678   auto &M = *I.getModule();
1679   auto &DL = M.getDataLayout();
1680
1681   // Apply a vector of opcodes to the source DIExpression.
1682   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1683     DIExpression *DIExpr = SrcDIExpr;
1684     if (!Ops.empty()) {
1685       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1686     }
1687     return DIExpr;
1688   };
1689
1690   // Apply the given offset to the source DIExpression.
1691   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1692     SmallVector<uint64_t, 8> Ops;
1693     DIExpression::appendOffset(Ops, Offset);
1694     return doSalvage(Ops);
1695   };
1696
1697   // initializer-list helper for applying operators to the source DIExpression.
1698   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1699     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1700     return doSalvage(Ops);
1701   };
1702
1703   if (auto *CI = dyn_cast<CastInst>(&I)) {
1704     // No-op casts are irrelevant for debug info.
1705     if (CI->isNoopCast(DL))
1706       return SrcDIExpr;
1707
1708     Type *Type = CI->getType();
1709     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1710     if (Type->isVectorTy() ||
1711         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1712       return nullptr;
1713
1714     Value *FromValue = CI->getOperand(0);
1715     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1716     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1717
1718     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1719                                             isa<SExtInst>(&I)));
1720   }
1721
1722   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1723     unsigned BitWidth =
1724         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1725     // Rewrite a constant GEP into a DIExpression.
1726     APInt Offset(BitWidth, 0);
1727     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1728       return applyOffset(Offset.getSExtValue());
1729     } else {
1730       return nullptr;
1731     }
1732   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1733     // Rewrite binary operations with constant integer operands.
1734     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1735     if (!ConstInt || ConstInt->getBitWidth() > 64)
1736       return nullptr;
1737
1738     uint64_t Val = ConstInt->getSExtValue();
1739     switch (BI->getOpcode()) {
1740     case Instruction::Add:
1741       return applyOffset(Val);
1742     case Instruction::Sub:
1743       return applyOffset(-int64_t(Val));
1744     case Instruction::Mul:
1745       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1746     case Instruction::SDiv:
1747       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1748     case Instruction::SRem:
1749       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1750     case Instruction::Or:
1751       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1752     case Instruction::And:
1753       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1754     case Instruction::Xor:
1755       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1756     case Instruction::Shl:
1757       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1758     case Instruction::LShr:
1759       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1760     case Instruction::AShr:
1761       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1762     default:
1763       // TODO: Salvage constants from each kind of binop we know about.
1764       return nullptr;
1765     }
1766     // *Not* to do: we should not attempt to salvage load instructions,
1767     // because the validity and lifetime of a dbg.value containing
1768     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1769   }
1770   return nullptr;
1771 }
1772
1773 /// A replacement for a dbg.value expression.
1774 using DbgValReplacement = Optional<DIExpression *>;
1775
1776 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1777 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1778 /// changes are made.
1779 static bool rewriteDebugUsers(
1780     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1781     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1782   // Find debug users of From.
1783   SmallVector<DbgVariableIntrinsic *, 1> Users;
1784   findDbgUsers(Users, &From);
1785   if (Users.empty())
1786     return false;
1787
1788   // Prevent use-before-def of To.
1789   bool Changed = false;
1790   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1791   if (isa<Instruction>(&To)) {
1792     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1793
1794     for (auto *DII : Users) {
1795       // It's common to see a debug user between From and DomPoint. Move it
1796       // after DomPoint to preserve the variable update without any reordering.
1797       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1798         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1799         DII->moveAfter(&DomPoint);
1800         Changed = true;
1801
1802       // Users which otherwise aren't dominated by the replacement value must
1803       // be salvaged or deleted.
1804       } else if (!DT.dominates(&DomPoint, DII)) {
1805         UndefOrSalvage.insert(DII);
1806       }
1807     }
1808   }
1809
1810   // Update debug users without use-before-def risk.
1811   for (auto *DII : Users) {
1812     if (UndefOrSalvage.count(DII))
1813       continue;
1814
1815     LLVMContext &Ctx = DII->getContext();
1816     DbgValReplacement DVR = RewriteExpr(*DII);
1817     if (!DVR)
1818       continue;
1819
1820     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1821     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1822     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1823     Changed = true;
1824   }
1825
1826   if (!UndefOrSalvage.empty()) {
1827     // Try to salvage the remaining debug users.
1828     salvageDebugInfo(From);
1829     Changed = true;
1830   }
1831
1832   return Changed;
1833 }
1834
1835 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1836 /// losslessly preserve the bits and semantics of the value. This predicate is
1837 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1838 ///
1839 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1840 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1841 /// and also does not allow lossless pointer <-> integer conversions.
1842 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1843                                          Type *ToTy) {
1844   // Trivially compatible types.
1845   if (FromTy == ToTy)
1846     return true;
1847
1848   // Handle compatible pointer <-> integer conversions.
1849   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1850     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1851     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1852                               !DL.isNonIntegralPointerType(ToTy);
1853     return SameSize && LosslessConversion;
1854   }
1855
1856   // TODO: This is not exhaustive.
1857   return false;
1858 }
1859
1860 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1861                                  Instruction &DomPoint, DominatorTree &DT) {
1862   // Exit early if From has no debug users.
1863   if (!From.isUsedByMetadata())
1864     return false;
1865
1866   assert(&From != &To && "Can't replace something with itself");
1867
1868   Type *FromTy = From.getType();
1869   Type *ToTy = To.getType();
1870
1871   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1872     return DII.getExpression();
1873   };
1874
1875   // Handle no-op conversions.
1876   Module &M = *From.getModule();
1877   const DataLayout &DL = M.getDataLayout();
1878   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1879     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1880
1881   // Handle integer-to-integer widening and narrowing.
1882   // FIXME: Use DW_OP_convert when it's available everywhere.
1883   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1884     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1885     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1886     assert(FromBits != ToBits && "Unexpected no-op conversion");
1887
1888     // When the width of the result grows, assume that a debugger will only
1889     // access the low `FromBits` bits when inspecting the source variable.
1890     if (FromBits < ToBits)
1891       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1892
1893     // The width of the result has shrunk. Use sign/zero extension to describe
1894     // the source variable's high bits.
1895     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1896       DILocalVariable *Var = DII.getVariable();
1897
1898       // Without knowing signedness, sign/zero extension isn't possible.
1899       auto Signedness = Var->getSignedness();
1900       if (!Signedness)
1901         return None;
1902
1903       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1904       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1905                                      Signed);
1906     };
1907     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1908   }
1909
1910   // TODO: Floating-point conversions, vectors.
1911   return false;
1912 }
1913
1914 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1915   unsigned NumDeadInst = 0;
1916   // Delete the instructions backwards, as it has a reduced likelihood of
1917   // having to update as many def-use and use-def chains.
1918   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1919   while (EndInst != &BB->front()) {
1920     // Delete the next to last instruction.
1921     Instruction *Inst = &*--EndInst->getIterator();
1922     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1923       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1924     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1925       EndInst = Inst;
1926       continue;
1927     }
1928     if (!isa<DbgInfoIntrinsic>(Inst))
1929       ++NumDeadInst;
1930     Inst->eraseFromParent();
1931   }
1932   return NumDeadInst;
1933 }
1934
1935 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1936                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
1937                                    MemorySSAUpdater *MSSAU) {
1938   BasicBlock *BB = I->getParent();
1939   std::vector <DominatorTree::UpdateType> Updates;
1940
1941   if (MSSAU)
1942     MSSAU->changeToUnreachable(I);
1943
1944   // Loop over all of the successors, removing BB's entry from any PHI
1945   // nodes.
1946   if (DTU)
1947     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1948   for (BasicBlock *Successor : successors(BB)) {
1949     Successor->removePredecessor(BB, PreserveLCSSA);
1950     if (DTU)
1951       Updates.push_back({DominatorTree::Delete, BB, Successor});
1952   }
1953   // Insert a call to llvm.trap right before this.  This turns the undefined
1954   // behavior into a hard fail instead of falling through into random code.
1955   if (UseLLVMTrap) {
1956     Function *TrapFn =
1957       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1958     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1959     CallTrap->setDebugLoc(I->getDebugLoc());
1960   }
1961   auto *UI = new UnreachableInst(I->getContext(), I);
1962   UI->setDebugLoc(I->getDebugLoc());
1963
1964   // All instructions after this are dead.
1965   unsigned NumInstrsRemoved = 0;
1966   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1967   while (BBI != BBE) {
1968     if (!BBI->use_empty())
1969       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1970     BB->getInstList().erase(BBI++);
1971     ++NumInstrsRemoved;
1972   }
1973   if (DTU)
1974     DTU->applyUpdatesPermissive(Updates);
1975   return NumInstrsRemoved;
1976 }
1977
1978 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1979   SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1980   SmallVector<OperandBundleDef, 1> OpBundles;
1981   II->getOperandBundlesAsDefs(OpBundles);
1982   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1983                                        II->getCalledOperand(), Args, OpBundles);
1984   NewCall->setCallingConv(II->getCallingConv());
1985   NewCall->setAttributes(II->getAttributes());
1986   NewCall->setDebugLoc(II->getDebugLoc());
1987   NewCall->copyMetadata(*II);
1988
1989   // If the invoke had profile metadata, try converting them for CallInst.
1990   uint64_t TotalWeight;
1991   if (NewCall->extractProfTotalWeight(TotalWeight)) {
1992     // Set the total weight if it fits into i32, otherwise reset.
1993     MDBuilder MDB(NewCall->getContext());
1994     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
1995                           ? nullptr
1996                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
1997     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
1998   }
1999
2000   return NewCall;
2001 }
2002
2003 /// changeToCall - Convert the specified invoke into a normal call.
2004 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2005   CallInst *NewCall = createCallMatchingInvoke(II);
2006   NewCall->takeName(II);
2007   NewCall->insertBefore(II);
2008   II->replaceAllUsesWith(NewCall);
2009
2010   // Follow the call by a branch to the normal destination.
2011   BasicBlock *NormalDestBB = II->getNormalDest();
2012   BranchInst::Create(NormalDestBB, II);
2013
2014   // Update PHI nodes in the unwind destination
2015   BasicBlock *BB = II->getParent();
2016   BasicBlock *UnwindDestBB = II->getUnwindDest();
2017   UnwindDestBB->removePredecessor(BB);
2018   II->eraseFromParent();
2019   if (DTU)
2020     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
2021 }
2022
2023 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2024                                                    BasicBlock *UnwindEdge) {
2025   BasicBlock *BB = CI->getParent();
2026
2027   // Convert this function call into an invoke instruction.  First, split the
2028   // basic block.
2029   BasicBlock *Split =
2030       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2031
2032   // Delete the unconditional branch inserted by splitBasicBlock
2033   BB->getInstList().pop_back();
2034
2035   // Create the new invoke instruction.
2036   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2037   SmallVector<OperandBundleDef, 1> OpBundles;
2038
2039   CI->getOperandBundlesAsDefs(OpBundles);
2040
2041   // Note: we're round tripping operand bundles through memory here, and that
2042   // can potentially be avoided with a cleverer API design that we do not have
2043   // as of this time.
2044
2045   InvokeInst *II =
2046       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2047                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2048   II->setDebugLoc(CI->getDebugLoc());
2049   II->setCallingConv(CI->getCallingConv());
2050   II->setAttributes(CI->getAttributes());
2051
2052   // Make sure that anything using the call now uses the invoke!  This also
2053   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2054   CI->replaceAllUsesWith(II);
2055
2056   // Delete the original call
2057   Split->getInstList().pop_front();
2058   return Split;
2059 }
2060
2061 static bool markAliveBlocks(Function &F,
2062                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2063                             DomTreeUpdater *DTU = nullptr) {
2064   SmallVector<BasicBlock*, 128> Worklist;
2065   BasicBlock *BB = &F.front();
2066   Worklist.push_back(BB);
2067   Reachable.insert(BB);
2068   bool Changed = false;
2069   do {
2070     BB = Worklist.pop_back_val();
2071
2072     // Do a quick scan of the basic block, turning any obviously unreachable
2073     // instructions into LLVM unreachable insts.  The instruction combining pass
2074     // canonicalizes unreachable insts into stores to null or undef.
2075     for (Instruction &I : *BB) {
2076       if (auto *CI = dyn_cast<CallInst>(&I)) {
2077         Value *Callee = CI->getCalledOperand();
2078         // Handle intrinsic calls.
2079         if (Function *F = dyn_cast<Function>(Callee)) {
2080           auto IntrinsicID = F->getIntrinsicID();
2081           // Assumptions that are known to be false are equivalent to
2082           // unreachable. Also, if the condition is undefined, then we make the
2083           // choice most beneficial to the optimizer, and choose that to also be
2084           // unreachable.
2085           if (IntrinsicID == Intrinsic::assume) {
2086             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2087               // Don't insert a call to llvm.trap right before the unreachable.
2088               changeToUnreachable(CI, false, false, DTU);
2089               Changed = true;
2090               break;
2091             }
2092           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2093             // A call to the guard intrinsic bails out of the current
2094             // compilation unit if the predicate passed to it is false. If the
2095             // predicate is a constant false, then we know the guard will bail
2096             // out of the current compile unconditionally, so all code following
2097             // it is dead.
2098             //
2099             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2100             // guards to treat `undef` as `false` since a guard on `undef` can
2101             // still be useful for widening.
2102             if (match(CI->getArgOperand(0), m_Zero()))
2103               if (!isa<UnreachableInst>(CI->getNextNode())) {
2104                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2105                                     false, DTU);
2106                 Changed = true;
2107                 break;
2108               }
2109           }
2110         } else if ((isa<ConstantPointerNull>(Callee) &&
2111                     !NullPointerIsDefined(CI->getFunction())) ||
2112                    isa<UndefValue>(Callee)) {
2113           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2114           Changed = true;
2115           break;
2116         }
2117         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2118           // If we found a call to a no-return function, insert an unreachable
2119           // instruction after it.  Make sure there isn't *already* one there
2120           // though.
2121           if (!isa<UnreachableInst>(CI->getNextNode())) {
2122             // Don't insert a call to llvm.trap right before the unreachable.
2123             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2124             Changed = true;
2125           }
2126           break;
2127         }
2128       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2129         // Store to undef and store to null are undefined and used to signal
2130         // that they should be changed to unreachable by passes that can't
2131         // modify the CFG.
2132
2133         // Don't touch volatile stores.
2134         if (SI->isVolatile()) continue;
2135
2136         Value *Ptr = SI->getOperand(1);
2137
2138         if (isa<UndefValue>(Ptr) ||
2139             (isa<ConstantPointerNull>(Ptr) &&
2140              !NullPointerIsDefined(SI->getFunction(),
2141                                    SI->getPointerAddressSpace()))) {
2142           changeToUnreachable(SI, true, false, DTU);
2143           Changed = true;
2144           break;
2145         }
2146       }
2147     }
2148
2149     Instruction *Terminator = BB->getTerminator();
2150     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2151       // Turn invokes that call 'nounwind' functions into ordinary calls.
2152       Value *Callee = II->getCalledOperand();
2153       if ((isa<ConstantPointerNull>(Callee) &&
2154            !NullPointerIsDefined(BB->getParent())) ||
2155           isa<UndefValue>(Callee)) {
2156         changeToUnreachable(II, true, false, DTU);
2157         Changed = true;
2158       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2159         if (II->use_empty() && II->onlyReadsMemory()) {
2160           // jump to the normal destination branch.
2161           BasicBlock *NormalDestBB = II->getNormalDest();
2162           BasicBlock *UnwindDestBB = II->getUnwindDest();
2163           BranchInst::Create(NormalDestBB, II);
2164           UnwindDestBB->removePredecessor(II->getParent());
2165           II->eraseFromParent();
2166           if (DTU)
2167             DTU->applyUpdatesPermissive(
2168                 {{DominatorTree::Delete, BB, UnwindDestBB}});
2169         } else
2170           changeToCall(II, DTU);
2171         Changed = true;
2172       }
2173     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2174       // Remove catchpads which cannot be reached.
2175       struct CatchPadDenseMapInfo {
2176         static CatchPadInst *getEmptyKey() {
2177           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2178         }
2179
2180         static CatchPadInst *getTombstoneKey() {
2181           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2182         }
2183
2184         static unsigned getHashValue(CatchPadInst *CatchPad) {
2185           return static_cast<unsigned>(hash_combine_range(
2186               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2187         }
2188
2189         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2190           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2191               RHS == getEmptyKey() || RHS == getTombstoneKey())
2192             return LHS == RHS;
2193           return LHS->isIdenticalTo(RHS);
2194         }
2195       };
2196
2197       // Set of unique CatchPads.
2198       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2199                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2200           HandlerSet;
2201       detail::DenseSetEmpty Empty;
2202       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2203                                              E = CatchSwitch->handler_end();
2204            I != E; ++I) {
2205         BasicBlock *HandlerBB = *I;
2206         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2207         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2208           CatchSwitch->removeHandler(I);
2209           --I;
2210           --E;
2211           Changed = true;
2212         }
2213       }
2214     }
2215
2216     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2217     for (BasicBlock *Successor : successors(BB))
2218       if (Reachable.insert(Successor).second)
2219         Worklist.push_back(Successor);
2220   } while (!Worklist.empty());
2221   return Changed;
2222 }
2223
2224 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2225   Instruction *TI = BB->getTerminator();
2226
2227   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2228     changeToCall(II, DTU);
2229     return;
2230   }
2231
2232   Instruction *NewTI;
2233   BasicBlock *UnwindDest;
2234
2235   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2236     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2237     UnwindDest = CRI->getUnwindDest();
2238   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2239     auto *NewCatchSwitch = CatchSwitchInst::Create(
2240         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2241         CatchSwitch->getName(), CatchSwitch);
2242     for (BasicBlock *PadBB : CatchSwitch->handlers())
2243       NewCatchSwitch->addHandler(PadBB);
2244
2245     NewTI = NewCatchSwitch;
2246     UnwindDest = CatchSwitch->getUnwindDest();
2247   } else {
2248     llvm_unreachable("Could not find unwind successor");
2249   }
2250
2251   NewTI->takeName(TI);
2252   NewTI->setDebugLoc(TI->getDebugLoc());
2253   UnwindDest->removePredecessor(BB);
2254   TI->replaceAllUsesWith(NewTI);
2255   TI->eraseFromParent();
2256   if (DTU)
2257     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2258 }
2259
2260 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2261 /// if they are in a dead cycle.  Return true if a change was made, false
2262 /// otherwise.
2263 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2264                                    MemorySSAUpdater *MSSAU) {
2265   SmallPtrSet<BasicBlock *, 16> Reachable;
2266   bool Changed = markAliveBlocks(F, Reachable, DTU);
2267
2268   // If there are unreachable blocks in the CFG...
2269   if (Reachable.size() == F.size())
2270     return Changed;
2271
2272   assert(Reachable.size() < F.size());
2273   NumRemoved += F.size() - Reachable.size();
2274
2275   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2276   for (BasicBlock &BB : F) {
2277     // Skip reachable basic blocks
2278     if (Reachable.count(&BB))
2279       continue;
2280     DeadBlockSet.insert(&BB);
2281   }
2282
2283   if (MSSAU)
2284     MSSAU->removeBlocks(DeadBlockSet);
2285
2286   // Loop over all of the basic blocks that are not reachable, dropping all of
2287   // their internal references. Update DTU if available.
2288   std::vector<DominatorTree::UpdateType> Updates;
2289   for (auto *BB : DeadBlockSet) {
2290     for (BasicBlock *Successor : successors(BB)) {
2291       if (!DeadBlockSet.count(Successor))
2292         Successor->removePredecessor(BB);
2293       if (DTU)
2294         Updates.push_back({DominatorTree::Delete, BB, Successor});
2295     }
2296     BB->dropAllReferences();
2297     if (DTU) {
2298       Instruction *TI = BB->getTerminator();
2299       assert(TI && "Basic block should have a terminator");
2300       // Terminators like invoke can have users. We have to replace their users,
2301       // before removing them.
2302       if (!TI->use_empty())
2303         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2304       TI->eraseFromParent();
2305       new UnreachableInst(BB->getContext(), BB);
2306       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2307                                "applying corresponding DTU updates.");
2308     }
2309   }
2310
2311   if (DTU) {
2312     DTU->applyUpdatesPermissive(Updates);
2313     bool Deleted = false;
2314     for (auto *BB : DeadBlockSet) {
2315       if (DTU->isBBPendingDeletion(BB))
2316         --NumRemoved;
2317       else
2318         Deleted = true;
2319       DTU->deleteBB(BB);
2320     }
2321     if (!Deleted)
2322       return false;
2323   } else {
2324     for (auto *BB : DeadBlockSet)
2325       BB->eraseFromParent();
2326   }
2327
2328   return true;
2329 }
2330
2331 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2332                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2333   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2334   K->dropUnknownNonDebugMetadata(KnownIDs);
2335   K->getAllMetadataOtherThanDebugLoc(Metadata);
2336   for (const auto &MD : Metadata) {
2337     unsigned Kind = MD.first;
2338     MDNode *JMD = J->getMetadata(Kind);
2339     MDNode *KMD = MD.second;
2340
2341     switch (Kind) {
2342       default:
2343         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2344         break;
2345       case LLVMContext::MD_dbg:
2346         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2347       case LLVMContext::MD_tbaa:
2348         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2349         break;
2350       case LLVMContext::MD_alias_scope:
2351         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2352         break;
2353       case LLVMContext::MD_noalias:
2354       case LLVMContext::MD_mem_parallel_loop_access:
2355         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2356         break;
2357       case LLVMContext::MD_access_group:
2358         K->setMetadata(LLVMContext::MD_access_group,
2359                        intersectAccessGroups(K, J));
2360         break;
2361       case LLVMContext::MD_range:
2362
2363         // If K does move, use most generic range. Otherwise keep the range of
2364         // K.
2365         if (DoesKMove)
2366           // FIXME: If K does move, we should drop the range info and nonnull.
2367           //        Currently this function is used with DoesKMove in passes
2368           //        doing hoisting/sinking and the current behavior of using the
2369           //        most generic range is correct in those cases.
2370           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2371         break;
2372       case LLVMContext::MD_fpmath:
2373         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2374         break;
2375       case LLVMContext::MD_invariant_load:
2376         // Only set the !invariant.load if it is present in both instructions.
2377         K->setMetadata(Kind, JMD);
2378         break;
2379       case LLVMContext::MD_nonnull:
2380         // If K does move, keep nonull if it is present in both instructions.
2381         if (DoesKMove)
2382           K->setMetadata(Kind, JMD);
2383         break;
2384       case LLVMContext::MD_invariant_group:
2385         // Preserve !invariant.group in K.
2386         break;
2387       case LLVMContext::MD_align:
2388         K->setMetadata(Kind,
2389           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2390         break;
2391       case LLVMContext::MD_dereferenceable:
2392       case LLVMContext::MD_dereferenceable_or_null:
2393         K->setMetadata(Kind,
2394           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2395         break;
2396       case LLVMContext::MD_preserve_access_index:
2397         // Preserve !preserve.access.index in K.
2398         break;
2399     }
2400   }
2401   // Set !invariant.group from J if J has it. If both instructions have it
2402   // then we will just pick it from J - even when they are different.
2403   // Also make sure that K is load or store - f.e. combining bitcast with load
2404   // could produce bitcast with invariant.group metadata, which is invalid.
2405   // FIXME: we should try to preserve both invariant.group md if they are
2406   // different, but right now instruction can only have one invariant.group.
2407   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2408     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2409       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2410 }
2411
2412 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2413                                  bool KDominatesJ) {
2414   unsigned KnownIDs[] = {
2415       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2416       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2417       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2418       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2419       LLVMContext::MD_dereferenceable,
2420       LLVMContext::MD_dereferenceable_or_null,
2421       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2422   combineMetadata(K, J, KnownIDs, KDominatesJ);
2423 }
2424
2425 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2426   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2427   Source.getAllMetadata(MD);
2428   MDBuilder MDB(Dest.getContext());
2429   Type *NewType = Dest.getType();
2430   const DataLayout &DL = Source.getModule()->getDataLayout();
2431   for (const auto &MDPair : MD) {
2432     unsigned ID = MDPair.first;
2433     MDNode *N = MDPair.second;
2434     // Note, essentially every kind of metadata should be preserved here! This
2435     // routine is supposed to clone a load instruction changing *only its type*.
2436     // The only metadata it makes sense to drop is metadata which is invalidated
2437     // when the pointer type changes. This should essentially never be the case
2438     // in LLVM, but we explicitly switch over only known metadata to be
2439     // conservatively correct. If you are adding metadata to LLVM which pertains
2440     // to loads, you almost certainly want to add it here.
2441     switch (ID) {
2442     case LLVMContext::MD_dbg:
2443     case LLVMContext::MD_tbaa:
2444     case LLVMContext::MD_prof:
2445     case LLVMContext::MD_fpmath:
2446     case LLVMContext::MD_tbaa_struct:
2447     case LLVMContext::MD_invariant_load:
2448     case LLVMContext::MD_alias_scope:
2449     case LLVMContext::MD_noalias:
2450     case LLVMContext::MD_nontemporal:
2451     case LLVMContext::MD_mem_parallel_loop_access:
2452     case LLVMContext::MD_access_group:
2453       // All of these directly apply.
2454       Dest.setMetadata(ID, N);
2455       break;
2456
2457     case LLVMContext::MD_nonnull:
2458       copyNonnullMetadata(Source, N, Dest);
2459       break;
2460
2461     case LLVMContext::MD_align:
2462     case LLVMContext::MD_dereferenceable:
2463     case LLVMContext::MD_dereferenceable_or_null:
2464       // These only directly apply if the new type is also a pointer.
2465       if (NewType->isPointerTy())
2466         Dest.setMetadata(ID, N);
2467       break;
2468
2469     case LLVMContext::MD_range:
2470       copyRangeMetadata(DL, Source, N, Dest);
2471       break;
2472     }
2473   }
2474 }
2475
2476 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2477   auto *ReplInst = dyn_cast<Instruction>(Repl);
2478   if (!ReplInst)
2479     return;
2480
2481   // Patch the replacement so that it is not more restrictive than the value
2482   // being replaced.
2483   // Note that if 'I' is a load being replaced by some operation,
2484   // for example, by an arithmetic operation, then andIRFlags()
2485   // would just erase all math flags from the original arithmetic
2486   // operation, which is clearly not wanted and not needed.
2487   if (!isa<LoadInst>(I))
2488     ReplInst->andIRFlags(I);
2489
2490   // FIXME: If both the original and replacement value are part of the
2491   // same control-flow region (meaning that the execution of one
2492   // guarantees the execution of the other), then we can combine the
2493   // noalias scopes here and do better than the general conservative
2494   // answer used in combineMetadata().
2495
2496   // In general, GVN unifies expressions over different control-flow
2497   // regions, and so we need a conservative combination of the noalias
2498   // scopes.
2499   static const unsigned KnownIDs[] = {
2500       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2501       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2502       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2503       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2504       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2505   combineMetadata(ReplInst, I, KnownIDs, false);
2506 }
2507
2508 template <typename RootType, typename DominatesFn>
2509 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2510                                          const RootType &Root,
2511                                          const DominatesFn &Dominates) {
2512   assert(From->getType() == To->getType());
2513
2514   unsigned Count = 0;
2515   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2516        UI != UE;) {
2517     Use &U = *UI++;
2518     if (!Dominates(Root, U))
2519       continue;
2520     U.set(To);
2521     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2522                       << "' as " << *To << " in " << *U << "\n");
2523     ++Count;
2524   }
2525   return Count;
2526 }
2527
2528 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2529    assert(From->getType() == To->getType());
2530    auto *BB = From->getParent();
2531    unsigned Count = 0;
2532
2533   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2534        UI != UE;) {
2535     Use &U = *UI++;
2536     auto *I = cast<Instruction>(U.getUser());
2537     if (I->getParent() == BB)
2538       continue;
2539     U.set(To);
2540     ++Count;
2541   }
2542   return Count;
2543 }
2544
2545 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2546                                         DominatorTree &DT,
2547                                         const BasicBlockEdge &Root) {
2548   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2549     return DT.dominates(Root, U);
2550   };
2551   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2552 }
2553
2554 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2555                                         DominatorTree &DT,
2556                                         const BasicBlock *BB) {
2557   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2558     auto *I = cast<Instruction>(U.getUser())->getParent();
2559     return DT.properlyDominates(BB, I);
2560   };
2561   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2562 }
2563
2564 bool llvm::callsGCLeafFunction(const CallBase *Call,
2565                                const TargetLibraryInfo &TLI) {
2566   // Check if the function is specifically marked as a gc leaf function.
2567   if (Call->hasFnAttr("gc-leaf-function"))
2568     return true;
2569   if (const Function *F = Call->getCalledFunction()) {
2570     if (F->hasFnAttribute("gc-leaf-function"))
2571       return true;
2572
2573     if (auto IID = F->getIntrinsicID())
2574       // Most LLVM intrinsics do not take safepoints.
2575       return IID != Intrinsic::experimental_gc_statepoint &&
2576              IID != Intrinsic::experimental_deoptimize;
2577   }
2578
2579   // Lib calls can be materialized by some passes, and won't be
2580   // marked as 'gc-leaf-function.' All available Libcalls are
2581   // GC-leaf.
2582   LibFunc LF;
2583   if (TLI.getLibFunc(*Call, LF)) {
2584     return TLI.has(LF);
2585   }
2586
2587   return false;
2588 }
2589
2590 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2591                                LoadInst &NewLI) {
2592   auto *NewTy = NewLI.getType();
2593
2594   // This only directly applies if the new type is also a pointer.
2595   if (NewTy->isPointerTy()) {
2596     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2597     return;
2598   }
2599
2600   // The only other translation we can do is to integral loads with !range
2601   // metadata.
2602   if (!NewTy->isIntegerTy())
2603     return;
2604
2605   MDBuilder MDB(NewLI.getContext());
2606   const Value *Ptr = OldLI.getPointerOperand();
2607   auto *ITy = cast<IntegerType>(NewTy);
2608   auto *NullInt = ConstantExpr::getPtrToInt(
2609       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2610   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2611   NewLI.setMetadata(LLVMContext::MD_range,
2612                     MDB.createRange(NonNullInt, NullInt));
2613 }
2614
2615 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2616                              MDNode *N, LoadInst &NewLI) {
2617   auto *NewTy = NewLI.getType();
2618
2619   // Give up unless it is converted to a pointer where there is a single very
2620   // valuable mapping we can do reliably.
2621   // FIXME: It would be nice to propagate this in more ways, but the type
2622   // conversions make it hard.
2623   if (!NewTy->isPointerTy())
2624     return;
2625
2626   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2627   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2628     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2629     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2630   }
2631 }
2632
2633 void llvm::dropDebugUsers(Instruction &I) {
2634   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2635   findDbgUsers(DbgUsers, &I);
2636   for (auto *DII : DbgUsers)
2637     DII->eraseFromParent();
2638 }
2639
2640 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2641                                     BasicBlock *BB) {
2642   // Since we are moving the instructions out of its basic block, we do not
2643   // retain their original debug locations (DILocations) and debug intrinsic
2644   // instructions.
2645   //
2646   // Doing so would degrade the debugging experience and adversely affect the
2647   // accuracy of profiling information.
2648   //
2649   // Currently, when hoisting the instructions, we take the following actions:
2650   // - Remove their debug intrinsic instructions.
2651   // - Set their debug locations to the values from the insertion point.
2652   //
2653   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2654   // need to be deleted, is because there will not be any instructions with a
2655   // DILocation in either branch left after performing the transformation. We
2656   // can only insert a dbg.value after the two branches are joined again.
2657   //
2658   // See PR38762, PR39243 for more details.
2659   //
2660   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2661   // encode predicated DIExpressions that yield different results on different
2662   // code paths.
2663   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2664     Instruction *I = &*II;
2665     I->dropUnknownNonDebugMetadata();
2666     if (I->isUsedByMetadata())
2667       dropDebugUsers(*I);
2668     if (isa<DbgInfoIntrinsic>(I)) {
2669       // Remove DbgInfo Intrinsics.
2670       II = I->eraseFromParent();
2671       continue;
2672     }
2673     I->setDebugLoc(InsertPt->getDebugLoc());
2674     ++II;
2675   }
2676   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2677                                  BB->begin(),
2678                                  BB->getTerminator()->getIterator());
2679 }
2680
2681 namespace {
2682
2683 /// A potential constituent of a bitreverse or bswap expression. See
2684 /// collectBitParts for a fuller explanation.
2685 struct BitPart {
2686   BitPart(Value *P, unsigned BW) : Provider(P) {
2687     Provenance.resize(BW);
2688   }
2689
2690   /// The Value that this is a bitreverse/bswap of.
2691   Value *Provider;
2692
2693   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2694   /// in Provider becomes bit B in the result of this expression.
2695   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2696
2697   enum { Unset = -1 };
2698 };
2699
2700 } // end anonymous namespace
2701
2702 /// Analyze the specified subexpression and see if it is capable of providing
2703 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2704 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2705 /// the output of the expression came from a corresponding bit in some other
2706 /// value. This function is recursive, and the end result is a mapping of
2707 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2708 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2709 ///
2710 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2711 /// that the expression deposits the low byte of %X into the high byte of the
2712 /// result and that all other bits are zero. This expression is accepted and a
2713 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2714 /// [0-7].
2715 ///
2716 /// To avoid revisiting values, the BitPart results are memoized into the
2717 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2718 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2719 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2720 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2721 /// type instead to provide the same functionality.
2722 ///
2723 /// Because we pass around references into \c BPS, we must use a container that
2724 /// does not invalidate internal references (std::map instead of DenseMap).
2725 static const Optional<BitPart> &
2726 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2727                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2728   auto I = BPS.find(V);
2729   if (I != BPS.end())
2730     return I->second;
2731
2732   auto &Result = BPS[V] = None;
2733   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2734
2735   // Prevent stack overflow by limiting the recursion depth
2736   if (Depth == BitPartRecursionMaxDepth) {
2737     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2738     return Result;
2739   }
2740
2741   if (Instruction *I = dyn_cast<Instruction>(V)) {
2742     // If this is an or instruction, it may be an inner node of the bswap.
2743     if (I->getOpcode() == Instruction::Or) {
2744       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2745                                 MatchBitReversals, BPS, Depth + 1);
2746       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2747                                 MatchBitReversals, BPS, Depth + 1);
2748       if (!A || !B)
2749         return Result;
2750
2751       // Try and merge the two together.
2752       if (!A->Provider || A->Provider != B->Provider)
2753         return Result;
2754
2755       Result = BitPart(A->Provider, BitWidth);
2756       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2757         if (A->Provenance[i] != BitPart::Unset &&
2758             B->Provenance[i] != BitPart::Unset &&
2759             A->Provenance[i] != B->Provenance[i])
2760           return Result = None;
2761
2762         if (A->Provenance[i] == BitPart::Unset)
2763           Result->Provenance[i] = B->Provenance[i];
2764         else
2765           Result->Provenance[i] = A->Provenance[i];
2766       }
2767
2768       return Result;
2769     }
2770
2771     // If this is a logical shift by a constant, recurse then shift the result.
2772     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2773       unsigned BitShift =
2774           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2775       // Ensure the shift amount is defined.
2776       if (BitShift > BitWidth)
2777         return Result;
2778
2779       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2780                                   MatchBitReversals, BPS, Depth + 1);
2781       if (!Res)
2782         return Result;
2783       Result = Res;
2784
2785       // Perform the "shift" on BitProvenance.
2786       auto &P = Result->Provenance;
2787       if (I->getOpcode() == Instruction::Shl) {
2788         P.erase(std::prev(P.end(), BitShift), P.end());
2789         P.insert(P.begin(), BitShift, BitPart::Unset);
2790       } else {
2791         P.erase(P.begin(), std::next(P.begin(), BitShift));
2792         P.insert(P.end(), BitShift, BitPart::Unset);
2793       }
2794
2795       return Result;
2796     }
2797
2798     // If this is a logical 'and' with a mask that clears bits, recurse then
2799     // unset the appropriate bits.
2800     if (I->getOpcode() == Instruction::And &&
2801         isa<ConstantInt>(I->getOperand(1))) {
2802       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2803       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2804
2805       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2806       // early exit.
2807       unsigned NumMaskedBits = AndMask.countPopulation();
2808       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2809         return Result;
2810
2811       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2812                                   MatchBitReversals, BPS, Depth + 1);
2813       if (!Res)
2814         return Result;
2815       Result = Res;
2816
2817       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2818         // If the AndMask is zero for this bit, clear the bit.
2819         if ((AndMask & Bit) == 0)
2820           Result->Provenance[i] = BitPart::Unset;
2821       return Result;
2822     }
2823
2824     // If this is a zext instruction zero extend the result.
2825     if (I->getOpcode() == Instruction::ZExt) {
2826       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2827                                   MatchBitReversals, BPS, Depth + 1);
2828       if (!Res)
2829         return Result;
2830
2831       Result = BitPart(Res->Provider, BitWidth);
2832       auto NarrowBitWidth =
2833           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2834       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2835         Result->Provenance[i] = Res->Provenance[i];
2836       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2837         Result->Provenance[i] = BitPart::Unset;
2838       return Result;
2839     }
2840   }
2841
2842   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2843   // the input value to the bswap/bitreverse.
2844   Result = BitPart(V, BitWidth);
2845   for (unsigned i = 0; i < BitWidth; ++i)
2846     Result->Provenance[i] = i;
2847   return Result;
2848 }
2849
2850 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2851                                           unsigned BitWidth) {
2852   if (From % 8 != To % 8)
2853     return false;
2854   // Convert from bit indices to byte indices and check for a byte reversal.
2855   From >>= 3;
2856   To >>= 3;
2857   BitWidth >>= 3;
2858   return From == BitWidth - To - 1;
2859 }
2860
2861 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2862                                                unsigned BitWidth) {
2863   return From == BitWidth - To - 1;
2864 }
2865
2866 bool llvm::recognizeBSwapOrBitReverseIdiom(
2867     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2868     SmallVectorImpl<Instruction *> &InsertedInsts) {
2869   if (Operator::getOpcode(I) != Instruction::Or)
2870     return false;
2871   if (!MatchBSwaps && !MatchBitReversals)
2872     return false;
2873   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2874   if (!ITy || ITy->getBitWidth() > 128)
2875     return false;   // Can't do vectors or integers > 128 bits.
2876   unsigned BW = ITy->getBitWidth();
2877
2878   unsigned DemandedBW = BW;
2879   IntegerType *DemandedTy = ITy;
2880   if (I->hasOneUse()) {
2881     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2882       DemandedTy = cast<IntegerType>(Trunc->getType());
2883       DemandedBW = DemandedTy->getBitWidth();
2884     }
2885   }
2886
2887   // Try to find all the pieces corresponding to the bswap.
2888   std::map<Value *, Optional<BitPart>> BPS;
2889   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2890   if (!Res)
2891     return false;
2892   auto &BitProvenance = Res->Provenance;
2893
2894   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2895   // only byteswap values with an even number of bytes.
2896   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2897   for (unsigned i = 0; i < DemandedBW; ++i) {
2898     OKForBSwap &=
2899         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2900     OKForBitReverse &=
2901         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2902   }
2903
2904   Intrinsic::ID Intrin;
2905   if (OKForBSwap && MatchBSwaps)
2906     Intrin = Intrinsic::bswap;
2907   else if (OKForBitReverse && MatchBitReversals)
2908     Intrin = Intrinsic::bitreverse;
2909   else
2910     return false;
2911
2912   if (ITy != DemandedTy) {
2913     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2914     Value *Provider = Res->Provider;
2915     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2916     // We may need to truncate the provider.
2917     if (DemandedTy != ProviderTy) {
2918       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2919                                      "trunc", I);
2920       InsertedInsts.push_back(Trunc);
2921       Provider = Trunc;
2922     }
2923     auto *CI = CallInst::Create(F, Provider, "rev", I);
2924     InsertedInsts.push_back(CI);
2925     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2926     InsertedInsts.push_back(ExtInst);
2927     return true;
2928   }
2929
2930   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2931   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2932   return true;
2933 }
2934
2935 // CodeGen has special handling for some string functions that may replace
2936 // them with target-specific intrinsics.  Since that'd skip our interceptors
2937 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2938 // we mark affected calls as NoBuiltin, which will disable optimization
2939 // in CodeGen.
2940 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2941     CallInst *CI, const TargetLibraryInfo *TLI) {
2942   Function *F = CI->getCalledFunction();
2943   LibFunc Func;
2944   if (F && !F->hasLocalLinkage() && F->hasName() &&
2945       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2946       !F->doesNotAccessMemory())
2947     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2948 }
2949
2950 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2951   // We can't have a PHI with a metadata type.
2952   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2953     return false;
2954
2955   // Early exit.
2956   if (!isa<Constant>(I->getOperand(OpIdx)))
2957     return true;
2958
2959   switch (I->getOpcode()) {
2960   default:
2961     return true;
2962   case Instruction::Call:
2963   case Instruction::Invoke: {
2964     const auto &CB = cast<CallBase>(*I);
2965
2966     // Can't handle inline asm. Skip it.
2967     if (CB.isInlineAsm())
2968       return false;
2969
2970     // Constant bundle operands may need to retain their constant-ness for
2971     // correctness.
2972     if (CB.isBundleOperand(OpIdx))
2973       return false;
2974
2975     if (OpIdx < CB.getNumArgOperands()) {
2976       // Some variadic intrinsics require constants in the variadic arguments,
2977       // which currently aren't markable as immarg.
2978       if (isa<IntrinsicInst>(CB) &&
2979           OpIdx >= CB.getFunctionType()->getNumParams()) {
2980         // This is known to be OK for stackmap.
2981         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
2982       }
2983
2984       // gcroot is a special case, since it requires a constant argument which
2985       // isn't also required to be a simple ConstantInt.
2986       if (CB.getIntrinsicID() == Intrinsic::gcroot)
2987         return false;
2988
2989       // Some intrinsic operands are required to be immediates.
2990       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
2991     }
2992
2993     // It is never allowed to replace the call argument to an intrinsic, but it
2994     // may be possible for a call.
2995     return !isa<IntrinsicInst>(CB);
2996   }
2997   case Instruction::ShuffleVector:
2998     // Shufflevector masks are constant.
2999     return OpIdx != 2;
3000   case Instruction::Switch:
3001   case Instruction::ExtractValue:
3002     // All operands apart from the first are constant.
3003     return OpIdx == 0;
3004   case Instruction::InsertValue:
3005     // All operands apart from the first and the second are constant.
3006     return OpIdx < 2;
3007   case Instruction::Alloca:
3008     // Static allocas (constant size in the entry block) are handled by
3009     // prologue/epilogue insertion so they're free anyway. We definitely don't
3010     // want to make them non-constant.
3011     return !cast<AllocaInst>(I)->isStaticAlloca();
3012   case Instruction::GetElementPtr:
3013     if (OpIdx == 0)
3014       return true;
3015     gep_type_iterator It = gep_type_begin(I);
3016     for (auto E = std::next(It, OpIdx); It != E; ++It)
3017       if (It.isStruct())
3018         return false;
3019     return true;
3020   }
3021 }
3022
3023 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
3024 AllocaInst *llvm::findAllocaForValue(Value *V,
3025                                      AllocaForValueMapTy &AllocaForValue) {
3026   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
3027     return AI;
3028   // See if we've already calculated (or started to calculate) alloca for a
3029   // given value.
3030   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
3031   if (I != AllocaForValue.end())
3032     return I->second;
3033   // Store 0 while we're calculating alloca for value V to avoid
3034   // infinite recursion if the value references itself.
3035   AllocaForValue[V] = nullptr;
3036   AllocaInst *Res = nullptr;
3037   if (CastInst *CI = dyn_cast<CastInst>(V))
3038     Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
3039   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
3040     for (Value *IncValue : PN->incoming_values()) {
3041       // Allow self-referencing phi-nodes.
3042       if (IncValue == PN)
3043         continue;
3044       AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
3045       // AI for incoming values should exist and should all be equal.
3046       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3047         return nullptr;
3048       Res = IncValueAI;
3049     }
3050   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3051     Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3052   } else {
3053     LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3054                       << *V << "\n");
3055   }
3056   if (Res)
3057     AllocaForValue[V] = Res;
3058   return Res;
3059 }
3060
3061 Value *llvm::invertCondition(Value *Condition) {
3062   // First: Check if it's a constant
3063   if (Constant *C = dyn_cast<Constant>(Condition))
3064     return ConstantExpr::getNot(C);
3065
3066   // Second: If the condition is already inverted, return the original value
3067   Value *NotCondition;
3068   if (match(Condition, m_Not(m_Value(NotCondition))))
3069     return NotCondition;
3070
3071   BasicBlock *Parent = nullptr;
3072   Instruction *Inst = dyn_cast<Instruction>(Condition);
3073   if (Inst)
3074     Parent = Inst->getParent();
3075   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3076     Parent = &Arg->getParent()->getEntryBlock();
3077   assert(Parent && "Unsupported condition to invert");
3078
3079   // Third: Check all the users for an invert
3080   for (User *U : Condition->users())
3081     if (Instruction *I = dyn_cast<Instruction>(U))
3082       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3083         return I;
3084
3085   // Last option: Create a new instruction
3086   auto *Inverted =
3087       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3088   if (Inst && !isa<PHINode>(Inst))
3089     Inverted->insertAfter(Inst);
3090   else
3091     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3092   return Inverted;
3093 }