]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Utils / LoopRotationUtils.cpp
1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/DomTreeUpdater.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
44
45 #define DEBUG_TYPE "loop-rotate"
46
47 STATISTIC(NumRotated, "Number of loops rotated");
48
49 static cl::opt<bool>
50     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
51                 cl::desc("Allow loop rotation multiple times in order to reach "
52                          "a better latch exit"));
53
54 namespace {
55 /// A simple loop rotation transformation.
56 class LoopRotate {
57   const unsigned MaxHeaderSize;
58   LoopInfo *LI;
59   const TargetTransformInfo *TTI;
60   AssumptionCache *AC;
61   DominatorTree *DT;
62   ScalarEvolution *SE;
63   MemorySSAUpdater *MSSAU;
64   const SimplifyQuery &SQ;
65   bool RotationOnly;
66   bool IsUtilMode;
67
68 public:
69   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
70              const TargetTransformInfo *TTI, AssumptionCache *AC,
71              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
72              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
73       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
74         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
75         IsUtilMode(IsUtilMode) {}
76   bool processLoop(Loop *L);
77
78 private:
79   bool rotateLoop(Loop *L, bool SimplifiedLatch);
80   bool simplifyLoopLatch(Loop *L);
81 };
82 } // end anonymous namespace
83
84 /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
85 /// previously exist in the map, and the value was inserted.
86 static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
87   bool Inserted = VM.insert({K, V}).second;
88   assert(Inserted);
89   (void)Inserted;
90 }
91 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
92 /// old header into the preheader.  If there were uses of the values produced by
93 /// these instruction that were outside of the loop, we have to insert PHI nodes
94 /// to merge the two values.  Do this now.
95 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
96                                             BasicBlock *OrigPreheader,
97                                             ValueToValueMapTy &ValueMap,
98                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
99   // Remove PHI node entries that are no longer live.
100   BasicBlock::iterator I, E = OrigHeader->end();
101   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
102     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
103
104   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
105   // as necessary.
106   SSAUpdater SSA(InsertedPHIs);
107   for (I = OrigHeader->begin(); I != E; ++I) {
108     Value *OrigHeaderVal = &*I;
109
110     // If there are no uses of the value (e.g. because it returns void), there
111     // is nothing to rewrite.
112     if (OrigHeaderVal->use_empty())
113       continue;
114
115     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
116
117     // The value now exits in two versions: the initial value in the preheader
118     // and the loop "next" value in the original header.
119     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
120     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
121     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
122
123     // Visit each use of the OrigHeader instruction.
124     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
125                              UE = OrigHeaderVal->use_end();
126          UI != UE;) {
127       // Grab the use before incrementing the iterator.
128       Use &U = *UI;
129
130       // Increment the iterator before removing the use from the list.
131       ++UI;
132
133       // SSAUpdater can't handle a non-PHI use in the same block as an
134       // earlier def. We can easily handle those cases manually.
135       Instruction *UserInst = cast<Instruction>(U.getUser());
136       if (!isa<PHINode>(UserInst)) {
137         BasicBlock *UserBB = UserInst->getParent();
138
139         // The original users in the OrigHeader are already using the
140         // original definitions.
141         if (UserBB == OrigHeader)
142           continue;
143
144         // Users in the OrigPreHeader need to use the value to which the
145         // original definitions are mapped.
146         if (UserBB == OrigPreheader) {
147           U = OrigPreHeaderVal;
148           continue;
149         }
150       }
151
152       // Anything else can be handled by SSAUpdater.
153       SSA.RewriteUse(U);
154     }
155
156     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
157     // intrinsics.
158     SmallVector<DbgValueInst *, 1> DbgValues;
159     llvm::findDbgValues(DbgValues, OrigHeaderVal);
160     for (auto &DbgValue : DbgValues) {
161       // The original users in the OrigHeader are already using the original
162       // definitions.
163       BasicBlock *UserBB = DbgValue->getParent();
164       if (UserBB == OrigHeader)
165         continue;
166
167       // Users in the OrigPreHeader need to use the value to which the
168       // original definitions are mapped and anything else can be handled by
169       // the SSAUpdater. To avoid adding PHINodes, check if the value is
170       // available in UserBB, if not substitute undef.
171       Value *NewVal;
172       if (UserBB == OrigPreheader)
173         NewVal = OrigPreHeaderVal;
174       else if (SSA.HasValueForBlock(UserBB))
175         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
176       else
177         NewVal = UndefValue::get(OrigHeaderVal->getType());
178       DbgValue->setOperand(0,
179                            MetadataAsValue::get(OrigHeaderVal->getContext(),
180                                                 ValueAsMetadata::get(NewVal)));
181     }
182   }
183 }
184
185 // Assuming both header and latch are exiting, look for a phi which is only
186 // used outside the loop (via a LCSSA phi) in the exit from the header.
187 // This means that rotating the loop can remove the phi.
188 static bool profitableToRotateLoopExitingLatch(Loop *L) {
189   BasicBlock *Header = L->getHeader();
190   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
191   assert(BI && BI->isConditional() && "need header with conditional exit");
192   BasicBlock *HeaderExit = BI->getSuccessor(0);
193   if (L->contains(HeaderExit))
194     HeaderExit = BI->getSuccessor(1);
195
196   for (auto &Phi : Header->phis()) {
197     // Look for uses of this phi in the loop/via exits other than the header.
198     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
199           return cast<Instruction>(U)->getParent() != HeaderExit;
200         }))
201       continue;
202     return true;
203   }
204   return false;
205 }
206
207 // Check that latch exit is deoptimizing (which means - very unlikely to happen)
208 // and there is another exit from the loop which is non-deoptimizing.
209 // If we rotate latch to that exit our loop has a better chance of being fully
210 // canonical.
211 //
212 // It can give false positives in some rare cases.
213 static bool canRotateDeoptimizingLatchExit(Loop *L) {
214   BasicBlock *Latch = L->getLoopLatch();
215   assert(Latch && "need latch");
216   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
217   // Need normal exiting latch.
218   if (!BI || !BI->isConditional())
219     return false;
220
221   BasicBlock *Exit = BI->getSuccessor(1);
222   if (L->contains(Exit))
223     Exit = BI->getSuccessor(0);
224
225   // Latch exit is non-deoptimizing, no need to rotate.
226   if (!Exit->getPostdominatingDeoptimizeCall())
227     return false;
228
229   SmallVector<BasicBlock *, 4> Exits;
230   L->getUniqueExitBlocks(Exits);
231   if (!Exits.empty()) {
232     // There is at least one non-deoptimizing exit.
233     //
234     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
235     // as it can conservatively return false for deoptimizing exits with
236     // complex enough control flow down to deoptimize call.
237     //
238     // That means here we can report success for a case where
239     // all exits are deoptimizing but one of them has complex enough
240     // control flow (e.g. with loops).
241     //
242     // That should be a very rare case and false positives for this function
243     // have compile-time effect only.
244     return any_of(Exits, [](const BasicBlock *BB) {
245       return !BB->getPostdominatingDeoptimizeCall();
246     });
247   }
248   return false;
249 }
250
251 /// Rotate loop LP. Return true if the loop is rotated.
252 ///
253 /// \param SimplifiedLatch is true if the latch was just folded into the final
254 /// loop exit. In this case we may want to rotate even though the new latch is
255 /// now an exiting branch. This rotation would have happened had the latch not
256 /// been simplified. However, if SimplifiedLatch is false, then we avoid
257 /// rotating loops in which the latch exits to avoid excessive or endless
258 /// rotation. LoopRotate should be repeatable and converge to a canonical
259 /// form. This property is satisfied because simplifying the loop latch can only
260 /// happen once across multiple invocations of the LoopRotate pass.
261 ///
262 /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
263 /// so to reach a suitable (non-deoptimizing) exit.
264 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
265   // If the loop has only one block then there is not much to rotate.
266   if (L->getBlocks().size() == 1)
267     return false;
268
269   bool Rotated = false;
270   do {
271     BasicBlock *OrigHeader = L->getHeader();
272     BasicBlock *OrigLatch = L->getLoopLatch();
273
274     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
275     if (!BI || BI->isUnconditional())
276       return Rotated;
277
278     // If the loop header is not one of the loop exiting blocks then
279     // either this loop is already rotated or it is not
280     // suitable for loop rotation transformations.
281     if (!L->isLoopExiting(OrigHeader))
282       return Rotated;
283
284     // If the loop latch already contains a branch that leaves the loop then the
285     // loop is already rotated.
286     if (!OrigLatch)
287       return Rotated;
288
289     // Rotate if either the loop latch does *not* exit the loop, or if the loop
290     // latch was just simplified. Or if we think it will be profitable.
291     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
292         !profitableToRotateLoopExitingLatch(L) &&
293         !canRotateDeoptimizingLatchExit(L))
294       return Rotated;
295
296     // Check size of original header and reject loop if it is very big or we can't
297     // duplicate blocks inside it.
298     {
299       SmallPtrSet<const Value *, 32> EphValues;
300       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
301
302       CodeMetrics Metrics;
303       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
304       if (Metrics.notDuplicatable) {
305         LLVM_DEBUG(
306                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
307                    << " instructions: ";
308                    L->dump());
309         return Rotated;
310       }
311       if (Metrics.convergent) {
312         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
313                    "instructions: ";
314                    L->dump());
315         return Rotated;
316       }
317       if (Metrics.NumInsts > MaxHeaderSize) {
318         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
319                           << Metrics.NumInsts
320                           << " instructions, which is more than the threshold ("
321                           << MaxHeaderSize << " instructions): ";
322                    L->dump());
323         return Rotated;
324       }
325     }
326
327     // Now, this loop is suitable for rotation.
328     BasicBlock *OrigPreheader = L->getLoopPreheader();
329
330     // If the loop could not be converted to canonical form, it must have an
331     // indirectbr in it, just give up.
332     if (!OrigPreheader || !L->hasDedicatedExits())
333       return Rotated;
334
335     // Anything ScalarEvolution may know about this loop or the PHI nodes
336     // in its header will soon be invalidated. We should also invalidate
337     // all outer loops because insertion and deletion of blocks that happens
338     // during the rotation may violate invariants related to backedge taken
339     // infos in them.
340     if (SE)
341       SE->forgetTopmostLoop(L);
342
343     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
344     if (MSSAU && VerifyMemorySSA)
345       MSSAU->getMemorySSA()->verifyMemorySSA();
346
347     // Find new Loop header. NewHeader is a Header's one and only successor
348     // that is inside loop.  Header's other successor is outside the
349     // loop.  Otherwise loop is not suitable for rotation.
350     BasicBlock *Exit = BI->getSuccessor(0);
351     BasicBlock *NewHeader = BI->getSuccessor(1);
352     if (L->contains(Exit))
353       std::swap(Exit, NewHeader);
354     assert(NewHeader && "Unable to determine new loop header");
355     assert(L->contains(NewHeader) && !L->contains(Exit) &&
356            "Unable to determine loop header and exit blocks");
357
358     // This code assumes that the new header has exactly one predecessor.
359     // Remove any single-entry PHI nodes in it.
360     assert(NewHeader->getSinglePredecessor() &&
361            "New header doesn't have one pred!");
362     FoldSingleEntryPHINodes(NewHeader);
363
364     // Begin by walking OrigHeader and populating ValueMap with an entry for
365     // each Instruction.
366     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
367     ValueToValueMapTy ValueMap, ValueMapMSSA;
368
369     // For PHI nodes, the value available in OldPreHeader is just the
370     // incoming value from OldPreHeader.
371     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
372       InsertNewValueIntoMap(ValueMap, PN,
373                             PN->getIncomingValueForBlock(OrigPreheader));
374
375     // For the rest of the instructions, either hoist to the OrigPreheader if
376     // possible or create a clone in the OldPreHeader if not.
377     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
378
379     // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
380     using DbgIntrinsicHash =
381       std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
382     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
383       return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
384     };
385     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
386     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
387          I != E; ++I) {
388       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
389         DbgIntrinsics.insert(makeHash(DII));
390       else
391         break;
392     }
393
394     while (I != E) {
395       Instruction *Inst = &*I++;
396
397       // If the instruction's operands are invariant and it doesn't read or write
398       // memory, then it is safe to hoist.  Doing this doesn't change the order of
399       // execution in the preheader, but does prevent the instruction from
400       // executing in each iteration of the loop.  This means it is safe to hoist
401       // something that might trap, but isn't safe to hoist something that reads
402       // memory (without proving that the loop doesn't write).
403       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
404           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
405           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
406         Inst->moveBefore(LoopEntryBranch);
407         continue;
408       }
409
410       // Otherwise, create a duplicate of the instruction.
411       Instruction *C = Inst->clone();
412
413       // Eagerly remap the operands of the instruction.
414       RemapInstruction(C, ValueMap,
415                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
416
417       // Avoid inserting the same intrinsic twice.
418       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
419         if (DbgIntrinsics.count(makeHash(DII))) {
420           C->deleteValue();
421           continue;
422         }
423
424       // With the operands remapped, see if the instruction constant folds or is
425       // otherwise simplifyable.  This commonly occurs because the entry from PHI
426       // nodes allows icmps and other instructions to fold.
427       Value *V = SimplifyInstruction(C, SQ);
428       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
429         // If so, then delete the temporary instruction and stick the folded value
430         // in the map.
431         InsertNewValueIntoMap(ValueMap, Inst, V);
432         if (!C->mayHaveSideEffects()) {
433           C->deleteValue();
434           C = nullptr;
435         }
436       } else {
437         InsertNewValueIntoMap(ValueMap, Inst, C);
438       }
439       if (C) {
440         // Otherwise, stick the new instruction into the new block!
441         C->setName(Inst->getName());
442         C->insertBefore(LoopEntryBranch);
443
444         if (auto *II = dyn_cast<IntrinsicInst>(C))
445           if (II->getIntrinsicID() == Intrinsic::assume)
446             AC->registerAssumption(II);
447         // MemorySSA cares whether the cloned instruction was inserted or not, and
448         // not whether it can be remapped to a simplified value.
449         if (MSSAU)
450           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
451       }
452     }
453
454     // Along with all the other instructions, we just cloned OrigHeader's
455     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
456     // successors by duplicating their incoming values for OrigHeader.
457     for (BasicBlock *SuccBB : successors(OrigHeader))
458       for (BasicBlock::iterator BI = SuccBB->begin();
459            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
460         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
461
462     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
463     // OrigPreHeader's old terminator (the original branch into the loop), and
464     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
465     LoopEntryBranch->eraseFromParent();
466
467     // Update MemorySSA before the rewrite call below changes the 1:1
468     // instruction:cloned_instruction_or_value mapping.
469     if (MSSAU) {
470       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
471       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
472                                           ValueMapMSSA);
473     }
474
475     SmallVector<PHINode*, 2> InsertedPHIs;
476     // If there were any uses of instructions in the duplicated block outside the
477     // loop, update them, inserting PHI nodes as required
478     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
479                                     &InsertedPHIs);
480
481     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
482     // previously had debug metadata attached. This keeps the debug info
483     // up-to-date in the loop body.
484     if (!InsertedPHIs.empty())
485       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
486
487     // NewHeader is now the header of the loop.
488     L->moveToHeader(NewHeader);
489     assert(L->getHeader() == NewHeader && "Latch block is our new header");
490
491     // Inform DT about changes to the CFG.
492     if (DT) {
493       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
494       // the DT about the removed edge to the OrigHeader (that got removed).
495       SmallVector<DominatorTree::UpdateType, 3> Updates;
496       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
497       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
498       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
499       DT->applyUpdates(Updates);
500
501       if (MSSAU) {
502         MSSAU->applyUpdates(Updates, *DT);
503         if (VerifyMemorySSA)
504           MSSAU->getMemorySSA()->verifyMemorySSA();
505       }
506     }
507
508     // At this point, we've finished our major CFG changes.  As part of cloning
509     // the loop into the preheader we've simplified instructions and the
510     // duplicated conditional branch may now be branching on a constant.  If it is
511     // branching on a constant and if that constant means that we enter the loop,
512     // then we fold away the cond branch to an uncond branch.  This simplifies the
513     // loop in cases important for nested loops, and it also means we don't have
514     // to split as many edges.
515     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
516     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
517     if (!isa<ConstantInt>(PHBI->getCondition()) ||
518         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
519         NewHeader) {
520       // The conditional branch can't be folded, handle the general case.
521       // Split edges as necessary to preserve LoopSimplify form.
522
523       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
524       // thus is not a preheader anymore.
525       // Split the edge to form a real preheader.
526       BasicBlock *NewPH = SplitCriticalEdge(
527                                             OrigPreheader, NewHeader,
528                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
529       NewPH->setName(NewHeader->getName() + ".lr.ph");
530
531       // Preserve canonical loop form, which means that 'Exit' should have only
532       // one predecessor. Note that Exit could be an exit block for multiple
533       // nested loops, causing both of the edges to now be critical and need to
534       // be split.
535       SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
536       bool SplitLatchEdge = false;
537       for (BasicBlock *ExitPred : ExitPreds) {
538         // We only need to split loop exit edges.
539         Loop *PredLoop = LI->getLoopFor(ExitPred);
540         if (!PredLoop || PredLoop->contains(Exit) ||
541             ExitPred->getTerminator()->isIndirectTerminator())
542           continue;
543         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
544         BasicBlock *ExitSplit = SplitCriticalEdge(
545                                                   ExitPred, Exit,
546                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
547         ExitSplit->moveBefore(Exit);
548       }
549       assert(SplitLatchEdge &&
550              "Despite splitting all preds, failed to split latch exit?");
551     } else {
552       // We can fold the conditional branch in the preheader, this makes things
553       // simpler. The first step is to remove the extra edge to the Exit block.
554       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
555       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
556       NewBI->setDebugLoc(PHBI->getDebugLoc());
557       PHBI->eraseFromParent();
558
559       // With our CFG finalized, update DomTree if it is available.
560       if (DT) DT->deleteEdge(OrigPreheader, Exit);
561
562       // Update MSSA too, if available.
563       if (MSSAU)
564         MSSAU->removeEdge(OrigPreheader, Exit);
565     }
566
567     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
568     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
569
570     if (MSSAU && VerifyMemorySSA)
571       MSSAU->getMemorySSA()->verifyMemorySSA();
572
573     // Now that the CFG and DomTree are in a consistent state again, try to merge
574     // the OrigHeader block into OrigLatch.  This will succeed if they are
575     // connected by an unconditional branch.  This is just a cleanup so the
576     // emitted code isn't too gross in this common case.
577     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
578     MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
579
580     if (MSSAU && VerifyMemorySSA)
581       MSSAU->getMemorySSA()->verifyMemorySSA();
582
583     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
584
585     ++NumRotated;
586
587     Rotated = true;
588     SimplifiedLatch = false;
589
590     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
591     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
592     // TODO: if it becomes a performance bottleneck extend rotation algorithm
593     // to handle multiple rotations in one go.
594   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
595
596
597   return true;
598 }
599
600 /// Determine whether the instructions in this range may be safely and cheaply
601 /// speculated. This is not an important enough situation to develop complex
602 /// heuristics. We handle a single arithmetic instruction along with any type
603 /// conversions.
604 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
605                                   BasicBlock::iterator End, Loop *L) {
606   bool seenIncrement = false;
607   bool MultiExitLoop = false;
608
609   if (!L->getExitingBlock())
610     MultiExitLoop = true;
611
612   for (BasicBlock::iterator I = Begin; I != End; ++I) {
613
614     if (!isSafeToSpeculativelyExecute(&*I))
615       return false;
616
617     if (isa<DbgInfoIntrinsic>(I))
618       continue;
619
620     switch (I->getOpcode()) {
621     default:
622       return false;
623     case Instruction::GetElementPtr:
624       // GEPs are cheap if all indices are constant.
625       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
626         return false;
627       // fall-thru to increment case
628       LLVM_FALLTHROUGH;
629     case Instruction::Add:
630     case Instruction::Sub:
631     case Instruction::And:
632     case Instruction::Or:
633     case Instruction::Xor:
634     case Instruction::Shl:
635     case Instruction::LShr:
636     case Instruction::AShr: {
637       Value *IVOpnd =
638           !isa<Constant>(I->getOperand(0))
639               ? I->getOperand(0)
640               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
641       if (!IVOpnd)
642         return false;
643
644       // If increment operand is used outside of the loop, this speculation
645       // could cause extra live range interference.
646       if (MultiExitLoop) {
647         for (User *UseI : IVOpnd->users()) {
648           auto *UserInst = cast<Instruction>(UseI);
649           if (!L->contains(UserInst))
650             return false;
651         }
652       }
653
654       if (seenIncrement)
655         return false;
656       seenIncrement = true;
657       break;
658     }
659     case Instruction::Trunc:
660     case Instruction::ZExt:
661     case Instruction::SExt:
662       // ignore type conversions
663       break;
664     }
665   }
666   return true;
667 }
668
669 /// Fold the loop tail into the loop exit by speculating the loop tail
670 /// instructions. Typically, this is a single post-increment. In the case of a
671 /// simple 2-block loop, hoisting the increment can be much better than
672 /// duplicating the entire loop header. In the case of loops with early exits,
673 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
674 /// canonical form so downstream passes can handle it.
675 ///
676 /// I don't believe this invalidates SCEV.
677 bool LoopRotate::simplifyLoopLatch(Loop *L) {
678   BasicBlock *Latch = L->getLoopLatch();
679   if (!Latch || Latch->hasAddressTaken())
680     return false;
681
682   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
683   if (!Jmp || !Jmp->isUnconditional())
684     return false;
685
686   BasicBlock *LastExit = Latch->getSinglePredecessor();
687   if (!LastExit || !L->isLoopExiting(LastExit))
688     return false;
689
690   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
691   if (!BI)
692     return false;
693
694   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
695     return false;
696
697   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
698                     << LastExit->getName() << "\n");
699
700   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
701   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
702                             /*PredecessorWithTwoSuccessors=*/true);
703
704   if (MSSAU && VerifyMemorySSA)
705     MSSAU->getMemorySSA()->verifyMemorySSA();
706
707   return true;
708 }
709
710 /// Rotate \c L, and return true if any modification was made.
711 bool LoopRotate::processLoop(Loop *L) {
712   // Save the loop metadata.
713   MDNode *LoopMD = L->getLoopID();
714
715   bool SimplifiedLatch = false;
716
717   // Simplify the loop latch before attempting to rotate the header
718   // upward. Rotation may not be needed if the loop tail can be folded into the
719   // loop exit.
720   if (!RotationOnly)
721     SimplifiedLatch = simplifyLoopLatch(L);
722
723   bool MadeChange = rotateLoop(L, SimplifiedLatch);
724   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
725          "Loop latch should be exiting after loop-rotate.");
726
727   // Restore the loop metadata.
728   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
729   if ((MadeChange || SimplifiedLatch) && LoopMD)
730     L->setLoopID(LoopMD);
731
732   return MadeChange || SimplifiedLatch;
733 }
734
735
736 /// The utility to convert a loop into a loop with bottom test.
737 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
738                         AssumptionCache *AC, DominatorTree *DT,
739                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
740                         const SimplifyQuery &SQ, bool RotationOnly = true,
741                         unsigned Threshold = unsigned(-1),
742                         bool IsUtilMode = true) {
743   if (MSSAU && VerifyMemorySSA)
744     MSSAU->getMemorySSA()->verifyMemorySSA();
745   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
746                 IsUtilMode);
747   if (MSSAU && VerifyMemorySSA)
748     MSSAU->getMemorySSA()->verifyMemorySSA();
749
750   return LR.processLoop(L);
751 }