]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Utils / LoopUnroll.cpp
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopSimplify.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "loop-unroll"
44
45 // TODO: Should these be here or in LoopUnroll?
46 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48 STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a "
49                                  "conditional latch (completely or otherwise)");
50
51 static cl::opt<bool>
52 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
53                     cl::desc("Allow runtime unrolled loops to be unrolled "
54                              "with epilog instead of prolog."));
55
56 static cl::opt<bool>
57 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
58                     cl::desc("Verify domtree after unrolling"),
59 #ifdef EXPENSIVE_CHECKS
60     cl::init(true)
61 #else
62     cl::init(false)
63 #endif
64                     );
65
66 /// Convert the instruction operands from referencing the current values into
67 /// those specified by VMap.
68 void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
69   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
70     Value *Op = I->getOperand(op);
71
72     // Unwrap arguments of dbg.value intrinsics.
73     bool Wrapped = false;
74     if (auto *V = dyn_cast<MetadataAsValue>(Op))
75       if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
76         Op = Unwrapped->getValue();
77         Wrapped = true;
78       }
79
80     auto wrap = [&](Value *V) {
81       auto &C = I->getContext();
82       return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
83     };
84
85     ValueToValueMapTy::iterator It = VMap.find(Op);
86     if (It != VMap.end())
87       I->setOperand(op, wrap(It->second));
88   }
89
90   if (PHINode *PN = dyn_cast<PHINode>(I)) {
91     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
92       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
93       if (It != VMap.end())
94         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
95     }
96   }
97 }
98
99 /// Check if unrolling created a situation where we need to insert phi nodes to
100 /// preserve LCSSA form.
101 /// \param Blocks is a vector of basic blocks representing unrolled loop.
102 /// \param L is the outer loop.
103 /// It's possible that some of the blocks are in L, and some are not. In this
104 /// case, if there is a use is outside L, and definition is inside L, we need to
105 /// insert a phi-node, otherwise LCSSA will be broken.
106 /// The function is just a helper function for llvm::UnrollLoop that returns
107 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
108 static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
109                                      LoopInfo *LI) {
110   for (BasicBlock *BB : Blocks) {
111     if (LI->getLoopFor(BB) == L)
112       continue;
113     for (Instruction &I : *BB) {
114       for (Use &U : I.operands()) {
115         if (auto Def = dyn_cast<Instruction>(U)) {
116           Loop *DefLoop = LI->getLoopFor(Def->getParent());
117           if (!DefLoop)
118             continue;
119           if (DefLoop->contains(L))
120             return true;
121         }
122       }
123     }
124   }
125   return false;
126 }
127
128 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
129 /// and adds a mapping from the original loop to the new loop to NewLoops.
130 /// Returns nullptr if no new loop was created and a pointer to the
131 /// original loop OriginalBB was part of otherwise.
132 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
133                                            BasicBlock *ClonedBB, LoopInfo *LI,
134                                            NewLoopsMap &NewLoops) {
135   // Figure out which loop New is in.
136   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
137   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
138
139   Loop *&NewLoop = NewLoops[OldLoop];
140   if (!NewLoop) {
141     // Found a new sub-loop.
142     assert(OriginalBB == OldLoop->getHeader() &&
143            "Header should be first in RPO");
144
145     NewLoop = LI->AllocateLoop();
146     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
147
148     if (NewLoopParent)
149       NewLoopParent->addChildLoop(NewLoop);
150     else
151       LI->addTopLevelLoop(NewLoop);
152
153     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
154     return OldLoop;
155   } else {
156     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
157     return nullptr;
158   }
159 }
160
161 /// The function chooses which type of unroll (epilog or prolog) is more
162 /// profitabale.
163 /// Epilog unroll is more profitable when there is PHI that starts from
164 /// constant.  In this case epilog will leave PHI start from constant,
165 /// but prolog will convert it to non-constant.
166 ///
167 /// loop:
168 ///   PN = PHI [I, Latch], [CI, PreHeader]
169 ///   I = foo(PN)
170 ///   ...
171 ///
172 /// Epilog unroll case.
173 /// loop:
174 ///   PN = PHI [I2, Latch], [CI, PreHeader]
175 ///   I1 = foo(PN)
176 ///   I2 = foo(I1)
177 ///   ...
178 /// Prolog unroll case.
179 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
180 /// loop:
181 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
182 ///   I1 = foo(PN)
183 ///   I2 = foo(I1)
184 ///   ...
185 ///
186 static bool isEpilogProfitable(Loop *L) {
187   BasicBlock *PreHeader = L->getLoopPreheader();
188   BasicBlock *Header = L->getHeader();
189   assert(PreHeader && Header);
190   for (const PHINode &PN : Header->phis()) {
191     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
192       return true;
193   }
194   return false;
195 }
196
197 /// Perform some cleanup and simplifications on loops after unrolling. It is
198 /// useful to simplify the IV's in the new loop, as well as do a quick
199 /// simplify/dce pass of the instructions.
200 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
201                                    ScalarEvolution *SE, DominatorTree *DT,
202                                    AssumptionCache *AC) {
203   // Simplify any new induction variables in the partially unrolled loop.
204   if (SE && SimplifyIVs) {
205     SmallVector<WeakTrackingVH, 16> DeadInsts;
206     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
207
208     // Aggressively clean up dead instructions that simplifyLoopIVs already
209     // identified. Any remaining should be cleaned up below.
210     while (!DeadInsts.empty())
211       if (Instruction *Inst =
212               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
213         RecursivelyDeleteTriviallyDeadInstructions(Inst);
214   }
215
216   // At this point, the code is well formed.  We now do a quick sweep over the
217   // inserted code, doing constant propagation and dead code elimination as we
218   // go.
219   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
220   for (BasicBlock *BB : L->getBlocks()) {
221     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
222       Instruction *Inst = &*I++;
223
224       if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
225         if (LI->replacementPreservesLCSSAForm(Inst, V))
226           Inst->replaceAllUsesWith(V);
227       if (isInstructionTriviallyDead(Inst))
228         BB->getInstList().erase(Inst);
229     }
230   }
231
232   // TODO: after peeling or unrolling, previously loop variant conditions are
233   // likely to fold to constants, eagerly propagating those here will require
234   // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
235   // appropriate.
236 }
237
238 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
239 /// can only fail when the loop's latch block is not terminated by a conditional
240 /// branch instruction. However, if the trip count (and multiple) are not known,
241 /// loop unrolling will mostly produce more code that is no faster.
242 ///
243 /// TripCount is the upper bound of the iteration on which control exits
244 /// LatchBlock. Control may exit the loop prior to TripCount iterations either
245 /// via an early branch in other loop block or via LatchBlock terminator. This
246 /// is relaxed from the general definition of trip count which is the number of
247 /// times the loop header executes. Note that UnrollLoop assumes that the loop
248 /// counter test is in LatchBlock in order to remove unnecesssary instances of
249 /// the test.  If control can exit the loop from the LatchBlock's terminator
250 /// prior to TripCount iterations, flag PreserveCondBr needs to be set.
251 ///
252 /// PreserveCondBr indicates whether the conditional branch of the LatchBlock
253 /// needs to be preserved.  It is needed when we use trip count upper bound to
254 /// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
255 /// conditional branch needs to be preserved.
256 ///
257 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
258 /// execute without exiting the loop.
259 ///
260 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
261 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
262 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
263 /// iterations before branching into the unrolled loop.  UnrollLoop will not
264 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
265 /// AllowExpensiveTripCount is false.
266 ///
267 /// If we want to perform PGO-based loop peeling, PeelCount is set to the
268 /// number of iterations we want to peel off.
269 ///
270 /// The LoopInfo Analysis that is passed will be kept consistent.
271 ///
272 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
273 /// DominatorTree if they are non-null.
274 ///
275 /// If RemainderLoop is non-null, it will receive the remainder loop (if
276 /// required and not fully unrolled).
277 LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
278                                   ScalarEvolution *SE, DominatorTree *DT,
279                                   AssumptionCache *AC,
280                                   OptimizationRemarkEmitter *ORE,
281                                   bool PreserveLCSSA, Loop **RemainderLoop) {
282
283   BasicBlock *Preheader = L->getLoopPreheader();
284   if (!Preheader) {
285     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
286     return LoopUnrollResult::Unmodified;
287   }
288
289   BasicBlock *LatchBlock = L->getLoopLatch();
290   if (!LatchBlock) {
291     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
292     return LoopUnrollResult::Unmodified;
293   }
294
295   // Loops with indirectbr cannot be cloned.
296   if (!L->isSafeToClone()) {
297     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
298     return LoopUnrollResult::Unmodified;
299   }
300
301   // The current loop unroll pass can unroll loops with a single latch or header
302   // that's a conditional branch exiting the loop.
303   // FIXME: The implementation can be extended to work with more complicated
304   // cases, e.g. loops with multiple latches.
305   BasicBlock *Header = L->getHeader();
306   BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator());
307   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
308
309   // FIXME: Support loops without conditional latch and multiple exiting blocks.
310   if (!BI ||
311       (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() ||
312                                  L->getExitingBlock() != Header))) {
313     LLVM_DEBUG(dbgs() << "  Can't unroll; loop not terminated by a conditional "
314                          "branch in the latch or header.\n");
315     return LoopUnrollResult::Unmodified;
316   }
317
318   auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) {
319     return BI->isConditional() && BI->getSuccessor(S1) == Header &&
320            !L->contains(BI->getSuccessor(S2));
321   };
322
323   // If we have a conditional latch, it must exit the loop.
324   if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) &&
325       !CheckLatchSuccessors(1, 0)) {
326     LLVM_DEBUG(
327         dbgs() << "Can't unroll; a conditional latch must exit the loop");
328     return LoopUnrollResult::Unmodified;
329   }
330
331   auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) {
332     return HeaderBI && HeaderBI->isConditional() &&
333            L->contains(HeaderBI->getSuccessor(S1)) &&
334            !L->contains(HeaderBI->getSuccessor(S2));
335   };
336
337   // If we do not have a conditional latch, the header must exit the loop.
338   if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() &&
339       !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) {
340     LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop");
341     return LoopUnrollResult::Unmodified;
342   }
343
344   if (Header->hasAddressTaken()) {
345     // The loop-rotate pass can be helpful to avoid this in many cases.
346     LLVM_DEBUG(
347         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
348     return LoopUnrollResult::Unmodified;
349   }
350
351   if (ULO.TripCount != 0)
352     LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
353   if (ULO.TripMultiple != 1)
354     LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
355
356   // Effectively "DCE" unrolled iterations that are beyond the tripcount
357   // and will never be executed.
358   if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
359     ULO.Count = ULO.TripCount;
360
361   // Don't enter the unroll code if there is nothing to do.
362   if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
363     LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
364     return LoopUnrollResult::Unmodified;
365   }
366
367   assert(ULO.Count > 0);
368   assert(ULO.TripMultiple > 0);
369   assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
370
371   // Are we eliminating the loop control altogether?
372   bool CompletelyUnroll = ULO.Count == ULO.TripCount;
373   SmallVector<BasicBlock *, 4> ExitBlocks;
374   L->getExitBlocks(ExitBlocks);
375   std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
376
377   // Go through all exits of L and see if there are any phi-nodes there. We just
378   // conservatively assume that they're inserted to preserve LCSSA form, which
379   // means that complete unrolling might break this form. We need to either fix
380   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
381   // now we just recompute LCSSA for the outer loop, but it should be possible
382   // to fix it in-place.
383   bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
384                         any_of(ExitBlocks, [](const BasicBlock *BB) {
385                           return isa<PHINode>(BB->begin());
386                         });
387
388   // We assume a run-time trip count if the compiler cannot
389   // figure out the loop trip count and the unroll-runtime
390   // flag is specified.
391   bool RuntimeTripCount =
392       (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
393
394   assert((!RuntimeTripCount || !ULO.PeelCount) &&
395          "Did not expect runtime trip-count unrolling "
396          "and peeling for the same loop");
397
398   bool Peeled = false;
399   if (ULO.PeelCount) {
400     Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
401
402     // Successful peeling may result in a change in the loop preheader/trip
403     // counts. If we later unroll the loop, we want these to be updated.
404     if (Peeled) {
405       // According to our guards and profitability checks the only
406       // meaningful exit should be latch block. Other exits go to deopt,
407       // so we do not worry about them.
408       BasicBlock *ExitingBlock = L->getLoopLatch();
409       assert(ExitingBlock && "Loop without exiting block?");
410       assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
411       Preheader = L->getLoopPreheader();
412       ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
413       ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
414     }
415   }
416
417   // Loops containing convergent instructions must have a count that divides
418   // their TripMultiple.
419   LLVM_DEBUG(
420       {
421         bool HasConvergent = false;
422         for (auto &BB : L->blocks())
423           for (auto &I : *BB)
424             if (auto CS = CallSite(&I))
425               HasConvergent |= CS.isConvergent();
426         assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
427                "Unroll count must divide trip multiple if loop contains a "
428                "convergent operation.");
429       });
430
431   bool EpilogProfitability =
432       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
433                                               : isEpilogProfitable(L);
434
435   if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
436       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
437                                   EpilogProfitability, ULO.UnrollRemainder,
438                                   ULO.ForgetAllSCEV, LI, SE, DT, AC,
439                                   PreserveLCSSA, RemainderLoop)) {
440     if (ULO.Force)
441       RuntimeTripCount = false;
442     else {
443       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
444                            "generated when assuming runtime trip count\n");
445       return LoopUnrollResult::Unmodified;
446     }
447   }
448
449   // If we know the trip count, we know the multiple...
450   unsigned BreakoutTrip = 0;
451   if (ULO.TripCount != 0) {
452     BreakoutTrip = ULO.TripCount % ULO.Count;
453     ULO.TripMultiple = 0;
454   } else {
455     // Figure out what multiple to use.
456     BreakoutTrip = ULO.TripMultiple =
457         (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
458   }
459
460   using namespace ore;
461   // Report the unrolling decision.
462   if (CompletelyUnroll) {
463     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
464                       << " with trip count " << ULO.TripCount << "!\n");
465     if (ORE)
466       ORE->emit([&]() {
467         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
468                                   L->getHeader())
469                << "completely unrolled loop with "
470                << NV("UnrollCount", ULO.TripCount) << " iterations";
471       });
472   } else if (ULO.PeelCount) {
473     LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
474                       << " with iteration count " << ULO.PeelCount << "!\n");
475     if (ORE)
476       ORE->emit([&]() {
477         return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
478                                   L->getHeader())
479                << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
480                << " iterations";
481       });
482   } else {
483     auto DiagBuilder = [&]() {
484       OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
485                               L->getHeader());
486       return Diag << "unrolled loop by a factor of "
487                   << NV("UnrollCount", ULO.Count);
488     };
489
490     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
491                       << ULO.Count);
492     if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
493       LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
494       if (ORE)
495         ORE->emit([&]() {
496           return DiagBuilder() << " with a breakout at trip "
497                                << NV("BreakoutTrip", BreakoutTrip);
498         });
499     } else if (ULO.TripMultiple != 1) {
500       LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
501       if (ORE)
502         ORE->emit([&]() {
503           return DiagBuilder()
504                  << " with " << NV("TripMultiple", ULO.TripMultiple)
505                  << " trips per branch";
506         });
507     } else if (RuntimeTripCount) {
508       LLVM_DEBUG(dbgs() << " with run-time trip count");
509       if (ORE)
510         ORE->emit(
511             [&]() { return DiagBuilder() << " with run-time trip count"; });
512     }
513     LLVM_DEBUG(dbgs() << "!\n");
514   }
515
516   // We are going to make changes to this loop. SCEV may be keeping cached info
517   // about it, in particular about backedge taken count. The changes we make
518   // are guaranteed to invalidate this information for our loop. It is tempting
519   // to only invalidate the loop being unrolled, but it is incorrect as long as
520   // all exiting branches from all inner loops have impact on the outer loops,
521   // and if something changes inside them then any of outer loops may also
522   // change. When we forget outermost loop, we also forget all contained loops
523   // and this is what we need here.
524   if (SE) {
525     if (ULO.ForgetAllSCEV)
526       SE->forgetAllLoops();
527     else
528       SE->forgetTopmostLoop(L);
529   }
530
531   bool ContinueOnTrue;
532   bool LatchIsExiting = BI->isConditional();
533   BasicBlock *LoopExit = nullptr;
534   if (LatchIsExiting) {
535     ContinueOnTrue = L->contains(BI->getSuccessor(0));
536     LoopExit = BI->getSuccessor(ContinueOnTrue);
537   } else {
538     NumUnrolledWithHeader++;
539     ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0));
540     LoopExit = HeaderBI->getSuccessor(ContinueOnTrue);
541   }
542
543   // For the first iteration of the loop, we should use the precloned values for
544   // PHI nodes.  Insert associations now.
545   ValueToValueMapTy LastValueMap;
546   std::vector<PHINode*> OrigPHINode;
547   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
548     OrigPHINode.push_back(cast<PHINode>(I));
549   }
550
551   std::vector<BasicBlock *> Headers;
552   std::vector<BasicBlock *> HeaderSucc;
553   std::vector<BasicBlock *> Latches;
554   Headers.push_back(Header);
555   Latches.push_back(LatchBlock);
556
557   if (!LatchIsExiting) {
558     auto *Term = cast<BranchInst>(Header->getTerminator());
559     if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) {
560       assert(L->contains(Term->getSuccessor(0)));
561       HeaderSucc.push_back(Term->getSuccessor(0));
562     } else {
563       assert(L->contains(Term->getSuccessor(1)));
564       HeaderSucc.push_back(Term->getSuccessor(1));
565     }
566   }
567
568   // The current on-the-fly SSA update requires blocks to be processed in
569   // reverse postorder so that LastValueMap contains the correct value at each
570   // exit.
571   LoopBlocksDFS DFS(L);
572   DFS.perform(LI);
573
574   // Stash the DFS iterators before adding blocks to the loop.
575   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
576   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
577
578   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
579
580   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
581   // might break loop-simplified form for these loops (as they, e.g., would
582   // share the same exit blocks). We'll keep track of loops for which we can
583   // break this so that later we can re-simplify them.
584   SmallSetVector<Loop *, 4> LoopsToSimplify;
585   for (Loop *SubLoop : *L)
586     LoopsToSimplify.insert(SubLoop);
587
588   if (Header->getParent()->isDebugInfoForProfiling())
589     for (BasicBlock *BB : L->getBlocks())
590       for (Instruction &I : *BB)
591         if (!isa<DbgInfoIntrinsic>(&I))
592           if (const DILocation *DIL = I.getDebugLoc()) {
593             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
594             if (NewDIL)
595               I.setDebugLoc(NewDIL.getValue());
596             else
597               LLVM_DEBUG(dbgs()
598                          << "Failed to create new discriminator: "
599                          << DIL->getFilename() << " Line: " << DIL->getLine());
600           }
601
602   for (unsigned It = 1; It != ULO.Count; ++It) {
603     std::vector<BasicBlock*> NewBlocks;
604     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
605     NewLoops[L] = L;
606
607     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
608       ValueToValueMapTy VMap;
609       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
610       Header->getParent()->getBasicBlockList().push_back(New);
611
612       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
613              "Header should not be in a sub-loop");
614       // Tell LI about New.
615       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
616       if (OldLoop)
617         LoopsToSimplify.insert(NewLoops[OldLoop]);
618
619       if (*BB == Header)
620         // Loop over all of the PHI nodes in the block, changing them to use
621         // the incoming values from the previous block.
622         for (PHINode *OrigPHI : OrigPHINode) {
623           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
624           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
625           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
626             if (It > 1 && L->contains(InValI))
627               InVal = LastValueMap[InValI];
628           VMap[OrigPHI] = InVal;
629           New->getInstList().erase(NewPHI);
630         }
631
632       // Update our running map of newest clones
633       LastValueMap[*BB] = New;
634       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
635            VI != VE; ++VI)
636         LastValueMap[VI->first] = VI->second;
637
638       // Add phi entries for newly created values to all exit blocks.
639       for (BasicBlock *Succ : successors(*BB)) {
640         if (L->contains(Succ))
641           continue;
642         for (PHINode &PHI : Succ->phis()) {
643           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
644           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
645           if (It != LastValueMap.end())
646             Incoming = It->second;
647           PHI.addIncoming(Incoming, New);
648         }
649       }
650       // Keep track of new headers and latches as we create them, so that
651       // we can insert the proper branches later.
652       if (*BB == Header)
653         Headers.push_back(New);
654       if (*BB == LatchBlock)
655         Latches.push_back(New);
656
657       // Keep track of the successor of the new header in the current iteration.
658       for (auto *Pred : predecessors(*BB))
659         if (Pred == Header) {
660           HeaderSucc.push_back(New);
661           break;
662         }
663
664       NewBlocks.push_back(New);
665       UnrolledLoopBlocks.push_back(New);
666
667       // Update DomTree: since we just copy the loop body, and each copy has a
668       // dedicated entry block (copy of the header block), this header's copy
669       // dominates all copied blocks. That means, dominance relations in the
670       // copied body are the same as in the original body.
671       if (DT) {
672         if (*BB == Header)
673           DT->addNewBlock(New, Latches[It - 1]);
674         else {
675           auto BBDomNode = DT->getNode(*BB);
676           auto BBIDom = BBDomNode->getIDom();
677           BasicBlock *OriginalBBIDom = BBIDom->getBlock();
678           DT->addNewBlock(
679               New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
680         }
681       }
682     }
683
684     // Remap all instructions in the most recent iteration
685     for (BasicBlock *NewBlock : NewBlocks) {
686       for (Instruction &I : *NewBlock) {
687         ::remapInstruction(&I, LastValueMap);
688         if (auto *II = dyn_cast<IntrinsicInst>(&I))
689           if (II->getIntrinsicID() == Intrinsic::assume)
690             AC->registerAssumption(II);
691       }
692     }
693   }
694
695   // Loop over the PHI nodes in the original block, setting incoming values.
696   for (PHINode *PN : OrigPHINode) {
697     if (CompletelyUnroll) {
698       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
699       Header->getInstList().erase(PN);
700     } else if (ULO.Count > 1) {
701       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
702       // If this value was defined in the loop, take the value defined by the
703       // last iteration of the loop.
704       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
705         if (L->contains(InValI))
706           InVal = LastValueMap[InVal];
707       }
708       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
709       PN->addIncoming(InVal, Latches.back());
710     }
711   }
712
713   auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest,
714                                             ArrayRef<BasicBlock *> NextBlocks,
715                                             BasicBlock *BlockInLoop,
716                                             bool NeedConditional) {
717     auto *Term = cast<BranchInst>(Src->getTerminator());
718     if (NeedConditional) {
719       // Update the conditional branch's successor for the following
720       // iteration.
721       Term->setSuccessor(!ContinueOnTrue, Dest);
722     } else {
723       // Remove phi operands at this loop exit
724       if (Dest != LoopExit) {
725         BasicBlock *BB = Src;
726         for (BasicBlock *Succ : successors(BB)) {
727           // Preserve the incoming value from BB if we are jumping to the block
728           // in the current loop.
729           if (Succ == BlockInLoop)
730             continue;
731           for (PHINode &Phi : Succ->phis())
732             Phi.removeIncomingValue(BB, false);
733         }
734       }
735       // Replace the conditional branch with an unconditional one.
736       BranchInst::Create(Dest, Term);
737       Term->eraseFromParent();
738     }
739   };
740
741   // Now that all the basic blocks for the unrolled iterations are in place,
742   // set up the branches to connect them.
743   if (LatchIsExiting) {
744     // Set up latches to branch to the new header in the unrolled iterations or
745     // the loop exit for the last latch in a fully unrolled loop.
746     for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
747       // The branch destination.
748       unsigned j = (i + 1) % e;
749       BasicBlock *Dest = Headers[j];
750       bool NeedConditional = true;
751
752       if (RuntimeTripCount && j != 0) {
753         NeedConditional = false;
754       }
755
756       // For a complete unroll, make the last iteration end with a branch
757       // to the exit block.
758       if (CompletelyUnroll) {
759         if (j == 0)
760           Dest = LoopExit;
761         // If using trip count upper bound to completely unroll, we need to keep
762         // the conditional branch except the last one because the loop may exit
763         // after any iteration.
764         assert(NeedConditional &&
765                "NeedCondition cannot be modified by both complete "
766                "unrolling and runtime unrolling");
767         NeedConditional =
768             (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
769       } else if (j != BreakoutTrip &&
770                  (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
771         // If we know the trip count or a multiple of it, we can safely use an
772         // unconditional branch for some iterations.
773         NeedConditional = false;
774       }
775
776       setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional);
777     }
778   } else {
779     // Setup headers to branch to their new successors in the unrolled
780     // iterations.
781     for (unsigned i = 0, e = Headers.size(); i != e; ++i) {
782       // The branch destination.
783       unsigned j = (i + 1) % e;
784       BasicBlock *Dest = HeaderSucc[i];
785       bool NeedConditional = true;
786
787       if (RuntimeTripCount && j != 0)
788         NeedConditional = false;
789
790       if (CompletelyUnroll)
791         // We cannot drop the conditional branch for the last condition, as we
792         // may have to execute the loop body depending on the condition.
793         NeedConditional = j == 0 || ULO.PreserveCondBr;
794       else if (j != BreakoutTrip &&
795                (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
796         // If we know the trip count or a multiple of it, we can safely use an
797         // unconditional branch for some iterations.
798         NeedConditional = false;
799
800       setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional);
801     }
802
803     // Set up latches to branch to the new header in the unrolled iterations or
804     // the loop exit for the last latch in a fully unrolled loop.
805
806     for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
807       // The original branch was replicated in each unrolled iteration.
808       BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
809
810       // The branch destination.
811       unsigned j = (i + 1) % e;
812       BasicBlock *Dest = Headers[j];
813
814       // When completely unrolling, the last latch becomes unreachable.
815       if (CompletelyUnroll && j == 0)
816         new UnreachableInst(Term->getContext(), Term);
817       else
818         // Replace the conditional branch with an unconditional one.
819         BranchInst::Create(Dest, Term);
820
821       Term->eraseFromParent();
822     }
823   }
824
825   // Update dominators of blocks we might reach through exits.
826   // Immediate dominator of such block might change, because we add more
827   // routes which can lead to the exit: we can now reach it from the copied
828   // iterations too.
829   if (DT && ULO.Count > 1) {
830     for (auto *BB : OriginalLoopBlocks) {
831       auto *BBDomNode = DT->getNode(BB);
832       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
833       for (auto *ChildDomNode : BBDomNode->getChildren()) {
834         auto *ChildBB = ChildDomNode->getBlock();
835         if (!L->contains(ChildBB))
836           ChildrenToUpdate.push_back(ChildBB);
837       }
838       BasicBlock *NewIDom;
839       BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header;
840       auto &TermBlocks = LatchIsExiting ? Latches : Headers;
841       if (BB == TermBlock) {
842         // The latch is special because we emit unconditional branches in
843         // some cases where the original loop contained a conditional branch.
844         // Since the latch is always at the bottom of the loop, if the latch
845         // dominated an exit before unrolling, the new dominator of that exit
846         // must also be a latch.  Specifically, the dominator is the first
847         // latch which ends in a conditional branch, or the last latch if
848         // there is no such latch.
849         // For loops exiting from the header, we limit the supported loops
850         // to have a single exiting block.
851         NewIDom = TermBlocks.back();
852         for (BasicBlock *Iter : TermBlocks) {
853           Instruction *Term = Iter->getTerminator();
854           if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
855             NewIDom = Iter;
856             break;
857           }
858         }
859       } else {
860         // The new idom of the block will be the nearest common dominator
861         // of all copies of the previous idom. This is equivalent to the
862         // nearest common dominator of the previous idom and the first latch,
863         // which dominates all copies of the previous idom.
864         NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
865       }
866       for (auto *ChildBB : ChildrenToUpdate)
867         DT->changeImmediateDominator(ChildBB, NewIDom);
868     }
869   }
870
871   assert(!DT || !UnrollVerifyDomtree ||
872          DT->verify(DominatorTree::VerificationLevel::Fast));
873
874   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
875   // Merge adjacent basic blocks, if possible.
876   for (BasicBlock *Latch : Latches) {
877     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
878     assert((Term ||
879             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
880            "Need a branch as terminator, except when fully unrolling with "
881            "unconditional latch");
882     if (Term && Term->isUnconditional()) {
883       BasicBlock *Dest = Term->getSuccessor(0);
884       BasicBlock *Fold = Dest->getUniquePredecessor();
885       if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
886         // Dest has been folded into Fold. Update our worklists accordingly.
887         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
888         UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
889                                              UnrolledLoopBlocks.end(), Dest),
890                                  UnrolledLoopBlocks.end());
891       }
892     }
893   }
894   // Apply updates to the DomTree.
895   DT = &DTU.getDomTree();
896
897   // At this point, the code is well formed.  We now simplify the unrolled loop,
898   // doing constant propagation and dead code elimination as we go.
899   simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
900                           SE, DT, AC);
901
902   NumCompletelyUnrolled += CompletelyUnroll;
903   ++NumUnrolled;
904
905   Loop *OuterL = L->getParentLoop();
906   // Update LoopInfo if the loop is completely removed.
907   if (CompletelyUnroll)
908     LI->erase(L);
909
910   // After complete unrolling most of the blocks should be contained in OuterL.
911   // However, some of them might happen to be out of OuterL (e.g. if they
912   // precede a loop exit). In this case we might need to insert PHI nodes in
913   // order to preserve LCSSA form.
914   // We don't need to check this if we already know that we need to fix LCSSA
915   // form.
916   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
917   // it should be possible to fix it in-place.
918   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
919     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
920
921   // If we have a pass and a DominatorTree we should re-simplify impacted loops
922   // to ensure subsequent analyses can rely on this form. We want to simplify
923   // at least one layer outside of the loop that was unrolled so that any
924   // changes to the parent loop exposed by the unrolling are considered.
925   if (DT) {
926     if (OuterL) {
927       // OuterL includes all loops for which we can break loop-simplify, so
928       // it's sufficient to simplify only it (it'll recursively simplify inner
929       // loops too).
930       if (NeedToFixLCSSA) {
931         // LCSSA must be performed on the outermost affected loop. The unrolled
932         // loop's last loop latch is guaranteed to be in the outermost loop
933         // after LoopInfo's been updated by LoopInfo::erase.
934         Loop *LatchLoop = LI->getLoopFor(Latches.back());
935         Loop *FixLCSSALoop = OuterL;
936         if (!FixLCSSALoop->contains(LatchLoop))
937           while (FixLCSSALoop->getParentLoop() != LatchLoop)
938             FixLCSSALoop = FixLCSSALoop->getParentLoop();
939
940         formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
941       } else if (PreserveLCSSA) {
942         assert(OuterL->isLCSSAForm(*DT) &&
943                "Loops should be in LCSSA form after loop-unroll.");
944       }
945
946       // TODO: That potentially might be compile-time expensive. We should try
947       // to fix the loop-simplified form incrementally.
948       simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
949     } else {
950       // Simplify loops for which we might've broken loop-simplify form.
951       for (Loop *SubLoop : LoopsToSimplify)
952         simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
953     }
954   }
955
956   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
957                           : LoopUnrollResult::PartiallyUnrolled;
958 }
959
960 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
961 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
962 /// such metadata node exists, then nullptr is returned.
963 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
964   // First operand should refer to the loop id itself.
965   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
966   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
967
968   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
969     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
970     if (!MD)
971       continue;
972
973     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
974     if (!S)
975       continue;
976
977     if (Name.equals(S->getString()))
978       return MD;
979   }
980   return nullptr;
981 }