]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Transforms/Utils/VNCoercion.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Transforms / Utils / VNCoercion.cpp
1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/AliasAnalysis.h"
3 #include "llvm/Analysis/ConstantFolding.h"
4 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
5 #include "llvm/Analysis/ValueTracking.h"
6 #include "llvm/IR/IRBuilder.h"
7 #include "llvm/IR/IntrinsicInst.h"
8 #include "llvm/Support/Debug.h"
9
10 #define DEBUG_TYPE "vncoerce"
11 namespace llvm {
12 namespace VNCoercion {
13
14 /// Return true if coerceAvailableValueToLoadType will succeed.
15 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
16                                      const DataLayout &DL) {
17   Type *StoredTy = StoredVal->getType();
18   if (StoredTy == LoadTy)
19     return true;
20
21   // If the loaded or stored value is an first class array or struct, don't try
22   // to transform them.  We need to be able to bitcast to integer.
23   if (LoadTy->isStructTy() || LoadTy->isArrayTy() || StoredTy->isStructTy() ||
24       StoredTy->isArrayTy())
25     return false;
26
27   uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy);
28
29   // The store size must be byte-aligned to support future type casts.
30   if (llvm::alignTo(StoreSize, 8) != StoreSize)
31     return false;
32
33   // The store has to be at least as big as the load.
34   if (StoreSize < DL.getTypeSizeInBits(LoadTy))
35     return false;
36
37   // Don't coerce non-integral pointers to integers or vice versa.
38   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
39       DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
40     // As a special case, allow coercion of memset used to initialize
41     // an array w/null.  Despite non-integral pointers not generally having a
42     // specific bit pattern, we do assume null is zero.
43     if (auto *CI = dyn_cast<Constant>(StoredVal))
44       return CI->isNullValue();
45     return false;
46   }
47   
48   return true;
49 }
50
51 template <class T, class HelperClass>
52 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
53                                                HelperClass &Helper,
54                                                const DataLayout &DL) {
55   assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
56          "precondition violation - materialization can't fail");
57   if (auto *C = dyn_cast<Constant>(StoredVal))
58     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
59       StoredVal = FoldedStoredVal;
60
61   // If this is already the right type, just return it.
62   Type *StoredValTy = StoredVal->getType();
63
64   uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
65   uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
66
67   // If the store and reload are the same size, we can always reuse it.
68   if (StoredValSize == LoadedValSize) {
69     // Pointer to Pointer -> use bitcast.
70     if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
71       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
72     } else {
73       // Convert source pointers to integers, which can be bitcast.
74       if (StoredValTy->isPtrOrPtrVectorTy()) {
75         StoredValTy = DL.getIntPtrType(StoredValTy);
76         StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
77       }
78
79       Type *TypeToCastTo = LoadedTy;
80       if (TypeToCastTo->isPtrOrPtrVectorTy())
81         TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
82
83       if (StoredValTy != TypeToCastTo)
84         StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
85
86       // Cast to pointer if the load needs a pointer type.
87       if (LoadedTy->isPtrOrPtrVectorTy())
88         StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
89     }
90
91     if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
92       if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
93         StoredVal = FoldedStoredVal;
94
95     return StoredVal;
96   }
97   // If the loaded value is smaller than the available value, then we can
98   // extract out a piece from it.  If the available value is too small, then we
99   // can't do anything.
100   assert(StoredValSize >= LoadedValSize &&
101          "canCoerceMustAliasedValueToLoad fail");
102
103   // Convert source pointers to integers, which can be manipulated.
104   if (StoredValTy->isPtrOrPtrVectorTy()) {
105     StoredValTy = DL.getIntPtrType(StoredValTy);
106     StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
107   }
108
109   // Convert vectors and fp to integer, which can be manipulated.
110   if (!StoredValTy->isIntegerTy()) {
111     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
112     StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
113   }
114
115   // If this is a big-endian system, we need to shift the value down to the low
116   // bits so that a truncate will work.
117   if (DL.isBigEndian()) {
118     uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
119                         DL.getTypeStoreSizeInBits(LoadedTy);
120     StoredVal = Helper.CreateLShr(
121         StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
122   }
123
124   // Truncate the integer to the right size now.
125   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
126   StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
127
128   if (LoadedTy != NewIntTy) {
129     // If the result is a pointer, inttoptr.
130     if (LoadedTy->isPtrOrPtrVectorTy())
131       StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
132     else
133       // Otherwise, bitcast.
134       StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
135   }
136
137   if (auto *C = dyn_cast<Constant>(StoredVal))
138     if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
139       StoredVal = FoldedStoredVal;
140
141   return StoredVal;
142 }
143
144 /// If we saw a store of a value to memory, and
145 /// then a load from a must-aliased pointer of a different type, try to coerce
146 /// the stored value.  LoadedTy is the type of the load we want to replace.
147 /// IRB is IRBuilder used to insert new instructions.
148 ///
149 /// If we can't do it, return null.
150 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
151                                       IRBuilder<> &IRB, const DataLayout &DL) {
152   return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
153 }
154
155 /// This function is called when we have a memdep query of a load that ends up
156 /// being a clobbering memory write (store, memset, memcpy, memmove).  This
157 /// means that the write *may* provide bits used by the load but we can't be
158 /// sure because the pointers don't must-alias.
159 ///
160 /// Check this case to see if there is anything more we can do before we give
161 /// up.  This returns -1 if we have to give up, or a byte number in the stored
162 /// value of the piece that feeds the load.
163 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
164                                           Value *WritePtr,
165                                           uint64_t WriteSizeInBits,
166                                           const DataLayout &DL) {
167   // If the loaded or stored value is a first class array or struct, don't try
168   // to transform them.  We need to be able to bitcast to integer.
169   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
170     return -1;
171
172   int64_t StoreOffset = 0, LoadOffset = 0;
173   Value *StoreBase =
174       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
175   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
176   if (StoreBase != LoadBase)
177     return -1;
178
179   // If the load and store are to the exact same address, they should have been
180   // a must alias.  AA must have gotten confused.
181   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
182   // to a load from the base of the memset.
183
184   // If the load and store don't overlap at all, the store doesn't provide
185   // anything to the load.  In this case, they really don't alias at all, AA
186   // must have gotten confused.
187   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
188
189   if ((WriteSizeInBits & 7) | (LoadSize & 7))
190     return -1;
191   uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
192   LoadSize /= 8;
193
194   bool isAAFailure = false;
195   if (StoreOffset < LoadOffset)
196     isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset;
197   else
198     isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset;
199
200   if (isAAFailure)
201     return -1;
202
203   // If the Load isn't completely contained within the stored bits, we don't
204   // have all the bits to feed it.  We could do something crazy in the future
205   // (issue a smaller load then merge the bits in) but this seems unlikely to be
206   // valuable.
207   if (StoreOffset > LoadOffset ||
208       StoreOffset + StoreSize < LoadOffset + LoadSize)
209     return -1;
210
211   // Okay, we can do this transformation.  Return the number of bytes into the
212   // store that the load is.
213   return LoadOffset - StoreOffset;
214 }
215
216 /// This function is called when we have a
217 /// memdep query of a load that ends up being a clobbering store.
218 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
219                                    StoreInst *DepSI, const DataLayout &DL) {
220   auto *StoredVal = DepSI->getValueOperand();
221   
222   // Cannot handle reading from store of first-class aggregate yet.
223   if (StoredVal->getType()->isStructTy() ||
224       StoredVal->getType()->isArrayTy())
225     return -1;
226
227   // Don't coerce non-integral pointers to integers or vice versa.
228   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
229       DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
230     // Allow casts of zero values to null as a special case
231     auto *CI = dyn_cast<Constant>(StoredVal);
232     if (!CI || !CI->isNullValue())
233       return -1;
234   }
235
236   Value *StorePtr = DepSI->getPointerOperand();
237   uint64_t StoreSize =
238       DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
239   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
240                                         DL);
241 }
242
243 /// This function is called when we have a
244 /// memdep query of a load that ends up being clobbered by another load.  See if
245 /// the other load can feed into the second load.
246 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
247                                   const DataLayout &DL) {
248   // Cannot handle reading from store of first-class aggregate yet.
249   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
250     return -1;
251
252   // Don't coerce non-integral pointers to integers or vice versa.
253   if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) !=
254       DL.isNonIntegralPointerType(LoadTy->getScalarType()))
255     return -1;
256
257   Value *DepPtr = DepLI->getPointerOperand();
258   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
259   int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
260   if (R != -1)
261     return R;
262
263   // If we have a load/load clobber an DepLI can be widened to cover this load,
264   // then we should widen it!
265   int64_t LoadOffs = 0;
266   const Value *LoadBase =
267       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
268   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
269
270   unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
271       LoadBase, LoadOffs, LoadSize, DepLI);
272   if (Size == 0)
273     return -1;
274
275   // Check non-obvious conditions enforced by MDA which we rely on for being
276   // able to materialize this potentially available value
277   assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
278   assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
279
280   return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
281 }
282
283 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
284                                      MemIntrinsic *MI, const DataLayout &DL) {
285   // If the mem operation is a non-constant size, we can't handle it.
286   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
287   if (!SizeCst)
288     return -1;
289   uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
290
291   // If this is memset, we just need to see if the offset is valid in the size
292   // of the memset..
293   if (MI->getIntrinsicID() == Intrinsic::memset) {
294     if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
295       auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
296       if (!CI || !CI->isZero())
297         return -1;
298     }
299     return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
300                                           MemSizeInBits, DL);
301   }
302
303   // If we have a memcpy/memmove, the only case we can handle is if this is a
304   // copy from constant memory.  In that case, we can read directly from the
305   // constant memory.
306   MemTransferInst *MTI = cast<MemTransferInst>(MI);
307
308   Constant *Src = dyn_cast<Constant>(MTI->getSource());
309   if (!Src)
310     return -1;
311
312   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
313   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
314     return -1;
315
316   // See if the access is within the bounds of the transfer.
317   int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
318                                               MemSizeInBits, DL);
319   if (Offset == -1)
320     return Offset;
321
322   // Don't coerce non-integral pointers to integers or vice versa, and the
323   // memtransfer is implicitly a raw byte code
324   if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
325     // TODO: Can allow nullptrs from constant zeros
326     return -1;
327
328   unsigned AS = Src->getType()->getPointerAddressSpace();
329   // Otherwise, see if we can constant fold a load from the constant with the
330   // offset applied as appropriate.
331   Src =
332       ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
333   Constant *OffsetCst =
334       ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
335   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
336                                        OffsetCst);
337   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
338   if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
339     return Offset;
340   return -1;
341 }
342
343 template <class T, class HelperClass>
344 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
345                                      HelperClass &Helper,
346                                      const DataLayout &DL) {
347   LLVMContext &Ctx = SrcVal->getType()->getContext();
348
349   // If two pointers are in the same address space, they have the same size,
350   // so we don't need to do any truncation, etc. This avoids introducing
351   // ptrtoint instructions for pointers that may be non-integral.
352   if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
353       cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
354           cast<PointerType>(LoadTy)->getAddressSpace()) {
355     return SrcVal;
356   }
357
358   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
359   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
360   // Compute which bits of the stored value are being used by the load.  Convert
361   // to an integer type to start with.
362   if (SrcVal->getType()->isPtrOrPtrVectorTy())
363     SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
364   if (!SrcVal->getType()->isIntegerTy())
365     SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
366
367   // Shift the bits to the least significant depending on endianness.
368   unsigned ShiftAmt;
369   if (DL.isLittleEndian())
370     ShiftAmt = Offset * 8;
371   else
372     ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
373   if (ShiftAmt)
374     SrcVal = Helper.CreateLShr(SrcVal,
375                                ConstantInt::get(SrcVal->getType(), ShiftAmt));
376
377   if (LoadSize != StoreSize)
378     SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
379                                          IntegerType::get(Ctx, LoadSize * 8));
380   return SrcVal;
381 }
382
383 /// This function is called when we have a memdep query of a load that ends up
384 /// being a clobbering store.  This means that the store provides bits used by
385 /// the load but the pointers don't must-alias.  Check this case to see if
386 /// there is anything more we can do before we give up.
387 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
388                             Instruction *InsertPt, const DataLayout &DL) {
389
390   IRBuilder<> Builder(InsertPt);
391   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
392   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
393 }
394
395 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
396                                        Type *LoadTy, const DataLayout &DL) {
397   ConstantFolder F;
398   SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
399   return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
400 }
401
402 /// This function is called when we have a memdep query of a load that ends up
403 /// being a clobbering load.  This means that the load *may* provide bits used
404 /// by the load but we can't be sure because the pointers don't must-alias.
405 /// Check this case to see if there is anything more we can do before we give
406 /// up.
407 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
408                            Instruction *InsertPt, const DataLayout &DL) {
409   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
410   // widen SrcVal out to a larger load.
411   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
412   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
413   if (Offset + LoadSize > SrcValStoreSize) {
414     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
415     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
416     // If we have a load/load clobber an DepLI can be widened to cover this
417     // load, then we should widen it to the next power of 2 size big enough!
418     unsigned NewLoadSize = Offset + LoadSize;
419     if (!isPowerOf2_32(NewLoadSize))
420       NewLoadSize = NextPowerOf2(NewLoadSize);
421
422     Value *PtrVal = SrcVal->getPointerOperand();
423     // Insert the new load after the old load.  This ensures that subsequent
424     // memdep queries will find the new load.  We can't easily remove the old
425     // load completely because it is already in the value numbering table.
426     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
427     Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
428     Type *DestPTy =
429         PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
430     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
431     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
432     LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
433     NewLoad->takeName(SrcVal);
434     NewLoad->setAlignment(SrcVal->getAlignment());
435
436     LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
437     LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
438
439     // Replace uses of the original load with the wider load.  On a big endian
440     // system, we need to shift down to get the relevant bits.
441     Value *RV = NewLoad;
442     if (DL.isBigEndian())
443       RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
444     RV = Builder.CreateTrunc(RV, SrcVal->getType());
445     SrcVal->replaceAllUsesWith(RV);
446
447     SrcVal = NewLoad;
448   }
449
450   return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
451 }
452
453 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
454                                       Type *LoadTy, const DataLayout &DL) {
455   unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
456   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
457   if (Offset + LoadSize > SrcValStoreSize)
458     return nullptr;
459   return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
460 }
461
462 template <class T, class HelperClass>
463 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
464                                 Type *LoadTy, HelperClass &Helper,
465                                 const DataLayout &DL) {
466   LLVMContext &Ctx = LoadTy->getContext();
467   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8;
468
469   // We know that this method is only called when the mem transfer fully
470   // provides the bits for the load.
471   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
472     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
473     // independently of what the offset is.
474     T *Val = cast<T>(MSI->getValue());
475     if (LoadSize != 1)
476       Val =
477           Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
478     T *OneElt = Val;
479
480     // Splat the value out to the right number of bits.
481     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
482       // If we can double the number of bytes set, do it.
483       if (NumBytesSet * 2 <= LoadSize) {
484         T *ShVal = Helper.CreateShl(
485             Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
486         Val = Helper.CreateOr(Val, ShVal);
487         NumBytesSet <<= 1;
488         continue;
489       }
490
491       // Otherwise insert one byte at a time.
492       T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
493       Val = Helper.CreateOr(OneElt, ShVal);
494       ++NumBytesSet;
495     }
496
497     return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
498   }
499
500   // Otherwise, this is a memcpy/memmove from a constant global.
501   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
502   Constant *Src = cast<Constant>(MTI->getSource());
503   unsigned AS = Src->getType()->getPointerAddressSpace();
504
505   // Otherwise, see if we can constant fold a load from the constant with the
506   // offset applied as appropriate.
507   Src =
508       ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
509   Constant *OffsetCst =
510       ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
511   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
512                                        OffsetCst);
513   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
514   return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
515 }
516
517 /// This function is called when we have a
518 /// memdep query of a load that ends up being a clobbering mem intrinsic.
519 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
520                               Type *LoadTy, Instruction *InsertPt,
521                               const DataLayout &DL) {
522   IRBuilder<> Builder(InsertPt);
523   return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
524                                                           LoadTy, Builder, DL);
525 }
526
527 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
528                                          Type *LoadTy, const DataLayout &DL) {
529   // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
530   // constant is when it's a memset of a non-constant.
531   if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
532     if (!isa<Constant>(MSI->getValue()))
533       return nullptr;
534   ConstantFolder F;
535   return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
536                                                                 LoadTy, F, DL);
537 }
538 } // namespace VNCoercion
539 } // namespace llvm