]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / tools / llvm-objdump / llvm-objdump.cpp
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/MC/MCTargetOptions.h"
41 #include "llvm/Object/Archive.h"
42 #include "llvm/Object/COFF.h"
43 #include "llvm/Object/COFFImportFile.h"
44 #include "llvm/Object/ELFObjectFile.h"
45 #include "llvm/Object/MachO.h"
46 #include "llvm/Object/MachOUniversal.h"
47 #include "llvm/Object/ObjectFile.h"
48 #include "llvm/Object/Wasm.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/Errc.h"
53 #include "llvm/Support/FileSystem.h"
54 #include "llvm/Support/Format.h"
55 #include "llvm/Support/FormatVariadic.h"
56 #include "llvm/Support/GraphWriter.h"
57 #include "llvm/Support/Host.h"
58 #include "llvm/Support/InitLLVM.h"
59 #include "llvm/Support/MemoryBuffer.h"
60 #include "llvm/Support/SourceMgr.h"
61 #include "llvm/Support/StringSaver.h"
62 #include "llvm/Support/TargetRegistry.h"
63 #include "llvm/Support/TargetSelect.h"
64 #include "llvm/Support/WithColor.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include <algorithm>
67 #include <cctype>
68 #include <cstring>
69 #include <system_error>
70 #include <unordered_map>
71 #include <utility>
72
73 using namespace llvm::object;
74
75 namespace llvm {
76
77 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
78
79 // MachO specific
80 extern cl::OptionCategory MachOCat;
81 extern cl::opt<bool> Bind;
82 extern cl::opt<bool> DataInCode;
83 extern cl::opt<bool> DylibsUsed;
84 extern cl::opt<bool> DylibId;
85 extern cl::opt<bool> ExportsTrie;
86 extern cl::opt<bool> FirstPrivateHeader;
87 extern cl::opt<bool> IndirectSymbols;
88 extern cl::opt<bool> InfoPlist;
89 extern cl::opt<bool> LazyBind;
90 extern cl::opt<bool> LinkOptHints;
91 extern cl::opt<bool> ObjcMetaData;
92 extern cl::opt<bool> Rebase;
93 extern cl::opt<bool> UniversalHeaders;
94 extern cl::opt<bool> WeakBind;
95
96 static cl::opt<uint64_t> AdjustVMA(
97     "adjust-vma",
98     cl::desc("Increase the displayed address by the specified offset"),
99     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
100
101 static cl::opt<bool>
102     AllHeaders("all-headers",
103                cl::desc("Display all available header information"),
104                cl::cat(ObjdumpCat));
105 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
106                                  cl::NotHidden, cl::Grouping,
107                                  cl::aliasopt(AllHeaders));
108
109 static cl::opt<std::string>
110     ArchName("arch-name",
111              cl::desc("Target arch to disassemble for, "
112                       "see -version for available targets"),
113              cl::cat(ObjdumpCat));
114
115 cl::opt<bool> ArchiveHeaders("archive-headers",
116                              cl::desc("Display archive header information"),
117                              cl::cat(ObjdumpCat));
118 static cl::alias ArchiveHeadersShort("a",
119                                      cl::desc("Alias for --archive-headers"),
120                                      cl::NotHidden, cl::Grouping,
121                                      cl::aliasopt(ArchiveHeaders));
122
123 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
124                        cl::init(false), cl::cat(ObjdumpCat));
125 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
126                                cl::NotHidden, cl::Grouping,
127                                cl::aliasopt(Demangle));
128
129 cl::opt<bool> Disassemble(
130     "disassemble",
131     cl::desc("Display assembler mnemonics for the machine instructions"),
132     cl::cat(ObjdumpCat));
133 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
134                                   cl::NotHidden, cl::Grouping,
135                                   cl::aliasopt(Disassemble));
136
137 cl::opt<bool> DisassembleAll(
138     "disassemble-all",
139     cl::desc("Display assembler mnemonics for the machine instructions"),
140     cl::cat(ObjdumpCat));
141 static cl::alias DisassembleAllShort("D",
142                                      cl::desc("Alias for --disassemble-all"),
143                                      cl::NotHidden, cl::Grouping,
144                                      cl::aliasopt(DisassembleAll));
145
146 static cl::list<std::string>
147     DisassembleFunctions("disassemble-functions", cl::CommaSeparated,
148                          cl::desc("List of functions to disassemble. "
149                                   "Accept demangled names when --demangle is "
150                                   "specified, otherwise accept mangled names"),
151                          cl::cat(ObjdumpCat));
152
153 static cl::opt<bool> DisassembleZeroes(
154     "disassemble-zeroes",
155     cl::desc("Do not skip blocks of zeroes when disassembling"),
156     cl::cat(ObjdumpCat));
157 static cl::alias
158     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
159                            cl::NotHidden, cl::Grouping,
160                            cl::aliasopt(DisassembleZeroes));
161
162 static cl::list<std::string>
163     DisassemblerOptions("disassembler-options",
164                         cl::desc("Pass target specific disassembler options"),
165                         cl::value_desc("options"), cl::CommaSeparated,
166                         cl::cat(ObjdumpCat));
167 static cl::alias
168     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
169                              cl::NotHidden, cl::Grouping, cl::Prefix,
170                              cl::CommaSeparated,
171                              cl::aliasopt(DisassemblerOptions));
172
173 cl::opt<DIDumpType> DwarfDumpType(
174     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
175     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
176     cl::cat(ObjdumpCat));
177
178 static cl::opt<bool> DynamicRelocations(
179     "dynamic-reloc",
180     cl::desc("Display the dynamic relocation entries in the file"),
181     cl::cat(ObjdumpCat));
182 static cl::alias DynamicRelocationShort("R",
183                                         cl::desc("Alias for --dynamic-reloc"),
184                                         cl::NotHidden, cl::Grouping,
185                                         cl::aliasopt(DynamicRelocations));
186
187 static cl::opt<bool>
188     FaultMapSection("fault-map-section",
189                     cl::desc("Display contents of faultmap section"),
190                     cl::cat(ObjdumpCat));
191
192 static cl::opt<bool>
193     FileHeaders("file-headers",
194                 cl::desc("Display the contents of the overall file header"),
195                 cl::cat(ObjdumpCat));
196 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
197                                   cl::NotHidden, cl::Grouping,
198                                   cl::aliasopt(FileHeaders));
199
200 cl::opt<bool> SectionContents("full-contents",
201                               cl::desc("Display the content of each section"),
202                               cl::cat(ObjdumpCat));
203 static cl::alias SectionContentsShort("s",
204                                       cl::desc("Alias for --full-contents"),
205                                       cl::NotHidden, cl::Grouping,
206                                       cl::aliasopt(SectionContents));
207
208 static cl::list<std::string> InputFilenames(cl::Positional,
209                                             cl::desc("<input object files>"),
210                                             cl::ZeroOrMore,
211                                             cl::cat(ObjdumpCat));
212
213 static cl::opt<bool>
214     PrintLines("line-numbers",
215                cl::desc("Display source line numbers with "
216                         "disassembly. Implies disassemble object"),
217                cl::cat(ObjdumpCat));
218 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
219                                  cl::NotHidden, cl::Grouping,
220                                  cl::aliasopt(PrintLines));
221
222 static cl::opt<bool> MachOOpt("macho",
223                               cl::desc("Use MachO specific object file parser"),
224                               cl::cat(ObjdumpCat));
225 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
226                         cl::Grouping, cl::aliasopt(MachOOpt));
227
228 cl::opt<std::string>
229     MCPU("mcpu",
230          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
231          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
232
233 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
234                              cl::desc("Target specific attributes"),
235                              cl::value_desc("a1,+a2,-a3,..."),
236                              cl::cat(ObjdumpCat));
237
238 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
239                             cl::desc("When disassembling "
240                                      "instructions, do not print "
241                                      "the instruction bytes."),
242                             cl::cat(ObjdumpCat));
243 cl::opt<bool> NoLeadingAddr("no-leading-addr",
244                             cl::desc("Print no leading address"),
245                             cl::cat(ObjdumpCat));
246
247 static cl::opt<bool> RawClangAST(
248     "raw-clang-ast",
249     cl::desc("Dump the raw binary contents of the clang AST section"),
250     cl::cat(ObjdumpCat));
251
252 cl::opt<bool>
253     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
254                 cl::cat(ObjdumpCat));
255 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
256                                   cl::NotHidden, cl::Grouping,
257                                   cl::aliasopt(Relocations));
258
259 cl::opt<bool> PrintImmHex("print-imm-hex",
260                           cl::desc("Use hex format for immediate values"),
261                           cl::cat(ObjdumpCat));
262
263 cl::opt<bool> PrivateHeaders("private-headers",
264                              cl::desc("Display format specific file headers"),
265                              cl::cat(ObjdumpCat));
266 static cl::alias PrivateHeadersShort("p",
267                                      cl::desc("Alias for --private-headers"),
268                                      cl::NotHidden, cl::Grouping,
269                                      cl::aliasopt(PrivateHeaders));
270
271 cl::list<std::string>
272     FilterSections("section",
273                    cl::desc("Operate on the specified sections only. "
274                             "With -macho dump segment,section"),
275                    cl::cat(ObjdumpCat));
276 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
277                                  cl::NotHidden, cl::Grouping, cl::Prefix,
278                                  cl::aliasopt(FilterSections));
279
280 cl::opt<bool> SectionHeaders("section-headers",
281                              cl::desc("Display summaries of the "
282                                       "headers for each section."),
283                              cl::cat(ObjdumpCat));
284 static cl::alias SectionHeadersShort("headers",
285                                      cl::desc("Alias for --section-headers"),
286                                      cl::NotHidden,
287                                      cl::aliasopt(SectionHeaders));
288 static cl::alias SectionHeadersShorter("h",
289                                        cl::desc("Alias for --section-headers"),
290                                        cl::NotHidden, cl::Grouping,
291                                        cl::aliasopt(SectionHeaders));
292
293 static cl::opt<bool>
294     ShowLMA("show-lma",
295             cl::desc("Display LMA column when dumping ELF section headers"),
296             cl::cat(ObjdumpCat));
297
298 static cl::opt<bool> PrintSource(
299     "source",
300     cl::desc(
301         "Display source inlined with disassembly. Implies disassemble object"),
302     cl::cat(ObjdumpCat));
303 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
304                                   cl::NotHidden, cl::Grouping,
305                                   cl::aliasopt(PrintSource));
306
307 static cl::opt<uint64_t>
308     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
309                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
310 static cl::opt<uint64_t> StopAddress("stop-address",
311                                      cl::desc("Stop disassembly at address"),
312                                      cl::value_desc("address"),
313                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
314
315 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
316                           cl::cat(ObjdumpCat));
317 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
318                                   cl::NotHidden, cl::Grouping,
319                                   cl::aliasopt(SymbolTable));
320
321 cl::opt<std::string> TripleName("triple",
322                                 cl::desc("Target triple to disassemble for, "
323                                          "see -version for available targets"),
324                                 cl::cat(ObjdumpCat));
325
326 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
327                          cl::cat(ObjdumpCat));
328 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
329                                  cl::NotHidden, cl::Grouping,
330                                  cl::aliasopt(UnwindInfo));
331
332 static cl::opt<bool>
333     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
334          cl::cat(ObjdumpCat));
335 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
336
337 static cl::extrahelp
338     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
339
340 static StringSet<> DisasmFuncsSet;
341 static StringSet<> FoundSectionSet;
342 static StringRef ToolName;
343
344 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
345
346 namespace {
347 struct FilterResult {
348   // True if the section should not be skipped.
349   bool Keep;
350
351   // True if the index counter should be incremented, even if the section should
352   // be skipped. For example, sections may be skipped if they are not included
353   // in the --section flag, but we still want those to count toward the section
354   // count.
355   bool IncrementIndex;
356 };
357 } // namespace
358
359 static FilterResult checkSectionFilter(object::SectionRef S) {
360   if (FilterSections.empty())
361     return {/*Keep=*/true, /*IncrementIndex=*/true};
362
363   Expected<StringRef> SecNameOrErr = S.getName();
364   if (!SecNameOrErr) {
365     consumeError(SecNameOrErr.takeError());
366     return {/*Keep=*/false, /*IncrementIndex=*/false};
367   }
368   StringRef SecName = *SecNameOrErr;
369
370   // StringSet does not allow empty key so avoid adding sections with
371   // no name (such as the section with index 0) here.
372   if (!SecName.empty())
373     FoundSectionSet.insert(SecName);
374
375   // Only show the section if it's in the FilterSections list, but always
376   // increment so the indexing is stable.
377   return {/*Keep=*/is_contained(FilterSections, SecName),
378           /*IncrementIndex=*/true};
379 }
380
381 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) {
382   // Start at UINT64_MAX so that the first index returned after an increment is
383   // zero (after the unsigned wrap).
384   if (Idx)
385     *Idx = UINT64_MAX;
386   return SectionFilter(
387       [Idx](object::SectionRef S) {
388         FilterResult Result = checkSectionFilter(S);
389         if (Idx != nullptr && Result.IncrementIndex)
390           *Idx += 1;
391         return Result.Keep;
392       },
393       O);
394 }
395
396 std::string getFileNameForError(const object::Archive::Child &C,
397                                 unsigned Index) {
398   Expected<StringRef> NameOrErr = C.getName();
399   if (NameOrErr)
400     return NameOrErr.get();
401   // If we have an error getting the name then we print the index of the archive
402   // member. Since we are already in an error state, we just ignore this error.
403   consumeError(NameOrErr.takeError());
404   return "<file index: " + std::to_string(Index) + ">";
405 }
406
407 void reportWarning(Twine Message, StringRef File) {
408   // Output order between errs() and outs() matters especially for archive
409   // files where the output is per member object.
410   outs().flush();
411   WithColor::warning(errs(), ToolName)
412       << "'" << File << "': " << Message << "\n";
413   errs().flush();
414 }
415
416 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) {
417   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
418   exit(1);
419 }
420
421 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName,
422                                          StringRef ArchiveName,
423                                          StringRef ArchitectureName) {
424   assert(E);
425   WithColor::error(errs(), ToolName);
426   if (ArchiveName != "")
427     errs() << ArchiveName << "(" << FileName << ")";
428   else
429     errs() << "'" << FileName << "'";
430   if (!ArchitectureName.empty())
431     errs() << " (for architecture " << ArchitectureName << ")";
432   std::string Buf;
433   raw_string_ostream OS(Buf);
434   logAllUnhandledErrors(std::move(E), OS);
435   OS.flush();
436   errs() << ": " << Buf;
437   exit(1);
438 }
439
440 static void reportCmdLineWarning(Twine Message) {
441   WithColor::warning(errs(), ToolName) << Message << "\n";
442 }
443
444 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
445   WithColor::error(errs(), ToolName) << Message << "\n";
446   exit(1);
447 }
448
449 static void warnOnNoMatchForSections() {
450   SetVector<StringRef> MissingSections;
451   for (StringRef S : FilterSections) {
452     if (FoundSectionSet.count(S))
453       return;
454     // User may specify a unnamed section. Don't warn for it.
455     if (!S.empty())
456       MissingSections.insert(S);
457   }
458
459   // Warn only if no section in FilterSections is matched.
460   for (StringRef S : MissingSections)
461     reportCmdLineWarning("section '" + S +
462                          "' mentioned in a -j/--section option, but not "
463                          "found in any input file");
464 }
465
466 static const Target *getTarget(const ObjectFile *Obj) {
467   // Figure out the target triple.
468   Triple TheTriple("unknown-unknown-unknown");
469   if (TripleName.empty()) {
470     TheTriple = Obj->makeTriple();
471   } else {
472     TheTriple.setTriple(Triple::normalize(TripleName));
473     auto Arch = Obj->getArch();
474     if (Arch == Triple::arm || Arch == Triple::armeb)
475       Obj->setARMSubArch(TheTriple);
476   }
477
478   // Get the target specific parser.
479   std::string Error;
480   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
481                                                          Error);
482   if (!TheTarget)
483     reportError(Obj->getFileName(), "can't find target: " + Error);
484
485   // Update the triple name and return the found target.
486   TripleName = TheTriple.getTriple();
487   return TheTarget;
488 }
489
490 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
491   return A.getOffset() < B.getOffset();
492 }
493
494 static Error getRelocationValueString(const RelocationRef &Rel,
495                                       SmallVectorImpl<char> &Result) {
496   const ObjectFile *Obj = Rel.getObject();
497   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
498     return getELFRelocationValueString(ELF, Rel, Result);
499   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
500     return getCOFFRelocationValueString(COFF, Rel, Result);
501   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
502     return getWasmRelocationValueString(Wasm, Rel, Result);
503   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
504     return getMachORelocationValueString(MachO, Rel, Result);
505   llvm_unreachable("unknown object file format");
506 }
507
508 /// Indicates whether this relocation should hidden when listing
509 /// relocations, usually because it is the trailing part of a multipart
510 /// relocation that will be printed as part of the leading relocation.
511 static bool getHidden(RelocationRef RelRef) {
512   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
513   if (!MachO)
514     return false;
515
516   unsigned Arch = MachO->getArch();
517   DataRefImpl Rel = RelRef.getRawDataRefImpl();
518   uint64_t Type = MachO->getRelocationType(Rel);
519
520   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
521   // is always hidden.
522   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
523     return Type == MachO::GENERIC_RELOC_PAIR;
524
525   if (Arch == Triple::x86_64) {
526     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
527     // an X86_64_RELOC_SUBTRACTOR.
528     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
529       DataRefImpl RelPrev = Rel;
530       RelPrev.d.a--;
531       uint64_t PrevType = MachO->getRelocationType(RelPrev);
532       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
533         return true;
534     }
535   }
536
537   return false;
538 }
539
540 namespace {
541 class SourcePrinter {
542 protected:
543   DILineInfo OldLineInfo;
544   const ObjectFile *Obj = nullptr;
545   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
546   // File name to file contents of source.
547   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
548   // Mark the line endings of the cached source.
549   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
550   // Keep track of missing sources.
551   StringSet<> MissingSources;
552   // Only emit 'no debug info' warning once.
553   bool WarnedNoDebugInfo;
554
555 private:
556   bool cacheSource(const DILineInfo& LineInfoFile);
557
558 public:
559   SourcePrinter() = default;
560   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
561       : Obj(Obj), WarnedNoDebugInfo(false) {
562     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
563     SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None;
564     SymbolizerOpts.Demangle = false;
565     SymbolizerOpts.DefaultArch = DefaultArch;
566     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
567   }
568   virtual ~SourcePrinter() = default;
569   virtual void printSourceLine(raw_ostream &OS,
570                                object::SectionedAddress Address,
571                                StringRef ObjectFilename,
572                                StringRef Delimiter = "; ");
573 };
574
575 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
576   std::unique_ptr<MemoryBuffer> Buffer;
577   if (LineInfo.Source) {
578     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
579   } else {
580     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
581     if (!BufferOrError) {
582       if (MissingSources.insert(LineInfo.FileName).second)
583         reportWarning("failed to find source " + LineInfo.FileName,
584                       Obj->getFileName());
585       return false;
586     }
587     Buffer = std::move(*BufferOrError);
588   }
589   // Chomp the file to get lines
590   const char *BufferStart = Buffer->getBufferStart(),
591              *BufferEnd = Buffer->getBufferEnd();
592   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
593   const char *Start = BufferStart;
594   for (const char *I = BufferStart; I != BufferEnd; ++I)
595     if (*I == '\n') {
596       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
597       Start = I + 1;
598     }
599   if (Start < BufferEnd)
600     Lines.emplace_back(Start, BufferEnd - Start);
601   SourceCache[LineInfo.FileName] = std::move(Buffer);
602   return true;
603 }
604
605 void SourcePrinter::printSourceLine(raw_ostream &OS,
606                                     object::SectionedAddress Address,
607                                     StringRef ObjectFilename,
608                                     StringRef Delimiter) {
609   if (!Symbolizer)
610     return;
611
612   DILineInfo LineInfo = DILineInfo();
613   auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
614   std::string ErrorMessage;
615   if (!ExpectedLineInfo)
616     ErrorMessage = toString(ExpectedLineInfo.takeError());
617   else
618     LineInfo = *ExpectedLineInfo;
619
620   if (LineInfo.FileName == DILineInfo::BadString) {
621     if (!WarnedNoDebugInfo) {
622       std::string Warning =
623           "failed to parse debug information for " + ObjectFilename.str();
624       if (!ErrorMessage.empty())
625         Warning += ": " + ErrorMessage;
626       reportWarning(Warning, ObjectFilename);
627       WarnedNoDebugInfo = true;
628     }
629     return;
630   }
631
632   if (LineInfo.Line == 0 || ((OldLineInfo.Line == LineInfo.Line) &&
633                              (OldLineInfo.FileName == LineInfo.FileName)))
634     return;
635
636   if (PrintLines)
637     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
638   if (PrintSource) {
639     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
640       if (!cacheSource(LineInfo))
641         return;
642     auto LineBuffer = LineCache.find(LineInfo.FileName);
643     if (LineBuffer != LineCache.end()) {
644       if (LineInfo.Line > LineBuffer->second.size()) {
645         reportWarning(
646             formatv(
647                 "debug info line number {0} exceeds the number of lines in {1}",
648                 LineInfo.Line, LineInfo.FileName),
649             ObjectFilename);
650         return;
651       }
652       // Vector begins at 0, line numbers are non-zero
653       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
654     }
655   }
656   OldLineInfo = LineInfo;
657 }
658
659 static bool isAArch64Elf(const ObjectFile *Obj) {
660   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
661   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
662 }
663
664 static bool isArmElf(const ObjectFile *Obj) {
665   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
666   return Elf && Elf->getEMachine() == ELF::EM_ARM;
667 }
668
669 static bool hasMappingSymbols(const ObjectFile *Obj) {
670   return isArmElf(Obj) || isAArch64Elf(Obj);
671 }
672
673 static void printRelocation(StringRef FileName, const RelocationRef &Rel,
674                             uint64_t Address, bool Is64Bits) {
675   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
676   SmallString<16> Name;
677   SmallString<32> Val;
678   Rel.getTypeName(Name);
679   if (Error E = getRelocationValueString(Rel, Val))
680     reportError(std::move(E), FileName);
681   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
682 }
683
684 class PrettyPrinter {
685 public:
686   virtual ~PrettyPrinter() = default;
687   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
688                          ArrayRef<uint8_t> Bytes,
689                          object::SectionedAddress Address, raw_ostream &OS,
690                          StringRef Annot, MCSubtargetInfo const &STI,
691                          SourcePrinter *SP, StringRef ObjectFilename,
692                          std::vector<RelocationRef> *Rels = nullptr) {
693     if (SP && (PrintSource || PrintLines))
694       SP->printSourceLine(OS, Address, ObjectFilename);
695
696     size_t Start = OS.tell();
697     if (!NoLeadingAddr)
698       OS << format("%8" PRIx64 ":", Address.Address);
699     if (!NoShowRawInsn) {
700       OS << ' ';
701       dumpBytes(Bytes, OS);
702     }
703
704     // The output of printInst starts with a tab. Print some spaces so that
705     // the tab has 1 column and advances to the target tab stop.
706     unsigned TabStop = NoShowRawInsn ? 16 : 40;
707     unsigned Column = OS.tell() - Start;
708     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
709
710     if (MI)
711       IP.printInst(MI, Address.Address, "", STI, OS);
712     else
713       OS << "\t<unknown>";
714   }
715 };
716 PrettyPrinter PrettyPrinterInst;
717
718 class HexagonPrettyPrinter : public PrettyPrinter {
719 public:
720   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
721                  raw_ostream &OS) {
722     uint32_t opcode =
723       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
724     if (!NoLeadingAddr)
725       OS << format("%8" PRIx64 ":", Address);
726     if (!NoShowRawInsn) {
727       OS << "\t";
728       dumpBytes(Bytes.slice(0, 4), OS);
729       OS << format("\t%08" PRIx32, opcode);
730     }
731   }
732   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
733                  object::SectionedAddress Address, raw_ostream &OS,
734                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
735                  StringRef ObjectFilename,
736                  std::vector<RelocationRef> *Rels) override {
737     if (SP && (PrintSource || PrintLines))
738       SP->printSourceLine(OS, Address, ObjectFilename, "");
739     if (!MI) {
740       printLead(Bytes, Address.Address, OS);
741       OS << " <unknown>";
742       return;
743     }
744     std::string Buffer;
745     {
746       raw_string_ostream TempStream(Buffer);
747       IP.printInst(MI, Address.Address, "", STI, TempStream);
748     }
749     StringRef Contents(Buffer);
750     // Split off bundle attributes
751     auto PacketBundle = Contents.rsplit('\n');
752     // Split off first instruction from the rest
753     auto HeadTail = PacketBundle.first.split('\n');
754     auto Preamble = " { ";
755     auto Separator = "";
756
757     // Hexagon's packets require relocations to be inline rather than
758     // clustered at the end of the packet.
759     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
760     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
761     auto PrintReloc = [&]() -> void {
762       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
763         if (RelCur->getOffset() == Address.Address) {
764           printRelocation(ObjectFilename, *RelCur, Address.Address, false);
765           return;
766         }
767         ++RelCur;
768       }
769     };
770
771     while (!HeadTail.first.empty()) {
772       OS << Separator;
773       Separator = "\n";
774       if (SP && (PrintSource || PrintLines))
775         SP->printSourceLine(OS, Address, ObjectFilename, "");
776       printLead(Bytes, Address.Address, OS);
777       OS << Preamble;
778       Preamble = "   ";
779       StringRef Inst;
780       auto Duplex = HeadTail.first.split('\v');
781       if (!Duplex.second.empty()) {
782         OS << Duplex.first;
783         OS << "; ";
784         Inst = Duplex.second;
785       }
786       else
787         Inst = HeadTail.first;
788       OS << Inst;
789       HeadTail = HeadTail.second.split('\n');
790       if (HeadTail.first.empty())
791         OS << " } " << PacketBundle.second;
792       PrintReloc();
793       Bytes = Bytes.slice(4);
794       Address.Address += 4;
795     }
796   }
797 };
798 HexagonPrettyPrinter HexagonPrettyPrinterInst;
799
800 class AMDGCNPrettyPrinter : public PrettyPrinter {
801 public:
802   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
803                  object::SectionedAddress Address, raw_ostream &OS,
804                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
805                  StringRef ObjectFilename,
806                  std::vector<RelocationRef> *Rels) override {
807     if (SP && (PrintSource || PrintLines))
808       SP->printSourceLine(OS, Address, ObjectFilename);
809
810     if (MI) {
811       SmallString<40> InstStr;
812       raw_svector_ostream IS(InstStr);
813
814       IP.printInst(MI, Address.Address, "", STI, IS);
815
816       OS << left_justify(IS.str(), 60);
817     } else {
818       // an unrecognized encoding - this is probably data so represent it
819       // using the .long directive, or .byte directive if fewer than 4 bytes
820       // remaining
821       if (Bytes.size() >= 4) {
822         OS << format("\t.long 0x%08" PRIx32 " ",
823                      support::endian::read32<support::little>(Bytes.data()));
824         OS.indent(42);
825       } else {
826           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
827           for (unsigned int i = 1; i < Bytes.size(); i++)
828             OS << format(", 0x%02" PRIx8, Bytes[i]);
829           OS.indent(55 - (6 * Bytes.size()));
830       }
831     }
832
833     OS << format("// %012" PRIX64 ":", Address.Address);
834     if (Bytes.size() >= 4) {
835       // D should be casted to uint32_t here as it is passed by format to
836       // snprintf as vararg.
837       for (uint32_t D : makeArrayRef(
838                reinterpret_cast<const support::little32_t *>(Bytes.data()),
839                Bytes.size() / 4))
840         OS << format(" %08" PRIX32, D);
841     } else {
842       for (unsigned char B : Bytes)
843         OS << format(" %02" PRIX8, B);
844     }
845
846     if (!Annot.empty())
847       OS << " // " << Annot;
848   }
849 };
850 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
851
852 class BPFPrettyPrinter : public PrettyPrinter {
853 public:
854   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
855                  object::SectionedAddress Address, raw_ostream &OS,
856                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
857                  StringRef ObjectFilename,
858                  std::vector<RelocationRef> *Rels) override {
859     if (SP && (PrintSource || PrintLines))
860       SP->printSourceLine(OS, Address, ObjectFilename);
861     if (!NoLeadingAddr)
862       OS << format("%8" PRId64 ":", Address.Address / 8);
863     if (!NoShowRawInsn) {
864       OS << "\t";
865       dumpBytes(Bytes, OS);
866     }
867     if (MI)
868       IP.printInst(MI, Address.Address, "", STI, OS);
869     else
870       OS << "\t<unknown>";
871   }
872 };
873 BPFPrettyPrinter BPFPrettyPrinterInst;
874
875 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
876   switch(Triple.getArch()) {
877   default:
878     return PrettyPrinterInst;
879   case Triple::hexagon:
880     return HexagonPrettyPrinterInst;
881   case Triple::amdgcn:
882     return AMDGCNPrettyPrinterInst;
883   case Triple::bpfel:
884   case Triple::bpfeb:
885     return BPFPrettyPrinterInst;
886   }
887 }
888 }
889
890 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
891   assert(Obj->isELF());
892   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
893     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
894   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
895     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
896   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
897     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
898   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
899     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
900   llvm_unreachable("Unsupported binary format");
901 }
902
903 template <class ELFT> static void
904 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
905                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
906   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
907     uint8_t SymbolType = Symbol.getELFType();
908     if (SymbolType == ELF::STT_SECTION)
909       continue;
910
911     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
912     // ELFSymbolRef::getAddress() returns size instead of value for common
913     // symbols which is not desirable for disassembly output. Overriding.
914     if (SymbolType == ELF::STT_COMMON)
915       Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
916
917     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
918     if (Name.empty())
919       continue;
920
921     section_iterator SecI =
922         unwrapOrError(Symbol.getSection(), Obj->getFileName());
923     if (SecI == Obj->section_end())
924       continue;
925
926     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
927   }
928 }
929
930 static void
931 addDynamicElfSymbols(const ObjectFile *Obj,
932                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
933   assert(Obj->isELF());
934   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
935     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
936   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
937     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
938   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
939     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
940   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
941     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
942   else
943     llvm_unreachable("Unsupported binary format");
944 }
945
946 static void addPltEntries(const ObjectFile *Obj,
947                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
948                           StringSaver &Saver) {
949   Optional<SectionRef> Plt = None;
950   for (const SectionRef &Section : Obj->sections()) {
951     Expected<StringRef> SecNameOrErr = Section.getName();
952     if (!SecNameOrErr) {
953       consumeError(SecNameOrErr.takeError());
954       continue;
955     }
956     if (*SecNameOrErr == ".plt")
957       Plt = Section;
958   }
959   if (!Plt)
960     return;
961   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
962     for (auto PltEntry : ElfObj->getPltAddresses()) {
963       SymbolRef Symbol(PltEntry.first, ElfObj);
964       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
965
966       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
967       if (!Name.empty())
968         AllSymbols[*Plt].emplace_back(
969             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
970     }
971   }
972 }
973
974 // Normally the disassembly output will skip blocks of zeroes. This function
975 // returns the number of zero bytes that can be skipped when dumping the
976 // disassembly of the instructions in Buf.
977 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
978   // Find the number of leading zeroes.
979   size_t N = 0;
980   while (N < Buf.size() && !Buf[N])
981     ++N;
982
983   // We may want to skip blocks of zero bytes, but unless we see
984   // at least 8 of them in a row.
985   if (N < 8)
986     return 0;
987
988   // We skip zeroes in multiples of 4 because do not want to truncate an
989   // instruction if it starts with a zero byte.
990   return N & ~0x3;
991 }
992
993 // Returns a map from sections to their relocations.
994 static std::map<SectionRef, std::vector<RelocationRef>>
995 getRelocsMap(object::ObjectFile const &Obj) {
996   std::map<SectionRef, std::vector<RelocationRef>> Ret;
997   uint64_t I = (uint64_t)-1;
998   for (SectionRef Sec : Obj.sections()) {
999     ++I;
1000     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1001     if (!RelocatedOrErr)
1002       reportError(Obj.getFileName(),
1003                   "section (" + Twine(I) +
1004                       "): failed to get a relocated section: " +
1005                       toString(RelocatedOrErr.takeError()));
1006
1007     section_iterator Relocated = *RelocatedOrErr;
1008     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1009       continue;
1010     std::vector<RelocationRef> &V = Ret[*Relocated];
1011     for (const RelocationRef &R : Sec.relocations())
1012       V.push_back(R);
1013     // Sort relocations by address.
1014     llvm::stable_sort(V, isRelocAddressLess);
1015   }
1016   return Ret;
1017 }
1018
1019 // Used for --adjust-vma to check if address should be adjusted by the
1020 // specified value for a given section.
1021 // For ELF we do not adjust non-allocatable sections like debug ones,
1022 // because they are not loadable.
1023 // TODO: implement for other file formats.
1024 static bool shouldAdjustVA(const SectionRef &Section) {
1025   const ObjectFile *Obj = Section.getObject();
1026   if (isa<object::ELFObjectFileBase>(Obj))
1027     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1028   return false;
1029 }
1030
1031
1032 typedef std::pair<uint64_t, char> MappingSymbolPair;
1033 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1034                                  uint64_t Address) {
1035   auto It =
1036       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1037         return Val.first <= Address;
1038       });
1039   // Return zero for any address before the first mapping symbol; this means
1040   // we should use the default disassembly mode, depending on the target.
1041   if (It == MappingSymbols.begin())
1042     return '\x00';
1043   return (It - 1)->second;
1044 }
1045
1046 static uint64_t
1047 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1048                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
1049                ArrayRef<MappingSymbolPair> MappingSymbols) {
1050   support::endianness Endian =
1051       Obj->isLittleEndian() ? support::little : support::big;
1052   while (Index < End) {
1053     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1054     outs() << "\t";
1055     if (Index + 4 <= End) {
1056       dumpBytes(Bytes.slice(Index, 4), outs());
1057       outs() << "\t.word\t"
1058              << format_hex(
1059                     support::endian::read32(Bytes.data() + Index, Endian), 10);
1060       Index += 4;
1061     } else if (Index + 2 <= End) {
1062       dumpBytes(Bytes.slice(Index, 2), outs());
1063       outs() << "\t\t.short\t"
1064              << format_hex(
1065                     support::endian::read16(Bytes.data() + Index, Endian), 6);
1066       Index += 2;
1067     } else {
1068       dumpBytes(Bytes.slice(Index, 1), outs());
1069       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1070       ++Index;
1071     }
1072     outs() << "\n";
1073     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1074       break;
1075   }
1076   return Index;
1077 }
1078
1079 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1080                         ArrayRef<uint8_t> Bytes) {
1081   // print out data up to 8 bytes at a time in hex and ascii
1082   uint8_t AsciiData[9] = {'\0'};
1083   uint8_t Byte;
1084   int NumBytes = 0;
1085
1086   for (; Index < End; ++Index) {
1087     if (NumBytes == 0)
1088       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1089     Byte = Bytes.slice(Index)[0];
1090     outs() << format(" %02x", Byte);
1091     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1092
1093     uint8_t IndentOffset = 0;
1094     NumBytes++;
1095     if (Index == End - 1 || NumBytes > 8) {
1096       // Indent the space for less than 8 bytes data.
1097       // 2 spaces for byte and one for space between bytes
1098       IndentOffset = 3 * (8 - NumBytes);
1099       for (int Excess = NumBytes; Excess < 8; Excess++)
1100         AsciiData[Excess] = '\0';
1101       NumBytes = 8;
1102     }
1103     if (NumBytes == 8) {
1104       AsciiData[8] = '\0';
1105       outs() << std::string(IndentOffset, ' ') << "         ";
1106       outs() << reinterpret_cast<char *>(AsciiData);
1107       outs() << '\n';
1108       NumBytes = 0;
1109     }
1110   }
1111 }
1112
1113 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1114                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1115                               MCDisassembler *SecondaryDisAsm,
1116                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1117                               const MCSubtargetInfo *PrimarySTI,
1118                               const MCSubtargetInfo *SecondarySTI,
1119                               PrettyPrinter &PIP,
1120                               SourcePrinter &SP, bool InlineRelocs) {
1121   const MCSubtargetInfo *STI = PrimarySTI;
1122   MCDisassembler *DisAsm = PrimaryDisAsm;
1123   bool PrimaryIsThumb = false;
1124   if (isArmElf(Obj))
1125     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1126
1127   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1128   if (InlineRelocs)
1129     RelocMap = getRelocsMap(*Obj);
1130   bool Is64Bits = Obj->getBytesInAddress() > 4;
1131
1132   // Create a mapping from virtual address to symbol name.  This is used to
1133   // pretty print the symbols while disassembling.
1134   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1135   SectionSymbolsTy AbsoluteSymbols;
1136   const StringRef FileName = Obj->getFileName();
1137   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1138   for (const SymbolRef &Symbol : Obj->symbols()) {
1139     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1140
1141     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1142     if (Name.empty())
1143       continue;
1144
1145     uint8_t SymbolType = ELF::STT_NOTYPE;
1146     if (Obj->isELF()) {
1147       SymbolType = getElfSymbolType(Obj, Symbol);
1148       if (SymbolType == ELF::STT_SECTION)
1149         continue;
1150     }
1151
1152     // Don't ask a Mach-O STAB symbol for its section unless you know that 
1153     // STAB symbol's section field refers to a valid section index. Otherwise
1154     // the symbol may error trying to load a section that does not exist.
1155     if (MachO) {
1156       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1157       uint8_t NType = (MachO->is64Bit() ?
1158                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1159                        MachO->getSymbolTableEntry(SymDRI).n_type);
1160       if (NType & MachO::N_STAB)
1161         continue;
1162     }
1163
1164     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1165     if (SecI != Obj->section_end())
1166       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1167     else
1168       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1169   }
1170   if (AllSymbols.empty() && Obj->isELF())
1171     addDynamicElfSymbols(Obj, AllSymbols);
1172
1173   BumpPtrAllocator A;
1174   StringSaver Saver(A);
1175   addPltEntries(Obj, AllSymbols, Saver);
1176
1177   // Create a mapping from virtual address to section.
1178   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1179   for (SectionRef Sec : Obj->sections())
1180     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1181   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1182
1183   // Linked executables (.exe and .dll files) typically don't include a real
1184   // symbol table but they might contain an export table.
1185   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1186     for (const auto &ExportEntry : COFFObj->export_directories()) {
1187       StringRef Name;
1188       if (std::error_code EC = ExportEntry.getSymbolName(Name))
1189         reportError(errorCodeToError(EC), Obj->getFileName());
1190       if (Name.empty())
1191         continue;
1192
1193       uint32_t RVA;
1194       if (std::error_code EC = ExportEntry.getExportRVA(RVA))
1195         reportError(errorCodeToError(EC), Obj->getFileName());
1196
1197       uint64_t VA = COFFObj->getImageBase() + RVA;
1198       auto Sec = partition_point(
1199           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1200             return O.first <= VA;
1201           });
1202       if (Sec != SectionAddresses.begin()) {
1203         --Sec;
1204         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1205       } else
1206         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1207     }
1208   }
1209
1210   // Sort all the symbols, this allows us to use a simple binary search to find
1211   // a symbol near an address.
1212   StringSet<> FoundDisasmFuncsSet;
1213   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1214     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1215   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1216
1217   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1218     if (FilterSections.empty() && !DisassembleAll &&
1219         (!Section.isText() || Section.isVirtual()))
1220       continue;
1221
1222     uint64_t SectionAddr = Section.getAddress();
1223     uint64_t SectSize = Section.getSize();
1224     if (!SectSize)
1225       continue;
1226
1227     // Get the list of all the symbols in this section.
1228     SectionSymbolsTy &Symbols = AllSymbols[Section];
1229     std::vector<MappingSymbolPair> MappingSymbols;
1230     if (hasMappingSymbols(Obj)) {
1231       for (const auto &Symb : Symbols) {
1232         uint64_t Address = std::get<0>(Symb);
1233         StringRef Name = std::get<1>(Symb);
1234         if (Name.startswith("$d"))
1235           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1236         if (Name.startswith("$x"))
1237           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1238         if (Name.startswith("$a"))
1239           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1240         if (Name.startswith("$t"))
1241           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1242       }
1243     }
1244
1245     llvm::sort(MappingSymbols);
1246
1247     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1248       // AMDGPU disassembler uses symbolizer for printing labels
1249       std::unique_ptr<MCRelocationInfo> RelInfo(
1250         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1251       if (RelInfo) {
1252         std::unique_ptr<MCSymbolizer> Symbolizer(
1253           TheTarget->createMCSymbolizer(
1254             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1255         DisAsm->setSymbolizer(std::move(Symbolizer));
1256       }
1257     }
1258
1259     StringRef SegmentName = "";
1260     if (MachO) {
1261       DataRefImpl DR = Section.getRawDataRefImpl();
1262       SegmentName = MachO->getSectionFinalSegmentName(DR);
1263     }
1264
1265     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1266     // If the section has no symbol at the start, just insert a dummy one.
1267     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1268       Symbols.insert(
1269           Symbols.begin(),
1270           std::make_tuple(SectionAddr, SectionName,
1271                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1272     }
1273
1274     SmallString<40> Comments;
1275     raw_svector_ostream CommentStream(Comments);
1276
1277     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1278         unwrapOrError(Section.getContents(), Obj->getFileName()));
1279
1280     uint64_t VMAAdjustment = 0;
1281     if (shouldAdjustVA(Section))
1282       VMAAdjustment = AdjustVMA;
1283
1284     uint64_t Size;
1285     uint64_t Index;
1286     bool PrintedSection = false;
1287     std::vector<RelocationRef> Rels = RelocMap[Section];
1288     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1289     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1290     // Disassemble symbol by symbol.
1291     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1292       std::string SymbolName = std::get<1>(Symbols[SI]).str();
1293       if (Demangle)
1294         SymbolName = demangle(SymbolName);
1295
1296       // Skip if --disassemble-functions is not empty and the symbol is not in
1297       // the list.
1298       if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName))
1299         continue;
1300
1301       uint64_t Start = std::get<0>(Symbols[SI]);
1302       if (Start < SectionAddr || StopAddress <= Start)
1303         continue;
1304       else
1305         FoundDisasmFuncsSet.insert(SymbolName);
1306
1307       // The end is the section end, the beginning of the next symbol, or
1308       // --stop-address.
1309       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1310       if (SI + 1 < SE)
1311         End = std::min(End, std::get<0>(Symbols[SI + 1]));
1312       if (Start >= End || End <= StartAddress)
1313         continue;
1314       Start -= SectionAddr;
1315       End -= SectionAddr;
1316
1317       if (!PrintedSection) {
1318         PrintedSection = true;
1319         outs() << "\nDisassembly of section ";
1320         if (!SegmentName.empty())
1321           outs() << SegmentName << ",";
1322         outs() << SectionName << ":\n";
1323       }
1324
1325       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1326         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1327           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1328           Start += 256;
1329         }
1330         if (SI == SE - 1 ||
1331             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1332           // cut trailing zeroes at the end of kernel
1333           // cut up to 256 bytes
1334           const uint64_t EndAlign = 256;
1335           const auto Limit = End - (std::min)(EndAlign, End - Start);
1336           while (End > Limit &&
1337             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1338             End -= 4;
1339         }
1340       }
1341
1342       outs() << '\n';
1343       if (!NoLeadingAddr)
1344         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1345                          SectionAddr + Start + VMAAdjustment);
1346
1347       outs() << SymbolName << ":\n";
1348
1349       // Don't print raw contents of a virtual section. A virtual section
1350       // doesn't have any contents in the file.
1351       if (Section.isVirtual()) {
1352         outs() << "...\n";
1353         continue;
1354       }
1355
1356       // Some targets (like WebAssembly) have a special prelude at the start
1357       // of each symbol.
1358       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1359                             SectionAddr + Start, CommentStream);
1360       Start += Size;
1361
1362       Index = Start;
1363       if (SectionAddr < StartAddress)
1364         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1365
1366       // If there is a data/common symbol inside an ELF text section and we are
1367       // only disassembling text (applicable all architectures), we are in a
1368       // situation where we must print the data and not disassemble it.
1369       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1370         uint8_t SymTy = std::get<2>(Symbols[SI]);
1371         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1372           dumpELFData(SectionAddr, Index, End, Bytes);
1373           Index = End;
1374         }
1375       }
1376
1377       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1378                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1379                              !DisassembleAll;
1380       while (Index < End) {
1381         // ARM and AArch64 ELF binaries can interleave data and text in the
1382         // same section. We rely on the markers introduced to understand what
1383         // we need to dump. If the data marker is within a function, it is
1384         // denoted as a word/short etc.
1385         if (CheckARMELFData &&
1386             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1387           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1388                                  MappingSymbols);
1389           continue;
1390         }
1391
1392         // When -z or --disassemble-zeroes are given we always dissasemble
1393         // them. Otherwise we might want to skip zero bytes we see.
1394         if (!DisassembleZeroes) {
1395           uint64_t MaxOffset = End - Index;
1396           // For -reloc: print zero blocks patched by relocations, so that
1397           // relocations can be shown in the dump.
1398           if (RelCur != RelEnd)
1399             MaxOffset = RelCur->getOffset() - Index;
1400
1401           if (size_t N =
1402                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1403             outs() << "\t\t..." << '\n';
1404             Index += N;
1405             continue;
1406           }
1407         }
1408
1409         if (SecondarySTI) {
1410           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1411             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1412             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1413           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1414             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1415             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1416           }
1417         }
1418
1419         // Disassemble a real instruction or a data when disassemble all is
1420         // provided
1421         MCInst Inst;
1422         bool Disassembled = DisAsm->getInstruction(
1423             Inst, Size, Bytes.slice(Index), SectionAddr + Index, CommentStream);
1424         if (Size == 0)
1425           Size = 1;
1426
1427         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1428                       Bytes.slice(Index, Size),
1429                       {SectionAddr + Index + VMAAdjustment, Section.getIndex()},
1430                       outs(), "", *STI, &SP, Obj->getFileName(), &Rels);
1431         outs() << CommentStream.str();
1432         Comments.clear();
1433
1434         // Try to resolve the target of a call, tail call, etc. to a specific
1435         // symbol.
1436         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1437                     MIA->isConditionalBranch(Inst))) {
1438           uint64_t Target;
1439           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1440             // In a relocatable object, the target's section must reside in
1441             // the same section as the call instruction or it is accessed
1442             // through a relocation.
1443             //
1444             // In a non-relocatable object, the target may be in any section.
1445             //
1446             // N.B. We don't walk the relocations in the relocatable case yet.
1447             auto *TargetSectionSymbols = &Symbols;
1448             if (!Obj->isRelocatableObject()) {
1449               auto It = partition_point(
1450                   SectionAddresses,
1451                   [=](const std::pair<uint64_t, SectionRef> &O) {
1452                     return O.first <= Target;
1453                   });
1454               if (It != SectionAddresses.begin()) {
1455                 --It;
1456                 TargetSectionSymbols = &AllSymbols[It->second];
1457               } else {
1458                 TargetSectionSymbols = &AbsoluteSymbols;
1459               }
1460             }
1461
1462             // Find the last symbol in the section whose offset is less than
1463             // or equal to the target. If there isn't a section that contains
1464             // the target, find the nearest preceding absolute symbol.
1465             auto TargetSym = partition_point(
1466                 *TargetSectionSymbols,
1467                 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1468                   return std::get<0>(O) <= Target;
1469                 });
1470             if (TargetSym == TargetSectionSymbols->begin()) {
1471               TargetSectionSymbols = &AbsoluteSymbols;
1472               TargetSym = partition_point(
1473                   AbsoluteSymbols,
1474                   [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1475                     return std::get<0>(O) <= Target;
1476                   });
1477             }
1478             if (TargetSym != TargetSectionSymbols->begin()) {
1479               --TargetSym;
1480               uint64_t TargetAddress = std::get<0>(*TargetSym);
1481               StringRef TargetName = std::get<1>(*TargetSym);
1482               outs() << " <" << TargetName;
1483               uint64_t Disp = Target - TargetAddress;
1484               if (Disp)
1485                 outs() << "+0x" << Twine::utohexstr(Disp);
1486               outs() << '>';
1487             }
1488           }
1489         }
1490         outs() << "\n";
1491
1492         // Hexagon does this in pretty printer
1493         if (Obj->getArch() != Triple::hexagon) {
1494           // Print relocation for instruction.
1495           while (RelCur != RelEnd) {
1496             uint64_t Offset = RelCur->getOffset();
1497             // If this relocation is hidden, skip it.
1498             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1499               ++RelCur;
1500               continue;
1501             }
1502
1503             // Stop when RelCur's offset is past the current instruction.
1504             if (Offset >= Index + Size)
1505               break;
1506
1507             // When --adjust-vma is used, update the address printed.
1508             if (RelCur->getSymbol() != Obj->symbol_end()) {
1509               Expected<section_iterator> SymSI =
1510                   RelCur->getSymbol()->getSection();
1511               if (SymSI && *SymSI != Obj->section_end() &&
1512                   shouldAdjustVA(**SymSI))
1513                 Offset += AdjustVMA;
1514             }
1515
1516             printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset,
1517                             Is64Bits);
1518             ++RelCur;
1519           }
1520         }
1521
1522         Index += Size;
1523       }
1524     }
1525   }
1526   StringSet<> MissingDisasmFuncsSet =
1527       set_difference(DisasmFuncsSet, FoundDisasmFuncsSet);
1528   for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys())
1529     reportWarning("failed to disassemble missing function " + MissingDisasmFunc,
1530                   FileName);
1531 }
1532
1533 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1534   const Target *TheTarget = getTarget(Obj);
1535
1536   // Package up features to be passed to target/subtarget
1537   SubtargetFeatures Features = Obj->getFeatures();
1538   if (!MAttrs.empty())
1539     for (unsigned I = 0; I != MAttrs.size(); ++I)
1540       Features.AddFeature(MAttrs[I]);
1541
1542   std::unique_ptr<const MCRegisterInfo> MRI(
1543       TheTarget->createMCRegInfo(TripleName));
1544   if (!MRI)
1545     reportError(Obj->getFileName(),
1546                 "no register info for target " + TripleName);
1547
1548   // Set up disassembler.
1549   MCTargetOptions MCOptions;
1550   std::unique_ptr<const MCAsmInfo> AsmInfo(
1551       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1552   if (!AsmInfo)
1553     reportError(Obj->getFileName(),
1554                 "no assembly info for target " + TripleName);
1555   std::unique_ptr<const MCSubtargetInfo> STI(
1556       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1557   if (!STI)
1558     reportError(Obj->getFileName(),
1559                 "no subtarget info for target " + TripleName);
1560   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1561   if (!MII)
1562     reportError(Obj->getFileName(),
1563                 "no instruction info for target " + TripleName);
1564   MCObjectFileInfo MOFI;
1565   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1566   // FIXME: for now initialize MCObjectFileInfo with default values
1567   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1568
1569   std::unique_ptr<MCDisassembler> DisAsm(
1570       TheTarget->createMCDisassembler(*STI, Ctx));
1571   if (!DisAsm)
1572     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1573
1574   // If we have an ARM object file, we need a second disassembler, because
1575   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1576   // We use mapping symbols to switch between the two assemblers, where
1577   // appropriate.
1578   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1579   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1580   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1581     if (STI->checkFeatures("+thumb-mode"))
1582       Features.AddFeature("-thumb-mode");
1583     else
1584       Features.AddFeature("+thumb-mode");
1585     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1586                                                         Features.getString()));
1587     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1588   }
1589
1590   std::unique_ptr<const MCInstrAnalysis> MIA(
1591       TheTarget->createMCInstrAnalysis(MII.get()));
1592
1593   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1594   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1595       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1596   if (!IP)
1597     reportError(Obj->getFileName(),
1598                 "no instruction printer for target " + TripleName);
1599   IP->setPrintImmHex(PrintImmHex);
1600
1601   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1602   SourcePrinter SP(Obj, TheTarget->getName());
1603
1604   for (StringRef Opt : DisassemblerOptions)
1605     if (!IP->applyTargetSpecificCLOption(Opt))
1606       reportError(Obj->getFileName(),
1607                   "Unrecognized disassembler option: " + Opt);
1608
1609   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1610                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1611                     SP, InlineRelocs);
1612 }
1613
1614 void printRelocations(const ObjectFile *Obj) {
1615   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1616                                                  "%08" PRIx64;
1617   // Regular objdump doesn't print relocations in non-relocatable object
1618   // files.
1619   if (!Obj->isRelocatableObject())
1620     return;
1621
1622   // Build a mapping from relocation target to a vector of relocation
1623   // sections. Usually, there is an only one relocation section for
1624   // each relocated section.
1625   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1626   uint64_t Ndx;
1627   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1628     if (Section.relocation_begin() == Section.relocation_end())
1629       continue;
1630     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1631     if (!SecOrErr)
1632       reportError(Obj->getFileName(),
1633                   "section (" + Twine(Ndx) +
1634                       "): unable to get a relocation target: " +
1635                       toString(SecOrErr.takeError()));
1636     SecToRelSec[**SecOrErr].push_back(Section);
1637   }
1638
1639   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1640     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1641     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1642
1643     for (SectionRef Section : P.second) {
1644       for (const RelocationRef &Reloc : Section.relocations()) {
1645         uint64_t Address = Reloc.getOffset();
1646         SmallString<32> RelocName;
1647         SmallString<32> ValueStr;
1648         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1649           continue;
1650         Reloc.getTypeName(RelocName);
1651         if (Error E = getRelocationValueString(Reloc, ValueStr))
1652           reportError(std::move(E), Obj->getFileName());
1653
1654         outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1655                << ValueStr << "\n";
1656       }
1657     }
1658     outs() << "\n";
1659   }
1660 }
1661
1662 void printDynamicRelocations(const ObjectFile *Obj) {
1663   // For the moment, this option is for ELF only
1664   if (!Obj->isELF())
1665     return;
1666
1667   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1668   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1669     reportError(Obj->getFileName(), "not a dynamic object");
1670     return;
1671   }
1672
1673   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1674   if (DynRelSec.empty())
1675     return;
1676
1677   outs() << "DYNAMIC RELOCATION RECORDS\n";
1678   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1679   for (const SectionRef &Section : DynRelSec)
1680     for (const RelocationRef &Reloc : Section.relocations()) {
1681       uint64_t Address = Reloc.getOffset();
1682       SmallString<32> RelocName;
1683       SmallString<32> ValueStr;
1684       Reloc.getTypeName(RelocName);
1685       if (Error E = getRelocationValueString(Reloc, ValueStr))
1686         reportError(std::move(E), Obj->getFileName());
1687       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1688              << ValueStr << "\n";
1689     }
1690 }
1691
1692 // Returns true if we need to show LMA column when dumping section headers. We
1693 // show it only when the platform is ELF and either we have at least one section
1694 // whose VMA and LMA are different and/or when --show-lma flag is used.
1695 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1696   if (!Obj->isELF())
1697     return false;
1698   for (const SectionRef &S : ToolSectionFilter(*Obj))
1699     if (S.getAddress() != getELFSectionLMA(S))
1700       return true;
1701   return ShowLMA;
1702 }
1703
1704 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1705   // Default column width for names is 13 even if no names are that long.
1706   size_t MaxWidth = 13;
1707   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1708     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1709     MaxWidth = std::max(MaxWidth, Name.size());
1710   }
1711   return MaxWidth;
1712 }
1713
1714 void printSectionHeaders(const ObjectFile *Obj) {
1715   size_t NameWidth = getMaxSectionNameWidth(Obj);
1716   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1717   bool HasLMAColumn = shouldDisplayLMA(Obj);
1718   if (HasLMAColumn)
1719     outs() << "Sections:\n"
1720               "Idx "
1721            << left_justify("Name", NameWidth) << " Size     "
1722            << left_justify("VMA", AddressWidth) << " "
1723            << left_justify("LMA", AddressWidth) << " Type\n";
1724   else
1725     outs() << "Sections:\n"
1726               "Idx "
1727            << left_justify("Name", NameWidth) << " Size     "
1728            << left_justify("VMA", AddressWidth) << " Type\n";
1729
1730   uint64_t Idx;
1731   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1732     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1733     uint64_t VMA = Section.getAddress();
1734     if (shouldAdjustVA(Section))
1735       VMA += AdjustVMA;
1736
1737     uint64_t Size = Section.getSize();
1738
1739     std::string Type = Section.isText() ? "TEXT" : "";
1740     if (Section.isData())
1741       Type += Type.empty() ? "DATA" : " DATA";
1742     if (Section.isBSS())
1743       Type += Type.empty() ? "BSS" : " BSS";
1744
1745     if (HasLMAColumn)
1746       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1747                        Name.str().c_str(), Size)
1748              << format_hex_no_prefix(VMA, AddressWidth) << " "
1749              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1750              << " " << Type << "\n";
1751     else
1752       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1753                        Name.str().c_str(), Size)
1754              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1755   }
1756   outs() << "\n";
1757 }
1758
1759 void printSectionContents(const ObjectFile *Obj) {
1760   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1761     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1762     uint64_t BaseAddr = Section.getAddress();
1763     uint64_t Size = Section.getSize();
1764     if (!Size)
1765       continue;
1766
1767     outs() << "Contents of section " << Name << ":\n";
1768     if (Section.isBSS()) {
1769       outs() << format("<skipping contents of bss section at [%04" PRIx64
1770                        ", %04" PRIx64 ")>\n",
1771                        BaseAddr, BaseAddr + Size);
1772       continue;
1773     }
1774
1775     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1776
1777     // Dump out the content as hex and printable ascii characters.
1778     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1779       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1780       // Dump line of hex.
1781       for (std::size_t I = 0; I < 16; ++I) {
1782         if (I != 0 && I % 4 == 0)
1783           outs() << ' ';
1784         if (Addr + I < End)
1785           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1786                  << hexdigit(Contents[Addr + I] & 0xF, true);
1787         else
1788           outs() << "  ";
1789       }
1790       // Print ascii.
1791       outs() << "  ";
1792       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1793         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1794           outs() << Contents[Addr + I];
1795         else
1796           outs() << ".";
1797       }
1798       outs() << "\n";
1799     }
1800   }
1801 }
1802
1803 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1804                       StringRef ArchitectureName) {
1805   outs() << "SYMBOL TABLE:\n";
1806
1807   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1808     printCOFFSymbolTable(Coff);
1809     return;
1810   }
1811
1812   const StringRef FileName = O->getFileName();
1813   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1814   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1815     const SymbolRef &Symbol = *I;
1816     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1817                                      ArchitectureName);
1818     if ((Address < StartAddress) || (Address > StopAddress))
1819       continue;
1820     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName,
1821                                          ArchiveName, ArchitectureName);
1822     uint32_t Flags = Symbol.getFlags();
1823
1824     // Don't ask a Mach-O STAB symbol for its section unless you know that 
1825     // STAB symbol's section field refers to a valid section index. Otherwise
1826     // the symbol may error trying to load a section that does not exist.
1827     bool isSTAB = false;
1828     if (MachO) {
1829       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1830       uint8_t NType = (MachO->is64Bit() ?
1831                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1832                        MachO->getSymbolTableEntry(SymDRI).n_type);
1833       if (NType & MachO::N_STAB)
1834         isSTAB = true;
1835     }
1836     section_iterator Section = isSTAB ? O->section_end() :
1837                                unwrapOrError(Symbol.getSection(), FileName,
1838                                              ArchiveName, ArchitectureName);
1839
1840     StringRef Name;
1841     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1842       if (Expected<StringRef> NameOrErr = Section->getName())
1843         Name = *NameOrErr;
1844       else
1845         consumeError(NameOrErr.takeError());
1846
1847     } else {
1848       Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1849                            ArchitectureName);
1850     }
1851
1852     bool Global = Flags & SymbolRef::SF_Global;
1853     bool Weak = Flags & SymbolRef::SF_Weak;
1854     bool Absolute = Flags & SymbolRef::SF_Absolute;
1855     bool Common = Flags & SymbolRef::SF_Common;
1856     bool Hidden = Flags & SymbolRef::SF_Hidden;
1857
1858     char GlobLoc = ' ';
1859     if (Type != SymbolRef::ST_Unknown)
1860       GlobLoc = Global ? 'g' : 'l';
1861     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1862                  ? 'd' : ' ';
1863     char FileFunc = ' ';
1864     if (Type == SymbolRef::ST_File)
1865       FileFunc = 'f';
1866     else if (Type == SymbolRef::ST_Function)
1867       FileFunc = 'F';
1868     else if (Type == SymbolRef::ST_Data)
1869       FileFunc = 'O';
1870
1871     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1872                                                    "%08" PRIx64;
1873
1874     outs() << format(Fmt, Address) << " "
1875            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1876            << (Weak ? 'w' : ' ') // Weak?
1877            << ' ' // Constructor. Not supported yet.
1878            << ' ' // Warning. Not supported yet.
1879            << ' ' // Indirect reference to another symbol.
1880            << Debug // Debugging (d) or dynamic (D) symbol.
1881            << FileFunc // Name of function (F), file (f) or object (O).
1882            << ' ';
1883     if (Absolute) {
1884       outs() << "*ABS*";
1885     } else if (Common) {
1886       outs() << "*COM*";
1887     } else if (Section == O->section_end()) {
1888       outs() << "*UND*";
1889     } else {
1890       if (const MachOObjectFile *MachO =
1891           dyn_cast<const MachOObjectFile>(O)) {
1892         DataRefImpl DR = Section->getRawDataRefImpl();
1893         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1894         outs() << SegmentName << ",";
1895       }
1896       StringRef SectionName =
1897           unwrapOrError(Section->getName(), O->getFileName());
1898       outs() << SectionName;
1899     }
1900
1901     if (Common || isa<ELFObjectFileBase>(O)) {
1902       uint64_t Val =
1903           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1904       outs() << format("\t%08" PRIx64, Val);
1905     }
1906
1907     if (isa<ELFObjectFileBase>(O)) {
1908       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1909       switch (Other) {
1910       case ELF::STV_DEFAULT:
1911         break;
1912       case ELF::STV_INTERNAL:
1913         outs() << " .internal";
1914         break;
1915       case ELF::STV_HIDDEN:
1916         outs() << " .hidden";
1917         break;
1918       case ELF::STV_PROTECTED:
1919         outs() << " .protected";
1920         break;
1921       default:
1922         outs() << format(" 0x%02x", Other);
1923         break;
1924       }
1925     } else if (Hidden) {
1926       outs() << " .hidden";
1927     }
1928
1929     if (Demangle)
1930       outs() << ' ' << demangle(Name) << '\n';
1931     else
1932       outs() << ' ' << Name << '\n';
1933   }
1934 }
1935
1936 static void printUnwindInfo(const ObjectFile *O) {
1937   outs() << "Unwind info:\n\n";
1938
1939   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1940     printCOFFUnwindInfo(Coff);
1941   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1942     printMachOUnwindInfo(MachO);
1943   else
1944     // TODO: Extract DWARF dump tool to objdump.
1945     WithColor::error(errs(), ToolName)
1946         << "This operation is only currently supported "
1947            "for COFF and MachO object files.\n";
1948 }
1949
1950 /// Dump the raw contents of the __clangast section so the output can be piped
1951 /// into llvm-bcanalyzer.
1952 void printRawClangAST(const ObjectFile *Obj) {
1953   if (outs().is_displayed()) {
1954     WithColor::error(errs(), ToolName)
1955         << "The -raw-clang-ast option will dump the raw binary contents of "
1956            "the clang ast section.\n"
1957            "Please redirect the output to a file or another program such as "
1958            "llvm-bcanalyzer.\n";
1959     return;
1960   }
1961
1962   StringRef ClangASTSectionName("__clangast");
1963   if (isa<COFFObjectFile>(Obj)) {
1964     ClangASTSectionName = "clangast";
1965   }
1966
1967   Optional<object::SectionRef> ClangASTSection;
1968   for (auto Sec : ToolSectionFilter(*Obj)) {
1969     StringRef Name;
1970     if (Expected<StringRef> NameOrErr = Sec.getName())
1971       Name = *NameOrErr;
1972     else
1973       consumeError(NameOrErr.takeError());
1974
1975     if (Name == ClangASTSectionName) {
1976       ClangASTSection = Sec;
1977       break;
1978     }
1979   }
1980   if (!ClangASTSection)
1981     return;
1982
1983   StringRef ClangASTContents = unwrapOrError(
1984       ClangASTSection.getValue().getContents(), Obj->getFileName());
1985   outs().write(ClangASTContents.data(), ClangASTContents.size());
1986 }
1987
1988 static void printFaultMaps(const ObjectFile *Obj) {
1989   StringRef FaultMapSectionName;
1990
1991   if (isa<ELFObjectFileBase>(Obj)) {
1992     FaultMapSectionName = ".llvm_faultmaps";
1993   } else if (isa<MachOObjectFile>(Obj)) {
1994     FaultMapSectionName = "__llvm_faultmaps";
1995   } else {
1996     WithColor::error(errs(), ToolName)
1997         << "This operation is only currently supported "
1998            "for ELF and Mach-O executable files.\n";
1999     return;
2000   }
2001
2002   Optional<object::SectionRef> FaultMapSection;
2003
2004   for (auto Sec : ToolSectionFilter(*Obj)) {
2005     StringRef Name;
2006     if (Expected<StringRef> NameOrErr = Sec.getName())
2007       Name = *NameOrErr;
2008     else
2009       consumeError(NameOrErr.takeError());
2010
2011     if (Name == FaultMapSectionName) {
2012       FaultMapSection = Sec;
2013       break;
2014     }
2015   }
2016
2017   outs() << "FaultMap table:\n";
2018
2019   if (!FaultMapSection.hasValue()) {
2020     outs() << "<not found>\n";
2021     return;
2022   }
2023
2024   StringRef FaultMapContents =
2025       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2026   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2027                      FaultMapContents.bytes_end());
2028
2029   outs() << FMP;
2030 }
2031
2032 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2033   if (O->isELF()) {
2034     printELFFileHeader(O);
2035     printELFDynamicSection(O);
2036     printELFSymbolVersionInfo(O);
2037     return;
2038   }
2039   if (O->isCOFF())
2040     return printCOFFFileHeader(O);
2041   if (O->isWasm())
2042     return printWasmFileHeader(O);
2043   if (O->isMachO()) {
2044     printMachOFileHeader(O);
2045     if (!OnlyFirst)
2046       printMachOLoadCommands(O);
2047     return;
2048   }
2049   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2050 }
2051
2052 static void printFileHeaders(const ObjectFile *O) {
2053   if (!O->isELF() && !O->isCOFF())
2054     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2055
2056   Triple::ArchType AT = O->getArch();
2057   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2058   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2059
2060   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2061   outs() << "start address: "
2062          << "0x" << format(Fmt.data(), Address) << "\n\n";
2063 }
2064
2065 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2066   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2067   if (!ModeOrErr) {
2068     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2069     consumeError(ModeOrErr.takeError());
2070     return;
2071   }
2072   sys::fs::perms Mode = ModeOrErr.get();
2073   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2074   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2075   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2076   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2077   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2078   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2079   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2080   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2081   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2082
2083   outs() << " ";
2084
2085   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2086                    unwrapOrError(C.getGID(), Filename),
2087                    unwrapOrError(C.getRawSize(), Filename));
2088
2089   StringRef RawLastModified = C.getRawLastModified();
2090   unsigned Seconds;
2091   if (RawLastModified.getAsInteger(10, Seconds))
2092     outs() << "(date: \"" << RawLastModified
2093            << "\" contains non-decimal chars) ";
2094   else {
2095     // Since ctime(3) returns a 26 character string of the form:
2096     // "Sun Sep 16 01:03:52 1973\n\0"
2097     // just print 24 characters.
2098     time_t t = Seconds;
2099     outs() << format("%.24s ", ctime(&t));
2100   }
2101
2102   StringRef Name = "";
2103   Expected<StringRef> NameOrErr = C.getName();
2104   if (!NameOrErr) {
2105     consumeError(NameOrErr.takeError());
2106     Name = unwrapOrError(C.getRawName(), Filename);
2107   } else {
2108     Name = NameOrErr.get();
2109   }
2110   outs() << Name << "\n";
2111 }
2112
2113 // For ELF only now.
2114 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2115   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2116     if (Elf->getEType() != ELF::ET_REL)
2117       return true;
2118   }
2119   return false;
2120 }
2121
2122 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2123                                             uint64_t Start, uint64_t Stop) {
2124   if (!shouldWarnForInvalidStartStopAddress(Obj))
2125     return;
2126
2127   for (const SectionRef &Section : Obj->sections())
2128     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2129       uint64_t BaseAddr = Section.getAddress();
2130       uint64_t Size = Section.getSize();
2131       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2132         return;
2133     }
2134
2135   if (StartAddress.getNumOccurrences() == 0)
2136     reportWarning("no section has address less than 0x" +
2137                       Twine::utohexstr(Stop) + " specified by --stop-address",
2138                   Obj->getFileName());
2139   else if (StopAddress.getNumOccurrences() == 0)
2140     reportWarning("no section has address greater than or equal to 0x" +
2141                       Twine::utohexstr(Start) + " specified by --start-address",
2142                   Obj->getFileName());
2143   else
2144     reportWarning("no section overlaps the range [0x" +
2145                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2146                       ") specified by --start-address/--stop-address",
2147                   Obj->getFileName());
2148 }
2149
2150 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2151                        const Archive::Child *C = nullptr) {
2152   // Avoid other output when using a raw option.
2153   if (!RawClangAST) {
2154     outs() << '\n';
2155     if (A)
2156       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2157     else
2158       outs() << O->getFileName();
2159     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2160   }
2161
2162   if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2163     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2164
2165   // Note: the order here matches GNU objdump for compatability.
2166   StringRef ArchiveName = A ? A->getFileName() : "";
2167   if (ArchiveHeaders && !MachOOpt && C)
2168     printArchiveChild(ArchiveName, *C);
2169   if (FileHeaders)
2170     printFileHeaders(O);
2171   if (PrivateHeaders || FirstPrivateHeader)
2172     printPrivateFileHeaders(O, FirstPrivateHeader);
2173   if (SectionHeaders)
2174     printSectionHeaders(O);
2175   if (SymbolTable)
2176     printSymbolTable(O, ArchiveName);
2177   if (DwarfDumpType != DIDT_Null) {
2178     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2179     // Dump the complete DWARF structure.
2180     DIDumpOptions DumpOpts;
2181     DumpOpts.DumpType = DwarfDumpType;
2182     DICtx->dump(outs(), DumpOpts);
2183   }
2184   if (Relocations && !Disassemble)
2185     printRelocations(O);
2186   if (DynamicRelocations)
2187     printDynamicRelocations(O);
2188   if (SectionContents)
2189     printSectionContents(O);
2190   if (Disassemble)
2191     disassembleObject(O, Relocations);
2192   if (UnwindInfo)
2193     printUnwindInfo(O);
2194
2195   // Mach-O specific options:
2196   if (ExportsTrie)
2197     printExportsTrie(O);
2198   if (Rebase)
2199     printRebaseTable(O);
2200   if (Bind)
2201     printBindTable(O);
2202   if (LazyBind)
2203     printLazyBindTable(O);
2204   if (WeakBind)
2205     printWeakBindTable(O);
2206
2207   // Other special sections:
2208   if (RawClangAST)
2209     printRawClangAST(O);
2210   if (FaultMapSection)
2211     printFaultMaps(O);
2212 }
2213
2214 static void dumpObject(const COFFImportFile *I, const Archive *A,
2215                        const Archive::Child *C = nullptr) {
2216   StringRef ArchiveName = A ? A->getFileName() : "";
2217
2218   // Avoid other output when using a raw option.
2219   if (!RawClangAST)
2220     outs() << '\n'
2221            << ArchiveName << "(" << I->getFileName() << ")"
2222            << ":\tfile format COFF-import-file"
2223            << "\n\n";
2224
2225   if (ArchiveHeaders && !MachOOpt && C)
2226     printArchiveChild(ArchiveName, *C);
2227   if (SymbolTable)
2228     printCOFFSymbolTable(I);
2229 }
2230
2231 /// Dump each object file in \a a;
2232 static void dumpArchive(const Archive *A) {
2233   Error Err = Error::success();
2234   unsigned I = -1;
2235   for (auto &C : A->children(Err)) {
2236     ++I;
2237     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2238     if (!ChildOrErr) {
2239       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2240         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2241       continue;
2242     }
2243     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2244       dumpObject(O, A, &C);
2245     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2246       dumpObject(I, A, &C);
2247     else
2248       reportError(errorCodeToError(object_error::invalid_file_type),
2249                   A->getFileName());
2250   }
2251   if (Err)
2252     reportError(std::move(Err), A->getFileName());
2253 }
2254
2255 /// Open file and figure out how to dump it.
2256 static void dumpInput(StringRef file) {
2257   // If we are using the Mach-O specific object file parser, then let it parse
2258   // the file and process the command line options.  So the -arch flags can
2259   // be used to select specific slices, etc.
2260   if (MachOOpt) {
2261     parseInputMachO(file);
2262     return;
2263   }
2264
2265   // Attempt to open the binary.
2266   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2267   Binary &Binary = *OBinary.getBinary();
2268
2269   if (Archive *A = dyn_cast<Archive>(&Binary))
2270     dumpArchive(A);
2271   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2272     dumpObject(O);
2273   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2274     parseInputMachO(UB);
2275   else
2276     reportError(errorCodeToError(object_error::invalid_file_type), file);
2277 }
2278 } // namespace llvm
2279
2280 int main(int argc, char **argv) {
2281   using namespace llvm;
2282   InitLLVM X(argc, argv);
2283   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2284   cl::HideUnrelatedOptions(OptionFilters);
2285
2286   // Initialize targets and assembly printers/parsers.
2287   InitializeAllTargetInfos();
2288   InitializeAllTargetMCs();
2289   InitializeAllDisassemblers();
2290
2291   // Register the target printer for --version.
2292   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2293
2294   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2295
2296   if (StartAddress >= StopAddress)
2297     reportCmdLineError("start address should be less than stop address");
2298
2299   ToolName = argv[0];
2300
2301   // Defaults to a.out if no filenames specified.
2302   if (InputFilenames.empty())
2303     InputFilenames.push_back("a.out");
2304
2305   if (AllHeaders)
2306     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2307         SectionHeaders = SymbolTable = true;
2308
2309   if (DisassembleAll || PrintSource || PrintLines ||
2310       (!DisassembleFunctions.empty()))
2311     Disassemble = true;
2312
2313   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2314       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2315       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2316       !UnwindInfo && !FaultMapSection &&
2317       !(MachOOpt &&
2318         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2319          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2320          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2321          WeakBind || !FilterSections.empty()))) {
2322     cl::PrintHelpMessage();
2323     return 2;
2324   }
2325
2326   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2327                         DisassembleFunctions.end());
2328
2329   llvm::for_each(InputFilenames, dumpInput);
2330
2331   warnOnNoMatchForSections();
2332
2333   return EXIT_SUCCESS;
2334 }