]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp
MFC r361739: llvm: Add DF_1_PIE
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / tools / llvm-readobj / ELFDumper.cpp
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "Error.h"
17 #include "ObjDumper.h"
18 #include "StackMapPrinter.h"
19 #include "llvm-readobj.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MipsABIFlags.h"
55 #include "llvm/Support/ScopedPrinter.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cinttypes>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <iterator>
63 #include <memory>
64 #include <string>
65 #include <system_error>
66 #include <unordered_set>
67 #include <vector>
68
69 using namespace llvm;
70 using namespace llvm::object;
71 using namespace ELF;
72
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
74   case ns::enum:                                                               \
75     return #enum;
76
77 #define ENUM_ENT(enum, altName)                                                \
78   { #enum, altName, ELF::enum }
79
80 #define ENUM_ENT_1(enum)                                                       \
81   { #enum, #enum, ELF::enum }
82
83 #define LLVM_READOBJ_PHDR_ENUM(ns, enum)                                       \
84   case ns::enum:                                                               \
85     return std::string(#enum).substr(3);
86
87 #define TYPEDEF_ELF_TYPES(ELFT)                                                \
88   using ELFO = ELFFile<ELFT>;                                                  \
89   using Elf_Addr = typename ELFT::Addr;                                        \
90   using Elf_Shdr = typename ELFT::Shdr;                                        \
91   using Elf_Sym = typename ELFT::Sym;                                          \
92   using Elf_Dyn = typename ELFT::Dyn;                                          \
93   using Elf_Dyn_Range = typename ELFT::DynRange;                               \
94   using Elf_Rel = typename ELFT::Rel;                                          \
95   using Elf_Rela = typename ELFT::Rela;                                        \
96   using Elf_Relr = typename ELFT::Relr;                                        \
97   using Elf_Rel_Range = typename ELFT::RelRange;                               \
98   using Elf_Rela_Range = typename ELFT::RelaRange;                             \
99   using Elf_Relr_Range = typename ELFT::RelrRange;                             \
100   using Elf_Phdr = typename ELFT::Phdr;                                        \
101   using Elf_Half = typename ELFT::Half;                                        \
102   using Elf_Ehdr = typename ELFT::Ehdr;                                        \
103   using Elf_Word = typename ELFT::Word;                                        \
104   using Elf_Hash = typename ELFT::Hash;                                        \
105   using Elf_GnuHash = typename ELFT::GnuHash;                                  \
106   using Elf_Note  = typename ELFT::Note;                                       \
107   using Elf_Sym_Range = typename ELFT::SymRange;                               \
108   using Elf_Versym = typename ELFT::Versym;                                    \
109   using Elf_Verneed = typename ELFT::Verneed;                                  \
110   using Elf_Vernaux = typename ELFT::Vernaux;                                  \
111   using Elf_Verdef = typename ELFT::Verdef;                                    \
112   using Elf_Verdaux = typename ELFT::Verdaux;                                  \
113   using Elf_CGProfile = typename ELFT::CGProfile;                              \
114   using uintX_t = typename ELFT::uint;
115
116 namespace {
117
118 template <class ELFT> class DumpStyle;
119
120 /// Represents a contiguous uniform range in the file. We cannot just create a
121 /// range directly because when creating one of these from the .dynamic table
122 /// the size, entity size and virtual address are different entries in arbitrary
123 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
124 struct DynRegionInfo {
125   DynRegionInfo(StringRef ObjName) : FileName(ObjName) {}
126   DynRegionInfo(const void *A, uint64_t S, uint64_t ES, StringRef ObjName)
127       : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {}
128
129   /// Address in current address space.
130   const void *Addr = nullptr;
131   /// Size in bytes of the region.
132   uint64_t Size = 0;
133   /// Size of each entity in the region.
134   uint64_t EntSize = 0;
135
136   /// Name of the file. Used for error reporting.
137   StringRef FileName;
138
139   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
140     const Type *Start = reinterpret_cast<const Type *>(Addr);
141     if (!Start)
142       return {Start, Start};
143     if (EntSize != sizeof(Type) || Size % EntSize) {
144       // TODO: Add a section index to this warning.
145       reportWarning(createError("invalid section size (" + Twine(Size) +
146                                 ") or entity size (" + Twine(EntSize) + ")"),
147                     FileName);
148       return {Start, Start};
149     }
150     return {Start, Start + (Size / EntSize)};
151   }
152 };
153
154 namespace {
155 struct VerdAux {
156   unsigned Offset;
157   std::string Name;
158 };
159
160 struct VerDef {
161   unsigned Offset;
162   unsigned Version;
163   unsigned Flags;
164   unsigned Ndx;
165   unsigned Cnt;
166   unsigned Hash;
167   std::string Name;
168   std::vector<VerdAux> AuxV;
169 };
170
171 struct VernAux {
172   unsigned Hash;
173   unsigned Flags;
174   unsigned Other;
175   unsigned Offset;
176   std::string Name;
177 };
178
179 struct VerNeed {
180   unsigned Version;
181   unsigned Cnt;
182   unsigned Offset;
183   std::string File;
184   std::vector<VernAux> AuxV;
185 };
186
187 } // namespace
188
189 template <typename ELFT> class ELFDumper : public ObjDumper {
190 public:
191   ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer);
192
193   void printFileHeaders() override;
194   void printSectionHeaders() override;
195   void printRelocations() override;
196   void printDependentLibs() override;
197   void printDynamicRelocations() override;
198   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
199   void printHashSymbols() override;
200   void printUnwindInfo() override;
201
202   void printDynamicTable() override;
203   void printNeededLibraries() override;
204   void printProgramHeaders(bool PrintProgramHeaders,
205                            cl::boolOrDefault PrintSectionMapping) override;
206   void printHashTable() override;
207   void printGnuHashTable() override;
208   void printLoadName() override;
209   void printVersionInfo() override;
210   void printGroupSections() override;
211
212   void printArchSpecificInfo() override;
213
214   void printStackMap() const override;
215
216   void printHashHistogram() override;
217
218   void printCGProfile() override;
219   void printAddrsig() override;
220
221   void printNotes() override;
222
223   void printELFLinkerOptions() override;
224   void printStackSizes() override;
225
226   const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; };
227
228 private:
229   std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
230
231   TYPEDEF_ELF_TYPES(ELFT)
232
233   DynRegionInfo checkDRI(DynRegionInfo DRI) {
234     const ELFFile<ELFT> *Obj = ObjF->getELFFile();
235     if (DRI.Addr < Obj->base() ||
236         reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size >
237             Obj->base() + Obj->getBufSize())
238       reportError(errorCodeToError(llvm::object::object_error::parse_failed),
239                   ObjF->getFileName());
240     return DRI;
241   }
242
243   DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
244     return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz,
245                      EntSize, ObjF->getFileName()});
246   }
247
248   DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
249     return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size,
250                      S->sh_entsize, ObjF->getFileName()});
251   }
252
253   void printAttributes();
254   void printMipsReginfo();
255   void printMipsOptions();
256
257   std::pair<const Elf_Phdr *, const Elf_Shdr *>
258   findDynamic(const ELFFile<ELFT> *Obj);
259   void loadDynamicTable(const ELFFile<ELFT> *Obj);
260   void parseDynamicTable(const ELFFile<ELFT> *Obj);
261
262   Expected<StringRef> getSymbolVersion(const Elf_Sym *symb,
263                                        bool &IsDefault) const;
264   Error LoadVersionMap() const;
265
266   const object::ELFObjectFile<ELFT> *ObjF;
267   DynRegionInfo DynRelRegion;
268   DynRegionInfo DynRelaRegion;
269   DynRegionInfo DynRelrRegion;
270   DynRegionInfo DynPLTRelRegion;
271   DynRegionInfo DynSymRegion;
272   DynRegionInfo DynamicTable;
273   StringRef DynamicStringTable;
274   std::string SOName = "<Not found>";
275   const Elf_Hash *HashTable = nullptr;
276   const Elf_GnuHash *GnuHashTable = nullptr;
277   const Elf_Shdr *DotSymtabSec = nullptr;
278   const Elf_Shdr *DotCGProfileSec = nullptr;
279   const Elf_Shdr *DotAddrsigSec = nullptr;
280   StringRef DynSymtabName;
281   ArrayRef<Elf_Word> ShndxTable;
282
283   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
284   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
285   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
286
287   struct VersionEntry {
288     std::string Name;
289     bool IsVerDef;
290   };
291   mutable SmallVector<Optional<VersionEntry>, 16> VersionMap;
292
293 public:
294   Elf_Dyn_Range dynamic_table() const {
295     // A valid .dynamic section contains an array of entries terminated
296     // with a DT_NULL entry. However, sometimes the section content may
297     // continue past the DT_NULL entry, so to dump the section correctly,
298     // we first find the end of the entries by iterating over them.
299     Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();
300
301     size_t Size = 0;
302     while (Size < Table.size())
303       if (Table[Size++].getTag() == DT_NULL)
304         break;
305
306     return Table.slice(0, Size);
307   }
308
309   Elf_Sym_Range dynamic_symbols() const {
310     return DynSymRegion.getAsArrayRef<Elf_Sym>();
311   }
312
313   Elf_Rel_Range dyn_rels() const;
314   Elf_Rela_Range dyn_relas() const;
315   Elf_Relr_Range dyn_relrs() const;
316   std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
317                                 bool IsDynamic) const;
318   Expected<unsigned> getSymbolSectionIndex(const Elf_Sym *Symbol,
319                                            const Elf_Sym *FirstSym) const;
320   Expected<StringRef> getSymbolSectionName(const Elf_Sym *Symbol,
321                                            unsigned SectionIndex) const;
322   Expected<std::string> getStaticSymbolName(uint32_t Index) const;
323   std::string getDynamicString(uint64_t Value) const;
324   Expected<StringRef> getSymbolVersionByIndex(uint32_t VersionSymbolIndex,
325                                               bool &IsDefault) const;
326
327   void printSymbolsHelper(bool IsDynamic) const;
328   void printDynamicEntry(raw_ostream &OS, uint64_t Type, uint64_t Value) const;
329
330   const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
331   const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
332   const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
333   ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
334   StringRef getDynamicStringTable() const { return DynamicStringTable; }
335   const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
336   const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
337   const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
338   const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
339   const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
340   const Elf_Hash *getHashTable() const { return HashTable; }
341   const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
342
343   Expected<ArrayRef<Elf_Versym>> getVersionTable(const Elf_Shdr *Sec,
344                                                  ArrayRef<Elf_Sym> *SymTab,
345                                                  StringRef *StrTab) const;
346   Expected<std::vector<VerDef>>
347   getVersionDefinitions(const Elf_Shdr *Sec) const;
348   Expected<std::vector<VerNeed>>
349   getVersionDependencies(const Elf_Shdr *Sec) const;
350 };
351
352 template <class ELFT>
353 static Expected<StringRef> getLinkAsStrtab(const ELFFile<ELFT> *Obj,
354                                            const typename ELFT::Shdr *Sec,
355                                            unsigned SecNdx) {
356   Expected<const typename ELFT::Shdr *> StrTabSecOrErr =
357       Obj->getSection(Sec->sh_link);
358   if (!StrTabSecOrErr)
359     return createError("invalid section linked to " +
360                        object::getELFSectionTypeName(
361                            Obj->getHeader()->e_machine, Sec->sh_type) +
362                        " section with index " + Twine(SecNdx) + ": " +
363                        toString(StrTabSecOrErr.takeError()));
364
365   Expected<StringRef> StrTabOrErr = Obj->getStringTable(*StrTabSecOrErr);
366   if (!StrTabOrErr)
367     return createError("invalid string table linked to " +
368                        object::getELFSectionTypeName(
369                            Obj->getHeader()->e_machine, Sec->sh_type) +
370                        " section with index " + Twine(SecNdx) + ": " +
371                        toString(StrTabOrErr.takeError()));
372   return *StrTabOrErr;
373 }
374
375 // Returns the linked symbol table and associated string table for a given section.
376 template <class ELFT>
377 static Expected<std::pair<typename ELFT::SymRange, StringRef>>
378 getLinkAsSymtab(const ELFFile<ELFT> *Obj, const typename ELFT::Shdr *Sec,
379                    unsigned SecNdx, unsigned ExpectedType) {
380   Expected<const typename ELFT::Shdr *> SymtabOrErr =
381       Obj->getSection(Sec->sh_link);
382   if (!SymtabOrErr)
383     return createError("invalid section linked to " +
384                        object::getELFSectionTypeName(
385                            Obj->getHeader()->e_machine, Sec->sh_type) +
386                        " section with index " + Twine(SecNdx) + ": " +
387                        toString(SymtabOrErr.takeError()));
388
389   if ((*SymtabOrErr)->sh_type != ExpectedType)
390     return createError(
391         "invalid section linked to " +
392         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
393                                       Sec->sh_type) +
394         " section with index " + Twine(SecNdx) + ": expected " +
395         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
396                                       ExpectedType) +
397         ", but got " +
398         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
399                                       (*SymtabOrErr)->sh_type));
400
401   Expected<StringRef> StrTabOrErr =
402       getLinkAsStrtab(Obj, *SymtabOrErr, Sec->sh_link);
403   if (!StrTabOrErr)
404     return createError(
405         "can't get a string table for the symbol table linked to " +
406         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
407                                       Sec->sh_type) +
408         " section with index " + Twine(SecNdx) + ": " +
409         toString(StrTabOrErr.takeError()));
410
411   Expected<typename ELFT::SymRange> SymsOrErr = Obj->symbols(*SymtabOrErr);
412   if (!SymsOrErr)
413     return createError(
414         "unable to read symbols from the symbol table with index " +
415         Twine(Sec->sh_link) + ": " + toString(SymsOrErr.takeError()));
416
417   return std::make_pair(*SymsOrErr, *StrTabOrErr);
418 }
419
420 template <class ELFT>
421 Expected<ArrayRef<typename ELFT::Versym>>
422 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr *Sec, ArrayRef<Elf_Sym> *SymTab,
423                                  StringRef *StrTab) const {
424   assert((!SymTab && !StrTab) || (SymTab && StrTab));
425   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
426   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
427
428   if (uintptr_t(Obj->base() + Sec->sh_offset) % sizeof(uint16_t) != 0)
429     return createError("the SHT_GNU_versym section with index " +
430                        Twine(SecNdx) + " is misaligned");
431
432   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
433       Obj->template getSectionContentsAsArray<Elf_Versym>(Sec);
434   if (!VersionsOrErr)
435     return createError(
436         "cannot read content of SHT_GNU_versym section with index " +
437         Twine(SecNdx) + ": " + toString(VersionsOrErr.takeError()));
438
439   Expected<std::pair<ArrayRef<Elf_Sym>, StringRef>> SymTabOrErr =
440       getLinkAsSymtab(Obj, Sec, SecNdx, SHT_DYNSYM);
441   if (!SymTabOrErr) {
442     ELFDumperStyle->reportUniqueWarning(SymTabOrErr.takeError());
443     return *VersionsOrErr;
444   }
445
446   if (SymTabOrErr->first.size() != VersionsOrErr->size())
447     ELFDumperStyle->reportUniqueWarning(
448         createError("SHT_GNU_versym section with index " + Twine(SecNdx) +
449                     ": the number of entries (" + Twine(VersionsOrErr->size()) +
450                     ") does not match the number of symbols (" +
451                     Twine(SymTabOrErr->first.size()) +
452                     ") in the symbol table with index " + Twine(Sec->sh_link)));
453
454   if (SymTab)
455     std::tie(*SymTab, *StrTab) = *SymTabOrErr;
456   return *VersionsOrErr;
457 }
458
459 template <class ELFT>
460 Expected<std::vector<VerDef>>
461 ELFDumper<ELFT>::getVersionDefinitions(const Elf_Shdr *Sec) const {
462   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
463   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
464
465   Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec, SecNdx);
466   if (!StrTabOrErr)
467     return StrTabOrErr.takeError();
468
469   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(Sec);
470   if (!ContentsOrErr)
471     return createError(
472         "cannot read content of SHT_GNU_verdef section with index " +
473         Twine(SecNdx) + ": " + toString(ContentsOrErr.takeError()));
474
475   const uint8_t *Start = ContentsOrErr->data();
476   const uint8_t *End = Start + ContentsOrErr->size();
477
478   auto ExtractNextAux = [&](const uint8_t *&VerdauxBuf,
479                             unsigned VerDefNdx) -> Expected<VerdAux> {
480     if (VerdauxBuf + sizeof(Elf_Verdaux) > End)
481       return createError("invalid SHT_GNU_verdef section with index " +
482                          Twine(SecNdx) + ": version definition " +
483                          Twine(VerDefNdx) +
484                          " refers to an auxiliary entry that goes past the end "
485                          "of the section");
486
487     auto *Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
488     VerdauxBuf += Verdaux->vda_next;
489
490     VerdAux Aux;
491     Aux.Offset = VerdauxBuf - Start;
492     if (Verdaux->vda_name <= StrTabOrErr->size())
493       Aux.Name = StrTabOrErr->drop_front(Verdaux->vda_name);
494     else
495       Aux.Name = "<invalid vda_name: " + to_string(Verdaux->vda_name) + ">";
496     return Aux;
497   };
498
499   std::vector<VerDef> Ret;
500   const uint8_t *VerdefBuf = Start;
501   for (unsigned I = 1; I <= /*VerDefsNum=*/Sec->sh_info; ++I) {
502     if (VerdefBuf + sizeof(Elf_Verdef) > End)
503       return createError("invalid SHT_GNU_verdef section with index " +
504                          Twine(SecNdx) + ": version definition " + Twine(I) +
505                          " goes past the end of the section");
506
507     if (uintptr_t(VerdefBuf) % sizeof(uint32_t) != 0)
508       return createError(
509           "invalid SHT_GNU_verdef section with index " + Twine(SecNdx) +
510           ": found a misaligned version definition entry at offset 0x" +
511           Twine::utohexstr(VerdefBuf - Start));
512
513     unsigned Version = *reinterpret_cast<const Elf_Half *>(VerdefBuf);
514     if (Version != 1)
515       return createError("unable to dump SHT_GNU_verdef section with index " +
516                          Twine(SecNdx) + ": version " + Twine(Version) +
517                          " is not yet supported");
518
519     const Elf_Verdef *D = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
520     VerDef &VD = *Ret.emplace(Ret.end());
521     VD.Offset = VerdefBuf - Start;
522     VD.Version = D->vd_version;
523     VD.Flags = D->vd_flags;
524     VD.Ndx = D->vd_ndx;
525     VD.Cnt = D->vd_cnt;
526     VD.Hash = D->vd_hash;
527
528     const uint8_t *VerdauxBuf = VerdefBuf + D->vd_aux;
529     for (unsigned J = 0; J < D->vd_cnt; ++J) {
530       if (uintptr_t(VerdauxBuf) % sizeof(uint32_t) != 0)
531         return createError("invalid SHT_GNU_verdef section with index " +
532                            Twine(SecNdx) +
533                            ": found a misaligned auxiliary entry at offset 0x" +
534                            Twine::utohexstr(VerdauxBuf - Start));
535
536       Expected<VerdAux> AuxOrErr = ExtractNextAux(VerdauxBuf, I);
537       if (!AuxOrErr)
538         return AuxOrErr.takeError();
539
540       if (J == 0)
541         VD.Name = AuxOrErr->Name;
542       else
543         VD.AuxV.push_back(*AuxOrErr);
544     }
545
546     VerdefBuf += D->vd_next;
547   }
548
549   return Ret;
550 }
551
552 template <class ELFT>
553 Expected<std::vector<VerNeed>>
554 ELFDumper<ELFT>::getVersionDependencies(const Elf_Shdr *Sec) const {
555   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
556   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
557
558   StringRef StrTab;
559   Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec, SecNdx);
560   if (!StrTabOrErr)
561     ELFDumperStyle->reportUniqueWarning(StrTabOrErr.takeError());
562   else
563     StrTab = *StrTabOrErr;
564
565   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(Sec);
566   if (!ContentsOrErr)
567     return createError(
568         "cannot read content of SHT_GNU_verneed section with index " +
569         Twine(SecNdx) + ": " + toString(ContentsOrErr.takeError()));
570
571   const uint8_t *Start = ContentsOrErr->data();
572   const uint8_t *End = Start + ContentsOrErr->size();
573   const uint8_t *VerneedBuf = Start;
574
575   std::vector<VerNeed> Ret;
576   for (unsigned I = 1; I <= /*VerneedNum=*/Sec->sh_info; ++I) {
577     if (VerneedBuf + sizeof(Elf_Verdef) > End)
578       return createError("invalid SHT_GNU_verneed section with index " +
579                          Twine(SecNdx) + ": version dependency " + Twine(I) +
580                          " goes past the end of the section");
581
582     if (uintptr_t(VerneedBuf) % sizeof(uint32_t) != 0)
583       return createError(
584           "invalid SHT_GNU_verneed section with index " + Twine(SecNdx) +
585           ": found a misaligned version dependency entry at offset 0x" +
586           Twine::utohexstr(VerneedBuf - Start));
587
588     unsigned Version = *reinterpret_cast<const Elf_Half *>(VerneedBuf);
589     if (Version != 1)
590       return createError("unable to dump SHT_GNU_verneed section with index " +
591                          Twine(SecNdx) + ": version " + Twine(Version) +
592                          " is not yet supported");
593
594     const Elf_Verneed *Verneed =
595         reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
596
597     VerNeed &VN = *Ret.emplace(Ret.end());
598     VN.Version = Verneed->vn_version;
599     VN.Cnt = Verneed->vn_cnt;
600     VN.Offset = VerneedBuf - Start;
601
602     if (Verneed->vn_file < StrTab.size())
603       VN.File = StrTab.drop_front(Verneed->vn_file);
604     else
605       VN.File = "<corrupt vn_file: " + to_string(Verneed->vn_file) + ">";
606
607     const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
608     for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
609       if (uintptr_t(VernauxBuf) % sizeof(uint32_t) != 0)
610         return createError("invalid SHT_GNU_verneed section with index " +
611                            Twine(SecNdx) +
612                            ": found a misaligned auxiliary entry at offset 0x" +
613                            Twine::utohexstr(VernauxBuf - Start));
614
615       if (VernauxBuf + sizeof(Elf_Vernaux) > End)
616         return createError(
617             "invalid SHT_GNU_verneed section with index " + Twine(SecNdx) +
618             ": version dependency " + Twine(I) +
619             " refers to an auxiliary entry that goes past the end "
620             "of the section");
621
622       const Elf_Vernaux *Vernaux =
623           reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
624
625       VernAux &Aux = *VN.AuxV.emplace(VN.AuxV.end());
626       Aux.Hash = Vernaux->vna_hash;
627       Aux.Flags = Vernaux->vna_flags;
628       Aux.Other = Vernaux->vna_other;
629       Aux.Offset = VernauxBuf - Start;
630       if (StrTab.size() <= Vernaux->vna_name)
631         Aux.Name = "<corrupt>";
632       else
633         Aux.Name = StrTab.drop_front(Vernaux->vna_name);
634
635       VernauxBuf += Vernaux->vna_next;
636     }
637     VerneedBuf += Verneed->vn_next;
638   }
639   return Ret;
640 }
641
642 template <class ELFT>
643 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
644   StringRef StrTable, SymtabName;
645   size_t Entries = 0;
646   Elf_Sym_Range Syms(nullptr, nullptr);
647   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
648   if (IsDynamic) {
649     StrTable = DynamicStringTable;
650     Syms = dynamic_symbols();
651     SymtabName = DynSymtabName;
652     if (DynSymRegion.Addr)
653       Entries = DynSymRegion.Size / DynSymRegion.EntSize;
654   } else {
655     if (!DotSymtabSec)
656       return;
657     StrTable = unwrapOrError(ObjF->getFileName(),
658                              Obj->getStringTableForSymtab(*DotSymtabSec));
659     Syms = unwrapOrError(ObjF->getFileName(), Obj->symbols(DotSymtabSec));
660     SymtabName =
661         unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DotSymtabSec));
662     Entries = DotSymtabSec->getEntityCount();
663   }
664   if (Syms.begin() == Syms.end())
665     return;
666
667   // The st_other field has 2 logical parts. The first two bits hold the symbol
668   // visibility (STV_*) and the remainder hold other platform-specific values.
669   bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) {
670                                  return S.st_other & ~0x3;
671                                }) != Syms.end();
672
673   ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries,
674                                      NonVisibilityBitsUsed);
675   for (const auto &Sym : Syms)
676     ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic,
677                                 NonVisibilityBitsUsed);
678 }
679
680 template <class ELFT> class MipsGOTParser;
681
682 template <typename ELFT> class DumpStyle {
683 public:
684   using Elf_Shdr = typename ELFT::Shdr;
685   using Elf_Sym = typename ELFT::Sym;
686   using Elf_Addr = typename ELFT::Addr;
687
688   DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {
689     FileName = this->Dumper->getElfObject()->getFileName();
690
691     // Dumper reports all non-critical errors as warnings.
692     // It does not print the same warning more than once.
693     WarningHandler = [this](const Twine &Msg) {
694       if (Warnings.insert(Msg.str()).second)
695         reportWarning(createError(Msg), FileName);
696       return Error::success();
697     };
698   }
699
700   virtual ~DumpStyle() = default;
701
702   virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
703   virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
704   virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
705   virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0;
706   virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols,
707                             bool PrintDynamicSymbols) = 0;
708   virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {}
709   virtual void printDependentLibs(const ELFFile<ELFT> *Obj) = 0;
710   virtual void printDynamic(const ELFFile<ELFT> *Obj) {}
711   virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
712   virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name,
713                                   size_t Offset, bool NonVisibilityBitsUsed) {}
714   virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
715                            const Elf_Sym *FirstSym, StringRef StrTable,
716                            bool IsDynamic, bool NonVisibilityBitsUsed) = 0;
717   virtual void printProgramHeaders(const ELFFile<ELFT> *Obj,
718                                    bool PrintProgramHeaders,
719                                    cl::boolOrDefault PrintSectionMapping) = 0;
720   virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
721                                          const Elf_Shdr *Sec) = 0;
722   virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
723                                              const Elf_Shdr *Sec) = 0;
724   virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj,
725                                              const Elf_Shdr *Sec) = 0;
726   virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
727   virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0;
728   virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0;
729   virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
730   virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
731   virtual void printStackSizes(const ELFObjectFile<ELFT> *Obj) = 0;
732   void printNonRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
733                                      std::function<void()> PrintHeader);
734   void printRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
735                                   std::function<void()> PrintHeader);
736   void printFunctionStackSize(const ELFObjectFile<ELFT> *Obj, uint64_t SymValue,
737                               SectionRef FunctionSec,
738                               const StringRef SectionName, DataExtractor Data,
739                               uint64_t *Offset);
740   void printStackSize(const ELFObjectFile<ELFT> *Obj, RelocationRef Rel,
741                       SectionRef FunctionSec,
742                       const StringRef &StackSizeSectionName,
743                       const RelocationResolver &Resolver, DataExtractor Data);
744   virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
745   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
746   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
747   virtual void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) = 0;
748   const ELFDumper<ELFT> *dumper() const { return Dumper; }
749
750   void reportUniqueWarning(Error Err) const;
751
752 protected:
753   std::function<Error(const Twine &Msg)> WarningHandler;
754   StringRef FileName;
755
756 private:
757   std::unordered_set<std::string> Warnings;
758   const ELFDumper<ELFT> *Dumper;
759 };
760
761 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
762   formatted_raw_ostream &OS;
763
764 public:
765   TYPEDEF_ELF_TYPES(ELFT)
766
767   GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
768       : DumpStyle<ELFT>(Dumper),
769         OS(static_cast<formatted_raw_ostream&>(W.getOStream())) {
770     assert (&W.getOStream() == &llvm::fouts());
771   }
772
773   void printFileHeaders(const ELFO *Obj) override;
774   void printGroupSections(const ELFFile<ELFT> *Obj) override;
775   void printRelocations(const ELFO *Obj) override;
776   void printSectionHeaders(const ELFO *Obj) override;
777   void printSymbols(const ELFO *Obj, bool PrintSymbols,
778                     bool PrintDynamicSymbols) override;
779   void printHashSymbols(const ELFO *Obj) override;
780   void printDependentLibs(const ELFFile<ELFT> *Obj) override;
781   void printDynamic(const ELFFile<ELFT> *Obj) override;
782   void printDynamicRelocations(const ELFO *Obj) override;
783   void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset,
784                           bool NonVisibilityBitsUsed) override;
785   void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
786                            cl::boolOrDefault PrintSectionMapping) override;
787   void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
788                                  const Elf_Shdr *Sec) override;
789   void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
790                                      const Elf_Shdr *Sec) override;
791   void printVersionDependencySection(const ELFFile<ELFT> *Obj,
792                                      const Elf_Shdr *Sec) override;
793   void printHashHistogram(const ELFFile<ELFT> *Obj) override;
794   void printCGProfile(const ELFFile<ELFT> *Obj) override;
795   void printAddrsig(const ELFFile<ELFT> *Obj) override;
796   void printNotes(const ELFFile<ELFT> *Obj) override;
797   void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
798   void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
799   void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
800   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
801   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
802   void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
803
804 private:
805   struct Field {
806     std::string Str;
807     unsigned Column;
808
809     Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
810     Field(unsigned Col) : Column(Col) {}
811   };
812
813   template <typename T, typename TEnum>
814   std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
815     for (const auto &EnumItem : EnumValues)
816       if (EnumItem.Value == Value)
817         return EnumItem.AltName;
818     return to_hexString(Value, false);
819   }
820
821   template <typename T, typename TEnum>
822   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
823                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
824                          TEnum EnumMask3 = {}) {
825     std::string Str;
826     for (const auto &Flag : EnumValues) {
827       if (Flag.Value == 0)
828         continue;
829
830       TEnum EnumMask{};
831       if (Flag.Value & EnumMask1)
832         EnumMask = EnumMask1;
833       else if (Flag.Value & EnumMask2)
834         EnumMask = EnumMask2;
835       else if (Flag.Value & EnumMask3)
836         EnumMask = EnumMask3;
837       bool IsEnum = (Flag.Value & EnumMask) != 0;
838       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
839           (IsEnum && (Value & EnumMask) == Flag.Value)) {
840         if (!Str.empty())
841           Str += ", ";
842         Str += Flag.AltName;
843       }
844     }
845     return Str;
846   }
847
848   formatted_raw_ostream &printField(struct Field F) {
849     if (F.Column != 0)
850       OS.PadToColumn(F.Column);
851     OS << F.Str;
852     OS.flush();
853     return OS;
854   }
855   void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
856                          StringRef StrTable, uint32_t Bucket);
857   void printRelocHeader(unsigned SType);
858   void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
859                        const Elf_Rela &R, bool IsRela);
860   void printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
861                        StringRef SymbolName, const Elf_Rela &R, bool IsRela);
862   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
863                    StringRef StrTable, bool IsDynamic,
864                    bool NonVisibilityBitsUsed) override;
865   std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
866                                   const Elf_Sym *FirstSym);
867   void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
868   bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
869   bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
870   bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
871   bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
872   void printProgramHeaders(const ELFO *Obj);
873   void printSectionMapping(const ELFO *Obj);
874   void printGNUVersionSectionProlog(const ELFFile<ELFT> *Obj,
875                                     const typename ELFT::Shdr *Sec,
876                                     const Twine &Label, unsigned EntriesNum);
877 };
878
879 template <class ELFT>
880 void DumpStyle<ELFT>::reportUniqueWarning(Error Err) const {
881   handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) {
882     cantFail(WarningHandler(EI.message()),
883              "WarningHandler should always return ErrorSuccess");
884   });
885 }
886
887 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
888 public:
889   TYPEDEF_ELF_TYPES(ELFT)
890
891   LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
892       : DumpStyle<ELFT>(Dumper), W(W) {}
893
894   void printFileHeaders(const ELFO *Obj) override;
895   void printGroupSections(const ELFFile<ELFT> *Obj) override;
896   void printRelocations(const ELFO *Obj) override;
897   void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
898   void printSectionHeaders(const ELFO *Obj) override;
899   void printSymbols(const ELFO *Obj, bool PrintSymbols,
900                     bool PrintDynamicSymbols) override;
901   void printDependentLibs(const ELFFile<ELFT> *Obj) override;
902   void printDynamic(const ELFFile<ELFT> *Obj) override;
903   void printDynamicRelocations(const ELFO *Obj) override;
904   void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
905                            cl::boolOrDefault PrintSectionMapping) override;
906   void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
907                                  const Elf_Shdr *Sec) override;
908   void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
909                                      const Elf_Shdr *Sec) override;
910   void printVersionDependencySection(const ELFFile<ELFT> *Obj,
911                                      const Elf_Shdr *Sec) override;
912   void printHashHistogram(const ELFFile<ELFT> *Obj) override;
913   void printCGProfile(const ELFFile<ELFT> *Obj) override;
914   void printAddrsig(const ELFFile<ELFT> *Obj) override;
915   void printNotes(const ELFFile<ELFT> *Obj) override;
916   void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
917   void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
918   void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
919   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
920   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
921   void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
922
923 private:
924   void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
925   void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
926   void printSymbols(const ELFO *Obj);
927   void printDynamicSymbols(const ELFO *Obj);
928   void printSymbolSection(const Elf_Sym *Symbol, const Elf_Sym *First);
929   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
930                    StringRef StrTable, bool IsDynamic,
931                    bool /*NonVisibilityBitsUsed*/) override;
932   void printProgramHeaders(const ELFO *Obj);
933   void printSectionMapping(const ELFO *Obj) {}
934
935   ScopedPrinter &W;
936 };
937
938 } // end anonymous namespace
939
940 namespace llvm {
941
942 template <class ELFT>
943 static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj,
944                                        ScopedPrinter &Writer,
945                                        std::unique_ptr<ObjDumper> &Result) {
946   Result.reset(new ELFDumper<ELFT>(Obj, Writer));
947   return readobj_error::success;
948 }
949
950 std::error_code createELFDumper(const object::ObjectFile *Obj,
951                                 ScopedPrinter &Writer,
952                                 std::unique_ptr<ObjDumper> &Result) {
953   // Little-endian 32-bit
954   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
955     return createELFDumper(ELFObj, Writer, Result);
956
957   // Big-endian 32-bit
958   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
959     return createELFDumper(ELFObj, Writer, Result);
960
961   // Little-endian 64-bit
962   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
963     return createELFDumper(ELFObj, Writer, Result);
964
965   // Big-endian 64-bit
966   if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
967     return createELFDumper(ELFObj, Writer, Result);
968
969   return readobj_error::unsupported_obj_file_format;
970 }
971
972 } // end namespace llvm
973
974 template <class ELFT> Error ELFDumper<ELFT>::LoadVersionMap() const {
975   // If there is no dynamic symtab or version table, there is nothing to do.
976   if (!DynSymRegion.Addr || !SymbolVersionSection)
977     return Error::success();
978
979   // Has the VersionMap already been loaded?
980   if (!VersionMap.empty())
981     return Error::success();
982
983   // The first two version indexes are reserved.
984   // Index 0 is LOCAL, index 1 is GLOBAL.
985   VersionMap.push_back(VersionEntry());
986   VersionMap.push_back(VersionEntry());
987
988   auto InsertEntry = [this](unsigned N, StringRef Version, bool IsVerdef) {
989     if (N >= VersionMap.size())
990       VersionMap.resize(N + 1);
991     VersionMap[N] = {Version, IsVerdef};
992   };
993
994   if (SymbolVersionDefSection) {
995     Expected<std::vector<VerDef>> Defs =
996         this->getVersionDefinitions(SymbolVersionDefSection);
997     if (!Defs)
998       return Defs.takeError();
999     for (const VerDef &Def : *Defs)
1000       InsertEntry(Def.Ndx & ELF::VERSYM_VERSION, Def.Name, true);
1001   }
1002
1003   if (SymbolVersionNeedSection) {
1004     Expected<std::vector<VerNeed>> Deps =
1005         this->getVersionDependencies(SymbolVersionNeedSection);
1006     if (!Deps)
1007       return Deps.takeError();
1008     for (const VerNeed &Dep : *Deps)
1009       for (const VernAux &Aux : Dep.AuxV)
1010         InsertEntry(Aux.Other & ELF::VERSYM_VERSION, Aux.Name, false);
1011   }
1012
1013   return Error::success();
1014 }
1015
1016 template <typename ELFT>
1017 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym *Sym,
1018                                                       bool &IsDefault) const {
1019   // This is a dynamic symbol. Look in the GNU symbol version table.
1020   if (!SymbolVersionSection) {
1021     // No version table.
1022     IsDefault = false;
1023     return "";
1024   }
1025
1026   // Determine the position in the symbol table of this entry.
1027   size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) -
1028                         reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
1029                        sizeof(Elf_Sym);
1030
1031   // Get the corresponding version index entry.
1032   const Elf_Versym *Versym = unwrapOrError(
1033       ObjF->getFileName(), ObjF->getELFFile()->template getEntry<Elf_Versym>(
1034                                SymbolVersionSection, EntryIndex));
1035   return this->getSymbolVersionByIndex(Versym->vs_index, IsDefault);
1036 }
1037
1038 static std::string maybeDemangle(StringRef Name) {
1039   return opts::Demangle ? demangle(Name) : Name.str();
1040 }
1041
1042 template <typename ELFT>
1043 Expected<std::string>
1044 ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
1045   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1046   Expected<const typename ELFT::Sym *> SymOrErr =
1047       Obj->getSymbol(DotSymtabSec, Index);
1048   if (!SymOrErr)
1049     return SymOrErr.takeError();
1050
1051   Expected<StringRef> StrTabOrErr = Obj->getStringTableForSymtab(*DotSymtabSec);
1052   if (!StrTabOrErr)
1053     return StrTabOrErr.takeError();
1054
1055   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
1056   if (!NameOrErr)
1057     return NameOrErr.takeError();
1058   return maybeDemangle(*NameOrErr);
1059 }
1060
1061 template <typename ELFT>
1062 Expected<StringRef>
1063 ELFDumper<ELFT>::getSymbolVersionByIndex(uint32_t SymbolVersionIndex,
1064                                          bool &IsDefault) const {
1065   size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;
1066
1067   // Special markers for unversioned symbols.
1068   if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
1069     IsDefault = false;
1070     return "";
1071   }
1072
1073   // Lookup this symbol in the version table.
1074   if (Error E = LoadVersionMap())
1075     return std::move(E);
1076   if (VersionIndex >= VersionMap.size() || !VersionMap[VersionIndex])
1077     return createError("SHT_GNU_versym section refers to a version index " +
1078                        Twine(VersionIndex) + " which is missing");
1079
1080   const VersionEntry &Entry = *VersionMap[VersionIndex];
1081   if (Entry.IsVerDef)
1082     IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
1083   else
1084     IsDefault = false;
1085   return Entry.Name.c_str();
1086 }
1087
1088 template <typename ELFT>
1089 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
1090                                                StringRef StrTable,
1091                                                bool IsDynamic) const {
1092   std::string SymbolName = maybeDemangle(
1093       unwrapOrError(ObjF->getFileName(), Symbol->getName(StrTable)));
1094
1095   if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) {
1096     Elf_Sym_Range Syms = unwrapOrError(
1097         ObjF->getFileName(), ObjF->getELFFile()->symbols(DotSymtabSec));
1098     Expected<unsigned> SectionIndex =
1099         getSymbolSectionIndex(Symbol, Syms.begin());
1100     if (!SectionIndex) {
1101       ELFDumperStyle->reportUniqueWarning(SectionIndex.takeError());
1102       return "<?>";
1103     }
1104     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
1105     if (!NameOrErr) {
1106       ELFDumperStyle->reportUniqueWarning(NameOrErr.takeError());
1107       return ("<section " + Twine(*SectionIndex) + ">").str();
1108     }
1109     return *NameOrErr;
1110   }
1111
1112   if (!IsDynamic)
1113     return SymbolName;
1114
1115   bool IsDefault;
1116   Expected<StringRef> VersionOrErr = getSymbolVersion(&*Symbol, IsDefault);
1117   if (!VersionOrErr) {
1118     ELFDumperStyle->reportUniqueWarning(VersionOrErr.takeError());
1119     return SymbolName + "@<corrupt>";
1120   }
1121
1122   if (!VersionOrErr->empty()) {
1123     SymbolName += (IsDefault ? "@@" : "@");
1124     SymbolName += *VersionOrErr;
1125   }
1126   return SymbolName;
1127 }
1128
1129 template <typename ELFT>
1130 Expected<unsigned>
1131 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym *Symbol,
1132                                        const Elf_Sym *FirstSym) const {
1133   return Symbol->st_shndx == SHN_XINDEX
1134              ? object::getExtendedSymbolTableIndex<ELFT>(Symbol, FirstSym,
1135                                                          ShndxTable)
1136              : Symbol->st_shndx;
1137 }
1138
1139 // If the Symbol has a reserved st_shndx other than SHN_XINDEX, return a
1140 // descriptive interpretation of the st_shndx value. Otherwise, return the name
1141 // of the section with index SectionIndex. This function assumes that if the
1142 // Symbol has st_shndx == SHN_XINDEX the SectionIndex will be the value derived
1143 // from the SHT_SYMTAB_SHNDX section.
1144 template <typename ELFT>
1145 Expected<StringRef>
1146 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym *Symbol,
1147                                       unsigned SectionIndex) const {
1148   if (Symbol->isUndefined())
1149     return "Undefined";
1150   if (Symbol->isProcessorSpecific())
1151     return "Processor Specific";
1152   if (Symbol->isOSSpecific())
1153     return "Operating System Specific";
1154   if (Symbol->isAbsolute())
1155     return "Absolute";
1156   if (Symbol->isCommon())
1157     return "Common";
1158   if (Symbol->isReserved() && Symbol->st_shndx != SHN_XINDEX)
1159     return "Reserved";
1160
1161   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1162   Expected<const Elf_Shdr *> SecOrErr =
1163       Obj->getSection(SectionIndex);
1164   if (!SecOrErr)
1165     return SecOrErr.takeError();
1166   return Obj->getSectionName(*SecOrErr);
1167 }
1168
1169 template <class ELFO>
1170 static const typename ELFO::Elf_Shdr *
1171 findNotEmptySectionByAddress(const ELFO *Obj, StringRef FileName,
1172                              uint64_t Addr) {
1173   for (const auto &Shdr : unwrapOrError(FileName, Obj->sections()))
1174     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1175       return &Shdr;
1176   return nullptr;
1177 }
1178
1179 template <class ELFO>
1180 static const typename ELFO::Elf_Shdr *
1181 findSectionByName(const ELFO &Obj, StringRef FileName, StringRef Name) {
1182   for (const auto &Shdr : unwrapOrError(FileName, Obj.sections()))
1183     if (Name == unwrapOrError(FileName, Obj.getSectionName(&Shdr)))
1184       return &Shdr;
1185   return nullptr;
1186 }
1187
1188 static const EnumEntry<unsigned> ElfClass[] = {
1189   {"None",   "none",   ELF::ELFCLASSNONE},
1190   {"32-bit", "ELF32",  ELF::ELFCLASS32},
1191   {"64-bit", "ELF64",  ELF::ELFCLASS64},
1192 };
1193
1194 static const EnumEntry<unsigned> ElfDataEncoding[] = {
1195   {"None",         "none",                          ELF::ELFDATANONE},
1196   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1197   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
1198 };
1199
1200 static const EnumEntry<unsigned> ElfObjectFileType[] = {
1201   {"None",         "NONE (none)",              ELF::ET_NONE},
1202   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1203   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1204   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1205   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1206 };
1207
1208 static const EnumEntry<unsigned> ElfOSABI[] = {
1209   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1210   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1211   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1212   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1213   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1214   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1215   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1216   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1217   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1218   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1219   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1220   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1221   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1222   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1223   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1224   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1225   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1226   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1227 };
1228
1229 static const EnumEntry<unsigned> SymVersionFlags[] = {
1230     {"Base", "BASE", VER_FLG_BASE},
1231     {"Weak", "WEAK", VER_FLG_WEAK},
1232     {"Info", "INFO", VER_FLG_INFO}};
1233
1234 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1235   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1236   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1237   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1238 };
1239
1240 static const EnumEntry<unsigned> ARMElfOSABI[] = {
1241   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1242 };
1243
1244 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
1245   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1246   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1247 };
1248
1249 static const EnumEntry<unsigned> ElfMachineType[] = {
1250   ENUM_ENT(EM_NONE,          "None"),
1251   ENUM_ENT(EM_M32,           "WE32100"),
1252   ENUM_ENT(EM_SPARC,         "Sparc"),
1253   ENUM_ENT(EM_386,           "Intel 80386"),
1254   ENUM_ENT(EM_68K,           "MC68000"),
1255   ENUM_ENT(EM_88K,           "MC88000"),
1256   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1257   ENUM_ENT(EM_860,           "Intel 80860"),
1258   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1259   ENUM_ENT(EM_S370,          "IBM System/370"),
1260   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1261   ENUM_ENT(EM_PARISC,        "HPPA"),
1262   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1263   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1264   ENUM_ENT(EM_960,           "Intel 80960"),
1265   ENUM_ENT(EM_PPC,           "PowerPC"),
1266   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1267   ENUM_ENT(EM_S390,          "IBM S/390"),
1268   ENUM_ENT(EM_SPU,           "SPU"),
1269   ENUM_ENT(EM_V800,          "NEC V800 series"),
1270   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1271   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1272   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1273   ENUM_ENT(EM_ARM,           "ARM"),
1274   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1275   ENUM_ENT(EM_SH,            "Hitachi SH"),
1276   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1277   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1278   ENUM_ENT(EM_ARC,           "ARC"),
1279   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1280   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1281   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1282   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1283   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1284   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1285   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1286   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1287   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1288   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1289   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1290   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1291   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1292   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1293   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1294   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1295   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1296   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1297   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1298   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1299   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1300   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1301   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1302   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1303   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1304   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1305   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1306   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1307   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1308   ENUM_ENT(EM_VAX,           "Digital VAX"),
1309   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1310   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1311   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1312   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1313   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1314   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1315   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1316   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1317   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1318   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1319   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1320   ENUM_ENT(EM_V850,          "NEC v850"),
1321   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1322   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1323   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1324   ENUM_ENT(EM_PJ,            "picoJava"),
1325   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1326   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1327   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1328   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1329   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1330   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1331   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1332   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1333   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1334   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1335   ENUM_ENT(EM_MAX,           "MAX Processor"),
1336   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1337   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1338   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1339   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1340   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1341   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1342   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1343   ENUM_ENT(EM_UNICORE,       "Unicore"),
1344   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1345   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1346   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1347   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1348   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1349   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1350   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1351   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1352   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1353   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1354   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1355   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1356   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1357   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1358   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1359   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1360   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1361   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1362   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1363   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1364   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1365   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1366   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1367   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1368   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1369   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1370   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1371   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1372   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1373   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1374   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1375   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1376   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1377   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1378   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1379   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1380   ENUM_ENT(EM_RX,            "Renesas RX"),
1381   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1382   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1383   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1384   ENUM_ENT(EM_CR16,          "Xilinx MicroBlaze"),
1385   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1386   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1387   ENUM_ENT(EM_L10M,          "EM_L10M"),
1388   ENUM_ENT(EM_K10M,          "EM_K10M"),
1389   ENUM_ENT(EM_AARCH64,       "AArch64"),
1390   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1391   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1392   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1393   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1394   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1395   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1396   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1397   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1398   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1399   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1400   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1401   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1402   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1403   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1404   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1405   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1406   ENUM_ENT(EM_RISCV,         "RISC-V"),
1407   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1408   ENUM_ENT(EM_BPF,           "EM_BPF"),
1409 };
1410
1411 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1412     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1413     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1414     {"Weak",   "WEAK",   ELF::STB_WEAK},
1415     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1416
1417 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1418     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1419     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1420     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1421     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1422
1423 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1424   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1425 };
1426
1427 static const char *getGroupType(uint32_t Flag) {
1428   if (Flag & ELF::GRP_COMDAT)
1429     return "COMDAT";
1430   else
1431     return "(unknown)";
1432 }
1433
1434 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1435   ENUM_ENT(SHF_WRITE,            "W"),
1436   ENUM_ENT(SHF_ALLOC,            "A"),
1437   ENUM_ENT(SHF_EXECINSTR,        "X"),
1438   ENUM_ENT(SHF_MERGE,            "M"),
1439   ENUM_ENT(SHF_STRINGS,          "S"),
1440   ENUM_ENT(SHF_INFO_LINK,        "I"),
1441   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1442   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1443   ENUM_ENT(SHF_GROUP,            "G"),
1444   ENUM_ENT(SHF_TLS,              "T"),
1445   ENUM_ENT(SHF_COMPRESSED,       "C"),
1446   ENUM_ENT(SHF_EXCLUDE,          "E"),
1447 };
1448
1449 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1450   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1451   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1452 };
1453
1454 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1455   ENUM_ENT(SHF_ARM_PURECODE, "y")
1456 };
1457
1458 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1459   ENUM_ENT(SHF_HEX_GPREL, "")
1460 };
1461
1462 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1463   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1464   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1465   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1466   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1467   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1468   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1469   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1470   ENUM_ENT(SHF_MIPS_STRING,  "")
1471 };
1472
1473 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1474   ENUM_ENT(SHF_X86_64_LARGE, "l")
1475 };
1476
1477 static std::vector<EnumEntry<unsigned>>
1478 getSectionFlagsForTarget(unsigned EMachine) {
1479   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1480                                        std::end(ElfSectionFlags));
1481   switch (EMachine) {
1482   case EM_ARM:
1483     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1484                std::end(ElfARMSectionFlags));
1485     break;
1486   case EM_HEXAGON:
1487     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1488                std::end(ElfHexagonSectionFlags));
1489     break;
1490   case EM_MIPS:
1491     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1492                std::end(ElfMipsSectionFlags));
1493     break;
1494   case EM_X86_64:
1495     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1496                std::end(ElfX86_64SectionFlags));
1497     break;
1498   case EM_XCORE:
1499     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1500                std::end(ElfXCoreSectionFlags));
1501     break;
1502   default:
1503     break;
1504   }
1505   return Ret;
1506 }
1507
1508 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
1509   // Here we are trying to build the flags string in the same way as GNU does.
1510   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1511   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1512   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1513   // "p". It only will print "E" when no other processor flag is set.
1514   std::string Str;
1515   bool HasUnknownFlag = false;
1516   bool HasOSFlag = false;
1517   bool HasProcFlag = false;
1518   std::vector<EnumEntry<unsigned>> FlagsList =
1519       getSectionFlagsForTarget(EMachine);
1520   while (Flags) {
1521     // Take the least significant bit as a flag.
1522     uint64_t Flag = Flags & -Flags;
1523     Flags -= Flag;
1524
1525     // Find the flag in the known flags list.
1526     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1527       // Flags with empty names are not printed in GNU style output.
1528       return E.Value == Flag && !E.AltName.empty();
1529     });
1530     if (I != FlagsList.end()) {
1531       Str += I->AltName;
1532       continue;
1533     }
1534
1535     // If we did not find a matching regular flag, then we deal with an OS
1536     // specific flag, processor specific flag or an unknown flag.
1537     if (Flag & ELF::SHF_MASKOS) {
1538       HasOSFlag = true;
1539       Flags &= ~ELF::SHF_MASKOS;
1540     } else if (Flag & ELF::SHF_MASKPROC) {
1541       HasProcFlag = true;
1542       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1543       // bit if set so that it doesn't also get printed.
1544       Flags &= ~ELF::SHF_MASKPROC;
1545     } else {
1546       HasUnknownFlag = true;
1547     }
1548   }
1549
1550   // "o", "p" and "x" are printed last.
1551   if (HasOSFlag)
1552     Str += "o";
1553   if (HasProcFlag)
1554     Str += "p";
1555   if (HasUnknownFlag)
1556     Str += "x";
1557   return Str;
1558 }
1559
1560 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1561   // Check potentially overlapped processor-specific
1562   // program header type.
1563   switch (Arch) {
1564   case ELF::EM_ARM:
1565     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1566     break;
1567   case ELF::EM_MIPS:
1568   case ELF::EM_MIPS_RS3_LE:
1569     switch (Type) {
1570       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1571     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1572     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1573     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1574     }
1575     break;
1576   }
1577
1578   switch (Type) {
1579   LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL   );
1580   LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD   );
1581   LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1582   LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1583   LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE   );
1584   LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB  );
1585   LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR   );
1586   LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS    );
1587
1588   LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1589   LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1590
1591     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1592     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1593     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1594
1595     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1596     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1597     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1598
1599   default:
1600     return "";
1601   }
1602 }
1603
1604 static std::string getElfPtType(unsigned Arch, unsigned Type) {
1605   switch (Type) {
1606     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1607     LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1608     LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1609     LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1610     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1611     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1612     LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1613     LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1614     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1615     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1616     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1617     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1618     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_PROPERTY)
1619   default:
1620     // All machine specific PT_* types
1621     switch (Arch) {
1622     case ELF::EM_ARM:
1623       if (Type == ELF::PT_ARM_EXIDX)
1624         return "EXIDX";
1625       break;
1626     case ELF::EM_MIPS:
1627     case ELF::EM_MIPS_RS3_LE:
1628       switch (Type) {
1629       case PT_MIPS_REGINFO:
1630         return "REGINFO";
1631       case PT_MIPS_RTPROC:
1632         return "RTPROC";
1633       case PT_MIPS_OPTIONS:
1634         return "OPTIONS";
1635       case PT_MIPS_ABIFLAGS:
1636         return "ABIFLAGS";
1637       }
1638       break;
1639     }
1640   }
1641   return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1642 }
1643
1644 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1645   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1646   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1647   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1648 };
1649
1650 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1651   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1652   ENUM_ENT(EF_MIPS_PIC, "pic"),
1653   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1654   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1655   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1656   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1657   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1658   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1659   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1660   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1661   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1662   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1663   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1664   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1665   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1666   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1667   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1668   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1669   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1670   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1671   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1672   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1673   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1674   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1675   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1676   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1677   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1678   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1679   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1680   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1681   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1682   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1683   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1684   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1685   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1686   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1687   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1688   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1689   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1690   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1691   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1692   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1693   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1694 };
1695
1696 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1697   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1698   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1699   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1700   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1701   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1702   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1703   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1704   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1705   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1706   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1707   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1708   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1709   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1710   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1711   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1712   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1713   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1714   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1715   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1716   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1717   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1718   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1719   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1720   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1721   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1722   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1723   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1724   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1725   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1726   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1727   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1728   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1729   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1730   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1731   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1732   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1733   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1734   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
1735   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
1736 };
1737
1738 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1739   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1740   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1741   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1742   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1743   ENUM_ENT(EF_RISCV_RVE, "RVE")
1744 };
1745
1746 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1747   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1748   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1749   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1750 };
1751
1752 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1753   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1754   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1755   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1756   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1757 };
1758
1759 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1760   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1761   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1762   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1763 };
1764
1765 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1766   switch (Odk) {
1767   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1768   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1769   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1770   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1771   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1772   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1773   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1774   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1775   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1776   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1777   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1778   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1779   default:
1780     return "Unknown";
1781   }
1782 }
1783
1784 template <typename ELFT>
1785 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1786 ELFDumper<ELFT>::findDynamic(const ELFFile<ELFT> *Obj) {
1787   // Try to locate the PT_DYNAMIC header.
1788   const Elf_Phdr *DynamicPhdr = nullptr;
1789   for (const Elf_Phdr &Phdr :
1790        unwrapOrError(ObjF->getFileName(), Obj->program_headers())) {
1791     if (Phdr.p_type != ELF::PT_DYNAMIC)
1792       continue;
1793     DynamicPhdr = &Phdr;
1794     break;
1795   }
1796
1797   // Try to locate the .dynamic section in the sections header table.
1798   const Elf_Shdr *DynamicSec = nullptr;
1799   for (const Elf_Shdr &Sec :
1800        unwrapOrError(ObjF->getFileName(), Obj->sections())) {
1801     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1802       continue;
1803     DynamicSec = &Sec;
1804     break;
1805   }
1806
1807   if (DynamicPhdr && DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1808                          ObjF->getMemoryBufferRef().getBufferSize()) {
1809     reportWarning(
1810         createError(
1811             "PT_DYNAMIC segment offset + size exceeds the size of the file"),
1812         ObjF->getFileName());
1813     // Don't use the broken dynamic header.
1814     DynamicPhdr = nullptr;
1815   }
1816
1817   if (DynamicPhdr && DynamicSec) {
1818     StringRef Name =
1819         unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DynamicSec));
1820     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1821             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1822         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1823       reportWarning(createError("The SHT_DYNAMIC section '" + Name +
1824                                 "' is not contained within the "
1825                                 "PT_DYNAMIC segment"),
1826                     ObjF->getFileName());
1827
1828     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1829       reportWarning(createError("The SHT_DYNAMIC section '" + Name +
1830                                 "' is not at the start of "
1831                                 "PT_DYNAMIC segment"),
1832                     ObjF->getFileName());
1833   }
1834
1835   return std::make_pair(DynamicPhdr, DynamicSec);
1836 }
1837
1838 template <typename ELFT>
1839 void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) {
1840   const Elf_Phdr *DynamicPhdr;
1841   const Elf_Shdr *DynamicSec;
1842   std::tie(DynamicPhdr, DynamicSec) = findDynamic(Obj);
1843   if (!DynamicPhdr && !DynamicSec)
1844     return;
1845
1846   DynRegionInfo FromPhdr(ObjF->getFileName());
1847   bool IsPhdrTableValid = false;
1848   if (DynamicPhdr) {
1849     FromPhdr = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn));
1850     IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty();
1851   }
1852
1853   // Locate the dynamic table described in a section header.
1854   // Ignore sh_entsize and use the expected value for entry size explicitly.
1855   // This allows us to dump dynamic sections with a broken sh_entsize
1856   // field.
1857   DynRegionInfo FromSec(ObjF->getFileName());
1858   bool IsSecTableValid = false;
1859   if (DynamicSec) {
1860     FromSec =
1861         checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset,
1862                   DynamicSec->sh_size, sizeof(Elf_Dyn), ObjF->getFileName()});
1863     IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty();
1864   }
1865
1866   // When we only have information from one of the SHT_DYNAMIC section header or
1867   // PT_DYNAMIC program header, just use that.
1868   if (!DynamicPhdr || !DynamicSec) {
1869     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1870       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1871       parseDynamicTable(Obj);
1872     } else {
1873       reportWarning(createError("no valid dynamic table was found"),
1874                     ObjF->getFileName());
1875     }
1876     return;
1877   }
1878
1879   // At this point we have tables found from the section header and from the
1880   // dynamic segment. Usually they match, but we have to do sanity checks to
1881   // verify that.
1882
1883   if (FromPhdr.Addr != FromSec.Addr)
1884     reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC "
1885                               "program header disagree about "
1886                               "the location of the dynamic table"),
1887                   ObjF->getFileName());
1888
1889   if (!IsPhdrTableValid && !IsSecTableValid) {
1890     reportWarning(createError("no valid dynamic table was found"),
1891                   ObjF->getFileName());
1892     return;
1893   }
1894
1895   // Information in the PT_DYNAMIC program header has priority over the information
1896   // in a section header.
1897   if (IsPhdrTableValid) {
1898     if (!IsSecTableValid)
1899       reportWarning(
1900           createError(
1901               "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"),
1902           ObjF->getFileName());
1903     DynamicTable = FromPhdr;
1904   } else {
1905     reportWarning(
1906         createError(
1907             "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"),
1908         ObjF->getFileName());
1909     DynamicTable = FromSec;
1910   }
1911
1912   parseDynamicTable(Obj);
1913 }
1914
1915 template <typename ELFT>
1916 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF,
1917                            ScopedPrinter &Writer)
1918     : ObjDumper(Writer), ObjF(ObjF), DynRelRegion(ObjF->getFileName()),
1919       DynRelaRegion(ObjF->getFileName()), DynRelrRegion(ObjF->getFileName()),
1920       DynPLTRelRegion(ObjF->getFileName()), DynSymRegion(ObjF->getFileName()),
1921       DynamicTable(ObjF->getFileName()) {
1922   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1923   for (const Elf_Shdr &Sec :
1924        unwrapOrError(ObjF->getFileName(), Obj->sections())) {
1925     switch (Sec.sh_type) {
1926     case ELF::SHT_SYMTAB:
1927       if (!DotSymtabSec)
1928         DotSymtabSec = &Sec;
1929       break;
1930     case ELF::SHT_DYNSYM:
1931       if (!DynSymRegion.Size) {
1932         DynSymRegion = createDRIFrom(&Sec);
1933         // This is only used (if Elf_Shdr present)for naming section in GNU
1934         // style
1935         DynSymtabName =
1936             unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
1937
1938         if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec))
1939           DynamicStringTable = *E;
1940         else
1941           reportWarning(E.takeError(), ObjF->getFileName());
1942       }
1943       break;
1944     case ELF::SHT_SYMTAB_SHNDX:
1945       ShndxTable = unwrapOrError(ObjF->getFileName(), Obj->getSHNDXTable(Sec));
1946       break;
1947     case ELF::SHT_GNU_versym:
1948       if (!SymbolVersionSection)
1949         SymbolVersionSection = &Sec;
1950       break;
1951     case ELF::SHT_GNU_verdef:
1952       if (!SymbolVersionDefSection)
1953         SymbolVersionDefSection = &Sec;
1954       break;
1955     case ELF::SHT_GNU_verneed:
1956       if (!SymbolVersionNeedSection)
1957         SymbolVersionNeedSection = &Sec;
1958       break;
1959     case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1960       if (!DotCGProfileSec)
1961         DotCGProfileSec = &Sec;
1962       break;
1963     case ELF::SHT_LLVM_ADDRSIG:
1964       if (!DotAddrsigSec)
1965         DotAddrsigSec = &Sec;
1966       break;
1967     }
1968   }
1969
1970   loadDynamicTable(Obj);
1971
1972   if (opts::Output == opts::GNU)
1973     ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
1974   else
1975     ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
1976 }
1977
1978 template <typename ELFT>
1979 void ELFDumper<ELFT>::parseDynamicTable(const ELFFile<ELFT> *Obj) {
1980   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1981     auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr);
1982     if (!MappedAddrOrError) {
1983       Error Err =
1984           createError("Unable to parse DT_" + Obj->getDynamicTagAsString(Tag) +
1985                       ": " + llvm::toString(MappedAddrOrError.takeError()));
1986
1987       reportWarning(std::move(Err), ObjF->getFileName());
1988       return nullptr;
1989     }
1990     return MappedAddrOrError.get();
1991   };
1992
1993   uint64_t SONameOffset = 0;
1994   const char *StringTableBegin = nullptr;
1995   uint64_t StringTableSize = 0;
1996   for (const Elf_Dyn &Dyn : dynamic_table()) {
1997     switch (Dyn.d_tag) {
1998     case ELF::DT_HASH:
1999       HashTable = reinterpret_cast<const Elf_Hash *>(
2000           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2001       break;
2002     case ELF::DT_GNU_HASH:
2003       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2004           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2005       break;
2006     case ELF::DT_STRTAB:
2007       StringTableBegin = reinterpret_cast<const char *>(
2008           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2009       break;
2010     case ELF::DT_STRSZ:
2011       StringTableSize = Dyn.getVal();
2012       break;
2013     case ELF::DT_SYMTAB: {
2014       // Often we find the information about the dynamic symbol table
2015       // location in the SHT_DYNSYM section header. However, the value in
2016       // DT_SYMTAB has priority, because it is used by dynamic loaders to
2017       // locate .dynsym at runtime. The location we find in the section header
2018       // and the location we find here should match. If we can't map the
2019       // DT_SYMTAB value to an address (e.g. when there are no program headers), we
2020       // ignore its value.
2021       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2022         // EntSize is non-zero if the dynamic symbol table has been found via a
2023         // section header.
2024         if (DynSymRegion.EntSize && VA != DynSymRegion.Addr)
2025           reportWarning(
2026               createError(
2027                   "SHT_DYNSYM section header and DT_SYMTAB disagree about "
2028                   "the location of the dynamic symbol table"),
2029               ObjF->getFileName());
2030
2031         DynSymRegion.Addr = VA;
2032         DynSymRegion.EntSize = sizeof(Elf_Sym);
2033       }
2034       break;
2035     }
2036     case ELF::DT_RELA:
2037       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2038       break;
2039     case ELF::DT_RELASZ:
2040       DynRelaRegion.Size = Dyn.getVal();
2041       break;
2042     case ELF::DT_RELAENT:
2043       DynRelaRegion.EntSize = Dyn.getVal();
2044       break;
2045     case ELF::DT_SONAME:
2046       SONameOffset = Dyn.getVal();
2047       break;
2048     case ELF::DT_REL:
2049       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2050       break;
2051     case ELF::DT_RELSZ:
2052       DynRelRegion.Size = Dyn.getVal();
2053       break;
2054     case ELF::DT_RELENT:
2055       DynRelRegion.EntSize = Dyn.getVal();
2056       break;
2057     case ELF::DT_RELR:
2058     case ELF::DT_ANDROID_RELR:
2059       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2060       break;
2061     case ELF::DT_RELRSZ:
2062     case ELF::DT_ANDROID_RELRSZ:
2063       DynRelrRegion.Size = Dyn.getVal();
2064       break;
2065     case ELF::DT_RELRENT:
2066     case ELF::DT_ANDROID_RELRENT:
2067       DynRelrRegion.EntSize = Dyn.getVal();
2068       break;
2069     case ELF::DT_PLTREL:
2070       if (Dyn.getVal() == DT_REL)
2071         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2072       else if (Dyn.getVal() == DT_RELA)
2073         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2074       else
2075         reportError(createError(Twine("unknown DT_PLTREL value of ") +
2076                                 Twine((uint64_t)Dyn.getVal())),
2077                     ObjF->getFileName());
2078       break;
2079     case ELF::DT_JMPREL:
2080       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2081       break;
2082     case ELF::DT_PLTRELSZ:
2083       DynPLTRelRegion.Size = Dyn.getVal();
2084       break;
2085     }
2086   }
2087   if (StringTableBegin)
2088     DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2089   SOName = getDynamicString(SONameOffset);
2090 }
2091
2092 template <typename ELFT>
2093 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
2094   return DynRelRegion.getAsArrayRef<Elf_Rel>();
2095 }
2096
2097 template <typename ELFT>
2098 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
2099   return DynRelaRegion.getAsArrayRef<Elf_Rela>();
2100 }
2101
2102 template <typename ELFT>
2103 typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
2104   return DynRelrRegion.getAsArrayRef<Elf_Relr>();
2105 }
2106
2107 template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
2108   ELFDumperStyle->printFileHeaders(ObjF->getELFFile());
2109 }
2110
2111 template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
2112   ELFDumperStyle->printSectionHeaders(ObjF->getELFFile());
2113 }
2114
2115 template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
2116   ELFDumperStyle->printRelocations(ObjF->getELFFile());
2117 }
2118
2119 template <class ELFT>
2120 void ELFDumper<ELFT>::printProgramHeaders(
2121     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
2122   ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders,
2123                                       PrintSectionMapping);
2124 }
2125
2126 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2127   // Dump version symbol section.
2128   ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(),
2129                                             SymbolVersionSection);
2130
2131   // Dump version definition section.
2132   ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(),
2133                                                 SymbolVersionDefSection);
2134
2135   // Dump version dependency section.
2136   ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(),
2137                                                 SymbolVersionNeedSection);
2138 }
2139
2140 template <class ELFT> void ELFDumper<ELFT>::printDependentLibs() {
2141   ELFDumperStyle->printDependentLibs(ObjF->getELFFile());
2142 }
2143
2144 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
2145   ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile());
2146 }
2147
2148 template <class ELFT>
2149 void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
2150                                    bool PrintDynamicSymbols) {
2151   ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols,
2152                                PrintDynamicSymbols);
2153 }
2154
2155 template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
2156   ELFDumperStyle->printHashSymbols(ObjF->getELFFile());
2157 }
2158
2159 template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
2160   ELFDumperStyle->printHashHistogram(ObjF->getELFFile());
2161 }
2162
2163 template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
2164   ELFDumperStyle->printCGProfile(ObjF->getELFFile());
2165 }
2166
2167 template <class ELFT> void ELFDumper<ELFT>::printNotes() {
2168   ELFDumperStyle->printNotes(ObjF->getELFFile());
2169 }
2170
2171 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
2172   ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile());
2173 }
2174
2175 template <class ELFT> void ELFDumper<ELFT>::printStackSizes() {
2176   ELFDumperStyle->printStackSizes(ObjF);
2177 }
2178
2179 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2180   { #enum, prefix##_##enum }
2181
2182 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2183   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2184   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2185   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2186   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2187   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2188 };
2189
2190 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2191   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2192   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2193   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2194   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2195   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2196   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2197   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2198   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2199   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2200   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2201   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2202   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2203   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2204   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2205   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2206   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2207   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2208   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2209   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2210   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2211   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2212   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2213   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2214   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2215   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2216   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2217   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2218 };
2219
2220 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2221   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2222   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2223   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2224   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2225   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2226   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2227   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2228   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2229   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2230   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2231   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2232   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2233   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2234   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2235   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2236   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2237 };
2238
2239 #undef LLVM_READOBJ_DT_FLAG_ENT
2240
2241 template <typename T, typename TFlag>
2242 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2243   using FlagEntry = EnumEntry<TFlag>;
2244   using FlagVector = SmallVector<FlagEntry, 10>;
2245   FlagVector SetFlags;
2246
2247   for (const auto &Flag : Flags) {
2248     if (Flag.Value == 0)
2249       continue;
2250
2251     if ((Value & Flag.Value) == Flag.Value)
2252       SetFlags.push_back(Flag);
2253   }
2254
2255   for (const auto &Flag : SetFlags) {
2256     OS << Flag.Name << " ";
2257   }
2258 }
2259
2260 template <class ELFT>
2261 void ELFDumper<ELFT>::printDynamicEntry(raw_ostream &OS, uint64_t Type,
2262                                         uint64_t Value) const {
2263   const char *ConvChar =
2264       (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2265
2266   // Handle custom printing of architecture specific tags
2267   switch (ObjF->getELFFile()->getHeader()->e_machine) {
2268   case EM_AARCH64:
2269     switch (Type) {
2270     case DT_AARCH64_BTI_PLT:
2271     case DT_AARCH64_PAC_PLT:
2272       OS << Value;
2273       return;
2274     default:
2275       break;
2276     }
2277     break;
2278   case EM_HEXAGON:
2279     switch (Type) {
2280     case DT_HEXAGON_VER:
2281       OS << Value;
2282       return;
2283     case DT_HEXAGON_SYMSZ:
2284     case DT_HEXAGON_PLT:
2285       OS << format(ConvChar, Value);
2286       return;
2287     default:
2288       break;
2289     }
2290     break;
2291   case EM_MIPS:
2292     switch (Type) {
2293     case DT_MIPS_RLD_VERSION:
2294     case DT_MIPS_LOCAL_GOTNO:
2295     case DT_MIPS_SYMTABNO:
2296     case DT_MIPS_UNREFEXTNO:
2297       OS << Value;
2298       return;
2299     case DT_MIPS_TIME_STAMP:
2300     case DT_MIPS_ICHECKSUM:
2301     case DT_MIPS_IVERSION:
2302     case DT_MIPS_BASE_ADDRESS:
2303     case DT_MIPS_MSYM:
2304     case DT_MIPS_CONFLICT:
2305     case DT_MIPS_LIBLIST:
2306     case DT_MIPS_CONFLICTNO:
2307     case DT_MIPS_LIBLISTNO:
2308     case DT_MIPS_GOTSYM:
2309     case DT_MIPS_HIPAGENO:
2310     case DT_MIPS_RLD_MAP:
2311     case DT_MIPS_DELTA_CLASS:
2312     case DT_MIPS_DELTA_CLASS_NO:
2313     case DT_MIPS_DELTA_INSTANCE:
2314     case DT_MIPS_DELTA_RELOC:
2315     case DT_MIPS_DELTA_RELOC_NO:
2316     case DT_MIPS_DELTA_SYM:
2317     case DT_MIPS_DELTA_SYM_NO:
2318     case DT_MIPS_DELTA_CLASSSYM:
2319     case DT_MIPS_DELTA_CLASSSYM_NO:
2320     case DT_MIPS_CXX_FLAGS:
2321     case DT_MIPS_PIXIE_INIT:
2322     case DT_MIPS_SYMBOL_LIB:
2323     case DT_MIPS_LOCALPAGE_GOTIDX:
2324     case DT_MIPS_LOCAL_GOTIDX:
2325     case DT_MIPS_HIDDEN_GOTIDX:
2326     case DT_MIPS_PROTECTED_GOTIDX:
2327     case DT_MIPS_OPTIONS:
2328     case DT_MIPS_INTERFACE:
2329     case DT_MIPS_DYNSTR_ALIGN:
2330     case DT_MIPS_INTERFACE_SIZE:
2331     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2332     case DT_MIPS_PERF_SUFFIX:
2333     case DT_MIPS_COMPACT_SIZE:
2334     case DT_MIPS_GP_VALUE:
2335     case DT_MIPS_AUX_DYNAMIC:
2336     case DT_MIPS_PLTGOT:
2337     case DT_MIPS_RWPLT:
2338     case DT_MIPS_RLD_MAP_REL:
2339       OS << format(ConvChar, Value);
2340       return;
2341     case DT_MIPS_FLAGS:
2342       printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
2343       return;
2344     default:
2345       break;
2346     }
2347     break;
2348   default:
2349     break;
2350   }
2351
2352   switch (Type) {
2353   case DT_PLTREL:
2354     if (Value == DT_REL) {
2355       OS << "REL";
2356       break;
2357     } else if (Value == DT_RELA) {
2358       OS << "RELA";
2359       break;
2360     }
2361     LLVM_FALLTHROUGH;
2362   case DT_PLTGOT:
2363   case DT_HASH:
2364   case DT_STRTAB:
2365   case DT_SYMTAB:
2366   case DT_RELA:
2367   case DT_INIT:
2368   case DT_FINI:
2369   case DT_REL:
2370   case DT_JMPREL:
2371   case DT_INIT_ARRAY:
2372   case DT_FINI_ARRAY:
2373   case DT_PREINIT_ARRAY:
2374   case DT_DEBUG:
2375   case DT_VERDEF:
2376   case DT_VERNEED:
2377   case DT_VERSYM:
2378   case DT_GNU_HASH:
2379   case DT_NULL:
2380     OS << format(ConvChar, Value);
2381     break;
2382   case DT_RELACOUNT:
2383   case DT_RELCOUNT:
2384   case DT_VERDEFNUM:
2385   case DT_VERNEEDNUM:
2386     OS << Value;
2387     break;
2388   case DT_PLTRELSZ:
2389   case DT_RELASZ:
2390   case DT_RELAENT:
2391   case DT_STRSZ:
2392   case DT_SYMENT:
2393   case DT_RELSZ:
2394   case DT_RELENT:
2395   case DT_INIT_ARRAYSZ:
2396   case DT_FINI_ARRAYSZ:
2397   case DT_PREINIT_ARRAYSZ:
2398   case DT_ANDROID_RELSZ:
2399   case DT_ANDROID_RELASZ:
2400     OS << Value << " (bytes)";
2401     break;
2402   case DT_NEEDED:
2403   case DT_SONAME:
2404   case DT_AUXILIARY:
2405   case DT_USED:
2406   case DT_FILTER:
2407   case DT_RPATH:
2408   case DT_RUNPATH: {
2409     const std::map<uint64_t, const char*> TagNames = {
2410       {DT_NEEDED,    "Shared library"},
2411       {DT_SONAME,    "Library soname"},
2412       {DT_AUXILIARY, "Auxiliary library"},
2413       {DT_USED,      "Not needed object"},
2414       {DT_FILTER,    "Filter library"},
2415       {DT_RPATH,     "Library rpath"},
2416       {DT_RUNPATH,   "Library runpath"},
2417     };
2418     OS << TagNames.at(Type) << ": [" << getDynamicString(Value) << "]";
2419     break;
2420   }
2421   case DT_FLAGS:
2422     printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
2423     break;
2424   case DT_FLAGS_1:
2425     printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
2426     break;
2427   default:
2428     OS << format(ConvChar, Value);
2429     break;
2430   }
2431 }
2432
2433 template <class ELFT>
2434 std::string ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2435   if (DynamicStringTable.empty())
2436     return "<String table is empty or was not found>";
2437   if (Value < DynamicStringTable.size())
2438     return DynamicStringTable.data() + Value;
2439   return Twine("<Invalid offset 0x" + utohexstr(Value) + ">").str();
2440 }
2441
2442 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2443   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2444   Ctx.printUnwindInformation();
2445 }
2446
2447 namespace {
2448
2449 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2450   const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
2451   const unsigned Machine = Obj->getHeader()->e_machine;
2452   if (Machine == EM_ARM) {
2453     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF->getFileName(),
2454                                             DotSymtabSec);
2455     Ctx.PrintUnwindInformation();
2456   }
2457   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2458   Ctx.printUnwindInformation();
2459 }
2460
2461 } // end anonymous namespace
2462
2463 template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
2464   ELFDumperStyle->printDynamic(ObjF->getELFFile());
2465 }
2466
2467 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2468   ListScope D(W, "NeededLibraries");
2469
2470   std::vector<std::string> Libs;
2471   for (const auto &Entry : dynamic_table())
2472     if (Entry.d_tag == ELF::DT_NEEDED)
2473       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2474
2475   llvm::stable_sort(Libs);
2476
2477   for (const auto &L : Libs)
2478     W.startLine() << L << "\n";
2479 }
2480
2481 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2482   DictScope D(W, "HashTable");
2483   if (!HashTable)
2484     return;
2485   W.printNumber("Num Buckets", HashTable->nbucket);
2486   W.printNumber("Num Chains", HashTable->nchain);
2487   W.printList("Buckets", HashTable->buckets());
2488   W.printList("Chains", HashTable->chains());
2489 }
2490
2491 template <typename ELFT> void ELFDumper<ELFT>::printGnuHashTable() {
2492   DictScope D(W, "GnuHashTable");
2493   if (!GnuHashTable)
2494     return;
2495   W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2496   W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2497   W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2498   W.printNumber("Shift Count", GnuHashTable->shift2);
2499   W.printHexList("Bloom Filter", GnuHashTable->filter());
2500   W.printList("Buckets", GnuHashTable->buckets());
2501   Elf_Sym_Range Syms = dynamic_symbols();
2502   unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
2503   if (!NumSyms)
2504     reportError(createError("No dynamic symbol section"), ObjF->getFileName());
2505   W.printHexList("Values", GnuHashTable->values(NumSyms));
2506 }
2507
2508 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2509   W.printString("LoadName", SOName);
2510 }
2511
2512 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2513   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2514   switch (Obj->getHeader()->e_machine) {
2515   case EM_ARM:
2516     printAttributes();
2517     break;
2518   case EM_MIPS: {
2519     ELFDumperStyle->printMipsABIFlags(ObjF);
2520     printMipsOptions();
2521     printMipsReginfo();
2522
2523     MipsGOTParser<ELFT> Parser(Obj, ObjF->getFileName(), dynamic_table(),
2524                                dynamic_symbols());
2525     if (Parser.hasGot())
2526       ELFDumperStyle->printMipsGOT(Parser);
2527     if (Parser.hasPlt())
2528       ELFDumperStyle->printMipsPLT(Parser);
2529     break;
2530   }
2531   default:
2532     break;
2533   }
2534 }
2535
2536 template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
2537   W.startLine() << "Attributes not implemented.\n";
2538 }
2539
2540 namespace {
2541
2542 template <> void ELFDumper<ELF32LE>::printAttributes() {
2543   const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
2544   if (Obj->getHeader()->e_machine != EM_ARM) {
2545     W.startLine() << "Attributes not implemented.\n";
2546     return;
2547   }
2548
2549   DictScope BA(W, "BuildAttributes");
2550   for (const ELFO::Elf_Shdr &Sec :
2551        unwrapOrError(ObjF->getFileName(), Obj->sections())) {
2552     if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
2553       continue;
2554
2555     ArrayRef<uint8_t> Contents =
2556         unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(&Sec));
2557     if (Contents[0] != ARMBuildAttrs::Format_Version) {
2558       errs() << "unrecognised FormatVersion: 0x"
2559              << Twine::utohexstr(Contents[0]) << '\n';
2560       continue;
2561     }
2562
2563     W.printHex("FormatVersion", Contents[0]);
2564     if (Contents.size() == 1)
2565       continue;
2566
2567     ARMAttributeParser(&W).Parse(Contents, true);
2568   }
2569 }
2570
2571 template <class ELFT> class MipsGOTParser {
2572 public:
2573   TYPEDEF_ELF_TYPES(ELFT)
2574   using Entry = typename ELFO::Elf_Addr;
2575   using Entries = ArrayRef<Entry>;
2576
2577   const bool IsStatic;
2578   const ELFO * const Obj;
2579
2580   MipsGOTParser(const ELFO *Obj, StringRef FileName, Elf_Dyn_Range DynTable,
2581                 Elf_Sym_Range DynSyms);
2582
2583   bool hasGot() const { return !GotEntries.empty(); }
2584   bool hasPlt() const { return !PltEntries.empty(); }
2585
2586   uint64_t getGp() const;
2587
2588   const Entry *getGotLazyResolver() const;
2589   const Entry *getGotModulePointer() const;
2590   const Entry *getPltLazyResolver() const;
2591   const Entry *getPltModulePointer() const;
2592
2593   Entries getLocalEntries() const;
2594   Entries getGlobalEntries() const;
2595   Entries getOtherEntries() const;
2596   Entries getPltEntries() const;
2597
2598   uint64_t getGotAddress(const Entry * E) const;
2599   int64_t getGotOffset(const Entry * E) const;
2600   const Elf_Sym *getGotSym(const Entry *E) const;
2601
2602   uint64_t getPltAddress(const Entry * E) const;
2603   const Elf_Sym *getPltSym(const Entry *E) const;
2604
2605   StringRef getPltStrTable() const { return PltStrTable; }
2606
2607 private:
2608   const Elf_Shdr *GotSec;
2609   size_t LocalNum;
2610   size_t GlobalNum;
2611
2612   const Elf_Shdr *PltSec;
2613   const Elf_Shdr *PltRelSec;
2614   const Elf_Shdr *PltSymTable;
2615   StringRef FileName;
2616
2617   Elf_Sym_Range GotDynSyms;
2618   StringRef PltStrTable;
2619
2620   Entries GotEntries;
2621   Entries PltEntries;
2622 };
2623
2624 } // end anonymous namespace
2625
2626 template <class ELFT>
2627 MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, StringRef FileName,
2628                                    Elf_Dyn_Range DynTable,
2629                                    Elf_Sym_Range DynSyms)
2630     : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
2631       GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
2632       FileName(FileName) {
2633   // See "Global Offset Table" in Chapter 5 in the following document
2634   // for detailed GOT description.
2635   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2636
2637   // Find static GOT secton.
2638   if (IsStatic) {
2639     GotSec = findSectionByName(*Obj, FileName, ".got");
2640     if (!GotSec)
2641       return;
2642
2643     ArrayRef<uint8_t> Content =
2644         unwrapOrError(FileName, Obj->getSectionContents(GotSec));
2645     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2646                          Content.size() / sizeof(Entry));
2647     LocalNum = GotEntries.size();
2648     return;
2649   }
2650
2651   // Lookup dynamic table tags which define GOT/PLT layouts.
2652   Optional<uint64_t> DtPltGot;
2653   Optional<uint64_t> DtLocalGotNum;
2654   Optional<uint64_t> DtGotSym;
2655   Optional<uint64_t> DtMipsPltGot;
2656   Optional<uint64_t> DtJmpRel;
2657   for (const auto &Entry : DynTable) {
2658     switch (Entry.getTag()) {
2659     case ELF::DT_PLTGOT:
2660       DtPltGot = Entry.getVal();
2661       break;
2662     case ELF::DT_MIPS_LOCAL_GOTNO:
2663       DtLocalGotNum = Entry.getVal();
2664       break;
2665     case ELF::DT_MIPS_GOTSYM:
2666       DtGotSym = Entry.getVal();
2667       break;
2668     case ELF::DT_MIPS_PLTGOT:
2669       DtMipsPltGot = Entry.getVal();
2670       break;
2671     case ELF::DT_JMPREL:
2672       DtJmpRel = Entry.getVal();
2673       break;
2674     }
2675   }
2676
2677   // Find dynamic GOT section.
2678   if (DtPltGot || DtLocalGotNum || DtGotSym) {
2679     if (!DtPltGot)
2680       report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2681     if (!DtLocalGotNum)
2682       report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2683     if (!DtGotSym)
2684       report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2685
2686     size_t DynSymTotal = DynSyms.size();
2687     if (*DtGotSym > DynSymTotal)
2688       reportError(
2689           createError("MIPS_GOTSYM exceeds a number of dynamic symbols"),
2690           FileName);
2691
2692     GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2693     if (!GotSec)
2694       reportError(createError("There is no not empty GOT section at 0x" +
2695                               Twine::utohexstr(*DtPltGot)),
2696                   FileName);
2697
2698     LocalNum = *DtLocalGotNum;
2699     GlobalNum = DynSymTotal - *DtGotSym;
2700
2701     ArrayRef<uint8_t> Content =
2702         unwrapOrError(FileName, Obj->getSectionContents(GotSec));
2703     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2704                          Content.size() / sizeof(Entry));
2705     GotDynSyms = DynSyms.drop_front(*DtGotSym);
2706   }
2707
2708   // Find PLT section.
2709   if (DtMipsPltGot || DtJmpRel) {
2710     if (!DtMipsPltGot)
2711       report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2712     if (!DtJmpRel)
2713       report_fatal_error("Cannot find JMPREL dynamic table tag.");
2714
2715     PltSec = findNotEmptySectionByAddress(Obj, FileName, * DtMipsPltGot);
2716     if (!PltSec)
2717       report_fatal_error("There is no not empty PLTGOT section at 0x " +
2718                          Twine::utohexstr(*DtMipsPltGot));
2719
2720     PltRelSec = findNotEmptySectionByAddress(Obj, FileName, * DtJmpRel);
2721     if (!PltRelSec)
2722       report_fatal_error("There is no not empty RELPLT section at 0x" +
2723                          Twine::utohexstr(*DtJmpRel));
2724
2725     ArrayRef<uint8_t> PltContent =
2726         unwrapOrError(FileName, Obj->getSectionContents(PltSec));
2727     PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
2728                          PltContent.size() / sizeof(Entry));
2729
2730     PltSymTable = unwrapOrError(FileName, Obj->getSection(PltRelSec->sh_link));
2731     PltStrTable =
2732         unwrapOrError(FileName, Obj->getStringTableForSymtab(*PltSymTable));
2733   }
2734 }
2735
2736 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2737   return GotSec->sh_addr + 0x7ff0;
2738 }
2739
2740 template <class ELFT>
2741 const typename MipsGOTParser<ELFT>::Entry *
2742 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2743   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2744 }
2745
2746 template <class ELFT>
2747 const typename MipsGOTParser<ELFT>::Entry *
2748 MipsGOTParser<ELFT>::getGotModulePointer() const {
2749   if (LocalNum < 2)
2750     return nullptr;
2751   const Entry &E = GotEntries[1];
2752   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2753     return nullptr;
2754   return &E;
2755 }
2756
2757 template <class ELFT>
2758 typename MipsGOTParser<ELFT>::Entries
2759 MipsGOTParser<ELFT>::getLocalEntries() const {
2760   size_t Skip = getGotModulePointer() ? 2 : 1;
2761   if (LocalNum - Skip <= 0)
2762     return Entries();
2763   return GotEntries.slice(Skip, LocalNum - Skip);
2764 }
2765
2766 template <class ELFT>
2767 typename MipsGOTParser<ELFT>::Entries
2768 MipsGOTParser<ELFT>::getGlobalEntries() const {
2769   if (GlobalNum == 0)
2770     return Entries();
2771   return GotEntries.slice(LocalNum, GlobalNum);
2772 }
2773
2774 template <class ELFT>
2775 typename MipsGOTParser<ELFT>::Entries
2776 MipsGOTParser<ELFT>::getOtherEntries() const {
2777   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2778   if (OtherNum == 0)
2779     return Entries();
2780   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2781 }
2782
2783 template <class ELFT>
2784 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2785   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2786   return GotSec->sh_addr + Offset;
2787 }
2788
2789 template <class ELFT>
2790 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2791   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2792   return Offset - 0x7ff0;
2793 }
2794
2795 template <class ELFT>
2796 const typename MipsGOTParser<ELFT>::Elf_Sym *
2797 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2798   int64_t Offset = std::distance(GotEntries.data(), E);
2799   return &GotDynSyms[Offset - LocalNum];
2800 }
2801
2802 template <class ELFT>
2803 const typename MipsGOTParser<ELFT>::Entry *
2804 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2805   return PltEntries.empty() ? nullptr : &PltEntries[0];
2806 }
2807
2808 template <class ELFT>
2809 const typename MipsGOTParser<ELFT>::Entry *
2810 MipsGOTParser<ELFT>::getPltModulePointer() const {
2811   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2812 }
2813
2814 template <class ELFT>
2815 typename MipsGOTParser<ELFT>::Entries
2816 MipsGOTParser<ELFT>::getPltEntries() const {
2817   if (PltEntries.size() <= 2)
2818     return Entries();
2819   return PltEntries.slice(2, PltEntries.size() - 2);
2820 }
2821
2822 template <class ELFT>
2823 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2824   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2825   return PltSec->sh_addr + Offset;
2826 }
2827
2828 template <class ELFT>
2829 const typename MipsGOTParser<ELFT>::Elf_Sym *
2830 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2831   int64_t Offset = std::distance(getPltEntries().data(), E);
2832   if (PltRelSec->sh_type == ELF::SHT_REL) {
2833     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj->rels(PltRelSec));
2834     return unwrapOrError(FileName,
2835                          Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2836   } else {
2837     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj->relas(PltRelSec));
2838     return unwrapOrError(FileName,
2839                          Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2840   }
2841 }
2842
2843 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2844   {"None",                    Mips::AFL_EXT_NONE},
2845   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
2846   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
2847   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2848   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2849   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2850   {"LSI R4010",               Mips::AFL_EXT_4010},
2851   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
2852   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
2853   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
2854   {"MIPS R4650",              Mips::AFL_EXT_4650},
2855   {"MIPS R5900",              Mips::AFL_EXT_5900},
2856   {"MIPS R10000",             Mips::AFL_EXT_10000},
2857   {"NEC VR4100",              Mips::AFL_EXT_4100},
2858   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
2859   {"NEC VR4120",              Mips::AFL_EXT_4120},
2860   {"NEC VR5400",              Mips::AFL_EXT_5400},
2861   {"NEC VR5500",              Mips::AFL_EXT_5500},
2862   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
2863   {"Toshiba R3900",           Mips::AFL_EXT_3900}
2864 };
2865
2866 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2867   {"DSP",                Mips::AFL_ASE_DSP},
2868   {"DSPR2",              Mips::AFL_ASE_DSPR2},
2869   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2870   {"MCU",                Mips::AFL_ASE_MCU},
2871   {"MDMX",               Mips::AFL_ASE_MDMX},
2872   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
2873   {"MT",                 Mips::AFL_ASE_MT},
2874   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
2875   {"VZ",                 Mips::AFL_ASE_VIRT},
2876   {"MSA",                Mips::AFL_ASE_MSA},
2877   {"MIPS16",             Mips::AFL_ASE_MIPS16},
2878   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
2879   {"XPA",                Mips::AFL_ASE_XPA},
2880   {"CRC",                Mips::AFL_ASE_CRC},
2881   {"GINV",               Mips::AFL_ASE_GINV},
2882 };
2883
2884 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2885   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
2886   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2887   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2888   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2889   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2890    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2891   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
2892   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2893   {"Hard float compat (32-bit CPU, 64-bit FPU)",
2894    Mips::Val_GNU_MIPS_ABI_FP_64A}
2895 };
2896
2897 static const EnumEntry<unsigned> ElfMipsFlags1[] {
2898   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2899 };
2900
2901 static int getMipsRegisterSize(uint8_t Flag) {
2902   switch (Flag) {
2903   case Mips::AFL_REG_NONE:
2904     return 0;
2905   case Mips::AFL_REG_32:
2906     return 32;
2907   case Mips::AFL_REG_64:
2908     return 64;
2909   case Mips::AFL_REG_128:
2910     return 128;
2911   default:
2912     return -1;
2913   }
2914 }
2915
2916 template <class ELFT>
2917 static void printMipsReginfoData(ScopedPrinter &W,
2918                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2919   W.printHex("GP", Reginfo.ri_gp_value);
2920   W.printHex("General Mask", Reginfo.ri_gprmask);
2921   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
2922   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
2923   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
2924   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
2925 }
2926
2927 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2928   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2929   const Elf_Shdr *Shdr = findSectionByName(*Obj, ObjF->getFileName(), ".reginfo");
2930   if (!Shdr) {
2931     W.startLine() << "There is no .reginfo section in the file.\n";
2932     return;
2933   }
2934   ArrayRef<uint8_t> Sec =
2935       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
2936   if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2937     W.startLine() << "The .reginfo section has a wrong size.\n";
2938     return;
2939   }
2940
2941   DictScope GS(W, "MIPS RegInfo");
2942   auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
2943   printMipsReginfoData(W, *Reginfo);
2944 }
2945
2946 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
2947   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2948   const Elf_Shdr *Shdr =
2949       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.options");
2950   if (!Shdr) {
2951     W.startLine() << "There is no .MIPS.options section in the file.\n";
2952     return;
2953   }
2954
2955   DictScope GS(W, "MIPS Options");
2956
2957   ArrayRef<uint8_t> Sec =
2958       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
2959   while (!Sec.empty()) {
2960     if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
2961       W.startLine() << "The .MIPS.options section has a wrong size.\n";
2962       return;
2963     }
2964     auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
2965     DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
2966     switch (O->kind) {
2967     case ODK_REGINFO:
2968       printMipsReginfoData(W, O->getRegInfo());
2969       break;
2970     default:
2971       W.startLine() << "Unsupported MIPS options tag.\n";
2972       break;
2973     }
2974     Sec = Sec.slice(O->size);
2975   }
2976 }
2977
2978 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2979   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2980   const Elf_Shdr *StackMapSection = nullptr;
2981   for (const auto &Sec : unwrapOrError(ObjF->getFileName(), Obj->sections())) {
2982     StringRef Name =
2983         unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
2984     if (Name == ".llvm_stackmaps") {
2985       StackMapSection = &Sec;
2986       break;
2987     }
2988   }
2989
2990   if (!StackMapSection)
2991     return;
2992
2993   ArrayRef<uint8_t> StackMapContentsArray = unwrapOrError(
2994       ObjF->getFileName(), Obj->getSectionContents(StackMapSection));
2995
2996   prettyPrintStackMap(
2997       W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray));
2998 }
2999
3000 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
3001   ELFDumperStyle->printGroupSections(ObjF->getELFFile());
3002 }
3003
3004 template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
3005   ELFDumperStyle->printAddrsig(ObjF->getELFFile());
3006 }
3007
3008 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3009                                StringRef Str2) {
3010   OS.PadToColumn(2u);
3011   OS << Str1;
3012   OS.PadToColumn(37u);
3013   OS << Str2 << "\n";
3014   OS.flush();
3015 }
3016
3017 template <class ELFT>
3018 static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj,
3019                                               StringRef FileName) {
3020   const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
3021   if (ElfHeader->e_shnum != 0)
3022     return to_string(ElfHeader->e_shnum);
3023
3024   ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
3025   if (Arr.empty())
3026     return "0";
3027   return "0 (" + to_string(Arr[0].sh_size) + ")";
3028 }
3029
3030 template <class ELFT>
3031 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj,
3032                                                     StringRef FileName) {
3033   const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
3034   if (ElfHeader->e_shstrndx != SHN_XINDEX)
3035     return to_string(ElfHeader->e_shstrndx);
3036
3037   ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
3038   if (Arr.empty())
3039     return "65535 (corrupt: out of range)";
3040   return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) +
3041          ")";
3042 }
3043
3044 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
3045   const Elf_Ehdr *e = Obj->getHeader();
3046   OS << "ELF Header:\n";
3047   OS << "  Magic:  ";
3048   std::string Str;
3049   for (int i = 0; i < ELF::EI_NIDENT; i++)
3050     OS << format(" %02x", static_cast<int>(e->e_ident[i]));
3051   OS << "\n";
3052   Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3053   printFields(OS, "Class:", Str);
3054   Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3055   printFields(OS, "Data:", Str);
3056   OS.PadToColumn(2u);
3057   OS << "Version:";
3058   OS.PadToColumn(37u);
3059   OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
3060   if (e->e_version == ELF::EV_CURRENT)
3061     OS << " (current)";
3062   OS << "\n";
3063   Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3064   printFields(OS, "OS/ABI:", Str);
3065   printFields(OS,
3066               "ABI Version:", std::to_string(e->e_ident[ELF::EI_ABIVERSION]));
3067   Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
3068   printFields(OS, "Type:", Str);
3069   Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
3070   printFields(OS, "Machine:", Str);
3071   Str = "0x" + to_hexString(e->e_version);
3072   printFields(OS, "Version:", Str);
3073   Str = "0x" + to_hexString(e->e_entry);
3074   printFields(OS, "Entry point address:", Str);
3075   Str = to_string(e->e_phoff) + " (bytes into file)";
3076   printFields(OS, "Start of program headers:", Str);
3077   Str = to_string(e->e_shoff) + " (bytes into file)";
3078   printFields(OS, "Start of section headers:", Str);
3079   std::string ElfFlags;
3080   if (e->e_machine == EM_MIPS)
3081     ElfFlags =
3082         printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
3083                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3084                    unsigned(ELF::EF_MIPS_MACH));
3085   else if (e->e_machine == EM_RISCV)
3086     ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3087   Str = "0x" + to_hexString(e->e_flags);
3088   if (!ElfFlags.empty())
3089     Str = Str + ", " + ElfFlags;
3090   printFields(OS, "Flags:", Str);
3091   Str = to_string(e->e_ehsize) + " (bytes)";
3092   printFields(OS, "Size of this header:", Str);
3093   Str = to_string(e->e_phentsize) + " (bytes)";
3094   printFields(OS, "Size of program headers:", Str);
3095   Str = to_string(e->e_phnum);
3096   printFields(OS, "Number of program headers:", Str);
3097   Str = to_string(e->e_shentsize) + " (bytes)";
3098   printFields(OS, "Size of section headers:", Str);
3099   Str = getSectionHeadersNumString(Obj, this->FileName);
3100   printFields(OS, "Number of section headers:", Str);
3101   Str = getSectionHeaderTableIndexString(Obj, this->FileName);
3102   printFields(OS, "Section header string table index:", Str);
3103 }
3104
3105 namespace {
3106 struct GroupMember {
3107   StringRef Name;
3108   uint64_t Index;
3109 };
3110
3111 struct GroupSection {
3112   StringRef Name;
3113   std::string Signature;
3114   uint64_t ShName;
3115   uint64_t Index;
3116   uint32_t Link;
3117   uint32_t Info;
3118   uint32_t Type;
3119   std::vector<GroupMember> Members;
3120 };
3121
3122 template <class ELFT>
3123 std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj,
3124                                     StringRef FileName) {
3125   using Elf_Shdr = typename ELFT::Shdr;
3126   using Elf_Sym = typename ELFT::Sym;
3127   using Elf_Word = typename ELFT::Word;
3128
3129   std::vector<GroupSection> Ret;
3130   uint64_t I = 0;
3131   for (const Elf_Shdr &Sec : unwrapOrError(FileName, Obj->sections())) {
3132     ++I;
3133     if (Sec.sh_type != ELF::SHT_GROUP)
3134       continue;
3135
3136     const Elf_Shdr *Symtab =
3137         unwrapOrError(FileName, Obj->getSection(Sec.sh_link));
3138     StringRef StrTable =
3139         unwrapOrError(FileName, Obj->getStringTableForSymtab(*Symtab));
3140     const Elf_Sym *Sym = unwrapOrError(
3141         FileName, Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
3142     auto Data = unwrapOrError(
3143         FileName, Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
3144
3145     StringRef Name = unwrapOrError(FileName, Obj->getSectionName(&Sec));
3146     StringRef Signature = StrTable.data() + Sym->st_name;
3147     Ret.push_back({Name,
3148                    maybeDemangle(Signature),
3149                    Sec.sh_name,
3150                    I - 1,
3151                    Sec.sh_link,
3152                    Sec.sh_info,
3153                    Data[0],
3154                    {}});
3155
3156     std::vector<GroupMember> &GM = Ret.back().Members;
3157     for (uint32_t Ndx : Data.slice(1)) {
3158       auto Sec = unwrapOrError(FileName, Obj->getSection(Ndx));
3159       const StringRef Name = unwrapOrError(FileName, Obj->getSectionName(Sec));
3160       GM.push_back({Name, Ndx});
3161     }
3162   }
3163   return Ret;
3164 }
3165
3166 DenseMap<uint64_t, const GroupSection *>
3167 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3168   DenseMap<uint64_t, const GroupSection *> Ret;
3169   for (const GroupSection &G : Groups)
3170     for (const GroupMember &GM : G.Members)
3171       Ret.insert({GM.Index, &G});
3172   return Ret;
3173 }
3174
3175 } // namespace
3176
3177 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
3178   std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
3179   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3180   for (const GroupSection &G : V) {
3181     OS << "\n"
3182        << getGroupType(G.Type) << " group section ["
3183        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3184        << "] contains " << G.Members.size() << " sections:\n"
3185        << "   [Index]    Name\n";
3186     for (const GroupMember &GM : G.Members) {
3187       const GroupSection *MainGroup = Map[GM.Index];
3188       if (MainGroup != &G) {
3189         OS.flush();
3190         errs() << "Error: section [" << format_decimal(GM.Index, 5)
3191                << "] in group section [" << format_decimal(G.Index, 5)
3192                << "] already in group section ["
3193                << format_decimal(MainGroup->Index, 5) << "]";
3194         errs().flush();
3195         continue;
3196       }
3197       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3198     }
3199   }
3200
3201   if (V.empty())
3202     OS << "There are no section groups in this file.\n";
3203 }
3204
3205 template <class ELFT>
3206 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
3207                                      const Elf_Rela &R, bool IsRela) {
3208   const Elf_Sym *Sym =
3209       unwrapOrError(this->FileName, Obj->getRelocationSymbol(&R, SymTab));
3210   std::string TargetName;
3211   if (Sym && Sym->getType() == ELF::STT_SECTION) {
3212     const Elf_Shdr *Sec = unwrapOrError(
3213         this->FileName,
3214         Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
3215     TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
3216   } else if (Sym) {
3217     StringRef StrTable =
3218         unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab));
3219     TargetName = this->dumper()->getFullSymbolName(
3220         Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
3221   }
3222   printRelocation(Obj, Sym, TargetName, R, IsRela);
3223 }
3224
3225 template <class ELFT>
3226 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
3227                                      StringRef SymbolName, const Elf_Rela &R,
3228                                      bool IsRela) {
3229   // First two fields are bit width dependent. The rest of them are fixed width.
3230   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3231   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3232   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3233
3234   Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width));
3235   Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width));
3236
3237   SmallString<32> RelocName;
3238   Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
3239   Fields[2].Str = RelocName.c_str();
3240
3241   if (Sym && (!SymbolName.empty() || Sym->getValue() != 0))
3242     Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width));
3243
3244   Fields[4].Str = SymbolName;
3245   for (const Field &F : Fields)
3246     printField(F);
3247
3248   std::string Addend;
3249   if (IsRela) {
3250     int64_t RelAddend = R.r_addend;
3251     if (!SymbolName.empty()) {
3252       if (R.r_addend < 0) {
3253         Addend = " - ";
3254         RelAddend = std::abs(RelAddend);
3255       } else
3256         Addend = " + ";
3257     }
3258
3259     Addend += to_hexString(RelAddend, false);
3260   }
3261   OS << Addend << "\n";
3262 }
3263
3264 template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) {
3265   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3266   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3267   if (ELFT::Is64Bits)
3268     OS << "    ";
3269   else
3270     OS << " ";
3271   if (IsRelr && opts::RawRelr)
3272     OS << "Data  ";
3273   else
3274     OS << "Offset";
3275   if (ELFT::Is64Bits)
3276     OS << "             Info             Type"
3277        << "               Symbol's Value  Symbol's Name";
3278   else
3279     OS << "     Info    Type                Sym. Value  Symbol's Name";
3280   if (IsRela)
3281     OS << " + Addend";
3282   OS << "\n";
3283 }
3284
3285 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
3286   bool HasRelocSections = false;
3287   for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
3288     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
3289         Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
3290         Sec.sh_type != ELF::SHT_ANDROID_RELA &&
3291         Sec.sh_type != ELF::SHT_ANDROID_RELR)
3292       continue;
3293     HasRelocSections = true;
3294     StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
3295     unsigned Entries = Sec.getEntityCount();
3296     std::vector<Elf_Rela> AndroidRelas;
3297     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3298         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3299       // Android's packed relocation section needs to be unpacked first
3300       // to get the actual number of entries.
3301       AndroidRelas = unwrapOrError(this->FileName, Obj->android_relas(&Sec));
3302       Entries = AndroidRelas.size();
3303     }
3304     std::vector<Elf_Rela> RelrRelas;
3305     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3306                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3307       // .relr.dyn relative relocation section needs to be unpacked first
3308       // to get the actual number of entries.
3309       Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(&Sec));
3310       RelrRelas = unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
3311       Entries = RelrRelas.size();
3312     }
3313     uintX_t Offset = Sec.sh_offset;
3314     OS << "\nRelocation section '" << Name << "' at offset 0x"
3315        << to_hexString(Offset, false) << " contains " << Entries
3316        << " entries:\n";
3317     printRelocHeader(Sec.sh_type);
3318     const Elf_Shdr *SymTab =
3319         unwrapOrError(this->FileName, Obj->getSection(Sec.sh_link));
3320     switch (Sec.sh_type) {
3321     case ELF::SHT_REL:
3322       for (const auto &R : unwrapOrError(this->FileName, Obj->rels(&Sec))) {
3323         Elf_Rela Rela;
3324         Rela.r_offset = R.r_offset;
3325         Rela.r_info = R.r_info;
3326         Rela.r_addend = 0;
3327         printRelocation(Obj, SymTab, Rela, false);
3328       }
3329       break;
3330     case ELF::SHT_RELA:
3331       for (const auto &R : unwrapOrError(this->FileName, Obj->relas(&Sec)))
3332         printRelocation(Obj, SymTab, R, true);
3333       break;
3334     case ELF::SHT_RELR:
3335     case ELF::SHT_ANDROID_RELR:
3336       if (opts::RawRelr)
3337         for (const auto &R : unwrapOrError(this->FileName, Obj->relrs(&Sec)))
3338           OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8))
3339              << "\n";
3340       else
3341         for (const auto &R : RelrRelas)
3342           printRelocation(Obj, SymTab, R, false);
3343       break;
3344     case ELF::SHT_ANDROID_REL:
3345     case ELF::SHT_ANDROID_RELA:
3346       for (const auto &R : AndroidRelas)
3347         printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA);
3348       break;
3349     }
3350   }
3351   if (!HasRelocSections)
3352     OS << "\nThere are no relocations in this file.\n";
3353 }
3354
3355 // Print the offset of a particular section from anyone of the ranges:
3356 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3357 // If 'Type' does not fall within any of those ranges, then a string is
3358 // returned as '<unknown>' followed by the type value.
3359 static std::string getSectionTypeOffsetString(unsigned Type) {
3360   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3361     return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3362   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3363     return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3364   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3365     return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3366   return "0x" + to_hexString(Type) + ": <unknown>";
3367 }
3368
3369 static std::string getSectionTypeString(unsigned Arch, unsigned Type) {
3370   using namespace ELF;
3371
3372   switch (Arch) {
3373   case EM_ARM:
3374     switch (Type) {
3375     case SHT_ARM_EXIDX:
3376       return "ARM_EXIDX";
3377     case SHT_ARM_PREEMPTMAP:
3378       return "ARM_PREEMPTMAP";
3379     case SHT_ARM_ATTRIBUTES:
3380       return "ARM_ATTRIBUTES";
3381     case SHT_ARM_DEBUGOVERLAY:
3382       return "ARM_DEBUGOVERLAY";
3383     case SHT_ARM_OVERLAYSECTION:
3384       return "ARM_OVERLAYSECTION";
3385     }
3386     break;
3387   case EM_X86_64:
3388     switch (Type) {
3389     case SHT_X86_64_UNWIND:
3390       return "X86_64_UNWIND";
3391     }
3392     break;
3393   case EM_MIPS:
3394   case EM_MIPS_RS3_LE:
3395     switch (Type) {
3396     case SHT_MIPS_REGINFO:
3397       return "MIPS_REGINFO";
3398     case SHT_MIPS_OPTIONS:
3399       return "MIPS_OPTIONS";
3400     case SHT_MIPS_DWARF:
3401       return "MIPS_DWARF";
3402     case SHT_MIPS_ABIFLAGS:
3403       return "MIPS_ABIFLAGS";
3404     }
3405     break;
3406   }
3407   switch (Type) {
3408   case SHT_NULL:
3409     return "NULL";
3410   case SHT_PROGBITS:
3411     return "PROGBITS";
3412   case SHT_SYMTAB:
3413     return "SYMTAB";
3414   case SHT_STRTAB:
3415     return "STRTAB";
3416   case SHT_RELA:
3417     return "RELA";
3418   case SHT_HASH:
3419     return "HASH";
3420   case SHT_DYNAMIC:
3421     return "DYNAMIC";
3422   case SHT_NOTE:
3423     return "NOTE";
3424   case SHT_NOBITS:
3425     return "NOBITS";
3426   case SHT_REL:
3427     return "REL";
3428   case SHT_SHLIB:
3429     return "SHLIB";
3430   case SHT_DYNSYM:
3431     return "DYNSYM";
3432   case SHT_INIT_ARRAY:
3433     return "INIT_ARRAY";
3434   case SHT_FINI_ARRAY:
3435     return "FINI_ARRAY";
3436   case SHT_PREINIT_ARRAY:
3437     return "PREINIT_ARRAY";
3438   case SHT_GROUP:
3439     return "GROUP";
3440   case SHT_SYMTAB_SHNDX:
3441     return "SYMTAB SECTION INDICES";
3442   case SHT_ANDROID_REL:
3443     return "ANDROID_REL";
3444   case SHT_ANDROID_RELA:
3445     return "ANDROID_RELA";
3446   case SHT_RELR:
3447   case SHT_ANDROID_RELR:
3448     return "RELR";
3449   case SHT_LLVM_ODRTAB:
3450     return "LLVM_ODRTAB";
3451   case SHT_LLVM_LINKER_OPTIONS:
3452     return "LLVM_LINKER_OPTIONS";
3453   case SHT_LLVM_CALL_GRAPH_PROFILE:
3454     return "LLVM_CALL_GRAPH_PROFILE";
3455   case SHT_LLVM_ADDRSIG:
3456     return "LLVM_ADDRSIG";
3457   case SHT_LLVM_DEPENDENT_LIBRARIES:
3458     return "LLVM_DEPENDENT_LIBRARIES";
3459   case SHT_LLVM_SYMPART:
3460     return "LLVM_SYMPART";
3461   case SHT_LLVM_PART_EHDR:
3462     return "LLVM_PART_EHDR";
3463   case SHT_LLVM_PART_PHDR:
3464     return "LLVM_PART_PHDR";
3465   // FIXME: Parse processor specific GNU attributes
3466   case SHT_GNU_ATTRIBUTES:
3467     return "ATTRIBUTES";
3468   case SHT_GNU_HASH:
3469     return "GNU_HASH";
3470   case SHT_GNU_verdef:
3471     return "VERDEF";
3472   case SHT_GNU_verneed:
3473     return "VERNEED";
3474   case SHT_GNU_versym:
3475     return "VERSYM";
3476   default:
3477     return getSectionTypeOffsetString(Type);
3478   }
3479   return "";
3480 }
3481
3482 static void printSectionDescription(formatted_raw_ostream &OS,
3483                                     unsigned EMachine) {
3484   OS << "Key to Flags:\n";
3485   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3486         "(info),\n";
3487   OS << "  L (link order), O (extra OS processing required), G (group), T "
3488         "(TLS),\n";
3489   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3490
3491   if (EMachine == EM_X86_64)
3492     OS << "  l (large), ";
3493   else if (EMachine == EM_ARM)
3494     OS << "  y (purecode), ";
3495   else
3496     OS << "  ";
3497
3498   OS << "p (processor specific)\n";
3499 }
3500
3501 template <class ELFT>
3502 void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
3503   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3504   ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
3505   OS << "There are " << to_string(Sections.size())
3506      << " section headers, starting at offset "
3507      << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
3508   OS << "Section Headers:\n";
3509   Field Fields[11] = {
3510       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3511       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3512       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3513       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3514   for (auto &F : Fields)
3515     printField(F);
3516   OS << "\n";
3517
3518   const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
3519   size_t SectionIndex = 0;
3520   for (const Elf_Shdr &Sec : Sections) {
3521     Fields[0].Str = to_string(SectionIndex);
3522     Fields[1].Str = unwrapOrError<StringRef>(
3523         ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler));
3524     Fields[2].Str =
3525         getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
3526     Fields[3].Str =
3527         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3528     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3529     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3530     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3531     Fields[7].Str = getGNUFlags(Obj->getHeader()->e_machine, Sec.sh_flags);
3532     Fields[8].Str = to_string(Sec.sh_link);
3533     Fields[9].Str = to_string(Sec.sh_info);
3534     Fields[10].Str = to_string(Sec.sh_addralign);
3535
3536     OS.PadToColumn(Fields[0].Column);
3537     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3538     for (int i = 1; i < 7; i++)
3539       printField(Fields[i]);
3540     OS.PadToColumn(Fields[7].Column);
3541     OS << right_justify(Fields[7].Str, 3);
3542     OS.PadToColumn(Fields[8].Column);
3543     OS << right_justify(Fields[8].Str, 2);
3544     OS.PadToColumn(Fields[9].Column);
3545     OS << right_justify(Fields[9].Str, 3);
3546     OS.PadToColumn(Fields[10].Column);
3547     OS << right_justify(Fields[10].Str, 2);
3548     OS << "\n";
3549     ++SectionIndex;
3550   }
3551   printSectionDescription(OS, Obj->getHeader()->e_machine);
3552 }
3553
3554 template <class ELFT>
3555 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
3556                                         size_t Entries,
3557                                         bool NonVisibilityBitsUsed) {
3558   if (!Name.empty())
3559     OS << "\nSymbol table '" << Name << "' contains " << Entries
3560        << " entries:\n";
3561   else
3562     OS << "\n Symbol table for image:\n";
3563
3564   if (ELFT::Is64Bits)
3565     OS << "   Num:    Value          Size Type    Bind   Vis";
3566   else
3567     OS << "   Num:    Value  Size Type    Bind   Vis";
3568
3569   if (NonVisibilityBitsUsed)
3570     OS << "             ";
3571   OS << "       Ndx Name\n";
3572 }
3573
3574 template <class ELFT>
3575 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
3576                                                 const Elf_Sym *Symbol,
3577                                                 const Elf_Sym *FirstSym) {
3578   unsigned SectionIndex = Symbol->st_shndx;
3579   switch (SectionIndex) {
3580   case ELF::SHN_UNDEF:
3581     return "UND";
3582   case ELF::SHN_ABS:
3583     return "ABS";
3584   case ELF::SHN_COMMON:
3585     return "COM";
3586   case ELF::SHN_XINDEX: {
3587     Expected<uint32_t> IndexOrErr = object::getExtendedSymbolTableIndex<ELFT>(
3588         Symbol, FirstSym, this->dumper()->getShndxTable());
3589     if (!IndexOrErr) {
3590       assert(Symbol->st_shndx == SHN_XINDEX &&
3591              "getSymbolSectionIndex should only fail due to an invalid "
3592              "SHT_SYMTAB_SHNDX table/reference");
3593       this->reportUniqueWarning(IndexOrErr.takeError());
3594       return "RSV[0xffff]";
3595     }
3596     return to_string(format_decimal(*IndexOrErr, 3));
3597   }
3598   default:
3599     // Find if:
3600     // Processor specific
3601     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3602       return std::string("PRC[0x") +
3603              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3604     // OS specific
3605     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3606       return std::string("OS[0x") +
3607              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3608     // Architecture reserved:
3609     if (SectionIndex >= ELF::SHN_LORESERVE &&
3610         SectionIndex <= ELF::SHN_HIRESERVE)
3611       return std::string("RSV[0x") +
3612              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3613     // A normal section with an index
3614     return to_string(format_decimal(SectionIndex, 3));
3615   }
3616 }
3617
3618 template <class ELFT>
3619 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
3620                                  const Elf_Sym *FirstSym, StringRef StrTable,
3621                                  bool IsDynamic, bool NonVisibilityBitsUsed) {
3622   static int Idx = 0;
3623   static bool Dynamic = true;
3624
3625   // If this function was called with a different value from IsDynamic
3626   // from last call, happens when we move from dynamic to static symbol
3627   // table, "Num" field should be reset.
3628   if (!Dynamic != !IsDynamic) {
3629     Idx = 0;
3630     Dynamic = false;
3631   }
3632
3633   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3634   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3635                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3636   Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":";
3637   Fields[1].Str = to_string(
3638       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3639   Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5));
3640
3641   unsigned char SymbolType = Symbol->getType();
3642   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3643       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3644     Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3645   else
3646     Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3647
3648   Fields[4].Str =
3649       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3650   Fields[5].Str =
3651       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3652   if (Symbol->st_other & ~0x3)
3653     Fields[5].Str +=
3654         " [<other: " + to_string(format_hex(Symbol->st_other, 2)) + ">]";
3655
3656   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3657   Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3658
3659   Fields[7].Str =
3660       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
3661   for (auto &Entry : Fields)
3662     printField(Entry);
3663   OS << "\n";
3664 }
3665
3666 template <class ELFT>
3667 void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
3668                                        uint32_t Sym, StringRef StrTable,
3669                                        uint32_t Bucket) {
3670   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3671   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3672                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3673   Fields[0].Str = to_string(format_decimal(Sym, 5));
3674   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3675
3676   const auto Symbol = FirstSym + Sym;
3677   Fields[2].Str = to_string(
3678       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3679   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3680
3681   unsigned char SymbolType = Symbol->getType();
3682   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3683       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3684     Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3685   else
3686     Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3687
3688   Fields[5].Str =
3689       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3690   Fields[6].Str =
3691       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3692   Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3693   Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
3694
3695   for (auto &Entry : Fields)
3696     printField(Entry);
3697   OS << "\n";
3698 }
3699
3700 template <class ELFT>
3701 void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
3702                                   bool PrintDynamicSymbols) {
3703   if (!PrintSymbols && !PrintDynamicSymbols)
3704     return;
3705   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3706   this->dumper()->printSymbolsHelper(true);
3707   if (PrintSymbols)
3708     this->dumper()->printSymbolsHelper(false);
3709 }
3710
3711 template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) {
3712   if (this->dumper()->getDynamicStringTable().empty())
3713     return;
3714   auto StringTable = this->dumper()->getDynamicStringTable();
3715   auto DynSyms = this->dumper()->dynamic_symbols();
3716
3717   // Try printing .hash
3718   if (auto SysVHash = this->dumper()->getHashTable()) {
3719     OS << "\n Symbol table of .hash for image:\n";
3720     if (ELFT::Is64Bits)
3721       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3722     else
3723       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3724     OS << "\n";
3725
3726     auto Buckets = SysVHash->buckets();
3727     auto Chains = SysVHash->chains();
3728     for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) {
3729       if (Buckets[Buc] == ELF::STN_UNDEF)
3730         continue;
3731       std::vector<bool> Visited(SysVHash->nchain);
3732       for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) {
3733         if (Ch == ELF::STN_UNDEF)
3734           break;
3735
3736         if (Visited[Ch]) {
3737           reportWarning(
3738               createError(".hash section is invalid: bucket " + Twine(Ch) +
3739                           ": a cycle was detected in the linked chain"),
3740               this->FileName);
3741           break;
3742         }
3743
3744         printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
3745         Visited[Ch] = true;
3746       }
3747     }
3748   }
3749
3750   // Try printing .gnu.hash
3751   if (auto GnuHash = this->dumper()->getGnuHashTable()) {
3752     OS << "\n Symbol table of .gnu.hash for image:\n";
3753     if (ELFT::Is64Bits)
3754       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3755     else
3756       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3757     OS << "\n";
3758     auto Buckets = GnuHash->buckets();
3759     for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) {
3760       if (Buckets[Buc] == ELF::STN_UNDEF)
3761         continue;
3762       uint32_t Index = Buckets[Buc];
3763       uint32_t GnuHashable = Index - GnuHash->symndx;
3764       // Print whole chain
3765       while (true) {
3766         printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
3767         // Chain ends at symbol with stopper bit
3768         if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
3769           break;
3770       }
3771     }
3772   }
3773 }
3774
3775 static inline std::string printPhdrFlags(unsigned Flag) {
3776   std::string Str;
3777   Str = (Flag & PF_R) ? "R" : " ";
3778   Str += (Flag & PF_W) ? "W" : " ";
3779   Str += (Flag & PF_X) ? "E" : " ";
3780   return Str;
3781 }
3782
3783 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3784 // PT_TLS must only have SHF_TLS sections
3785 template <class ELFT>
3786 bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
3787                                       const Elf_Shdr &Sec) {
3788   return (((Sec.sh_flags & ELF::SHF_TLS) &&
3789            ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
3790             (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
3791           (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
3792 }
3793
3794 // Non-SHT_NOBITS must have its offset inside the segment
3795 // Only non-zero section can be at end of segment
3796 template <class ELFT>
3797 bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3798   if (Sec.sh_type == ELF::SHT_NOBITS)
3799     return true;
3800   bool IsSpecial =
3801       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3802   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3803   auto SectionSize =
3804       (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3805   if (Sec.sh_offset >= Phdr.p_offset)
3806     return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
3807             /*only non-zero sized sections at end*/
3808             && (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
3809   return false;
3810 }
3811
3812 // SHF_ALLOC must have VMA inside segment
3813 // Only non-zero section can be at end of segment
3814 template <class ELFT>
3815 bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3816   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
3817     return true;
3818   bool IsSpecial =
3819       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3820   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3821   auto SectionSize =
3822       (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3823   if (Sec.sh_addr >= Phdr.p_vaddr)
3824     return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
3825             (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
3826   return false;
3827 }
3828
3829 // No section with zero size must be at start or end of PT_DYNAMIC
3830 template <class ELFT>
3831 bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3832   if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
3833     return true;
3834   // Is section within the phdr both based on offset and VMA ?
3835   return ((Sec.sh_type == ELF::SHT_NOBITS) ||
3836           (Sec.sh_offset > Phdr.p_offset &&
3837            Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
3838          (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
3839           (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
3840 }
3841
3842 template <class ELFT>
3843 void GNUStyle<ELFT>::printProgramHeaders(
3844     const ELFO *Obj, bool PrintProgramHeaders,
3845     cl::boolOrDefault PrintSectionMapping) {
3846   if (PrintProgramHeaders)
3847     printProgramHeaders(Obj);
3848
3849   // Display the section mapping along with the program headers, unless
3850   // -section-mapping is explicitly set to false.
3851   if (PrintSectionMapping != cl::BOU_FALSE)
3852     printSectionMapping(Obj);
3853 }
3854
3855 template <class ELFT>
3856 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
3857   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3858   const Elf_Ehdr *Header = Obj->getHeader();
3859   Field Fields[8] = {2,         17,        26,        37 + Bias,
3860                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
3861   OS << "\nElf file type is "
3862      << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
3863      << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
3864      << "There are " << Header->e_phnum << " program headers,"
3865      << " starting at offset " << Header->e_phoff << "\n\n"
3866      << "Program Headers:\n";
3867   if (ELFT::Is64Bits)
3868     OS << "  Type           Offset   VirtAddr           PhysAddr         "
3869        << "  FileSiz  MemSiz   Flg Align\n";
3870   else
3871     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
3872        << "MemSiz  Flg Align\n";
3873
3874   unsigned Width = ELFT::Is64Bits ? 18 : 10;
3875   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
3876   for (const auto &Phdr :
3877        unwrapOrError(this->FileName, Obj->program_headers())) {
3878     Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type);
3879     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
3880     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
3881     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
3882     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
3883     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
3884     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
3885     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
3886     for (auto Field : Fields)
3887       printField(Field);
3888     if (Phdr.p_type == ELF::PT_INTERP) {
3889       OS << "\n      [Requesting program interpreter: ";
3890       OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
3891     }
3892     OS << "\n";
3893   }
3894 }
3895
3896 template <class ELFT>
3897 void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) {
3898   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
3899   DenseSet<const Elf_Shdr *> BelongsToSegment;
3900   int Phnum = 0;
3901   for (const Elf_Phdr &Phdr :
3902        unwrapOrError(this->FileName, Obj->program_headers())) {
3903     std::string Sections;
3904     OS << format("   %2.2d     ", Phnum++);
3905     for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
3906       // Check if each section is in a segment and then print mapping.
3907       // readelf additionally makes sure it does not print zero sized sections
3908       // at end of segments and for PT_DYNAMIC both start and end of section
3909       // .tbss must only be shown in PT_TLS section.
3910       bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
3911                           ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
3912                           Phdr.p_type != ELF::PT_TLS;
3913       if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
3914           checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
3915           checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL)) {
3916         Sections +=
3917             unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() +
3918             " ";
3919         BelongsToSegment.insert(&Sec);
3920       }
3921     }
3922     OS << Sections << "\n";
3923     OS.flush();
3924   }
3925
3926   // Display sections that do not belong to a segment.
3927   std::string Sections;
3928   for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
3929     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
3930       Sections +=
3931           unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + ' ';
3932   }
3933   if (!Sections.empty()) {
3934     OS << "   None  " << Sections << '\n';
3935     OS.flush();
3936   }
3937 }
3938
3939 namespace {
3940 template <class ELFT> struct RelSymbol {
3941   const typename ELFT::Sym *Sym;
3942   std::string Name;
3943 };
3944
3945 template <class ELFT>
3946 RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> *Obj, StringRef FileName,
3947                                   const ELFDumper<ELFT> *Dumper,
3948                                   const typename ELFT::Rela &Reloc) {
3949   uint32_t SymIndex = Reloc.getSymbol(Obj->isMips64EL());
3950   const typename ELFT::Sym *Sym = Dumper->dynamic_symbols().begin() + SymIndex;
3951   Expected<StringRef> ErrOrName = Sym->getName(Dumper->getDynamicStringTable());
3952
3953   std::string Name;
3954   if (ErrOrName) {
3955     Name = maybeDemangle(*ErrOrName);
3956   } else {
3957     reportWarning(
3958         createError("unable to get name of the dynamic symbol with index " +
3959                     Twine(SymIndex) + ": " + toString(ErrOrName.takeError())),
3960         FileName);
3961     Name = "<corrupt>";
3962   }
3963
3964   return {Sym, std::move(Name)};
3965 }
3966 } // namespace
3967
3968 template <class ELFT>
3969 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
3970                                             bool IsRela) {
3971   RelSymbol<ELFT> S = getSymbolForReloc(Obj, this->FileName, this->dumper(), R);
3972   printRelocation(Obj, S.Sym, S.Name, R, IsRela);
3973 }
3974
3975 template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) {
3976   Elf_Dyn_Range Table = this->dumper()->dynamic_table();
3977   if (Table.empty())
3978     return;
3979
3980   const DynRegionInfo &DynamicTableRegion =
3981       this->dumper()->getDynamicTableRegion();
3982
3983   OS << "Dynamic section at offset "
3984      << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) -
3985                        Obj->base(),
3986                    1)
3987      << " contains " << Table.size() << " entries:\n";
3988
3989   bool Is64 = ELFT::Is64Bits;
3990   if (Is64)
3991     OS << "  Tag                Type                 Name/Value\n";
3992   else
3993     OS << "  Tag        Type                 Name/Value\n";
3994   for (auto Entry : Table) {
3995     uintX_t Tag = Entry.getTag();
3996     std::string TypeString =
3997         std::string("(") + Obj->getDynamicTagAsString(Tag).c_str() + ")";
3998     OS << "  " << format_hex(Tag, Is64 ? 18 : 10)
3999        << format(" %-20s ", TypeString.c_str());
4000     this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
4001     OS << "\n";
4002   }
4003 }
4004
4005 template <class ELFT>
4006 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
4007   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
4008   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
4009   const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
4010   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
4011   if (DynRelaRegion.Size > 0) {
4012     OS << "\n'RELA' relocation section at offset "
4013        << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
4014                          Obj->base(),
4015                      1)
4016        << " contains " << DynRelaRegion.Size << " bytes:\n";
4017     printRelocHeader(ELF::SHT_RELA);
4018     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
4019       printDynamicRelocation(Obj, Rela, true);
4020   }
4021   if (DynRelRegion.Size > 0) {
4022     OS << "\n'REL' relocation section at offset "
4023        << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
4024                          Obj->base(),
4025                      1)
4026        << " contains " << DynRelRegion.Size << " bytes:\n";
4027     printRelocHeader(ELF::SHT_REL);
4028     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
4029       Elf_Rela Rela;
4030       Rela.r_offset = Rel.r_offset;
4031       Rela.r_info = Rel.r_info;
4032       Rela.r_addend = 0;
4033       printDynamicRelocation(Obj, Rela, false);
4034     }
4035   }
4036   if (DynRelrRegion.Size > 0) {
4037     OS << "\n'RELR' relocation section at offset "
4038        << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) -
4039                          Obj->base(),
4040                      1)
4041        << " contains " << DynRelrRegion.Size << " bytes:\n";
4042     printRelocHeader(ELF::SHT_REL);
4043     Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
4044     std::vector<Elf_Rela> RelrRelas =
4045         unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
4046     for (const Elf_Rela &Rela : RelrRelas) {
4047       printDynamicRelocation(Obj, Rela, false);
4048     }
4049   }
4050   if (DynPLTRelRegion.Size) {
4051     OS << "\n'PLT' relocation section at offset "
4052        << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
4053                          Obj->base(),
4054                      1)
4055        << " contains " << DynPLTRelRegion.Size << " bytes:\n";
4056   }
4057   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4058     printRelocHeader(ELF::SHT_RELA);
4059     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
4060       printDynamicRelocation(Obj, Rela, true);
4061   } else {
4062     printRelocHeader(ELF::SHT_REL);
4063     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
4064       Elf_Rela Rela;
4065       Rela.r_offset = Rel.r_offset;
4066       Rela.r_info = Rel.r_info;
4067       Rela.r_addend = 0;
4068       printDynamicRelocation(Obj, Rela, false);
4069     }
4070   }
4071 }
4072
4073 template <class ELFT>
4074 void GNUStyle<ELFT>::printGNUVersionSectionProlog(
4075     const ELFFile<ELFT> *Obj, const typename ELFT::Shdr *Sec,
4076     const Twine &Label, unsigned EntriesNum) {
4077   StringRef SecName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
4078   OS << Label << " section '" << SecName << "' "
4079      << "contains " << EntriesNum << " entries:\n";
4080
4081   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
4082   StringRef SymTabName = "<corrupt>";
4083
4084   Expected<const typename ELFT::Shdr *> SymTabOrErr =
4085       Obj->getSection(Sec->sh_link);
4086   if (SymTabOrErr)
4087     SymTabName =
4088         unwrapOrError(this->FileName, Obj->getSectionName(*SymTabOrErr));
4089   else
4090     this->reportUniqueWarning(
4091         createError("invalid section linked to " +
4092                     object::getELFSectionTypeName(Obj->getHeader()->e_machine,
4093                                                   Sec->sh_type) +
4094                     " section with index " + Twine(SecNdx) + ": " +
4095                     toString(SymTabOrErr.takeError())));
4096
4097   OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16)
4098      << "  Offset: " << format_hex(Sec->sh_offset, 8)
4099      << "  Link: " << Sec->sh_link << " (" << SymTabName << ")\n";
4100 }
4101
4102 template <class ELFT>
4103 void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
4104                                                const Elf_Shdr *Sec) {
4105   if (!Sec)
4106     return;
4107
4108   printGNUVersionSectionProlog(Obj, Sec, "Version symbols",
4109                                Sec->sh_size / sizeof(Elf_Versym));
4110   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4111       this->dumper()->getVersionTable(Sec, /*SymTab=*/nullptr,
4112                                       /*StrTab=*/nullptr);
4113   if (!VerTableOrErr) {
4114     this->reportUniqueWarning(VerTableOrErr.takeError());
4115     return;
4116   }
4117
4118   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4119   std::vector<StringRef> Versions;
4120   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4121     unsigned Ndx = VerTable[I].vs_index;
4122     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4123       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4124       continue;
4125     }
4126
4127     bool IsDefault;
4128     Expected<StringRef> NameOrErr =
4129         this->dumper()->getSymbolVersionByIndex(Ndx, IsDefault);
4130     if (!NameOrErr) {
4131       if (!NameOrErr) {
4132         unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
4133         this->reportUniqueWarning(createError(
4134             "unable to get a version for entry " + Twine(I) +
4135             " of SHT_GNU_versym section with index " + Twine(SecNdx) + ": " +
4136             toString(NameOrErr.takeError())));
4137       }
4138       Versions.emplace_back("<corrupt>");
4139       continue;
4140     }
4141     Versions.emplace_back(*NameOrErr);
4142   }
4143
4144   // readelf prints 4 entries per line.
4145   uint64_t Entries = VerTable.size();
4146   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4147     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4148     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4149       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4150       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4151                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4152       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4153     }
4154     OS << '\n';
4155   }
4156   OS << '\n';
4157 }
4158
4159 static std::string versionFlagToString(unsigned Flags) {
4160   if (Flags == 0)
4161     return "none";
4162
4163   std::string Ret;
4164   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4165     if (!(Flags & Flag))
4166       return;
4167     if (!Ret.empty())
4168       Ret += " | ";
4169     Ret += Name;
4170     Flags &= ~Flag;
4171   };
4172
4173   AddFlag(VER_FLG_BASE, "BASE");
4174   AddFlag(VER_FLG_WEAK, "WEAK");
4175   AddFlag(VER_FLG_INFO, "INFO");
4176   AddFlag(~0, "<unknown>");
4177   return Ret;
4178 }
4179
4180 template <class ELFT>
4181 void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
4182                                                    const Elf_Shdr *Sec) {
4183   if (!Sec)
4184     return;
4185
4186   printGNUVersionSectionProlog(Obj, Sec, "Version definition", Sec->sh_info);
4187
4188   Expected<std::vector<VerDef>> V = this->dumper()->getVersionDefinitions(Sec);
4189   if (!V) {
4190     this->reportUniqueWarning(V.takeError());
4191     return;
4192   }
4193
4194   for (const VerDef &Def : *V) {
4195     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4196                  Def.Offset, Def.Version,
4197                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4198                  Def.Name.data());
4199     unsigned I = 0;
4200     for (const VerdAux &Aux : Def.AuxV)
4201       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4202                    Aux.Name.data());
4203   }
4204
4205   OS << '\n';
4206 }
4207
4208 template <class ELFT>
4209 void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
4210                                                    const Elf_Shdr *Sec) {
4211   if (!Sec)
4212     return;
4213
4214   unsigned VerneedNum = Sec->sh_info;
4215   printGNUVersionSectionProlog(Obj, Sec, "Version needs", VerneedNum);
4216
4217   Expected<std::vector<VerNeed>> V =
4218       this->dumper()->getVersionDependencies(Sec);
4219   if (!V) {
4220     this->reportUniqueWarning(V.takeError());
4221     return;
4222   }
4223
4224   for (const VerNeed &VN : *V) {
4225     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4226                  VN.Version, VN.File.data(), VN.Cnt);
4227     for (const VernAux &Aux : VN.AuxV)
4228       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4229                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4230                    Aux.Other);
4231   }
4232   OS << '\n';
4233 }
4234
4235 // Hash histogram shows  statistics of how efficient the hash was for the
4236 // dynamic symbol table. The table shows number of hash buckets for different
4237 // lengths of chains as absolute number and percentage of the total buckets.
4238 // Additionally cumulative coverage of symbols for each set of buckets.
4239 template <class ELFT>
4240 void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
4241   // Print histogram for .hash section
4242   if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) {
4243     size_t NBucket = HashTable->nbucket;
4244     size_t NChain = HashTable->nchain;
4245     ArrayRef<Elf_Word> Buckets = HashTable->buckets();
4246     ArrayRef<Elf_Word> Chains = HashTable->chains();
4247     size_t TotalSyms = 0;
4248     // If hash table is correct, we have at least chains with 0 length
4249     size_t MaxChain = 1;
4250     size_t CumulativeNonZero = 0;
4251
4252     if (NChain == 0 || NBucket == 0)
4253       return;
4254
4255     std::vector<size_t> ChainLen(NBucket, 0);
4256     // Go over all buckets and and note chain lengths of each bucket (total
4257     // unique chain lengths).
4258     for (size_t B = 0; B < NBucket; B++) {
4259       std::vector<bool> Visited(NChain);
4260       for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4261         if (C == ELF::STN_UNDEF)
4262           break;
4263         if (Visited[C]) {
4264           reportWarning(
4265               createError(".hash section is invalid: bucket " + Twine(C) +
4266                           ": a cycle was detected in the linked chain"),
4267               this->FileName);
4268           break;
4269         }
4270         Visited[C] = true;
4271         if (MaxChain <= ++ChainLen[B])
4272           MaxChain++;
4273       }
4274       TotalSyms += ChainLen[B];
4275     }
4276
4277     if (!TotalSyms)
4278       return;
4279
4280     std::vector<size_t> Count(MaxChain, 0) ;
4281     // Count how long is the chain for each bucket
4282     for (size_t B = 0; B < NBucket; B++)
4283       ++Count[ChainLen[B]];
4284     // Print Number of buckets with each chain lengths and their cumulative
4285     // coverage of the symbols
4286     OS << "Histogram for bucket list length (total of " << NBucket
4287        << " buckets)\n"
4288        << " Length  Number     % of total  Coverage\n";
4289     for (size_t I = 0; I < MaxChain; I++) {
4290       CumulativeNonZero += Count[I] * I;
4291       OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4292                    (Count[I] * 100.0) / NBucket,
4293                    (CumulativeNonZero * 100.0) / TotalSyms);
4294     }
4295   }
4296
4297   // Print histogram for .gnu.hash section
4298   if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) {
4299     size_t NBucket = GnuHashTable->nbuckets;
4300     ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
4301     unsigned NumSyms = this->dumper()->dynamic_symbols().size();
4302     if (!NumSyms)
4303       return;
4304     ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
4305     size_t Symndx = GnuHashTable->symndx;
4306     size_t TotalSyms = 0;
4307     size_t MaxChain = 1;
4308     size_t CumulativeNonZero = 0;
4309
4310     if (Chains.empty() || NBucket == 0)
4311       return;
4312
4313     std::vector<size_t> ChainLen(NBucket, 0);
4314
4315     for (size_t B = 0; B < NBucket; B++) {
4316       if (!Buckets[B])
4317         continue;
4318       size_t Len = 1;
4319       for (size_t C = Buckets[B] - Symndx;
4320            C < Chains.size() && (Chains[C] & 1) == 0; C++)
4321         if (MaxChain < ++Len)
4322           MaxChain++;
4323       ChainLen[B] = Len;
4324       TotalSyms += Len;
4325     }
4326     MaxChain++;
4327
4328     if (!TotalSyms)
4329       return;
4330
4331     std::vector<size_t> Count(MaxChain, 0) ;
4332     for (size_t B = 0; B < NBucket; B++)
4333       ++Count[ChainLen[B]];
4334     // Print Number of buckets with each chain lengths and their cumulative
4335     // coverage of the symbols
4336     OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4337        << " buckets)\n"
4338        << " Length  Number     % of total  Coverage\n";
4339     for (size_t I = 0; I <MaxChain; I++) {
4340       CumulativeNonZero += Count[I] * I;
4341       OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4342                    (Count[I] * 100.0) / NBucket,
4343                    (CumulativeNonZero * 100.0) / TotalSyms);
4344     }
4345   }
4346 }
4347
4348 template <class ELFT>
4349 void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
4350   OS << "GNUStyle::printCGProfile not implemented\n";
4351 }
4352
4353 template <class ELFT>
4354 void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
4355   reportError(createError("--addrsig: not implemented"), this->FileName);
4356 }
4357
4358 static StringRef getGenericNoteTypeName(const uint32_t NT) {
4359   static const struct {
4360     uint32_t ID;
4361     const char *Name;
4362   } Notes[] = {
4363       {ELF::NT_VERSION, "NT_VERSION (version)"},
4364       {ELF::NT_ARCH, "NT_ARCH (architecture)"},
4365       {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
4366       {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
4367   };
4368
4369   for (const auto &Note : Notes)
4370     if (Note.ID == NT)
4371       return Note.Name;
4372
4373   return "";
4374 }
4375
4376 static StringRef getCoreNoteTypeName(const uint32_t NT) {
4377   static const struct {
4378     uint32_t ID;
4379     const char *Name;
4380   } Notes[] = {
4381       {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
4382       {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
4383       {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
4384       {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
4385       {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
4386       {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
4387       {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
4388       {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
4389       {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
4390       {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
4391       {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
4392
4393       {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
4394       {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
4395       {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
4396       {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
4397       {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
4398       {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
4399       {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
4400       {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
4401       {ELF::NT_PPC_TM_CFPR,
4402        "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
4403       {ELF::NT_PPC_TM_CVMX,
4404        "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
4405       {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
4406       {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
4407       {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
4408       {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
4409       {ELF::NT_PPC_TM_CDSCR,
4410        "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
4411
4412       {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
4413       {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
4414       {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
4415
4416       {ELF::NT_S390_HIGH_GPRS,
4417        "NT_S390_HIGH_GPRS (s390 upper register halves)"},
4418       {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
4419       {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
4420       {ELF::NT_S390_TODPREG,
4421        "NT_S390_TODPREG (s390 TOD programmable register)"},
4422       {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
4423       {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
4424       {ELF::NT_S390_LAST_BREAK,
4425        "NT_S390_LAST_BREAK (s390 last breaking event address)"},
4426       {ELF::NT_S390_SYSTEM_CALL,
4427        "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
4428       {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
4429       {ELF::NT_S390_VXRS_LOW,
4430        "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
4431       {ELF::NT_S390_VXRS_HIGH,
4432        "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
4433       {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
4434       {ELF::NT_S390_GS_BC,
4435        "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
4436
4437       {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
4438       {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
4439       {ELF::NT_ARM_HW_BREAK,
4440        "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
4441       {ELF::NT_ARM_HW_WATCH,
4442        "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
4443
4444       {ELF::NT_FILE, "NT_FILE (mapped files)"},
4445       {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
4446       {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
4447   };
4448
4449   for (const auto &Note : Notes)
4450     if (Note.ID == NT)
4451       return Note.Name;
4452
4453   return "";
4454 }
4455
4456 static std::string getGNUNoteTypeName(const uint32_t NT) {
4457   static const struct {
4458     uint32_t ID;
4459     const char *Name;
4460   } Notes[] = {
4461       {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
4462       {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
4463       {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
4464       {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
4465       {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
4466   };
4467
4468   for (const auto &Note : Notes)
4469     if (Note.ID == NT)
4470       return std::string(Note.Name);
4471
4472   std::string string;
4473   raw_string_ostream OS(string);
4474   OS << format("Unknown note type (0x%08x)", NT);
4475   return OS.str();
4476 }
4477
4478 static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
4479   static const struct {
4480     uint32_t ID;
4481     const char *Name;
4482   } Notes[] = {
4483       {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
4484       {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
4485       {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
4486       {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
4487       {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
4488       {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
4489       {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
4490       {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
4491       {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
4492        "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
4493       {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
4494   };
4495
4496   for (const auto &Note : Notes)
4497     if (Note.ID == NT)
4498       return std::string(Note.Name);
4499
4500   std::string string;
4501   raw_string_ostream OS(string);
4502   OS << format("Unknown note type (0x%08x)", NT);
4503   return OS.str();
4504 }
4505
4506 static std::string getAMDNoteTypeName(const uint32_t NT) {
4507   static const struct {
4508     uint32_t ID;
4509     const char *Name;
4510   } Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA,
4511                 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
4512                {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
4513                {ELF::NT_AMD_AMDGPU_PAL_METADATA,
4514                 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
4515
4516   for (const auto &Note : Notes)
4517     if (Note.ID == NT)
4518       return std::string(Note.Name);
4519
4520   std::string string;
4521   raw_string_ostream OS(string);
4522   OS << format("Unknown note type (0x%08x)", NT);
4523   return OS.str();
4524 }
4525
4526 static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
4527   if (NT == ELF::NT_AMDGPU_METADATA)
4528     return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
4529
4530   std::string string;
4531   raw_string_ostream OS(string);
4532   OS << format("Unknown note type (0x%08x)", NT);
4533   return OS.str();
4534 }
4535
4536 template <typename ELFT>
4537 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4538                                   ArrayRef<uint8_t> Data) {
4539   std::string str;
4540   raw_string_ostream OS(str);
4541   uint32_t PrData;
4542   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4543     if (PrData & Flag) {
4544       PrData &= ~Flag;
4545       OS << Name;
4546       if (PrData)
4547         OS << ", ";
4548     }
4549   };
4550
4551   switch (Type) {
4552   default:
4553     OS << format("<application-specific type 0x%x>", Type);
4554     return OS.str();
4555   case GNU_PROPERTY_STACK_SIZE: {
4556     OS << "stack size: ";
4557     if (DataSize == sizeof(typename ELFT::uint))
4558       OS << formatv("{0:x}",
4559                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4560     else
4561       OS << format("<corrupt length: 0x%x>", DataSize);
4562     return OS.str();
4563   }
4564   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4565     OS << "no copy on protected";
4566     if (DataSize)
4567       OS << format(" <corrupt length: 0x%x>", DataSize);
4568     return OS.str();
4569   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4570   case GNU_PROPERTY_X86_FEATURE_1_AND:
4571     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4572                                                         : "x86 feature: ");
4573     if (DataSize != 4) {
4574       OS << format("<corrupt length: 0x%x>", DataSize);
4575       return OS.str();
4576     }
4577     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4578     if (PrData == 0) {
4579       OS << "<None>";
4580       return OS.str();
4581     }
4582     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4583       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4584       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4585     } else {
4586       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4587       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4588     }
4589     if (PrData)
4590       OS << format("<unknown flags: 0x%x>", PrData);
4591     return OS.str();
4592   case GNU_PROPERTY_X86_ISA_1_NEEDED:
4593   case GNU_PROPERTY_X86_ISA_1_USED:
4594     OS << "x86 ISA "
4595        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4596     if (DataSize != 4) {
4597       OS << format("<corrupt length: 0x%x>", DataSize);
4598       return OS.str();
4599     }
4600     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4601     if (PrData == 0) {
4602       OS << "<None>";
4603       return OS.str();
4604     }
4605     DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
4606     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
4607     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
4608     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
4609     DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
4610     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
4611     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
4612     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
4613     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
4614     DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
4615     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
4616     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
4617     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
4618     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
4619     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
4620     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
4621     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
4622     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
4623     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
4624     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
4625     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
4626     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
4627     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
4628     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
4629     if (PrData)
4630       OS << format("<unknown flags: 0x%x>", PrData);
4631     return OS.str();
4632     break;
4633   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4634   case GNU_PROPERTY_X86_FEATURE_2_USED:
4635     OS << "x86 feature "
4636        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4637     if (DataSize != 4) {
4638       OS << format("<corrupt length: 0x%x>", DataSize);
4639       return OS.str();
4640     }
4641     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4642     if (PrData == 0) {
4643       OS << "<None>";
4644       return OS.str();
4645     }
4646     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4647     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4648     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4649     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4650     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4651     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4652     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4653     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4654     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4655     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4656     if (PrData)
4657       OS << format("<unknown flags: 0x%x>", PrData);
4658     return OS.str();
4659   }
4660 }
4661
4662 template <typename ELFT>
4663 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4664   using Elf_Word = typename ELFT::Word;
4665
4666   SmallVector<std::string, 4> Properties;
4667   while (Arr.size() >= 8) {
4668     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4669     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4670     Arr = Arr.drop_front(8);
4671
4672     // Take padding size into account if present.
4673     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4674     std::string str;
4675     raw_string_ostream OS(str);
4676     if (Arr.size() < PaddedSize) {
4677       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4678       Properties.push_back(OS.str());
4679       break;
4680     }
4681     Properties.push_back(
4682         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4683     Arr = Arr.drop_front(PaddedSize);
4684   }
4685
4686   if (!Arr.empty())
4687     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4688
4689   return Properties;
4690 }
4691
4692 struct GNUAbiTag {
4693   std::string OSName;
4694   std::string ABI;
4695   bool IsValid;
4696 };
4697
4698 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
4699   typedef typename ELFT::Word Elf_Word;
4700
4701   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
4702                            reinterpret_cast<const Elf_Word *>(Desc.end()));
4703
4704   if (Words.size() < 4)
4705     return {"", "", /*IsValid=*/false};
4706
4707   static const char *OSNames[] = {
4708       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4709   };
4710   StringRef OSName = "Unknown";
4711   if (Words[0] < array_lengthof(OSNames))
4712     OSName = OSNames[Words[0]];
4713   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
4714   std::string str;
4715   raw_string_ostream ABI(str);
4716   ABI << Major << "." << Minor << "." << Patch;
4717   return {OSName, ABI.str(), /*IsValid=*/true};
4718 }
4719
4720 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
4721   std::string str;
4722   raw_string_ostream OS(str);
4723   for (const auto &B : Desc)
4724     OS << format_hex_no_prefix(B, 2);
4725   return OS.str();
4726 }
4727
4728 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
4729   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
4730 }
4731
4732 template <typename ELFT>
4733 static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
4734                          ArrayRef<uint8_t> Desc) {
4735   switch (NoteType) {
4736   default:
4737     return;
4738   case ELF::NT_GNU_ABI_TAG: {
4739     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
4740     if (!AbiTag.IsValid)
4741       OS << "    <corrupt GNU_ABI_TAG>";
4742     else
4743       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
4744     break;
4745   }
4746   case ELF::NT_GNU_BUILD_ID: {
4747     OS << "    Build ID: " << getGNUBuildId(Desc);
4748     break;
4749   }
4750   case ELF::NT_GNU_GOLD_VERSION:
4751     OS << "    Version: " << getGNUGoldVersion(Desc);
4752     break;
4753   case ELF::NT_GNU_PROPERTY_TYPE_0:
4754     OS << "    Properties:";
4755     for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
4756       OS << "    " << Property << "\n";
4757     break;
4758   }
4759   OS << '\n';
4760 }
4761
4762 struct AMDNote {
4763   std::string Type;
4764   std::string Value;
4765 };
4766
4767 template <typename ELFT>
4768 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
4769   switch (NoteType) {
4770   default:
4771     return {"", ""};
4772   case ELF::NT_AMD_AMDGPU_HSA_METADATA:
4773     return {
4774         "HSA Metadata",
4775         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
4776   case ELF::NT_AMD_AMDGPU_ISA:
4777     return {
4778         "ISA Version",
4779         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
4780   }
4781 }
4782
4783 struct AMDGPUNote {
4784   std::string Type;
4785   std::string Value;
4786 };
4787
4788 template <typename ELFT>
4789 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
4790   switch (NoteType) {
4791   default:
4792     return {"", ""};
4793   case ELF::NT_AMDGPU_METADATA: {
4794     auto MsgPackString =
4795         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
4796     msgpack::Document MsgPackDoc;
4797     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
4798       return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4799
4800     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
4801     if (!Verifier.verify(MsgPackDoc.getRoot()))
4802       return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4803
4804     std::string HSAMetadataString;
4805     raw_string_ostream StrOS(HSAMetadataString);
4806     MsgPackDoc.toYAML(StrOS);
4807
4808     return {"AMDGPU Metadata", StrOS.str()};
4809   }
4810   }
4811 }
4812
4813 struct CoreFileMapping {
4814   uint64_t Start, End, Offset;
4815   StringRef Filename;
4816 };
4817
4818 struct CoreNote {
4819   uint64_t PageSize;
4820   std::vector<CoreFileMapping> Mappings;
4821 };
4822
4823 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
4824   // Expected format of the NT_FILE note description:
4825   // 1. # of file mappings (call it N)
4826   // 2. Page size
4827   // 3. N (start, end, offset) triples
4828   // 4. N packed filenames (null delimited)
4829   // Each field is an Elf_Addr, except for filenames which are char* strings.
4830
4831   CoreNote Ret;
4832   const int Bytes = Desc.getAddressSize();
4833
4834   if (!Desc.isValidOffsetForAddress(2))
4835     return createStringError(object_error::parse_failed,
4836                              "malformed note: header too short");
4837   if (Desc.getData().back() != 0)
4838     return createStringError(object_error::parse_failed,
4839                              "malformed note: not NUL terminated");
4840
4841   uint64_t DescOffset = 0;
4842   uint64_t FileCount = Desc.getAddress(&DescOffset);
4843   Ret.PageSize = Desc.getAddress(&DescOffset);
4844
4845   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
4846     return createStringError(object_error::parse_failed,
4847                              "malformed note: too short for number of files");
4848
4849   uint64_t FilenamesOffset = 0;
4850   DataExtractor Filenames(
4851       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
4852       Desc.isLittleEndian(), Desc.getAddressSize());
4853
4854   Ret.Mappings.resize(FileCount);
4855   for (CoreFileMapping &Mapping : Ret.Mappings) {
4856     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
4857       return createStringError(object_error::parse_failed,
4858                                "malformed note: too few filenames");
4859     Mapping.Start = Desc.getAddress(&DescOffset);
4860     Mapping.End = Desc.getAddress(&DescOffset);
4861     Mapping.Offset = Desc.getAddress(&DescOffset);
4862     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
4863   }
4864
4865   return Ret;
4866 }
4867
4868 template <typename ELFT>
4869 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
4870   // Length of "0x<address>" string.
4871   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
4872
4873   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
4874   OS << "    " << right_justify("Start", FieldWidth) << "  "
4875      << right_justify("End", FieldWidth) << "  "
4876      << right_justify("Page Offset", FieldWidth) << '\n';
4877   for (const CoreFileMapping &Mapping : Note.Mappings) {
4878     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
4879        << format_hex(Mapping.End, FieldWidth) << "  "
4880        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
4881        << Mapping.Filename << '\n';
4882   }
4883 }
4884
4885 template <class ELFT>
4886 void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
4887   auto PrintHeader = [&](const typename ELFT::Off Offset,
4888                          const typename ELFT::Addr Size) {
4889     OS << "Displaying notes found at file offset " << format_hex(Offset, 10)
4890        << " with length " << format_hex(Size, 10) << ":\n"
4891        << "  Owner                Data size \tDescription\n";
4892   };
4893
4894   auto ProcessNote = [&](const Elf_Note &Note) {
4895     StringRef Name = Note.getName();
4896     ArrayRef<uint8_t> Descriptor = Note.getDesc();
4897     Elf_Word Type = Note.getType();
4898
4899     // Print the note owner/type.
4900     OS << "  " << left_justify(Name, 20) << ' '
4901        << format_hex(Descriptor.size(), 10) << '\t';
4902     if (Name == "GNU") {
4903       OS << getGNUNoteTypeName(Type) << '\n';
4904     } else if (Name == "FreeBSD") {
4905       OS << getFreeBSDNoteTypeName(Type) << '\n';
4906     } else if (Name == "AMD") {
4907       OS << getAMDNoteTypeName(Type) << '\n';
4908     } else if (Name == "AMDGPU") {
4909       OS << getAMDGPUNoteTypeName(Type) << '\n';
4910     } else {
4911       StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
4912                                ? getCoreNoteTypeName(Type)
4913                                : getGenericNoteTypeName(Type);
4914       if (!NoteType.empty())
4915         OS << NoteType << '\n';
4916       else
4917         OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
4918     }
4919
4920     // Print the description, or fallback to printing raw bytes for unknown
4921     // owners.
4922     if (Name == "GNU") {
4923       printGNUNote<ELFT>(OS, Type, Descriptor);
4924     } else if (Name == "AMD") {
4925       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
4926       if (!N.Type.empty())
4927         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
4928     } else if (Name == "AMDGPU") {
4929       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
4930       if (!N.Type.empty())
4931         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
4932     } else if (Name == "CORE") {
4933       if (Type == ELF::NT_FILE) {
4934         DataExtractor DescExtractor(Descriptor,
4935                                     ELFT::TargetEndianness == support::little,
4936                                     sizeof(Elf_Addr));
4937         Expected<CoreNote> Note = readCoreNote(DescExtractor);
4938         if (Note)
4939           printCoreNote<ELFT>(OS, *Note);
4940         else
4941           reportWarning(Note.takeError(), this->FileName);
4942       }
4943     } else if (!Descriptor.empty()) {
4944       OS << "   description data:";
4945       for (uint8_t B : Descriptor)
4946         OS << " " << format("%02x", B);
4947       OS << '\n';
4948     }
4949   };
4950
4951   ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
4952   if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
4953     for (const auto &S : Sections) {
4954       if (S.sh_type != SHT_NOTE)
4955         continue;
4956       PrintHeader(S.sh_offset, S.sh_size);
4957       Error Err = Error::success();
4958       for (auto Note : Obj->notes(S, Err))
4959         ProcessNote(Note);
4960       if (Err)
4961         reportError(std::move(Err), this->FileName);
4962     }
4963   } else {
4964     for (const auto &P :
4965          unwrapOrError(this->FileName, Obj->program_headers())) {
4966       if (P.p_type != PT_NOTE)
4967         continue;
4968       PrintHeader(P.p_offset, P.p_filesz);
4969       Error Err = Error::success();
4970       for (auto Note : Obj->notes(P, Err))
4971         ProcessNote(Note);
4972       if (Err)
4973         reportError(std::move(Err), this->FileName);
4974     }
4975   }
4976 }
4977
4978 template <class ELFT>
4979 void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
4980   OS << "printELFLinkerOptions not implemented!\n";
4981 }
4982
4983 template <class ELFT>
4984 void GNUStyle<ELFT>::printDependentLibs(const ELFFile<ELFT> *Obj) {
4985   OS << "printDependentLibs not implemented!\n";
4986 }
4987
4988 // Used for printing section names in places where possible errors can be
4989 // ignored.
4990 static StringRef getSectionName(const SectionRef &Sec) {
4991   Expected<StringRef> NameOrErr = Sec.getName();
4992   if (NameOrErr)
4993     return *NameOrErr;
4994   consumeError(NameOrErr.takeError());
4995   return "<?>";
4996 }
4997
4998 // Used for printing symbol names in places where possible errors can be
4999 // ignored.
5000 static std::string getSymbolName(const ELFSymbolRef &Sym) {
5001   Expected<StringRef> NameOrErr = Sym.getName();
5002   if (NameOrErr)
5003     return maybeDemangle(*NameOrErr);
5004   consumeError(NameOrErr.takeError());
5005   return "<?>";
5006 }
5007
5008 template <class ELFT>
5009 void DumpStyle<ELFT>::printFunctionStackSize(
5010     const ELFObjectFile<ELFT> *Obj, uint64_t SymValue, SectionRef FunctionSec,
5011     const StringRef SectionName, DataExtractor Data, uint64_t *Offset) {
5012   // This function ignores potentially erroneous input, unless it is directly
5013   // related to stack size reporting.
5014   SymbolRef FuncSym;
5015   for (const ELFSymbolRef &Symbol : Obj->symbols()) {
5016     Expected<uint64_t> SymAddrOrErr = Symbol.getAddress();
5017     if (!SymAddrOrErr) {
5018       consumeError(SymAddrOrErr.takeError());
5019       continue;
5020     }
5021     if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) {
5022       // Check if the symbol is in the right section.
5023       if (FunctionSec.containsSymbol(Symbol)) {
5024         FuncSym = Symbol;
5025         break;
5026       }
5027     }
5028   }
5029
5030   std::string FuncName = "?";
5031   // A valid SymbolRef has a non-null object file pointer.
5032   if (FuncSym.BasicSymbolRef::getObject())
5033     FuncName = getSymbolName(FuncSym);
5034   else
5035     reportWarning(
5036         createError("could not identify function symbol for stack size entry"),
5037         Obj->getFileName());
5038
5039   // Extract the size. The expectation is that Offset is pointing to the right
5040   // place, i.e. past the function address.
5041   uint64_t PrevOffset = *Offset;
5042   uint64_t StackSize = Data.getULEB128(Offset);
5043   // getULEB128() does not advance Offset if it is not able to extract a valid
5044   // integer.
5045   if (*Offset == PrevOffset)
5046     reportError(
5047         createStringError(object_error::parse_failed,
5048                           "could not extract a valid stack size in section %s",
5049                           SectionName.data()),
5050         Obj->getFileName());
5051
5052   printStackSizeEntry(StackSize, FuncName);
5053 }
5054
5055 template <class ELFT>
5056 void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
5057   OS.PadToColumn(2);
5058   OS << format_decimal(Size, 11);
5059   OS.PadToColumn(18);
5060   OS << FuncName << "\n";
5061 }
5062
5063 template <class ELFT>
5064 void DumpStyle<ELFT>::printStackSize(const ELFObjectFile<ELFT> *Obj,
5065                                      RelocationRef Reloc,
5066                                      SectionRef FunctionSec,
5067                                      const StringRef &StackSizeSectionName,
5068                                      const RelocationResolver &Resolver,
5069                                      DataExtractor Data) {
5070   // This function ignores potentially erroneous input, unless it is directly
5071   // related to stack size reporting.
5072   object::symbol_iterator RelocSym = Reloc.getSymbol();
5073   uint64_t RelocSymValue = 0;
5074   StringRef FileStr = Obj->getFileName();
5075   if (RelocSym != Obj->symbol_end()) {
5076     // Ensure that the relocation symbol is in the function section, i.e. the
5077     // section where the functions whose stack sizes we are reporting are
5078     // located.
5079     auto SectionOrErr = RelocSym->getSection();
5080     if (!SectionOrErr) {
5081       reportWarning(
5082           createError("cannot identify the section for relocation symbol '" +
5083                       getSymbolName(*RelocSym) + "'"),
5084           FileStr);
5085       consumeError(SectionOrErr.takeError());
5086     } else if (*SectionOrErr != FunctionSec) {
5087       reportWarning(createError("relocation symbol '" +
5088                                 getSymbolName(*RelocSym) +
5089                                 "' is not in the expected section"),
5090                     FileStr);
5091       // Pretend that the symbol is in the correct section and report its
5092       // stack size anyway.
5093       FunctionSec = **SectionOrErr;
5094     }
5095
5096     Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue();
5097     if (RelocSymValueOrErr)
5098       RelocSymValue = *RelocSymValueOrErr;
5099     else
5100       consumeError(RelocSymValueOrErr.takeError());
5101   }
5102
5103   uint64_t Offset = Reloc.getOffset();
5104   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1))
5105     reportError(
5106         createStringError(object_error::parse_failed,
5107                           "found invalid relocation offset into section %s "
5108                           "while trying to extract a stack size entry",
5109                           StackSizeSectionName.data()),
5110         FileStr);
5111
5112   uint64_t Addend = Data.getAddress(&Offset);
5113   uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend);
5114   this->printFunctionStackSize(Obj, SymValue, FunctionSec, StackSizeSectionName,
5115                                Data, &Offset);
5116 }
5117
5118 template <class ELFT>
5119 void DumpStyle<ELFT>::printNonRelocatableStackSizes(
5120     const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
5121   // This function ignores potentially erroneous input, unless it is directly
5122   // related to stack size reporting.
5123   const ELFFile<ELFT> *EF = Obj->getELFFile();
5124   StringRef FileStr = Obj->getFileName();
5125   for (const SectionRef &Sec : Obj->sections()) {
5126     StringRef SectionName = getSectionName(Sec);
5127     if (SectionName != ".stack_sizes")
5128       continue;
5129     PrintHeader();
5130     const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
5131     ArrayRef<uint8_t> Contents =
5132         unwrapOrError(this->FileName, EF->getSectionContents(ElfSec));
5133     DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
5134     // A .stack_sizes section header's sh_link field is supposed to point
5135     // to the section that contains the functions whose stack sizes are
5136     // described in it.
5137     const Elf_Shdr *FunctionELFSec =
5138         unwrapOrError(this->FileName, EF->getSection(ElfSec->sh_link));
5139     uint64_t Offset = 0;
5140     while (Offset < Contents.size()) {
5141       // The function address is followed by a ULEB representing the stack
5142       // size. Check for an extra byte before we try to process the entry.
5143       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5144         reportError(
5145             createStringError(
5146                 object_error::parse_failed,
5147                 "section %s ended while trying to extract a stack size entry",
5148                 SectionName.data()),
5149             FileStr);
5150       }
5151       uint64_t SymValue = Data.getAddress(&Offset);
5152       printFunctionStackSize(Obj, SymValue, Obj->toSectionRef(FunctionELFSec),
5153                              SectionName, Data, &Offset);
5154     }
5155   }
5156 }
5157
5158 template <class ELFT>
5159 void DumpStyle<ELFT>::printRelocatableStackSizes(
5160     const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
5161   const ELFFile<ELFT> *EF = Obj->getELFFile();
5162
5163   // Build a map between stack size sections and their corresponding relocation
5164   // sections.
5165   llvm::MapVector<SectionRef, SectionRef> StackSizeRelocMap;
5166   const SectionRef NullSection{};
5167
5168   for (const SectionRef &Sec : Obj->sections()) {
5169     StringRef SectionName;
5170     if (Expected<StringRef> NameOrErr = Sec.getName())
5171       SectionName = *NameOrErr;
5172     else
5173       consumeError(NameOrErr.takeError());
5174
5175     // A stack size section that we haven't encountered yet is mapped to the
5176     // null section until we find its corresponding relocation section.
5177     if (SectionName == ".stack_sizes")
5178       if (StackSizeRelocMap.count(Sec) == 0) {
5179         StackSizeRelocMap[Sec] = NullSection;
5180         continue;
5181       }
5182
5183     // Check relocation sections if they are relocating contents of a
5184     // stack sizes section.
5185     const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
5186     uint32_t SectionType = ElfSec->sh_type;
5187     if (SectionType != ELF::SHT_RELA && SectionType != ELF::SHT_REL)
5188       continue;
5189
5190     Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection();
5191     if (!RelSecOrErr)
5192       reportError(createStringError(object_error::parse_failed,
5193                                     "%s: failed to get a relocated section: %s",
5194                                     SectionName.data(),
5195                                     toString(RelSecOrErr.takeError()).c_str()),
5196                   Obj->getFileName());
5197
5198     const Elf_Shdr *ContentsSec =
5199         Obj->getSection((*RelSecOrErr)->getRawDataRefImpl());
5200     Expected<StringRef> ContentsSectionNameOrErr =
5201         EF->getSectionName(ContentsSec);
5202     if (!ContentsSectionNameOrErr) {
5203       consumeError(ContentsSectionNameOrErr.takeError());
5204       continue;
5205     }
5206     if (*ContentsSectionNameOrErr != ".stack_sizes")
5207       continue;
5208     // Insert a mapping from the stack sizes section to its relocation section.
5209     StackSizeRelocMap[Obj->toSectionRef(ContentsSec)] = Sec;
5210   }
5211
5212   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
5213     PrintHeader();
5214     const SectionRef &StackSizesSec = StackSizeMapEntry.first;
5215     const SectionRef &RelocSec = StackSizeMapEntry.second;
5216
5217     // Warn about stack size sections without a relocation section.
5218     StringRef StackSizeSectionName = getSectionName(StackSizesSec);
5219     if (RelocSec == NullSection) {
5220       reportWarning(createError("section " + StackSizeSectionName +
5221                                 " does not have a corresponding "
5222                                 "relocation section"),
5223                     Obj->getFileName());
5224       continue;
5225     }
5226
5227     // A .stack_sizes section header's sh_link field is supposed to point
5228     // to the section that contains the functions whose stack sizes are
5229     // described in it.
5230     const Elf_Shdr *StackSizesELFSec =
5231         Obj->getSection(StackSizesSec.getRawDataRefImpl());
5232     const SectionRef FunctionSec = Obj->toSectionRef(unwrapOrError(
5233         this->FileName, EF->getSection(StackSizesELFSec->sh_link)));
5234
5235     bool (*IsSupportedFn)(uint64_t);
5236     RelocationResolver Resolver;
5237     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(*Obj);
5238     auto Contents = unwrapOrError(this->FileName, StackSizesSec.getContents());
5239     DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
5240     for (const RelocationRef &Reloc : RelocSec.relocations()) {
5241       if (!IsSupportedFn || !IsSupportedFn(Reloc.getType()))
5242         reportError(createStringError(
5243                         object_error::parse_failed,
5244                         "unsupported relocation type in section %s: %s",
5245                         getSectionName(RelocSec).data(),
5246                         EF->getRelocationTypeName(Reloc.getType()).data()),
5247                     Obj->getFileName());
5248       this->printStackSize(Obj, Reloc, FunctionSec, StackSizeSectionName,
5249                            Resolver, Data);
5250     }
5251   }
5252 }
5253
5254 template <class ELFT>
5255 void GNUStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
5256   bool HeaderHasBeenPrinted = false;
5257   auto PrintHeader = [&]() {
5258     if (HeaderHasBeenPrinted)
5259       return;
5260     OS << "\nStack Sizes:\n";
5261     OS.PadToColumn(9);
5262     OS << "Size";
5263     OS.PadToColumn(18);
5264     OS << "Function\n";
5265     HeaderHasBeenPrinted = true;
5266   };
5267
5268   // For non-relocatable objects, look directly for sections whose name starts
5269   // with .stack_sizes and process the contents.
5270   if (Obj->isRelocatableObject())
5271     this->printRelocatableStackSizes(Obj, PrintHeader);
5272   else
5273     this->printNonRelocatableStackSizes(Obj, PrintHeader);
5274 }
5275
5276 template <class ELFT>
5277 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
5278   size_t Bias = ELFT::Is64Bits ? 8 : 0;
5279   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
5280     OS.PadToColumn(2);
5281     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
5282     OS.PadToColumn(11 + Bias);
5283     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
5284     OS.PadToColumn(22 + Bias);
5285     OS << format_hex_no_prefix(*E, 8 + Bias);
5286     OS.PadToColumn(31 + 2 * Bias);
5287     OS << Purpose << "\n";
5288   };
5289
5290   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
5291   OS << " Canonical gp value: "
5292      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
5293
5294   OS << " Reserved entries:\n";
5295   if (ELFT::Is64Bits)
5296     OS << "           Address     Access          Initial Purpose\n";
5297   else
5298     OS << "   Address     Access  Initial Purpose\n";
5299   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
5300   if (Parser.getGotModulePointer())
5301     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
5302
5303   if (!Parser.getLocalEntries().empty()) {
5304     OS << "\n";
5305     OS << " Local entries:\n";
5306     if (ELFT::Is64Bits)
5307       OS << "           Address     Access          Initial\n";
5308     else
5309       OS << "   Address     Access  Initial\n";
5310     for (auto &E : Parser.getLocalEntries())
5311       PrintEntry(&E, "");
5312   }
5313
5314   if (Parser.IsStatic)
5315     return;
5316
5317   if (!Parser.getGlobalEntries().empty()) {
5318     OS << "\n";
5319     OS << " Global entries:\n";
5320     if (ELFT::Is64Bits)
5321       OS << "           Address     Access          Initial         Sym.Val."
5322          << " Type    Ndx Name\n";
5323     else
5324       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
5325     for (auto &E : Parser.getGlobalEntries()) {
5326       const Elf_Sym *Sym = Parser.getGotSym(&E);
5327       std::string SymName = this->dumper()->getFullSymbolName(
5328           Sym, this->dumper()->getDynamicStringTable(), false);
5329
5330       OS.PadToColumn(2);
5331       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
5332       OS.PadToColumn(11 + Bias);
5333       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
5334       OS.PadToColumn(22 + Bias);
5335       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
5336       OS.PadToColumn(31 + 2 * Bias);
5337       OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
5338       OS.PadToColumn(40 + 3 * Bias);
5339       OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
5340       OS.PadToColumn(48 + 3 * Bias);
5341       OS << getSymbolSectionNdx(Parser.Obj, Sym,
5342                                 this->dumper()->dynamic_symbols().begin());
5343       OS.PadToColumn(52 + 3 * Bias);
5344       OS << SymName << "\n";
5345     }
5346   }
5347
5348   if (!Parser.getOtherEntries().empty())
5349     OS << "\n Number of TLS and multi-GOT entries "
5350        << Parser.getOtherEntries().size() << "\n";
5351 }
5352
5353 template <class ELFT>
5354 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
5355   size_t Bias = ELFT::Is64Bits ? 8 : 0;
5356   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
5357     OS.PadToColumn(2);
5358     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
5359     OS.PadToColumn(11 + Bias);
5360     OS << format_hex_no_prefix(*E, 8 + Bias);
5361     OS.PadToColumn(20 + 2 * Bias);
5362     OS << Purpose << "\n";
5363   };
5364
5365   OS << "PLT GOT:\n\n";
5366
5367   OS << " Reserved entries:\n";
5368   OS << "   Address  Initial Purpose\n";
5369   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
5370   if (Parser.getPltModulePointer())
5371     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
5372
5373   if (!Parser.getPltEntries().empty()) {
5374     OS << "\n";
5375     OS << " Entries:\n";
5376     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
5377     for (auto &E : Parser.getPltEntries()) {
5378       const Elf_Sym *Sym = Parser.getPltSym(&E);
5379       std::string SymName = this->dumper()->getFullSymbolName(
5380           Sym, this->dumper()->getDynamicStringTable(), false);
5381
5382       OS.PadToColumn(2);
5383       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
5384       OS.PadToColumn(11 + Bias);
5385       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
5386       OS.PadToColumn(20 + 2 * Bias);
5387       OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
5388       OS.PadToColumn(29 + 3 * Bias);
5389       OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
5390       OS.PadToColumn(37 + 3 * Bias);
5391       OS << getSymbolSectionNdx(Parser.Obj, Sym,
5392                                 this->dumper()->dynamic_symbols().begin());
5393       OS.PadToColumn(41 + 3 * Bias);
5394       OS << SymName << "\n";
5395     }
5396   }
5397 }
5398
5399 template <class ELFT>
5400 void GNUStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
5401   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
5402   const Elf_Shdr *Shdr =
5403       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
5404   if (!Shdr)
5405     return;
5406
5407   ArrayRef<uint8_t> Sec =
5408       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
5409   if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
5410     reportError(createError(".MIPS.abiflags section has a wrong size"),
5411                 ObjF->getFileName());
5412
5413   auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
5414
5415   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
5416   OS << "ISA: MIPS" << int(Flags->isa_level);
5417   if (Flags->isa_rev > 1)
5418     OS << "r" << int(Flags->isa_rev);
5419   OS << "\n";
5420   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
5421   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
5422   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
5423   OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
5424      << "\n";
5425   OS << "ISA Extension: "
5426      << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
5427   if (Flags->ases == 0)
5428     OS << "ASEs: None\n";
5429   else
5430     // FIXME: Print each flag on a separate line.
5431     OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
5432        << "\n";
5433   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
5434   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
5435   OS << "\n";
5436 }
5437
5438 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
5439   const Elf_Ehdr *E = Obj->getHeader();
5440   {
5441     DictScope D(W, "ElfHeader");
5442     {
5443       DictScope D(W, "Ident");
5444       W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4));
5445       W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
5446       W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA],
5447                   makeArrayRef(ElfDataEncoding));
5448       W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]);
5449
5450       auto OSABI = makeArrayRef(ElfOSABI);
5451       if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
5452           E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
5453         switch (E->e_machine) {
5454         case ELF::EM_AMDGPU:
5455           OSABI = makeArrayRef(AMDGPUElfOSABI);
5456           break;
5457         case ELF::EM_ARM:
5458           OSABI = makeArrayRef(ARMElfOSABI);
5459           break;
5460         case ELF::EM_TI_C6000:
5461           OSABI = makeArrayRef(C6000ElfOSABI);
5462           break;
5463         }
5464       }
5465       W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI);
5466       W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]);
5467       W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD));
5468     }
5469
5470     W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType));
5471     W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType));
5472     W.printNumber("Version", E->e_version);
5473     W.printHex("Entry", E->e_entry);
5474     W.printHex("ProgramHeaderOffset", E->e_phoff);
5475     W.printHex("SectionHeaderOffset", E->e_shoff);
5476     if (E->e_machine == EM_MIPS)
5477       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags),
5478                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
5479                    unsigned(ELF::EF_MIPS_MACH));
5480     else if (E->e_machine == EM_AMDGPU)
5481       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
5482                    unsigned(ELF::EF_AMDGPU_MACH));
5483     else if (E->e_machine == EM_RISCV)
5484       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
5485     else
5486       W.printFlags("Flags", E->e_flags);
5487     W.printNumber("HeaderSize", E->e_ehsize);
5488     W.printNumber("ProgramHeaderEntrySize", E->e_phentsize);
5489     W.printNumber("ProgramHeaderCount", E->e_phnum);
5490     W.printNumber("SectionHeaderEntrySize", E->e_shentsize);
5491     W.printString("SectionHeaderCount",
5492                   getSectionHeadersNumString(Obj, this->FileName));
5493     W.printString("StringTableSectionIndex",
5494                   getSectionHeaderTableIndexString(Obj, this->FileName));
5495   }
5496 }
5497
5498 template <class ELFT>
5499 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
5500   DictScope Lists(W, "Groups");
5501   std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
5502   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
5503   for (const GroupSection &G : V) {
5504     DictScope D(W, "Group");
5505     W.printNumber("Name", G.Name, G.ShName);
5506     W.printNumber("Index", G.Index);
5507     W.printNumber("Link", G.Link);
5508     W.printNumber("Info", G.Info);
5509     W.printHex("Type", getGroupType(G.Type), G.Type);
5510     W.startLine() << "Signature: " << G.Signature << "\n";
5511
5512     ListScope L(W, "Section(s) in group");
5513     for (const GroupMember &GM : G.Members) {
5514       const GroupSection *MainGroup = Map[GM.Index];
5515       if (MainGroup != &G) {
5516         W.flush();
5517         errs() << "Error: " << GM.Name << " (" << GM.Index
5518                << ") in a group " + G.Name + " (" << G.Index
5519                << ") is already in a group " + MainGroup->Name + " ("
5520                << MainGroup->Index << ")\n";
5521         errs().flush();
5522         continue;
5523       }
5524       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
5525     }
5526   }
5527
5528   if (V.empty())
5529     W.startLine() << "There are no group sections in the file.\n";
5530 }
5531
5532 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
5533   ListScope D(W, "Relocations");
5534
5535   int SectionNumber = -1;
5536   for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
5537     ++SectionNumber;
5538
5539     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
5540         Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
5541         Sec.sh_type != ELF::SHT_ANDROID_RELA &&
5542         Sec.sh_type != ELF::SHT_ANDROID_RELR)
5543       continue;
5544
5545     StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
5546
5547     W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
5548     W.indent();
5549
5550     printRelocations(&Sec, Obj);
5551
5552     W.unindent();
5553     W.startLine() << "}\n";
5554   }
5555 }
5556
5557 template <class ELFT>
5558 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
5559   const Elf_Shdr *SymTab =
5560       unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
5561
5562   switch (Sec->sh_type) {
5563   case ELF::SHT_REL:
5564     for (const Elf_Rel &R : unwrapOrError(this->FileName, Obj->rels(Sec))) {
5565       Elf_Rela Rela;
5566       Rela.r_offset = R.r_offset;
5567       Rela.r_info = R.r_info;
5568       Rela.r_addend = 0;
5569       printRelocation(Obj, Rela, SymTab);
5570     }
5571     break;
5572   case ELF::SHT_RELA:
5573     for (const Elf_Rela &R : unwrapOrError(this->FileName, Obj->relas(Sec)))
5574       printRelocation(Obj, R, SymTab);
5575     break;
5576   case ELF::SHT_RELR:
5577   case ELF::SHT_ANDROID_RELR: {
5578     Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(Sec));
5579     if (opts::RawRelr) {
5580       for (const Elf_Relr &R : Relrs)
5581         W.startLine() << W.hex(R) << "\n";
5582     } else {
5583       std::vector<Elf_Rela> RelrRelas =
5584           unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
5585       for (const Elf_Rela &R : RelrRelas)
5586         printRelocation(Obj, R, SymTab);
5587     }
5588     break;
5589   }
5590   case ELF::SHT_ANDROID_REL:
5591   case ELF::SHT_ANDROID_RELA:
5592     for (const Elf_Rela &R :
5593          unwrapOrError(this->FileName, Obj->android_relas(Sec)))
5594       printRelocation(Obj, R, SymTab);
5595     break;
5596   }
5597 }
5598
5599 template <class ELFT>
5600 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
5601                                       const Elf_Shdr *SymTab) {
5602   SmallString<32> RelocName;
5603   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
5604   std::string TargetName;
5605   const Elf_Sym *Sym =
5606       unwrapOrError(this->FileName, Obj->getRelocationSymbol(&Rel, SymTab));
5607   if (Sym && Sym->getType() == ELF::STT_SECTION) {
5608     const Elf_Shdr *Sec = unwrapOrError(
5609         this->FileName,
5610         Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
5611     TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
5612   } else if (Sym) {
5613     StringRef StrTable =
5614         unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab));
5615     TargetName = this->dumper()->getFullSymbolName(
5616         Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
5617   }
5618
5619   if (opts::ExpandRelocs) {
5620     DictScope Group(W, "Relocation");
5621     W.printHex("Offset", Rel.r_offset);
5622     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
5623     W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
5624                   Rel.getSymbol(Obj->isMips64EL()));
5625     W.printHex("Addend", Rel.r_addend);
5626   } else {
5627     raw_ostream &OS = W.startLine();
5628     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
5629        << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend)
5630        << "\n";
5631   }
5632 }
5633
5634 template <class ELFT>
5635 void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
5636   ListScope SectionsD(W, "Sections");
5637
5638   int SectionIndex = -1;
5639   ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
5640   const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
5641   std::vector<EnumEntry<unsigned>> FlagsList =
5642       getSectionFlagsForTarget(Obj->getHeader()->e_machine);
5643   for (const Elf_Shdr &Sec : Sections) {
5644     StringRef Name = unwrapOrError(
5645         ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler));
5646     DictScope SectionD(W, "Section");
5647     W.printNumber("Index", ++SectionIndex);
5648     W.printNumber("Name", Name, Sec.sh_name);
5649     W.printHex(
5650         "Type",
5651         object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
5652         Sec.sh_type);
5653     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
5654     W.printHex("Address", Sec.sh_addr);
5655     W.printHex("Offset", Sec.sh_offset);
5656     W.printNumber("Size", Sec.sh_size);
5657     W.printNumber("Link", Sec.sh_link);
5658     W.printNumber("Info", Sec.sh_info);
5659     W.printNumber("AddressAlignment", Sec.sh_addralign);
5660     W.printNumber("EntrySize", Sec.sh_entsize);
5661
5662     if (opts::SectionRelocations) {
5663       ListScope D(W, "Relocations");
5664       printRelocations(&Sec, Obj);
5665     }
5666
5667     if (opts::SectionSymbols) {
5668       ListScope D(W, "Symbols");
5669       const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
5670       StringRef StrTable =
5671           unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*Symtab));
5672
5673       for (const Elf_Sym &Sym :
5674            unwrapOrError(this->FileName, Obj->symbols(Symtab))) {
5675         const Elf_Shdr *SymSec = unwrapOrError(
5676             this->FileName,
5677             Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
5678         if (SymSec == &Sec)
5679           printSymbol(
5680               Obj, &Sym,
5681               unwrapOrError(this->FileName, Obj->symbols(Symtab)).begin(),
5682               StrTable, false, false);
5683       }
5684     }
5685
5686     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
5687       ArrayRef<uint8_t> Data =
5688           unwrapOrError(this->FileName, Obj->getSectionContents(&Sec));
5689       W.printBinaryBlock(
5690           "SectionData",
5691           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
5692     }
5693   }
5694 }
5695
5696 template <class ELFT>
5697 void LLVMStyle<ELFT>::printSymbolSection(const Elf_Sym *Symbol,
5698                                          const Elf_Sym *First) {
5699   Expected<unsigned> SectionIndex =
5700       this->dumper()->getSymbolSectionIndex(Symbol, First);
5701   if (!SectionIndex) {
5702     assert(Symbol->st_shndx == SHN_XINDEX &&
5703            "getSymbolSectionIndex should only fail due to an invalid "
5704            "SHT_SYMTAB_SHNDX table/reference");
5705     this->reportUniqueWarning(SectionIndex.takeError());
5706     W.printHex("Section", "Reserved", SHN_XINDEX);
5707     return;
5708   }
5709
5710   Expected<StringRef> SectionName =
5711       this->dumper()->getSymbolSectionName(Symbol, *SectionIndex);
5712   if (!SectionName) {
5713     this->reportUniqueWarning(SectionName.takeError());
5714     W.printHex("Section", "<?>", *SectionIndex);
5715   } else {
5716     W.printHex("Section", *SectionName, *SectionIndex);
5717   }
5718 }
5719
5720 template <class ELFT>
5721 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
5722                                   const Elf_Sym *First, StringRef StrTable,
5723                                   bool IsDynamic,
5724                                   bool /*NonVisibilityBitsUsed*/) {
5725   std::string FullSymbolName =
5726       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
5727   unsigned char SymbolType = Symbol->getType();
5728
5729   DictScope D(W, "Symbol");
5730   W.printNumber("Name", FullSymbolName, Symbol->st_name);
5731   W.printHex("Value", Symbol->st_value);
5732   W.printNumber("Size", Symbol->st_size);
5733   W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
5734   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
5735       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
5736     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
5737   else
5738     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
5739   if (Symbol->st_other == 0)
5740     // Usually st_other flag is zero. Do not pollute the output
5741     // by flags enumeration in that case.
5742     W.printNumber("Other", 0);
5743   else {
5744     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
5745                                                    std::end(ElfSymOtherFlags));
5746     if (Obj->getHeader()->e_machine == EM_MIPS) {
5747       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
5748       // flag overlapped with other ST_MIPS_xxx flags. So consider both
5749       // cases separately.
5750       if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
5751         SymOtherFlags.insert(SymOtherFlags.end(),
5752                              std::begin(ElfMips16SymOtherFlags),
5753                              std::end(ElfMips16SymOtherFlags));
5754       else
5755         SymOtherFlags.insert(SymOtherFlags.end(),
5756                              std::begin(ElfMipsSymOtherFlags),
5757                              std::end(ElfMipsSymOtherFlags));
5758     }
5759     W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
5760   }
5761   printSymbolSection(Symbol, First);
5762 }
5763
5764 template <class ELFT>
5765 void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
5766                                    bool PrintDynamicSymbols) {
5767   if (PrintSymbols)
5768     printSymbols(Obj);
5769   if (PrintDynamicSymbols)
5770     printDynamicSymbols(Obj);
5771 }
5772
5773 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
5774   ListScope Group(W, "Symbols");
5775   this->dumper()->printSymbolsHelper(false);
5776 }
5777
5778 template <class ELFT>
5779 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
5780   ListScope Group(W, "DynamicSymbols");
5781   this->dumper()->printSymbolsHelper(true);
5782 }
5783
5784 template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) {
5785   Elf_Dyn_Range Table = this->dumper()->dynamic_table();
5786   if (Table.empty())
5787     return;
5788
5789   raw_ostream &OS = W.getOStream();
5790   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
5791
5792   bool Is64 = ELFT::Is64Bits;
5793   if (Is64)
5794     W.startLine() << "  Tag                Type                 Name/Value\n";
5795   else
5796     W.startLine() << "  Tag        Type                 Name/Value\n";
5797   for (auto Entry : Table) {
5798     uintX_t Tag = Entry.getTag();
5799     W.startLine() << "  " << format_hex(Tag, Is64 ? 18 : 10, true) << " "
5800                   << format("%-21s", Obj->getDynamicTagAsString(Tag).c_str());
5801     this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
5802     OS << "\n";
5803   }
5804   W.startLine() << "]\n";
5805 }
5806
5807 template <class ELFT>
5808 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
5809   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
5810   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
5811   const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
5812   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
5813   if (DynRelRegion.Size && DynRelaRegion.Size)
5814     report_fatal_error("There are both REL and RELA dynamic relocations");
5815   W.startLine() << "Dynamic Relocations {\n";
5816   W.indent();
5817   if (DynRelaRegion.Size > 0)
5818     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
5819       printDynamicRelocation(Obj, Rela);
5820   else
5821     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
5822       Elf_Rela Rela;
5823       Rela.r_offset = Rel.r_offset;
5824       Rela.r_info = Rel.r_info;
5825       Rela.r_addend = 0;
5826       printDynamicRelocation(Obj, Rela);
5827     }
5828   if (DynRelrRegion.Size > 0) {
5829     Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
5830     std::vector<Elf_Rela> RelrRelas =
5831         unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
5832     for (const Elf_Rela &Rela : RelrRelas)
5833       printDynamicRelocation(Obj, Rela);
5834   }
5835   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
5836     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
5837       printDynamicRelocation(Obj, Rela);
5838   else
5839     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
5840       Elf_Rela Rela;
5841       Rela.r_offset = Rel.r_offset;
5842       Rela.r_info = Rel.r_info;
5843       Rela.r_addend = 0;
5844       printDynamicRelocation(Obj, Rela);
5845     }
5846   W.unindent();
5847   W.startLine() << "}\n";
5848 }
5849
5850 template <class ELFT>
5851 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
5852   SmallString<32> RelocName;
5853   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
5854   std::string SymbolName =
5855       getSymbolForReloc(Obj, this->FileName, this->dumper(), Rel).Name;
5856
5857   if (opts::ExpandRelocs) {
5858     DictScope Group(W, "Relocation");
5859     W.printHex("Offset", Rel.r_offset);
5860     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
5861     W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
5862     W.printHex("Addend", Rel.r_addend);
5863   } else {
5864     raw_ostream &OS = W.startLine();
5865     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
5866        << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend)
5867        << "\n";
5868   }
5869 }
5870
5871 template <class ELFT>
5872 void LLVMStyle<ELFT>::printProgramHeaders(
5873     const ELFO *Obj, bool PrintProgramHeaders,
5874     cl::boolOrDefault PrintSectionMapping) {
5875   if (PrintProgramHeaders)
5876     printProgramHeaders(Obj);
5877   if (PrintSectionMapping == cl::BOU_TRUE)
5878     printSectionMapping(Obj);
5879 }
5880
5881 template <class ELFT>
5882 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
5883   ListScope L(W, "ProgramHeaders");
5884
5885   for (const Elf_Phdr &Phdr :
5886        unwrapOrError(this->FileName, Obj->program_headers())) {
5887     DictScope P(W, "ProgramHeader");
5888     W.printHex("Type",
5889                getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
5890                Phdr.p_type);
5891     W.printHex("Offset", Phdr.p_offset);
5892     W.printHex("VirtualAddress", Phdr.p_vaddr);
5893     W.printHex("PhysicalAddress", Phdr.p_paddr);
5894     W.printNumber("FileSize", Phdr.p_filesz);
5895     W.printNumber("MemSize", Phdr.p_memsz);
5896     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
5897     W.printNumber("Alignment", Phdr.p_align);
5898   }
5899 }
5900
5901 template <class ELFT>
5902 void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
5903                                                 const Elf_Shdr *Sec) {
5904   ListScope SS(W, "VersionSymbols");
5905   if (!Sec)
5906     return;
5907
5908   StringRef StrTable;
5909   ArrayRef<Elf_Sym> Syms;
5910   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
5911       this->dumper()->getVersionTable(Sec, &Syms, &StrTable);
5912   if (!VerTableOrErr) {
5913     this->reportUniqueWarning(VerTableOrErr.takeError());
5914     return;
5915   }
5916
5917   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
5918     return;
5919
5920   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
5921     DictScope S(W, "Symbol");
5922     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
5923     W.printString("Name", this->dumper()->getFullSymbolName(
5924                               &Syms[I], StrTable, /*IsDynamic=*/true));
5925   }
5926 }
5927
5928 template <class ELFT>
5929 void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
5930                                                     const Elf_Shdr *Sec) {
5931   ListScope SD(W, "VersionDefinitions");
5932   if (!Sec)
5933     return;
5934
5935   Expected<std::vector<VerDef>> V = this->dumper()->getVersionDefinitions(Sec);
5936   if (!V) {
5937     this->reportUniqueWarning(V.takeError());
5938     return;
5939   }
5940
5941   for (const VerDef &D : *V) {
5942     DictScope Def(W, "Definition");
5943     W.printNumber("Version", D.Version);
5944     W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
5945     W.printNumber("Index", D.Ndx);
5946     W.printNumber("Hash", D.Hash);
5947     W.printString("Name", D.Name.c_str());
5948     W.printList(
5949         "Predecessors", D.AuxV,
5950         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
5951   }
5952 }
5953
5954 template <class ELFT>
5955 void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
5956                                                     const Elf_Shdr *Sec) {
5957   ListScope SD(W, "VersionRequirements");
5958   if (!Sec)
5959     return;
5960
5961   Expected<std::vector<VerNeed>> V =
5962       this->dumper()->getVersionDependencies(Sec);
5963   if (!V) {
5964     this->reportUniqueWarning(V.takeError());
5965     return;
5966   }
5967
5968   for (const VerNeed &VN : *V) {
5969     DictScope Entry(W, "Dependency");
5970     W.printNumber("Version", VN.Version);
5971     W.printNumber("Count", VN.Cnt);
5972     W.printString("FileName", VN.File.c_str());
5973
5974     ListScope L(W, "Entries");
5975     for (const VernAux &Aux : VN.AuxV) {
5976       DictScope Entry(W, "Entry");
5977       W.printNumber("Hash", Aux.Hash);
5978       W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
5979       W.printNumber("Index", Aux.Other);
5980       W.printString("Name", Aux.Name.c_str());
5981     }
5982   }
5983 }
5984
5985 template <class ELFT>
5986 void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
5987   W.startLine() << "Hash Histogram not implemented!\n";
5988 }
5989
5990 template <class ELFT>
5991 void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
5992   ListScope L(W, "CGProfile");
5993   if (!this->dumper()->getDotCGProfileSec())
5994     return;
5995   auto CGProfile = unwrapOrError(
5996       this->FileName, Obj->template getSectionContentsAsArray<Elf_CGProfile>(
5997                           this->dumper()->getDotCGProfileSec()));
5998   for (const Elf_CGProfile &CGPE : CGProfile) {
5999     DictScope D(W, "CGProfileEntry");
6000     W.printNumber(
6001         "From",
6002         unwrapOrError(this->FileName,
6003                       this->dumper()->getStaticSymbolName(CGPE.cgp_from)),
6004         CGPE.cgp_from);
6005     W.printNumber(
6006         "To",
6007         unwrapOrError(this->FileName,
6008                       this->dumper()->getStaticSymbolName(CGPE.cgp_to)),
6009         CGPE.cgp_to);
6010     W.printNumber("Weight", CGPE.cgp_weight);
6011   }
6012 }
6013
6014 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
6015   std::vector<uint64_t> Ret;
6016   const uint8_t *Cur = Data.begin();
6017   const uint8_t *End = Data.end();
6018   while (Cur != End) {
6019     unsigned Size;
6020     const char *Err;
6021     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
6022     if (Err)
6023       return createError(Err);
6024     Cur += Size;
6025   }
6026   return Ret;
6027 }
6028
6029 template <class ELFT>
6030 void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
6031   ListScope L(W, "Addrsig");
6032   if (!this->dumper()->getDotAddrsigSec())
6033     return;
6034   ArrayRef<uint8_t> Contents = unwrapOrError(
6035       this->FileName,
6036       Obj->getSectionContents(this->dumper()->getDotAddrsigSec()));
6037   Expected<std::vector<uint64_t>> V = toULEB128Array(Contents);
6038   if (!V) {
6039     reportWarning(V.takeError(), this->FileName);
6040     return;
6041   }
6042
6043   for (uint64_t Sym : *V) {
6044     Expected<std::string> NameOrErr = this->dumper()->getStaticSymbolName(Sym);
6045     if (NameOrErr) {
6046       W.printNumber("Sym", *NameOrErr, Sym);
6047       continue;
6048     }
6049     reportWarning(NameOrErr.takeError(), this->FileName);
6050     W.printNumber("Sym", "<?>", Sym);
6051   }
6052 }
6053
6054 template <typename ELFT>
6055 static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
6056                                   ScopedPrinter &W) {
6057   switch (NoteType) {
6058   default:
6059     return;
6060   case ELF::NT_GNU_ABI_TAG: {
6061     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
6062     if (!AbiTag.IsValid) {
6063       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
6064     } else {
6065       W.printString("OS", AbiTag.OSName);
6066       W.printString("ABI", AbiTag.ABI);
6067     }
6068     break;
6069   }
6070   case ELF::NT_GNU_BUILD_ID: {
6071     W.printString("Build ID", getGNUBuildId(Desc));
6072     break;
6073   }
6074   case ELF::NT_GNU_GOLD_VERSION:
6075     W.printString("Version", getGNUGoldVersion(Desc));
6076     break;
6077   case ELF::NT_GNU_PROPERTY_TYPE_0:
6078     ListScope D(W, "Property");
6079     for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
6080       W.printString(Property);
6081     break;
6082   }
6083 }
6084
6085 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
6086   W.printNumber("Page Size", Note.PageSize);
6087   for (const CoreFileMapping &Mapping : Note.Mappings) {
6088     ListScope D(W, "Mapping");
6089     W.printHex("Start", Mapping.Start);
6090     W.printHex("End", Mapping.End);
6091     W.printHex("Offset", Mapping.Offset);
6092     W.printString("Filename", Mapping.Filename);
6093   }
6094 }
6095
6096 template <class ELFT>
6097 void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
6098   ListScope L(W, "Notes");
6099
6100   auto PrintHeader = [&](const typename ELFT::Off Offset,
6101                          const typename ELFT::Addr Size) {
6102     W.printHex("Offset", Offset);
6103     W.printHex("Size", Size);
6104   };
6105
6106   auto ProcessNote = [&](const Elf_Note &Note) {
6107     DictScope D2(W, "Note");
6108     StringRef Name = Note.getName();
6109     ArrayRef<uint8_t> Descriptor = Note.getDesc();
6110     Elf_Word Type = Note.getType();
6111
6112     // Print the note owner/type.
6113     W.printString("Owner", Name);
6114     W.printHex("Data size", Descriptor.size());
6115     if (Name == "GNU") {
6116       W.printString("Type", getGNUNoteTypeName(Type));
6117     } else if (Name == "FreeBSD") {
6118       W.printString("Type", getFreeBSDNoteTypeName(Type));
6119     } else if (Name == "AMD") {
6120       W.printString("Type", getAMDNoteTypeName(Type));
6121     } else if (Name == "AMDGPU") {
6122       W.printString("Type", getAMDGPUNoteTypeName(Type));
6123     } else {
6124       StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
6125                                ? getCoreNoteTypeName(Type)
6126                                : getGenericNoteTypeName(Type);
6127       if (!NoteType.empty())
6128         W.printString("Type", NoteType);
6129       else
6130         W.printString("Type",
6131                       "Unknown (" + to_string(format_hex(Type, 10)) + ")");
6132     }
6133
6134     // Print the description, or fallback to printing raw bytes for unknown
6135     // owners.
6136     if (Name == "GNU") {
6137       printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
6138     } else if (Name == "AMD") {
6139       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6140       if (!N.Type.empty())
6141         W.printString(N.Type, N.Value);
6142     } else if (Name == "AMDGPU") {
6143       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6144       if (!N.Type.empty())
6145         W.printString(N.Type, N.Value);
6146     } else if (Name == "CORE") {
6147       if (Type == ELF::NT_FILE) {
6148         DataExtractor DescExtractor(Descriptor,
6149                                     ELFT::TargetEndianness == support::little,
6150                                     sizeof(Elf_Addr));
6151         Expected<CoreNote> Note = readCoreNote(DescExtractor);
6152         if (Note)
6153           printCoreNoteLLVMStyle(*Note, W);
6154         else
6155           reportWarning(Note.takeError(), this->FileName);
6156       }
6157     } else if (!Descriptor.empty()) {
6158       W.printBinaryBlock("Description data", Descriptor);
6159     }
6160   };
6161
6162   ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
6163   if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
6164     for (const auto &S : Sections) {
6165       if (S.sh_type != SHT_NOTE)
6166         continue;
6167       DictScope D(W, "NoteSection");
6168       PrintHeader(S.sh_offset, S.sh_size);
6169       Error Err = Error::success();
6170       for (auto Note : Obj->notes(S, Err))
6171         ProcessNote(Note);
6172       if (Err)
6173         reportError(std::move(Err), this->FileName);
6174     }
6175   } else {
6176     for (const auto &P :
6177          unwrapOrError(this->FileName, Obj->program_headers())) {
6178       if (P.p_type != PT_NOTE)
6179         continue;
6180       DictScope D(W, "NoteSection");
6181       PrintHeader(P.p_offset, P.p_filesz);
6182       Error Err = Error::success();
6183       for (auto Note : Obj->notes(P, Err))
6184         ProcessNote(Note);
6185       if (Err)
6186         reportError(std::move(Err), this->FileName);
6187     }
6188   }
6189 }
6190
6191 template <class ELFT>
6192 void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
6193   ListScope L(W, "LinkerOptions");
6194
6195   unsigned I = -1;
6196   for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) {
6197     ++I;
6198     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
6199       continue;
6200
6201     ArrayRef<uint8_t> Contents =
6202         unwrapOrError(this->FileName, Obj->getSectionContents(&Shdr));
6203     if (Contents.empty())
6204       continue;
6205
6206     if (Contents.back() != 0) {
6207       reportWarning(createError("SHT_LLVM_LINKER_OPTIONS section at index " +
6208                                 Twine(I) +
6209                                 " is broken: the "
6210                                 "content is not null-terminated"),
6211                     this->FileName);
6212       continue;
6213     }
6214
6215     SmallVector<StringRef, 16> Strings;
6216     toStringRef(Contents.drop_back()).split(Strings, '\0');
6217     if (Strings.size() % 2 != 0) {
6218       reportWarning(
6219           createError(
6220               "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
6221               " is broken: an incomplete "
6222               "key-value pair was found. The last possible key was: \"" +
6223               Strings.back() + "\""),
6224           this->FileName);
6225       continue;
6226     }
6227
6228     for (size_t I = 0; I < Strings.size(); I += 2)
6229       W.printString(Strings[I], Strings[I + 1]);
6230   }
6231 }
6232
6233 template <class ELFT>
6234 void LLVMStyle<ELFT>::printDependentLibs(const ELFFile<ELFT> *Obj) {
6235   ListScope L(W, "DependentLibs");
6236
6237   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
6238     this->reportUniqueWarning(
6239         createError("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6240                     Twine(SecNdx) + " is broken: " + Msg));
6241   };
6242
6243   unsigned I = -1;
6244   for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) {
6245     ++I;
6246     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
6247       continue;
6248
6249     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(&Shdr);
6250     if (!ContentsOrErr) {
6251       Warn(I, toString(ContentsOrErr.takeError()));
6252       continue;
6253     }
6254
6255     ArrayRef<uint8_t> Contents = *ContentsOrErr;
6256     if (!Contents.empty() && Contents.back() != 0) {
6257       Warn(I, "the content is not null-terminated");
6258       continue;
6259     }
6260
6261     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
6262       StringRef Lib((const char *)I);
6263       W.printString(Lib);
6264       I += Lib.size() + 1;
6265     }
6266   }
6267 }
6268
6269 template <class ELFT>
6270 void LLVMStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
6271   ListScope L(W, "StackSizes");
6272   if (Obj->isRelocatableObject())
6273     this->printRelocatableStackSizes(Obj, []() {});
6274   else
6275     this->printNonRelocatableStackSizes(Obj, []() {});
6276 }
6277
6278 template <class ELFT>
6279 void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
6280   DictScope D(W, "Entry");
6281   W.printString("Function", FuncName);
6282   W.printHex("Size", Size);
6283 }
6284
6285 template <class ELFT>
6286 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6287   auto PrintEntry = [&](const Elf_Addr *E) {
6288     W.printHex("Address", Parser.getGotAddress(E));
6289     W.printNumber("Access", Parser.getGotOffset(E));
6290     W.printHex("Initial", *E);
6291   };
6292
6293   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
6294
6295   W.printHex("Canonical gp value", Parser.getGp());
6296   {
6297     ListScope RS(W, "Reserved entries");
6298     {
6299       DictScope D(W, "Entry");
6300       PrintEntry(Parser.getGotLazyResolver());
6301       W.printString("Purpose", StringRef("Lazy resolver"));
6302     }
6303
6304     if (Parser.getGotModulePointer()) {
6305       DictScope D(W, "Entry");
6306       PrintEntry(Parser.getGotModulePointer());
6307       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
6308     }
6309   }
6310   {
6311     ListScope LS(W, "Local entries");
6312     for (auto &E : Parser.getLocalEntries()) {
6313       DictScope D(W, "Entry");
6314       PrintEntry(&E);
6315     }
6316   }
6317
6318   if (Parser.IsStatic)
6319     return;
6320
6321   {
6322     ListScope GS(W, "Global entries");
6323     for (auto &E : Parser.getGlobalEntries()) {
6324       DictScope D(W, "Entry");
6325
6326       PrintEntry(&E);
6327
6328       const Elf_Sym *Sym = Parser.getGotSym(&E);
6329       W.printHex("Value", Sym->st_value);
6330       W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
6331       printSymbolSection(Sym, this->dumper()->dynamic_symbols().begin());
6332
6333       std::string SymName = this->dumper()->getFullSymbolName(
6334           Sym, this->dumper()->getDynamicStringTable(), true);
6335       W.printNumber("Name", SymName, Sym->st_name);
6336     }
6337   }
6338
6339   W.printNumber("Number of TLS and multi-GOT entries",
6340                 uint64_t(Parser.getOtherEntries().size()));
6341 }
6342
6343 template <class ELFT>
6344 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6345   auto PrintEntry = [&](const Elf_Addr *E) {
6346     W.printHex("Address", Parser.getPltAddress(E));
6347     W.printHex("Initial", *E);
6348   };
6349
6350   DictScope GS(W, "PLT GOT");
6351
6352   {
6353     ListScope RS(W, "Reserved entries");
6354     {
6355       DictScope D(W, "Entry");
6356       PrintEntry(Parser.getPltLazyResolver());
6357       W.printString("Purpose", StringRef("PLT lazy resolver"));
6358     }
6359
6360     if (auto E = Parser.getPltModulePointer()) {
6361       DictScope D(W, "Entry");
6362       PrintEntry(E);
6363       W.printString("Purpose", StringRef("Module pointer"));
6364     }
6365   }
6366   {
6367     ListScope LS(W, "Entries");
6368     for (auto &E : Parser.getPltEntries()) {
6369       DictScope D(W, "Entry");
6370       PrintEntry(&E);
6371
6372       const Elf_Sym *Sym = Parser.getPltSym(&E);
6373       W.printHex("Value", Sym->st_value);
6374       W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
6375       printSymbolSection(Sym, this->dumper()->dynamic_symbols().begin());
6376
6377       std::string SymName =
6378           this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
6379       W.printNumber("Name", SymName, Sym->st_name);
6380     }
6381   }
6382 }
6383
6384 template <class ELFT>
6385 void LLVMStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
6386   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
6387   const Elf_Shdr *Shdr =
6388       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
6389   if (!Shdr) {
6390     W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
6391     return;
6392   }
6393   ArrayRef<uint8_t> Sec =
6394       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
6395   if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
6396     W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
6397     return;
6398   }
6399
6400   auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
6401
6402   raw_ostream &OS = W.getOStream();
6403   DictScope GS(W, "MIPS ABI Flags");
6404
6405   W.printNumber("Version", Flags->version);
6406   W.startLine() << "ISA: ";
6407   if (Flags->isa_rev <= 1)
6408     OS << format("MIPS%u", Flags->isa_level);
6409   else
6410     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
6411   OS << "\n";
6412   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
6413   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
6414   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
6415   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
6416   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
6417   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
6418   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
6419   W.printHex("Flags 2", Flags->flags2);
6420 }