]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/openmp/runtime/src/kmp.h
Move all sources from the llvm project into contrib/llvm-project.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / openmp / runtime / src / kmp.h
1 /*! \file */
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef KMP_H
15 #define KMP_H
16
17 #include "kmp_config.h"
18
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22    the Altix.  Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56
57 // Android does not have pthread_cancel.  Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
70    Microsoft library. Some macros provided below to replace these functions  */
71 #ifndef __ABSOFT_WIN
72 #include <sys/types.h>
73 #endif
74 #include <limits.h>
75 #include <time.h>
76
77 #include <errno.h>
78
79 #include "kmp_os.h"
80
81 #include "kmp_safe_c_api.h"
82
83 #if KMP_STATS_ENABLED
84 class kmp_stats_list;
85 #endif
86
87 #if KMP_USE_HIER_SCHED
88 // Only include hierarchical scheduling if affinity is supported
89 #undef KMP_USE_HIER_SCHED
90 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
91 #endif
92
93 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
94 #include "hwloc.h"
95 #ifndef HWLOC_OBJ_NUMANODE
96 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
97 #endif
98 #ifndef HWLOC_OBJ_PACKAGE
99 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
100 #endif
101 #if HWLOC_API_VERSION >= 0x00020000
102 // hwloc 2.0 changed type of depth of object from unsigned to int
103 typedef int kmp_hwloc_depth_t;
104 #else
105 typedef unsigned int kmp_hwloc_depth_t;
106 #endif
107 #endif
108
109 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
110 #include <xmmintrin.h>
111 #endif
112
113 #include "kmp_debug.h"
114 #include "kmp_lock.h"
115 #include "kmp_version.h"
116 #if USE_DEBUGGER
117 #include "kmp_debugger.h"
118 #endif
119 #include "kmp_i18n.h"
120
121 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
122
123 #include "kmp_wrapper_malloc.h"
124 #if KMP_OS_UNIX
125 #include <unistd.h>
126 #if !defined NSIG && defined _NSIG
127 #define NSIG _NSIG
128 #endif
129 #endif
130
131 #if KMP_OS_LINUX
132 #pragma weak clock_gettime
133 #endif
134
135 #if OMPT_SUPPORT
136 #include "ompt-internal.h"
137 #endif
138
139 // Affinity format function
140 #include "kmp_str.h"
141
142 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
143 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
144 // free lists of limited size.
145 #ifndef USE_FAST_MEMORY
146 #define USE_FAST_MEMORY 3
147 #endif
148
149 #ifndef KMP_NESTED_HOT_TEAMS
150 #define KMP_NESTED_HOT_TEAMS 0
151 #define USE_NESTED_HOT_ARG(x)
152 #else
153 #if KMP_NESTED_HOT_TEAMS
154 #define USE_NESTED_HOT_ARG(x) , x
155 #else
156 #define USE_NESTED_HOT_ARG(x)
157 #endif
158 #endif
159
160 // Assume using BGET compare_exchange instruction instead of lock by default.
161 #ifndef USE_CMP_XCHG_FOR_BGET
162 #define USE_CMP_XCHG_FOR_BGET 1
163 #endif
164
165 // Test to see if queuing lock is better than bootstrap lock for bget
166 // #ifndef USE_QUEUING_LOCK_FOR_BGET
167 // #define USE_QUEUING_LOCK_FOR_BGET
168 // #endif
169
170 #define KMP_NSEC_PER_SEC 1000000000L
171 #define KMP_USEC_PER_SEC 1000000L
172
173 /*!
174 @ingroup BASIC_TYPES
175 @{
176 */
177
178 /*!
179 Values for bit flags used in the ident_t to describe the fields.
180 */
181 enum {
182   /*! Use trampoline for internal microtasks */
183   KMP_IDENT_IMB = 0x01,
184   /*! Use c-style ident structure */
185   KMP_IDENT_KMPC = 0x02,
186   /* 0x04 is no longer used */
187   /*! Entry point generated by auto-parallelization */
188   KMP_IDENT_AUTOPAR = 0x08,
189   /*! Compiler generates atomic reduction option for kmpc_reduce* */
190   KMP_IDENT_ATOMIC_REDUCE = 0x10,
191   /*! To mark a 'barrier' directive in user code */
192   KMP_IDENT_BARRIER_EXPL = 0x20,
193   /*! To Mark implicit barriers. */
194   KMP_IDENT_BARRIER_IMPL = 0x0040,
195   KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
196   KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
197   KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
198
199   KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
200   KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
201
202   /*! To mark a static loop in OMPT callbacks */
203   KMP_IDENT_WORK_LOOP = 0x200,
204   /*! To mark a sections directive in OMPT callbacks */
205   KMP_IDENT_WORK_SECTIONS = 0x400,
206   /*! To mark a distirbute construct in OMPT callbacks */
207   KMP_IDENT_WORK_DISTRIBUTE = 0x800,
208   /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and
209       not currently used. If one day we need more bits, then we can use
210       an invalid combination of hints to mean that another, larger field
211       should be used in a different flag. */
212   KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000,
213   KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
214   KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
215   KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
216   KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
217 };
218
219 /*!
220  * The ident structure that describes a source location.
221  */
222 typedef struct ident {
223   kmp_int32 reserved_1; /**<  might be used in Fortran; see above  */
224   kmp_int32 flags; /**<  also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC
225                       identifies this union member  */
226   kmp_int32 reserved_2; /**<  not really used in Fortran any more; see above */
227 #if USE_ITT_BUILD
228 /*  but currently used for storing region-specific ITT */
229 /*  contextual information. */
230 #endif /* USE_ITT_BUILD */
231   kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++  */
232   char const *psource; /**< String describing the source location.
233                        The string is composed of semi-colon separated fields
234                        which describe the source file, the function and a pair
235                        of line numbers that delimit the construct. */
236 } ident_t;
237 /*!
238 @}
239 */
240
241 // Some forward declarations.
242 typedef union kmp_team kmp_team_t;
243 typedef struct kmp_taskdata kmp_taskdata_t;
244 typedef union kmp_task_team kmp_task_team_t;
245 typedef union kmp_team kmp_team_p;
246 typedef union kmp_info kmp_info_p;
247 typedef union kmp_root kmp_root_p;
248
249 #ifdef __cplusplus
250 extern "C" {
251 #endif
252
253 /* ------------------------------------------------------------------------ */
254
255 /* Pack two 32-bit signed integers into a 64-bit signed integer */
256 /* ToDo: Fix word ordering for big-endian machines. */
257 #define KMP_PACK_64(HIGH_32, LOW_32)                                           \
258   ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
259
260 // Generic string manipulation macros. Assume that _x is of type char *
261 #define SKIP_WS(_x)                                                            \
262   {                                                                            \
263     while (*(_x) == ' ' || *(_x) == '\t')                                      \
264       (_x)++;                                                                  \
265   }
266 #define SKIP_DIGITS(_x)                                                        \
267   {                                                                            \
268     while (*(_x) >= '0' && *(_x) <= '9')                                       \
269       (_x)++;                                                                  \
270   }
271 #define SKIP_TOKEN(_x)                                                         \
272   {                                                                            \
273     while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
274            (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_')                     \
275       (_x)++;                                                                  \
276   }
277 #define SKIP_TO(_x, _c)                                                        \
278   {                                                                            \
279     while (*(_x) != '\0' && *(_x) != (_c))                                     \
280       (_x)++;                                                                  \
281   }
282
283 /* ------------------------------------------------------------------------ */
284
285 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
286 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
287
288 /* ------------------------------------------------------------------------ */
289 /* Enumeration types */
290
291 enum kmp_state_timer {
292   ts_stop,
293   ts_start,
294   ts_pause,
295
296   ts_last_state
297 };
298
299 enum dynamic_mode {
300   dynamic_default,
301 #ifdef USE_LOAD_BALANCE
302   dynamic_load_balance,
303 #endif /* USE_LOAD_BALANCE */
304   dynamic_random,
305   dynamic_thread_limit,
306   dynamic_max
307 };
308
309 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
310  * not include it here */
311 #ifndef KMP_SCHED_TYPE_DEFINED
312 #define KMP_SCHED_TYPE_DEFINED
313 typedef enum kmp_sched {
314   kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
315   // Note: need to adjust __kmp_sch_map global array in case enum is changed
316   kmp_sched_static = 1, // mapped to kmp_sch_static_chunked           (33)
317   kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked          (35)
318   kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked           (36)
319   kmp_sched_auto = 4, // mapped to kmp_sch_auto                     (38)
320   kmp_sched_upper_std = 5, // upper bound for standard schedules
321   kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
322   kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
323 #if KMP_STATIC_STEAL_ENABLED
324   kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
325 #endif
326   kmp_sched_upper,
327   kmp_sched_default = kmp_sched_static, // default scheduling
328   kmp_sched_monotonic = 0x80000000
329 } kmp_sched_t;
330 #endif
331
332 /*!
333  @ingroup WORK_SHARING
334  * Describes the loop schedule to be used for a parallel for loop.
335  */
336 enum sched_type : kmp_int32 {
337   kmp_sch_lower = 32, /**< lower bound for unordered values */
338   kmp_sch_static_chunked = 33,
339   kmp_sch_static = 34, /**< static unspecialized */
340   kmp_sch_dynamic_chunked = 35,
341   kmp_sch_guided_chunked = 36, /**< guided unspecialized */
342   kmp_sch_runtime = 37,
343   kmp_sch_auto = 38, /**< auto */
344   kmp_sch_trapezoidal = 39,
345
346   /* accessible only through KMP_SCHEDULE environment variable */
347   kmp_sch_static_greedy = 40,
348   kmp_sch_static_balanced = 41,
349   /* accessible only through KMP_SCHEDULE environment variable */
350   kmp_sch_guided_iterative_chunked = 42,
351   kmp_sch_guided_analytical_chunked = 43,
352   /* accessible only through KMP_SCHEDULE environment variable */
353   kmp_sch_static_steal = 44,
354
355   /* static with chunk adjustment (e.g., simd) */
356   kmp_sch_static_balanced_chunked = 45,
357   kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */
358   kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */
359
360   /* accessible only through KMP_SCHEDULE environment variable */
361   kmp_sch_upper, /**< upper bound for unordered values */
362
363   kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
364   kmp_ord_static_chunked = 65,
365   kmp_ord_static = 66, /**< ordered static unspecialized */
366   kmp_ord_dynamic_chunked = 67,
367   kmp_ord_guided_chunked = 68,
368   kmp_ord_runtime = 69,
369   kmp_ord_auto = 70, /**< ordered auto */
370   kmp_ord_trapezoidal = 71,
371   kmp_ord_upper, /**< upper bound for ordered values */
372
373   /* Schedules for Distribute construct */
374   kmp_distribute_static_chunked = 91, /**< distribute static chunked */
375   kmp_distribute_static = 92, /**< distribute static unspecialized */
376
377   /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
378      single iteration/chunk, even if the loop is serialized. For the schedule
379      types listed above, the entire iteration vector is returned if the loop is
380      serialized. This doesn't work for gcc/gcomp sections. */
381   kmp_nm_lower = 160, /**< lower bound for nomerge values */
382
383   kmp_nm_static_chunked =
384       (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
385   kmp_nm_static = 162, /**< static unspecialized */
386   kmp_nm_dynamic_chunked = 163,
387   kmp_nm_guided_chunked = 164, /**< guided unspecialized */
388   kmp_nm_runtime = 165,
389   kmp_nm_auto = 166, /**< auto */
390   kmp_nm_trapezoidal = 167,
391
392   /* accessible only through KMP_SCHEDULE environment variable */
393   kmp_nm_static_greedy = 168,
394   kmp_nm_static_balanced = 169,
395   /* accessible only through KMP_SCHEDULE environment variable */
396   kmp_nm_guided_iterative_chunked = 170,
397   kmp_nm_guided_analytical_chunked = 171,
398   kmp_nm_static_steal =
399       172, /* accessible only through OMP_SCHEDULE environment variable */
400
401   kmp_nm_ord_static_chunked = 193,
402   kmp_nm_ord_static = 194, /**< ordered static unspecialized */
403   kmp_nm_ord_dynamic_chunked = 195,
404   kmp_nm_ord_guided_chunked = 196,
405   kmp_nm_ord_runtime = 197,
406   kmp_nm_ord_auto = 198, /**< auto */
407   kmp_nm_ord_trapezoidal = 199,
408   kmp_nm_upper, /**< upper bound for nomerge values */
409
410   /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
411      we need to distinguish the three possible cases (no modifier, monotonic
412      modifier, nonmonotonic modifier), we need separate bits for each modifier.
413      The absence of monotonic does not imply nonmonotonic, especially since 4.5
414      says that the behaviour of the "no modifier" case is implementation defined
415      in 4.5, but will become "nonmonotonic" in 5.0.
416
417      Since we're passing a full 32 bit value, we can use a couple of high bits
418      for these flags; out of paranoia we avoid the sign bit.
419
420      These modifiers can be or-ed into non-static schedules by the compiler to
421      pass the additional information. They will be stripped early in the
422      processing in __kmp_dispatch_init when setting up schedules, so most of the
423      code won't ever see schedules with these bits set.  */
424   kmp_sch_modifier_monotonic =
425       (1 << 29), /**< Set if the monotonic schedule modifier was present */
426   kmp_sch_modifier_nonmonotonic =
427       (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */
428
429 #define SCHEDULE_WITHOUT_MODIFIERS(s)                                          \
430   (enum sched_type)(                                                           \
431       (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))
432 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
433 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
434 #define SCHEDULE_HAS_NO_MODIFIERS(s)                                           \
435   (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
436 #define SCHEDULE_GET_MODIFIERS(s)                                              \
437   ((enum sched_type)(                                                          \
438       (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
439 #define SCHEDULE_SET_MODIFIERS(s, m)                                           \
440   (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
441 #define SCHEDULE_NONMONOTONIC 0
442 #define SCHEDULE_MONOTONIC 1
443
444   kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
445 };
446
447 // Apply modifiers on internal kind to standard kind
448 static inline void
449 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
450                                enum sched_type internal_kind) {
451   if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
452     *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
453   }
454 }
455
456 // Apply modifiers on standard kind to internal kind
457 static inline void
458 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
459                                enum sched_type *internal_kind) {
460   if ((int)kind & (int)kmp_sched_monotonic) {
461     *internal_kind = (enum sched_type)((int)*internal_kind |
462                                        (int)kmp_sch_modifier_monotonic);
463   }
464 }
465
466 // Get standard schedule without modifiers
467 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
468   return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
469 }
470
471 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
472 typedef union kmp_r_sched {
473   struct {
474     enum sched_type r_sched_type;
475     int chunk;
476   };
477   kmp_int64 sched;
478 } kmp_r_sched_t;
479
480 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
481 // internal schedule types
482
483 enum library_type {
484   library_none,
485   library_serial,
486   library_turnaround,
487   library_throughput
488 };
489
490 #if KMP_OS_LINUX
491 enum clock_function_type {
492   clock_function_gettimeofday,
493   clock_function_clock_gettime
494 };
495 #endif /* KMP_OS_LINUX */
496
497 #if KMP_MIC_SUPPORTED
498 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
499 #endif
500
501 /* -- fast reduction stuff ------------------------------------------------ */
502
503 #undef KMP_FAST_REDUCTION_BARRIER
504 #define KMP_FAST_REDUCTION_BARRIER 1
505
506 #undef KMP_FAST_REDUCTION_CORE_DUO
507 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
508 #define KMP_FAST_REDUCTION_CORE_DUO 1
509 #endif
510
511 enum _reduction_method {
512   reduction_method_not_defined = 0,
513   critical_reduce_block = (1 << 8),
514   atomic_reduce_block = (2 << 8),
515   tree_reduce_block = (3 << 8),
516   empty_reduce_block = (4 << 8)
517 };
518
519 // Description of the packed_reduction_method variable:
520 // The packed_reduction_method variable consists of two enum types variables
521 // that are packed together into 0-th byte and 1-st byte:
522 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
523 // barrier that will be used in fast reduction: bs_plain_barrier or
524 // bs_reduction_barrier
525 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
526 // be used in fast reduction;
527 // Reduction method is of 'enum _reduction_method' type and it's defined the way
528 // so that the bits of 0-th byte are empty, so no need to execute a shift
529 // instruction while packing/unpacking
530
531 #if KMP_FAST_REDUCTION_BARRIER
532 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
533   ((reduction_method) | (barrier_type))
534
535 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
536   ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
537
538 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method)                      \
539   ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
540 #else
541 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
542   (reduction_method)
543
544 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
545   (packed_reduction_method)
546
547 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
548 #endif
549
550 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block)  \
551   ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) ==                       \
552    (which_reduction_block))
553
554 #if KMP_FAST_REDUCTION_BARRIER
555 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER                               \
556   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
557
558 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER                                   \
559   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
560 #endif
561
562 typedef int PACKED_REDUCTION_METHOD_T;
563
564 /* -- end of fast reduction stuff ----------------------------------------- */
565
566 #if KMP_OS_WINDOWS
567 #define USE_CBLKDATA
568 #if KMP_MSVC_COMPAT
569 #pragma warning(push)
570 #pragma warning(disable : 271 310)
571 #endif
572 #include <windows.h>
573 #if KMP_MSVC_COMPAT
574 #pragma warning(pop)
575 #endif
576 #endif
577
578 #if KMP_OS_UNIX
579 #include <dlfcn.h>
580 #include <pthread.h>
581 #endif
582
583 /* Only Linux* OS and Windows* OS support thread affinity. */
584 #if KMP_AFFINITY_SUPPORTED
585
586 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
587 #if KMP_OS_WINDOWS
588 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
589 typedef struct GROUP_AFFINITY {
590   KAFFINITY Mask;
591   WORD Group;
592   WORD Reserved[3];
593 } GROUP_AFFINITY;
594 #endif /* _MSC_VER < 1600 */
595 #if KMP_GROUP_AFFINITY
596 extern int __kmp_num_proc_groups;
597 #else
598 static const int __kmp_num_proc_groups = 1;
599 #endif /* KMP_GROUP_AFFINITY */
600 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
601 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
602
603 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
604 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
605
606 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
607 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
608
609 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
610                                              GROUP_AFFINITY *);
611 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
612 #endif /* KMP_OS_WINDOWS */
613
614 #if KMP_USE_HWLOC
615 extern hwloc_topology_t __kmp_hwloc_topology;
616 extern int __kmp_hwloc_error;
617 extern int __kmp_numa_detected;
618 extern int __kmp_tile_depth;
619 #endif
620
621 extern size_t __kmp_affin_mask_size;
622 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
623 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
624 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
625 #define KMP_CPU_SET_ITERATE(i, mask)                                           \
626   for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
627 #define KMP_CPU_SET(i, mask) (mask)->set(i)
628 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
629 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
630 #define KMP_CPU_ZERO(mask) (mask)->zero()
631 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
632 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
633 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
634 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
635 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
636 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
637 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
638 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
639 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
640 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
641 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
642 #define KMP_CPU_ALLOC_ARRAY(arr, n)                                            \
643   (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
644 #define KMP_CPU_FREE_ARRAY(arr, n)                                             \
645   __kmp_affinity_dispatch->deallocate_mask_array(arr)
646 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
647 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
648 #define __kmp_get_system_affinity(mask, abort_bool)                            \
649   (mask)->get_system_affinity(abort_bool)
650 #define __kmp_set_system_affinity(mask, abort_bool)                            \
651   (mask)->set_system_affinity(abort_bool)
652 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
653
654 class KMPAffinity {
655 public:
656   class Mask {
657   public:
658     void *operator new(size_t n);
659     void operator delete(void *p);
660     void *operator new[](size_t n);
661     void operator delete[](void *p);
662     virtual ~Mask() {}
663     // Set bit i to 1
664     virtual void set(int i) {}
665     // Return bit i
666     virtual bool is_set(int i) const { return false; }
667     // Set bit i to 0
668     virtual void clear(int i) {}
669     // Zero out entire mask
670     virtual void zero() {}
671     // Copy src into this mask
672     virtual void copy(const Mask *src) {}
673     // this &= rhs
674     virtual void bitwise_and(const Mask *rhs) {}
675     // this |= rhs
676     virtual void bitwise_or(const Mask *rhs) {}
677     // this = ~this
678     virtual void bitwise_not() {}
679     // API for iterating over an affinity mask
680     // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
681     virtual int begin() const { return 0; }
682     virtual int end() const { return 0; }
683     virtual int next(int previous) const { return 0; }
684     // Set the system's affinity to this affinity mask's value
685     virtual int set_system_affinity(bool abort_on_error) const { return -1; }
686     // Set this affinity mask to the current system affinity
687     virtual int get_system_affinity(bool abort_on_error) { return -1; }
688     // Only 1 DWORD in the mask should have any procs set.
689     // Return the appropriate index, or -1 for an invalid mask.
690     virtual int get_proc_group() const { return -1; }
691   };
692   void *operator new(size_t n);
693   void operator delete(void *p);
694   // Need virtual destructor
695   virtual ~KMPAffinity() = default;
696   // Determine if affinity is capable
697   virtual void determine_capable(const char *env_var) {}
698   // Bind the current thread to os proc
699   virtual void bind_thread(int proc) {}
700   // Factory functions to allocate/deallocate a mask
701   virtual Mask *allocate_mask() { return nullptr; }
702   virtual void deallocate_mask(Mask *m) {}
703   virtual Mask *allocate_mask_array(int num) { return nullptr; }
704   virtual void deallocate_mask_array(Mask *m) {}
705   virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
706   static void pick_api();
707   static void destroy_api();
708   enum api_type {
709     NATIVE_OS
710 #if KMP_USE_HWLOC
711     ,
712     HWLOC
713 #endif
714   };
715   virtual api_type get_api_type() const {
716     KMP_ASSERT(0);
717     return NATIVE_OS;
718   }
719
720 private:
721   static bool picked_api;
722 };
723
724 typedef KMPAffinity::Mask kmp_affin_mask_t;
725 extern KMPAffinity *__kmp_affinity_dispatch;
726
727 // Declare local char buffers with this size for printing debug and info
728 // messages, using __kmp_affinity_print_mask().
729 #define KMP_AFFIN_MASK_PRINT_LEN 1024
730
731 enum affinity_type {
732   affinity_none = 0,
733   affinity_physical,
734   affinity_logical,
735   affinity_compact,
736   affinity_scatter,
737   affinity_explicit,
738   affinity_balanced,
739   affinity_disabled, // not used outsize the env var parser
740   affinity_default
741 };
742
743 enum affinity_gran {
744   affinity_gran_fine = 0,
745   affinity_gran_thread,
746   affinity_gran_core,
747   affinity_gran_tile,
748   affinity_gran_numa,
749   affinity_gran_package,
750   affinity_gran_node,
751 #if KMP_GROUP_AFFINITY
752   // The "group" granularity isn't necesssarily coarser than all of the
753   // other levels, but we put it last in the enum.
754   affinity_gran_group,
755 #endif /* KMP_GROUP_AFFINITY */
756   affinity_gran_default
757 };
758
759 enum affinity_top_method {
760   affinity_top_method_all = 0, // try all (supported) methods, in order
761 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
762   affinity_top_method_apicid,
763   affinity_top_method_x2apicid,
764 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
765   affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
766 #if KMP_GROUP_AFFINITY
767   affinity_top_method_group,
768 #endif /* KMP_GROUP_AFFINITY */
769   affinity_top_method_flat,
770 #if KMP_USE_HWLOC
771   affinity_top_method_hwloc,
772 #endif
773   affinity_top_method_default
774 };
775
776 #define affinity_respect_mask_default (-1)
777
778 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
779 extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */
780 extern int __kmp_affinity_gran_levels; /* corresponding int value */
781 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
782 extern enum affinity_top_method __kmp_affinity_top_method;
783 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
784 extern int __kmp_affinity_offset; /* Affinity offset value  */
785 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
786 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
787 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
788 extern char *__kmp_affinity_proclist; /* proc ID list */
789 extern kmp_affin_mask_t *__kmp_affinity_masks;
790 extern unsigned __kmp_affinity_num_masks;
791 extern void __kmp_affinity_bind_thread(int which);
792
793 extern kmp_affin_mask_t *__kmp_affin_fullMask;
794 extern char *__kmp_cpuinfo_file;
795
796 #endif /* KMP_AFFINITY_SUPPORTED */
797
798 // This needs to be kept in sync with the values in omp.h !!!
799 typedef enum kmp_proc_bind_t {
800   proc_bind_false = 0,
801   proc_bind_true,
802   proc_bind_master,
803   proc_bind_close,
804   proc_bind_spread,
805   proc_bind_intel, // use KMP_AFFINITY interface
806   proc_bind_default
807 } kmp_proc_bind_t;
808
809 typedef struct kmp_nested_proc_bind_t {
810   kmp_proc_bind_t *bind_types;
811   int size;
812   int used;
813 } kmp_nested_proc_bind_t;
814
815 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
816
817 extern int __kmp_display_affinity;
818 extern char *__kmp_affinity_format;
819 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
820
821 #if KMP_AFFINITY_SUPPORTED
822 #define KMP_PLACE_ALL (-1)
823 #define KMP_PLACE_UNDEFINED (-2)
824 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
825 #define KMP_AFFINITY_NON_PROC_BIND                                             \
826   ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false ||                 \
827     __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) &&                \
828    (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
829 #endif /* KMP_AFFINITY_SUPPORTED */
830
831 extern int __kmp_affinity_num_places;
832
833 typedef enum kmp_cancel_kind_t {
834   cancel_noreq = 0,
835   cancel_parallel = 1,
836   cancel_loop = 2,
837   cancel_sections = 3,
838   cancel_taskgroup = 4
839 } kmp_cancel_kind_t;
840
841 // KMP_HW_SUBSET support:
842 typedef struct kmp_hws_item {
843   int num;
844   int offset;
845 } kmp_hws_item_t;
846
847 extern kmp_hws_item_t __kmp_hws_socket;
848 extern kmp_hws_item_t __kmp_hws_node;
849 extern kmp_hws_item_t __kmp_hws_tile;
850 extern kmp_hws_item_t __kmp_hws_core;
851 extern kmp_hws_item_t __kmp_hws_proc;
852 extern int __kmp_hws_requested;
853 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
854
855 /* ------------------------------------------------------------------------ */
856
857 #define KMP_PAD(type, sz)                                                      \
858   (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
859
860 // We need to avoid using -1 as a GTID as +1 is added to the gtid
861 // when storing it in a lock, and the value 0 is reserved.
862 #define KMP_GTID_DNE (-2) /* Does not exist */
863 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
864 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
865 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
866 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
867
868 /* OpenMP 5.0 Memory Management support */
869
870 #ifndef __OMP_H
871 // Duplicate type definitios from omp.h
872 typedef uintptr_t omp_uintptr_t;
873
874 typedef enum {
875   OMP_ATK_THREADMODEL = 1,
876   OMP_ATK_ALIGNMENT = 2,
877   OMP_ATK_ACCESS = 3,
878   OMP_ATK_POOL_SIZE = 4,
879   OMP_ATK_FALLBACK = 5,
880   OMP_ATK_FB_DATA = 6,
881   OMP_ATK_PINNED = 7,
882   OMP_ATK_PARTITION = 8
883 } omp_alloctrait_key_t;
884
885 typedef enum {
886   OMP_ATV_FALSE = 0,
887   OMP_ATV_TRUE = 1,
888   OMP_ATV_DEFAULT = 2,
889   OMP_ATV_CONTENDED = 3,
890   OMP_ATV_UNCONTENDED = 4,
891   OMP_ATV_SEQUENTIAL = 5,
892   OMP_ATV_PRIVATE = 6,
893   OMP_ATV_ALL = 7,
894   OMP_ATV_THREAD = 8,
895   OMP_ATV_PTEAM = 9,
896   OMP_ATV_CGROUP = 10,
897   OMP_ATV_DEFAULT_MEM_FB = 11,
898   OMP_ATV_NULL_FB = 12,
899   OMP_ATV_ABORT_FB = 13,
900   OMP_ATV_ALLOCATOR_FB = 14,
901   OMP_ATV_ENVIRONMENT = 15,
902   OMP_ATV_NEAREST = 16,
903   OMP_ATV_BLOCKED = 17,
904   OMP_ATV_INTERLEAVED = 18
905 } omp_alloctrait_value_t;
906
907 typedef void *omp_memspace_handle_t;
908 extern omp_memspace_handle_t const omp_default_mem_space;
909 extern omp_memspace_handle_t const omp_large_cap_mem_space;
910 extern omp_memspace_handle_t const omp_const_mem_space;
911 extern omp_memspace_handle_t const omp_high_bw_mem_space;
912 extern omp_memspace_handle_t const omp_low_lat_mem_space;
913
914 typedef struct {
915   omp_alloctrait_key_t key;
916   omp_uintptr_t value;
917 } omp_alloctrait_t;
918
919 typedef void *omp_allocator_handle_t;
920 extern omp_allocator_handle_t const omp_null_allocator;
921 extern omp_allocator_handle_t const omp_default_mem_alloc;
922 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
923 extern omp_allocator_handle_t const omp_const_mem_alloc;
924 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
925 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
926 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
927 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
928 extern omp_allocator_handle_t const omp_thread_mem_alloc;
929 extern omp_allocator_handle_t const kmp_max_mem_alloc;
930 extern omp_allocator_handle_t __kmp_def_allocator;
931
932 // end of duplicate type definitios from omp.h
933 #endif
934
935 extern int __kmp_memkind_available;
936
937 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
938
939 typedef struct kmp_allocator_t {
940   omp_memspace_handle_t memspace;
941   void **memkind; // pointer to memkind
942   int alignment;
943   omp_alloctrait_value_t fb;
944   kmp_allocator_t *fb_data;
945   kmp_uint64 pool_size;
946   kmp_uint64 pool_used;
947 } kmp_allocator_t;
948
949 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
950                                                     omp_memspace_handle_t,
951                                                     int ntraits,
952                                                     omp_alloctrait_t traits[]);
953 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
954 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
955 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
956 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
957 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
958
959 extern void __kmp_init_memkind();
960 extern void __kmp_fini_memkind();
961
962 /* ------------------------------------------------------------------------ */
963
964 #define KMP_UINT64_MAX                                                         \
965   (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
966
967 #define KMP_MIN_NTH 1
968
969 #ifndef KMP_MAX_NTH
970 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
971 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
972 #else
973 #define KMP_MAX_NTH INT_MAX
974 #endif
975 #endif /* KMP_MAX_NTH */
976
977 #ifdef PTHREAD_STACK_MIN
978 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
979 #else
980 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
981 #endif
982
983 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
984
985 #if KMP_ARCH_X86
986 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
987 #elif KMP_ARCH_X86_64
988 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
989 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
990 #else
991 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
992 #endif
993
994 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
995 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
996 #define KMP_MAX_MALLOC_POOL_INCR                                               \
997   (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
998
999 #define KMP_MIN_STKOFFSET (0)
1000 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1001 #if KMP_OS_DARWIN
1002 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1003 #else
1004 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1005 #endif
1006
1007 #define KMP_MIN_STKPADDING (0)
1008 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1009
1010 #define KMP_BLOCKTIME_MULTIPLIER                                               \
1011   (1000) /* number of blocktime units per second */
1012 #define KMP_MIN_BLOCKTIME (0)
1013 #define KMP_MAX_BLOCKTIME                                                      \
1014   (INT_MAX) /* Must be this for "infinite" setting the work */
1015 #define KMP_DEFAULT_BLOCKTIME (200) /*  __kmp_blocktime is in milliseconds  */
1016
1017 #if KMP_USE_MONITOR
1018 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1019 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1020 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1021
1022 /* Calculate new number of monitor wakeups for a specific block time based on
1023    previous monitor_wakeups. Only allow increasing number of wakeups */
1024 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups)                 \
1025   (((blocktime) == KMP_MAX_BLOCKTIME)                                          \
1026        ? (monitor_wakeups)                                                     \
1027        : ((blocktime) == KMP_MIN_BLOCKTIME)                                    \
1028              ? KMP_MAX_MONITOR_WAKEUPS                                         \
1029              : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime)))  \
1030                    ? (monitor_wakeups)                                         \
1031                    : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1032
1033 /* Calculate number of intervals for a specific block time based on
1034    monitor_wakeups */
1035 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups)               \
1036   (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) /        \
1037    (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1038 #else
1039 #define KMP_BLOCKTIME(team, tid)                                               \
1040   (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1041 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1042 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1043 extern kmp_uint64 __kmp_ticks_per_msec;
1044 #if KMP_COMPILER_ICC
1045 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1046 #else
1047 #define KMP_NOW() __kmp_hardware_timestamp()
1048 #endif
1049 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1050 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1051   (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1052 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1053 #else
1054 // System time is retrieved sporadically while blocking.
1055 extern kmp_uint64 __kmp_now_nsec();
1056 #define KMP_NOW() __kmp_now_nsec()
1057 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1058 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1059   (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1060 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1061 #endif
1062 #endif // KMP_USE_MONITOR
1063
1064 #define KMP_MIN_STATSCOLS 40
1065 #define KMP_MAX_STATSCOLS 4096
1066 #define KMP_DEFAULT_STATSCOLS 80
1067
1068 #define KMP_MIN_INTERVAL 0
1069 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1070 #define KMP_DEFAULT_INTERVAL 0
1071
1072 #define KMP_MIN_CHUNK 1
1073 #define KMP_MAX_CHUNK (INT_MAX - 1)
1074 #define KMP_DEFAULT_CHUNK 1
1075
1076 #define KMP_DFLT_DISP_NUM_BUFF 7
1077 #define KMP_MAX_ORDERED 8
1078
1079 #define KMP_MAX_FIELDS 32
1080
1081 #define KMP_MAX_BRANCH_BITS 31
1082
1083 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1084
1085 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1086
1087 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1088
1089 /* Minimum number of threads before switch to TLS gtid (experimentally
1090    determined) */
1091 /* josh TODO: what about OS X* tuning? */
1092 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1093 #define KMP_TLS_GTID_MIN 5
1094 #else
1095 #define KMP_TLS_GTID_MIN INT_MAX
1096 #endif
1097
1098 #define KMP_MASTER_TID(tid) ((tid) == 0)
1099 #define KMP_WORKER_TID(tid) ((tid) != 0)
1100
1101 #define KMP_MASTER_GTID(gtid) (__kmp_tid_from_gtid((gtid)) == 0)
1102 #define KMP_WORKER_GTID(gtid) (__kmp_tid_from_gtid((gtid)) != 0)
1103 #define KMP_INITIAL_GTID(gtid) ((gtid) == 0)
1104
1105 #ifndef TRUE
1106 #define FALSE 0
1107 #define TRUE (!FALSE)
1108 #endif
1109
1110 /* NOTE: all of the following constants must be even */
1111
1112 #if KMP_OS_WINDOWS
1113 #define KMP_INIT_WAIT 64U /* initial number of spin-tests   */
1114 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1115 #elif KMP_OS_CNK
1116 #define KMP_INIT_WAIT 16U /* initial number of spin-tests   */
1117 #define KMP_NEXT_WAIT 8U /* susequent number of spin-tests */
1118 #elif KMP_OS_LINUX
1119 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1120 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1121 #elif KMP_OS_DARWIN
1122 /* TODO: tune for KMP_OS_DARWIN */
1123 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1124 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1125 #elif KMP_OS_DRAGONFLY
1126 /* TODO: tune for KMP_OS_DRAGONFLY */
1127 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1128 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1129 #elif KMP_OS_FREEBSD
1130 /* TODO: tune for KMP_OS_FREEBSD */
1131 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1132 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1133 #elif KMP_OS_NETBSD
1134 /* TODO: tune for KMP_OS_NETBSD */
1135 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1136 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1137 #elif KMP_OS_HURD
1138 /* TODO: tune for KMP_OS_HURD */
1139 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1140 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1141 #elif KMP_OS_OPENBSD
1142 /* TODO: tune for KMP_OS_OPENBSD */
1143 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1144 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1145 #endif
1146
1147 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1148 typedef struct kmp_cpuid {
1149   kmp_uint32 eax;
1150   kmp_uint32 ebx;
1151   kmp_uint32 ecx;
1152   kmp_uint32 edx;
1153 } kmp_cpuid_t;
1154
1155 typedef struct kmp_cpuinfo {
1156   int initialized; // If 0, other fields are not initialized.
1157   int signature; // CPUID(1).EAX
1158   int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1159   int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1160   // Model << 4 ) + Model)
1161   int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1162   int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
1163   int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
1164   int cpu_stackoffset;
1165   int apic_id;
1166   int physical_id;
1167   int logical_id;
1168   kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1169   char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1170 } kmp_cpuinfo_t;
1171
1172 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1173
1174 #if KMP_OS_UNIX
1175 // subleaf is only needed for cache and topology discovery and can be set to
1176 // zero in most cases
1177 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1178   __asm__ __volatile__("cpuid"
1179                        : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1180                        : "a"(leaf), "c"(subleaf));
1181 }
1182 // Load p into FPU control word
1183 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1184   __asm__ __volatile__("fldcw %0" : : "m"(*p));
1185 }
1186 // Store FPU control word into p
1187 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1188   __asm__ __volatile__("fstcw %0" : "=m"(*p));
1189 }
1190 static inline void __kmp_clear_x87_fpu_status_word() {
1191 #if KMP_MIC
1192   // 32-bit protected mode x87 FPU state
1193   struct x87_fpu_state {
1194     unsigned cw;
1195     unsigned sw;
1196     unsigned tw;
1197     unsigned fip;
1198     unsigned fips;
1199     unsigned fdp;
1200     unsigned fds;
1201   };
1202   struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1203   __asm__ __volatile__("fstenv %0\n\t" // store FP env
1204                        "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1205                        "fldenv %0\n\t" // load FP env back
1206                        : "+m"(fpu_state), "+m"(fpu_state.sw));
1207 #else
1208   __asm__ __volatile__("fnclex");
1209 #endif // KMP_MIC
1210 }
1211 #if __SSE__
1212 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1213 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1214 #else
1215 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1216 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1217 #endif
1218 #else
1219 // Windows still has these as external functions in assembly file
1220 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1221 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1222 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1223 extern void __kmp_clear_x87_fpu_status_word();
1224 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1225 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1226 #endif // KMP_OS_UNIX
1227
1228 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1229
1230 #if KMP_ARCH_X86
1231 extern void __kmp_x86_pause(void);
1232 #elif KMP_MIC
1233 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1234 // regression after removal of extra PAUSE from spin loops. Changing
1235 // the delay from 100 to 300 showed even better performance than double PAUSE
1236 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1237 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1238 #else
1239 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1240 #endif
1241 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1242 #elif KMP_ARCH_PPC64
1243 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1244 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1245 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1246 #define KMP_CPU_PAUSE()                                                        \
1247   do {                                                                         \
1248     KMP_PPC64_PRI_LOW();                                                       \
1249     KMP_PPC64_PRI_MED();                                                       \
1250     KMP_PPC64_PRI_LOC_MB();                                                    \
1251   } while (0)
1252 #else
1253 #define KMP_CPU_PAUSE() /* nothing to do */
1254 #endif
1255
1256 #define KMP_INIT_YIELD(count)                                                  \
1257   { (count) = __kmp_yield_init; }
1258
1259 #define KMP_OVERSUBSCRIBED                                                     \
1260   (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1261
1262 #define KMP_TRY_YIELD                                                          \
1263   ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1264
1265 #define KMP_TRY_YIELD_OVERSUB                                                  \
1266   ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1267
1268 #define KMP_YIELD(cond)                                                        \
1269   {                                                                            \
1270     KMP_CPU_PAUSE();                                                           \
1271     if ((cond) && (KMP_TRY_YIELD))                                             \
1272       __kmp_yield();                                                           \
1273   }
1274
1275 #define KMP_YIELD_OVERSUB()                                                    \
1276   {                                                                            \
1277     KMP_CPU_PAUSE();                                                           \
1278     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1279       __kmp_yield();                                                           \
1280   }
1281
1282 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1283 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1284 #define KMP_YIELD_SPIN(count)                                                  \
1285   {                                                                            \
1286     KMP_CPU_PAUSE();                                                           \
1287     if (KMP_TRY_YIELD) {                                                       \
1288       (count) -= 2;                                                            \
1289       if (!(count)) {                                                          \
1290         __kmp_yield();                                                         \
1291         (count) = __kmp_yield_next;                                            \
1292       }                                                                        \
1293     }                                                                          \
1294   }
1295
1296 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count)                                     \
1297   {                                                                            \
1298     KMP_CPU_PAUSE();                                                           \
1299     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1300       __kmp_yield();                                                           \
1301     else if (__kmp_use_yield == 1) {                                           \
1302       (count) -= 2;                                                            \
1303       if (!(count)) {                                                          \
1304         __kmp_yield();                                                         \
1305         (count) = __kmp_yield_next;                                            \
1306       }                                                                        \
1307     }                                                                          \
1308   }
1309
1310 /* ------------------------------------------------------------------------ */
1311 /* Support datatypes for the orphaned construct nesting checks.             */
1312 /* ------------------------------------------------------------------------ */
1313
1314 enum cons_type {
1315   ct_none,
1316   ct_parallel,
1317   ct_pdo,
1318   ct_pdo_ordered,
1319   ct_psections,
1320   ct_psingle,
1321   ct_critical,
1322   ct_ordered_in_parallel,
1323   ct_ordered_in_pdo,
1324   ct_master,
1325   ct_reduce,
1326   ct_barrier
1327 };
1328
1329 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1330
1331 struct cons_data {
1332   ident_t const *ident;
1333   enum cons_type type;
1334   int prev;
1335   kmp_user_lock_p
1336       name; /* address exclusively for critical section name comparison */
1337 };
1338
1339 struct cons_header {
1340   int p_top, w_top, s_top;
1341   int stack_size, stack_top;
1342   struct cons_data *stack_data;
1343 };
1344
1345 struct kmp_region_info {
1346   char *text;
1347   int offset[KMP_MAX_FIELDS];
1348   int length[KMP_MAX_FIELDS];
1349 };
1350
1351 /* ---------------------------------------------------------------------- */
1352 /* ---------------------------------------------------------------------- */
1353
1354 #if KMP_OS_WINDOWS
1355 typedef HANDLE kmp_thread_t;
1356 typedef DWORD kmp_key_t;
1357 #endif /* KMP_OS_WINDOWS */
1358
1359 #if KMP_OS_UNIX
1360 typedef pthread_t kmp_thread_t;
1361 typedef pthread_key_t kmp_key_t;
1362 #endif
1363
1364 extern kmp_key_t __kmp_gtid_threadprivate_key;
1365
1366 typedef struct kmp_sys_info {
1367   long maxrss; /* the maximum resident set size utilized (in kilobytes)     */
1368   long minflt; /* the number of page faults serviced without any I/O        */
1369   long majflt; /* the number of page faults serviced that required I/O      */
1370   long nswap; /* the number of times a process was "swapped" out of memory */
1371   long inblock; /* the number of times the file system had to perform input  */
1372   long oublock; /* the number of times the file system had to perform output */
1373   long nvcsw; /* the number of times a context switch was voluntarily      */
1374   long nivcsw; /* the number of times a context switch was forced           */
1375 } kmp_sys_info_t;
1376
1377 #if USE_ITT_BUILD
1378 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1379 // required type here. Later we will check the type meets requirements.
1380 typedef int kmp_itt_mark_t;
1381 #define KMP_ITT_DEBUG 0
1382 #endif /* USE_ITT_BUILD */
1383
1384 typedef kmp_int32 kmp_critical_name[8];
1385
1386 /*!
1387 @ingroup PARALLEL
1388 The type for a microtask which gets passed to @ref __kmpc_fork_call().
1389 The arguments to the outlined function are
1390 @param global_tid the global thread identity of the thread executing the
1391 function.
1392 @param bound_tid  the local identitiy of the thread executing the function
1393 @param ... pointers to shared variables accessed by the function.
1394 */
1395 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1396 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1397                                  ...);
1398
1399 /*!
1400 @ingroup THREADPRIVATE
1401 @{
1402 */
1403 /* ---------------------------------------------------------------------------
1404  */
1405 /* Threadprivate initialization/finalization function declarations */
1406
1407 /*  for non-array objects:  __kmpc_threadprivate_register()  */
1408
1409 /*!
1410  Pointer to the constructor function.
1411  The first argument is the <tt>this</tt> pointer
1412 */
1413 typedef void *(*kmpc_ctor)(void *);
1414
1415 /*!
1416  Pointer to the destructor function.
1417  The first argument is the <tt>this</tt> pointer
1418 */
1419 typedef void (*kmpc_dtor)(
1420     void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1421                               compiler */
1422 /*!
1423  Pointer to an alternate constructor.
1424  The first argument is the <tt>this</tt> pointer.
1425 */
1426 typedef void *(*kmpc_cctor)(void *, void *);
1427
1428 /* for array objects: __kmpc_threadprivate_register_vec() */
1429 /* First arg: "this" pointer */
1430 /* Last arg: number of array elements */
1431 /*!
1432  Array constructor.
1433  First argument is the <tt>this</tt> pointer
1434  Second argument the number of array elements.
1435 */
1436 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1437 /*!
1438  Pointer to the array destructor function.
1439  The first argument is the <tt>this</tt> pointer
1440  Second argument the number of array elements.
1441 */
1442 typedef void (*kmpc_dtor_vec)(void *, size_t);
1443 /*!
1444  Array constructor.
1445  First argument is the <tt>this</tt> pointer
1446  Third argument the number of array elements.
1447 */
1448 typedef void *(*kmpc_cctor_vec)(void *, void *,
1449                                 size_t); /* function unused by compiler */
1450
1451 /*!
1452 @}
1453 */
1454
1455 /* keeps tracked of threadprivate cache allocations for cleanup later */
1456 typedef struct kmp_cached_addr {
1457   void **addr; /* address of allocated cache */
1458   void ***compiler_cache; /* pointer to compiler's cache */
1459   void *data; /* pointer to global data */
1460   struct kmp_cached_addr *next; /* pointer to next cached address */
1461 } kmp_cached_addr_t;
1462
1463 struct private_data {
1464   struct private_data *next; /* The next descriptor in the list      */
1465   void *data; /* The data buffer for this descriptor  */
1466   int more; /* The repeat count for this descriptor */
1467   size_t size; /* The data size for this descriptor    */
1468 };
1469
1470 struct private_common {
1471   struct private_common *next;
1472   struct private_common *link;
1473   void *gbl_addr;
1474   void *par_addr; /* par_addr == gbl_addr for MASTER thread */
1475   size_t cmn_size;
1476 };
1477
1478 struct shared_common {
1479   struct shared_common *next;
1480   struct private_data *pod_init;
1481   void *obj_init;
1482   void *gbl_addr;
1483   union {
1484     kmpc_ctor ctor;
1485     kmpc_ctor_vec ctorv;
1486   } ct;
1487   union {
1488     kmpc_cctor cctor;
1489     kmpc_cctor_vec cctorv;
1490   } cct;
1491   union {
1492     kmpc_dtor dtor;
1493     kmpc_dtor_vec dtorv;
1494   } dt;
1495   size_t vec_len;
1496   int is_vec;
1497   size_t cmn_size;
1498 };
1499
1500 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1501 #define KMP_HASH_TABLE_SIZE                                                    \
1502   (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1503 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1504 #define KMP_HASH(x)                                                            \
1505   ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1506
1507 struct common_table {
1508   struct private_common *data[KMP_HASH_TABLE_SIZE];
1509 };
1510
1511 struct shared_table {
1512   struct shared_common *data[KMP_HASH_TABLE_SIZE];
1513 };
1514
1515 /* ------------------------------------------------------------------------ */
1516
1517 #if KMP_USE_HIER_SCHED
1518 // Shared barrier data that exists inside a single unit of the scheduling
1519 // hierarchy
1520 typedef struct kmp_hier_private_bdata_t {
1521   kmp_int32 num_active;
1522   kmp_uint64 index;
1523   kmp_uint64 wait_val[2];
1524 } kmp_hier_private_bdata_t;
1525 #endif
1526
1527 typedef struct kmp_sched_flags {
1528   unsigned ordered : 1;
1529   unsigned nomerge : 1;
1530   unsigned contains_last : 1;
1531 #if KMP_USE_HIER_SCHED
1532   unsigned use_hier : 1;
1533   unsigned unused : 28;
1534 #else
1535   unsigned unused : 29;
1536 #endif
1537 } kmp_sched_flags_t;
1538
1539 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1540
1541 #if KMP_STATIC_STEAL_ENABLED
1542 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1543   kmp_int32 count;
1544   kmp_int32 ub;
1545   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1546   kmp_int32 lb;
1547   kmp_int32 st;
1548   kmp_int32 tc;
1549   kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put
1550                                      after ub */
1551
1552   // KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on )
1553   //    a) parm3 is properly aligned and
1554   //    b) all parm1-4 are in the same cache line.
1555   // Because of parm1-4 are used together, performance seems to be better
1556   // if they are in the same line (not measured though).
1557
1558   struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1559     kmp_int32 parm1; //     structures in kmp_dispatch.cpp. This should
1560     kmp_int32 parm2; //     make no real change at least while padding is off.
1561     kmp_int32 parm3;
1562     kmp_int32 parm4;
1563   };
1564
1565   kmp_uint32 ordered_lower;
1566   kmp_uint32 ordered_upper;
1567 #if KMP_OS_WINDOWS
1568   // This var can be placed in the hole between 'tc' and 'parm1', instead of
1569   // 'static_steal_counter'. It would be nice to measure execution times.
1570   // Conditional if/endif can be removed at all.
1571   kmp_int32 last_upper;
1572 #endif /* KMP_OS_WINDOWS */
1573 } dispatch_private_info32_t;
1574
1575 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1576   kmp_int64 count; // current chunk number for static & static-steal scheduling
1577   kmp_int64 ub; /* upper-bound */
1578   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1579   kmp_int64 lb; /* lower-bound */
1580   kmp_int64 st; /* stride */
1581   kmp_int64 tc; /* trip count (number of iterations) */
1582   kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put
1583                                      after ub */
1584
1585   /* parm[1-4] are used in different ways by different scheduling algorithms */
1586
1587   // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1588   //    a) parm3 is properly aligned and
1589   //    b) all parm1-4 are in the same cache line.
1590   // Because of parm1-4 are used together, performance seems to be better
1591   // if they are in the same line (not measured though).
1592
1593   struct KMP_ALIGN(32) {
1594     kmp_int64 parm1;
1595     kmp_int64 parm2;
1596     kmp_int64 parm3;
1597     kmp_int64 parm4;
1598   };
1599
1600   kmp_uint64 ordered_lower;
1601   kmp_uint64 ordered_upper;
1602 #if KMP_OS_WINDOWS
1603   // This var can be placed in the hole between 'tc' and 'parm1', instead of
1604   // 'static_steal_counter'. It would be nice to measure execution times.
1605   // Conditional if/endif can be removed at all.
1606   kmp_int64 last_upper;
1607 #endif /* KMP_OS_WINDOWS */
1608 } dispatch_private_info64_t;
1609 #else /* KMP_STATIC_STEAL_ENABLED */
1610 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1611   kmp_int32 lb;
1612   kmp_int32 ub;
1613   kmp_int32 st;
1614   kmp_int32 tc;
1615
1616   kmp_int32 parm1;
1617   kmp_int32 parm2;
1618   kmp_int32 parm3;
1619   kmp_int32 parm4;
1620
1621   kmp_int32 count;
1622
1623   kmp_uint32 ordered_lower;
1624   kmp_uint32 ordered_upper;
1625 #if KMP_OS_WINDOWS
1626   kmp_int32 last_upper;
1627 #endif /* KMP_OS_WINDOWS */
1628 } dispatch_private_info32_t;
1629
1630 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1631   kmp_int64 lb; /* lower-bound */
1632   kmp_int64 ub; /* upper-bound */
1633   kmp_int64 st; /* stride */
1634   kmp_int64 tc; /* trip count (number of iterations) */
1635
1636   /* parm[1-4] are used in different ways by different scheduling algorithms */
1637   kmp_int64 parm1;
1638   kmp_int64 parm2;
1639   kmp_int64 parm3;
1640   kmp_int64 parm4;
1641
1642   kmp_int64 count; /* current chunk number for static scheduling */
1643
1644   kmp_uint64 ordered_lower;
1645   kmp_uint64 ordered_upper;
1646 #if KMP_OS_WINDOWS
1647   kmp_int64 last_upper;
1648 #endif /* KMP_OS_WINDOWS */
1649 } dispatch_private_info64_t;
1650 #endif /* KMP_STATIC_STEAL_ENABLED */
1651
1652 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1653   union private_info {
1654     dispatch_private_info32_t p32;
1655     dispatch_private_info64_t p64;
1656   } u;
1657   enum sched_type schedule; /* scheduling algorithm */
1658   kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1659   kmp_int32 ordered_bumped;
1660   // To retain the structure size after making ordered_iteration scalar
1661   kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3];
1662   // Stack of buffers for nest of serial regions
1663   struct dispatch_private_info *next;
1664   kmp_int32 type_size; /* the size of types in private_info */
1665 #if KMP_USE_HIER_SCHED
1666   kmp_int32 hier_id;
1667   void *parent; /* hierarchical scheduling parent pointer */
1668 #endif
1669   enum cons_type pushed_ws;
1670 } dispatch_private_info_t;
1671
1672 typedef struct dispatch_shared_info32 {
1673   /* chunk index under dynamic, number of idle threads under static-steal;
1674      iteration index otherwise */
1675   volatile kmp_uint32 iteration;
1676   volatile kmp_uint32 num_done;
1677   volatile kmp_uint32 ordered_iteration;
1678   // Dummy to retain the structure size after making ordered_iteration scalar
1679   kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1680 } dispatch_shared_info32_t;
1681
1682 typedef struct dispatch_shared_info64 {
1683   /* chunk index under dynamic, number of idle threads under static-steal;
1684      iteration index otherwise */
1685   volatile kmp_uint64 iteration;
1686   volatile kmp_uint64 num_done;
1687   volatile kmp_uint64 ordered_iteration;
1688   // Dummy to retain the structure size after making ordered_iteration scalar
1689   kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1690 } dispatch_shared_info64_t;
1691
1692 typedef struct dispatch_shared_info {
1693   union shared_info {
1694     dispatch_shared_info32_t s32;
1695     dispatch_shared_info64_t s64;
1696   } u;
1697   volatile kmp_uint32 buffer_index;
1698   volatile kmp_int32 doacross_buf_idx; // teamwise index
1699   volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1700   kmp_int32 doacross_num_done; // count finished threads
1701 #if KMP_USE_HIER_SCHED
1702   void *hier;
1703 #endif
1704 #if KMP_USE_HWLOC
1705   // When linking with libhwloc, the ORDERED EPCC test slows down on big
1706   // machines (> 48 cores). Performance analysis showed that a cache thrash
1707   // was occurring and this padding helps alleviate the problem.
1708   char padding[64];
1709 #endif
1710 } dispatch_shared_info_t;
1711
1712 typedef struct kmp_disp {
1713   /* Vector for ORDERED SECTION */
1714   void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1715   /* Vector for END ORDERED SECTION */
1716   void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1717
1718   dispatch_shared_info_t *th_dispatch_sh_current;
1719   dispatch_private_info_t *th_dispatch_pr_current;
1720
1721   dispatch_private_info_t *th_disp_buffer;
1722   kmp_int32 th_disp_index;
1723   kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1724   volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1725   union { // we can use union here because doacross cannot be used in
1726     // nonmonotonic loops
1727     kmp_int64 *th_doacross_info; // info on loop bounds
1728     kmp_lock_t *th_steal_lock; // lock used for chunk stealing (8-byte variable)
1729   };
1730 #if KMP_USE_INTERNODE_ALIGNMENT
1731   char more_padding[INTERNODE_CACHE_LINE];
1732 #endif
1733 } kmp_disp_t;
1734
1735 /* ------------------------------------------------------------------------ */
1736 /* Barrier stuff */
1737
1738 /* constants for barrier state update */
1739 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1740 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1741 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1742 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1743
1744 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1745 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1746 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1747
1748 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1749 #error "Barrier sleep bit must be smaller than barrier bump bit"
1750 #endif
1751 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1752 #error "Barrier unused bit must be smaller than barrier bump bit"
1753 #endif
1754
1755 // Constants for release barrier wait state: currently, hierarchical only
1756 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1757 #define KMP_BARRIER_OWN_FLAG                                                   \
1758   1 // Normal state; worker waiting on own b_go flag in release
1759 #define KMP_BARRIER_PARENT_FLAG                                                \
1760   2 // Special state; worker waiting on parent's b_go flag in release
1761 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG                                         \
1762   3 // Special state; tells worker to shift from parent to own b_go
1763 #define KMP_BARRIER_SWITCHING                                                  \
1764   4 // Special state; worker resets appropriate flag on wake-up
1765
1766 #define KMP_NOT_SAFE_TO_REAP                                                   \
1767   0 // Thread th_reap_state: not safe to reap (tasking)
1768 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1769
1770 enum barrier_type {
1771   bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1772                            barriers if enabled) */
1773   bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1774 #if KMP_FAST_REDUCTION_BARRIER
1775   bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1776 #endif // KMP_FAST_REDUCTION_BARRIER
1777   bs_last_barrier /* Just a placeholder to mark the end */
1778 };
1779
1780 // to work with reduction barriers just like with plain barriers
1781 #if !KMP_FAST_REDUCTION_BARRIER
1782 #define bs_reduction_barrier bs_plain_barrier
1783 #endif // KMP_FAST_REDUCTION_BARRIER
1784
1785 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1786                            bp_linear_bar =
1787                                0, /* Single level (degenerate) tree */
1788                            bp_tree_bar =
1789                                1, /* Balanced tree with branching factor 2^n */
1790                            bp_hyper_bar =
1791                                2, /* Hypercube-embedded tree with min branching
1792                                      factor 2^n */
1793                            bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1794                            bp_last_bar /* Placeholder to mark the end */
1795 } kmp_bar_pat_e;
1796
1797 #define KMP_BARRIER_ICV_PUSH 1
1798
1799 /* Record for holding the values of the internal controls stack records */
1800 typedef struct kmp_internal_control {
1801   int serial_nesting_level; /* corresponds to the value of the
1802                                th_team_serialized field */
1803   kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1804                        thread) */
1805   kmp_int8
1806       bt_set; /* internal control for whether blocktime is explicitly set */
1807   int blocktime; /* internal control for blocktime */
1808 #if KMP_USE_MONITOR
1809   int bt_intervals; /* internal control for blocktime intervals */
1810 #endif
1811   int nproc; /* internal control for #threads for next parallel region (per
1812                 thread) */
1813   int thread_limit; /* internal control for thread-limit-var */
1814   int max_active_levels; /* internal control for max_active_levels */
1815   kmp_r_sched_t
1816       sched; /* internal control for runtime schedule {sched,chunk} pair */
1817   kmp_proc_bind_t proc_bind; /* internal control for affinity  */
1818   kmp_int32 default_device; /* internal control for default device */
1819   struct kmp_internal_control *next;
1820 } kmp_internal_control_t;
1821
1822 static inline void copy_icvs(kmp_internal_control_t *dst,
1823                              kmp_internal_control_t *src) {
1824   *dst = *src;
1825 }
1826
1827 /* Thread barrier needs volatile barrier fields */
1828 typedef struct KMP_ALIGN_CACHE kmp_bstate {
1829   // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1830   // uses of it). It is not explicitly aligned below, because we *don't* want
1831   // it to be padded -- instead, we fit b_go into the same cache line with
1832   // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1833   kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1834   // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1835   // same NGO store
1836   volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1837   KMP_ALIGN_CACHE volatile kmp_uint64
1838       b_arrived; // STATE => task reached synch point.
1839   kmp_uint32 *skip_per_level;
1840   kmp_uint32 my_level;
1841   kmp_int32 parent_tid;
1842   kmp_int32 old_tid;
1843   kmp_uint32 depth;
1844   struct kmp_bstate *parent_bar;
1845   kmp_team_t *team;
1846   kmp_uint64 leaf_state;
1847   kmp_uint32 nproc;
1848   kmp_uint8 base_leaf_kids;
1849   kmp_uint8 leaf_kids;
1850   kmp_uint8 offset;
1851   kmp_uint8 wait_flag;
1852   kmp_uint8 use_oncore_barrier;
1853 #if USE_DEBUGGER
1854   // The following field is intended for the debugger solely. Only the worker
1855   // thread itself accesses this field: the worker increases it by 1 when it
1856   // arrives to a barrier.
1857   KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
1858 #endif /* USE_DEBUGGER */
1859 } kmp_bstate_t;
1860
1861 union KMP_ALIGN_CACHE kmp_barrier_union {
1862   double b_align; /* use worst case alignment */
1863   char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
1864   kmp_bstate_t bb;
1865 };
1866
1867 typedef union kmp_barrier_union kmp_balign_t;
1868
1869 /* Team barrier needs only non-volatile arrived counter */
1870 union KMP_ALIGN_CACHE kmp_barrier_team_union {
1871   double b_align; /* use worst case alignment */
1872   char b_pad[CACHE_LINE];
1873   struct {
1874     kmp_uint64 b_arrived; /* STATE => task reached synch point. */
1875 #if USE_DEBUGGER
1876     // The following two fields are indended for the debugger solely. Only
1877     // master of the team accesses these fields: the first one is increased by
1878     // 1 when master arrives to a barrier, the second one is increased by one
1879     // when all the threads arrived.
1880     kmp_uint b_master_arrived;
1881     kmp_uint b_team_arrived;
1882 #endif
1883   };
1884 };
1885
1886 typedef union kmp_barrier_team_union kmp_balign_team_t;
1887
1888 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
1889    threads when a condition changes.  This is to workaround an NPTL bug where
1890    padding was added to pthread_cond_t which caused the initialization routine
1891    to write outside of the structure if compiled on pre-NPTL threads.  */
1892 #if KMP_OS_WINDOWS
1893 typedef struct kmp_win32_mutex {
1894   /* The Lock */
1895   CRITICAL_SECTION cs;
1896 } kmp_win32_mutex_t;
1897
1898 typedef struct kmp_win32_cond {
1899   /* Count of the number of waiters. */
1900   int waiters_count_;
1901
1902   /* Serialize access to <waiters_count_> */
1903   kmp_win32_mutex_t waiters_count_lock_;
1904
1905   /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
1906   int release_count_;
1907
1908   /* Keeps track of the current "generation" so that we don't allow */
1909   /* one thread to steal all the "releases" from the broadcast. */
1910   int wait_generation_count_;
1911
1912   /* A manual-reset event that's used to block and release waiting threads. */
1913   HANDLE event_;
1914 } kmp_win32_cond_t;
1915 #endif
1916
1917 #if KMP_OS_UNIX
1918
1919 union KMP_ALIGN_CACHE kmp_cond_union {
1920   double c_align;
1921   char c_pad[CACHE_LINE];
1922   pthread_cond_t c_cond;
1923 };
1924
1925 typedef union kmp_cond_union kmp_cond_align_t;
1926
1927 union KMP_ALIGN_CACHE kmp_mutex_union {
1928   double m_align;
1929   char m_pad[CACHE_LINE];
1930   pthread_mutex_t m_mutex;
1931 };
1932
1933 typedef union kmp_mutex_union kmp_mutex_align_t;
1934
1935 #endif /* KMP_OS_UNIX */
1936
1937 typedef struct kmp_desc_base {
1938   void *ds_stackbase;
1939   size_t ds_stacksize;
1940   int ds_stackgrow;
1941   kmp_thread_t ds_thread;
1942   volatile int ds_tid;
1943   int ds_gtid;
1944 #if KMP_OS_WINDOWS
1945   volatile int ds_alive;
1946   DWORD ds_thread_id;
1947 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
1948    However, debugger support (libomp_db) cannot work with handles, because they
1949    uncomparable. For example, debugger requests info about thread with handle h.
1950    h is valid within debugger process, and meaningless within debugee process.
1951    Even if h is duped by call to DuplicateHandle(), so the result h' is valid
1952    within debugee process, but it is a *new* handle which does *not* equal to
1953    any other handle in debugee... The only way to compare handles is convert
1954    them to system-wide ids. GetThreadId() function is available only in
1955    Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
1956    on all Windows* OS flavours (including Windows* 95). Thus, we have to get
1957    thread id by call to GetCurrentThreadId() from within the thread and save it
1958    to let libomp_db identify threads.  */
1959 #endif /* KMP_OS_WINDOWS */
1960 } kmp_desc_base_t;
1961
1962 typedef union KMP_ALIGN_CACHE kmp_desc {
1963   double ds_align; /* use worst case alignment */
1964   char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
1965   kmp_desc_base_t ds;
1966 } kmp_desc_t;
1967
1968 typedef struct kmp_local {
1969   volatile int this_construct; /* count of single's encountered by thread */
1970   void *reduce_data;
1971 #if KMP_USE_BGET
1972   void *bget_data;
1973   void *bget_list;
1974 #if !USE_CMP_XCHG_FOR_BGET
1975 #ifdef USE_QUEUING_LOCK_FOR_BGET
1976   kmp_lock_t bget_lock; /* Lock for accessing bget free list */
1977 #else
1978   kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
1979 // bootstrap lock so we can use it at library
1980 // shutdown.
1981 #endif /* USE_LOCK_FOR_BGET */
1982 #endif /* ! USE_CMP_XCHG_FOR_BGET */
1983 #endif /* KMP_USE_BGET */
1984
1985   PACKED_REDUCTION_METHOD_T
1986   packed_reduction_method; /* stored by __kmpc_reduce*(), used by
1987                               __kmpc_end_reduce*() */
1988
1989 } kmp_local_t;
1990
1991 #define KMP_CHECK_UPDATE(a, b)                                                 \
1992   if ((a) != (b))                                                              \
1993   (a) = (b)
1994 #define KMP_CHECK_UPDATE_SYNC(a, b)                                            \
1995   if ((a) != (b))                                                              \
1996   TCW_SYNC_PTR((a), (b))
1997
1998 #define get__blocktime(xteam, xtid)                                            \
1999   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2000 #define get__bt_set(xteam, xtid)                                               \
2001   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2002 #if KMP_USE_MONITOR
2003 #define get__bt_intervals(xteam, xtid)                                         \
2004   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2005 #endif
2006
2007 #define get__dynamic_2(xteam, xtid)                                            \
2008   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2009 #define get__nproc_2(xteam, xtid)                                              \
2010   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2011 #define get__sched_2(xteam, xtid)                                              \
2012   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2013
2014 #define set__blocktime_team(xteam, xtid, xval)                                 \
2015   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) =     \
2016        (xval))
2017
2018 #if KMP_USE_MONITOR
2019 #define set__bt_intervals_team(xteam, xtid, xval)                              \
2020   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) =  \
2021        (xval))
2022 #endif
2023
2024 #define set__bt_set_team(xteam, xtid, xval)                                    \
2025   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2026
2027 #define set__dynamic(xthread, xval)                                            \
2028   (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2029 #define get__dynamic(xthread)                                                  \
2030   (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2031
2032 #define set__nproc(xthread, xval)                                              \
2033   (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2034
2035 #define set__thread_limit(xthread, xval)                                       \
2036   (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2037
2038 #define set__max_active_levels(xthread, xval)                                  \
2039   (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2040
2041 #define get__max_active_levels(xthread)                                        \
2042   ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2043
2044 #define set__sched(xthread, xval)                                              \
2045   (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2046
2047 #define set__proc_bind(xthread, xval)                                          \
2048   (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2049 #define get__proc_bind(xthread)                                                \
2050   ((xthread)->th.th_current_task->td_icvs.proc_bind)
2051
2052 // OpenMP tasking data structures
2053
2054 typedef enum kmp_tasking_mode {
2055   tskm_immediate_exec = 0,
2056   tskm_extra_barrier = 1,
2057   tskm_task_teams = 2,
2058   tskm_max = 2
2059 } kmp_tasking_mode_t;
2060
2061 extern kmp_tasking_mode_t
2062     __kmp_tasking_mode; /* determines how/when to execute tasks */
2063 extern int __kmp_task_stealing_constraint;
2064 extern int __kmp_enable_task_throttling;
2065 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2066 // specified, defaults to 0 otherwise
2067 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2068 extern kmp_int32 __kmp_max_task_priority;
2069 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2070 extern kmp_uint64 __kmp_taskloop_min_tasks;
2071
2072 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2073    taskdata first */
2074 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2075 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2076
2077 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2078 // were spawned and queued since the previous barrier release.
2079 #define KMP_TASKING_ENABLED(task_team)                                         \
2080   (TCR_SYNC_4((task_team)->tt.tt_found_tasks) == TRUE)
2081 /*!
2082 @ingroup BASIC_TYPES
2083 @{
2084 */
2085
2086 /*!
2087  */
2088 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2089
2090 typedef union kmp_cmplrdata {
2091   kmp_int32 priority; /**< priority specified by user for the task */
2092   kmp_routine_entry_t
2093       destructors; /* pointer to function to invoke deconstructors of
2094                       firstprivate C++ objects */
2095   /* future data */
2096 } kmp_cmplrdata_t;
2097
2098 /*  sizeof_kmp_task_t passed as arg to kmpc_omp_task call  */
2099 /*!
2100  */
2101 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2102   void *shareds; /**< pointer to block of pointers to shared vars   */
2103   kmp_routine_entry_t
2104       routine; /**< pointer to routine to call for executing task */
2105   kmp_int32 part_id; /**< part id for the task                          */
2106   kmp_cmplrdata_t
2107       data1; /* Two known optional additions: destructors and priority */
2108   kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2109   /* future data */
2110   /*  private vars  */
2111 } kmp_task_t;
2112
2113 /*!
2114 @}
2115 */
2116
2117 typedef struct kmp_taskgroup {
2118   std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2119   std::atomic<kmp_int32>
2120       cancel_request; // request for cancellation of this taskgroup
2121   struct kmp_taskgroup *parent; // parent taskgroup
2122   // Block of data to perform task reduction
2123   void *reduce_data; // reduction related info
2124   kmp_int32 reduce_num_data; // number of data items to reduce
2125 } kmp_taskgroup_t;
2126
2127 // forward declarations
2128 typedef union kmp_depnode kmp_depnode_t;
2129 typedef struct kmp_depnode_list kmp_depnode_list_t;
2130 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2131
2132 // Compiler sends us this info:
2133 typedef struct kmp_depend_info {
2134   kmp_intptr_t base_addr;
2135   size_t len;
2136   struct {
2137     bool in : 1;
2138     bool out : 1;
2139     bool mtx : 1;
2140   } flags;
2141 } kmp_depend_info_t;
2142
2143 // Internal structures to work with task dependencies:
2144 struct kmp_depnode_list {
2145   kmp_depnode_t *node;
2146   kmp_depnode_list_t *next;
2147 };
2148
2149 // Max number of mutexinoutset dependencies per node
2150 #define MAX_MTX_DEPS 4
2151
2152 typedef struct kmp_base_depnode {
2153   kmp_depnode_list_t *successors; /* used under lock */
2154   kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2155   kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2156   kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2157   kmp_lock_t lock; /* guards shared fields: task, successors */
2158 #if KMP_SUPPORT_GRAPH_OUTPUT
2159   kmp_uint32 id;
2160 #endif
2161   std::atomic<kmp_int32> npredecessors;
2162   std::atomic<kmp_int32> nrefs;
2163 } kmp_base_depnode_t;
2164
2165 union KMP_ALIGN_CACHE kmp_depnode {
2166   double dn_align; /* use worst case alignment */
2167   char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2168   kmp_base_depnode_t dn;
2169 };
2170
2171 struct kmp_dephash_entry {
2172   kmp_intptr_t addr;
2173   kmp_depnode_t *last_out;
2174   kmp_depnode_list_t *last_ins;
2175   kmp_depnode_list_t *last_mtxs;
2176   kmp_int32 last_flag;
2177   kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2178   kmp_dephash_entry_t *next_in_bucket;
2179 };
2180
2181 typedef struct kmp_dephash {
2182   kmp_dephash_entry_t **buckets;
2183   size_t size;
2184 #ifdef KMP_DEBUG
2185   kmp_uint32 nelements;
2186   kmp_uint32 nconflicts;
2187 #endif
2188 } kmp_dephash_t;
2189
2190 typedef struct kmp_task_affinity_info {
2191   kmp_intptr_t base_addr;
2192   size_t len;
2193   struct {
2194     bool flag1 : 1;
2195     bool flag2 : 1;
2196     kmp_int32 reserved : 30;
2197   } flags;
2198 } kmp_task_affinity_info_t;
2199
2200 typedef enum kmp_event_type_t {
2201   KMP_EVENT_UNINITIALIZED = 0,
2202   KMP_EVENT_ALLOW_COMPLETION = 1
2203 } kmp_event_type_t;
2204
2205 typedef struct {
2206   kmp_event_type_t type;
2207   kmp_tas_lock_t lock;
2208   union {
2209     kmp_task_t *task;
2210   } ed;
2211 } kmp_event_t;
2212
2213 #ifdef BUILD_TIED_TASK_STACK
2214
2215 /* Tied Task stack definitions */
2216 typedef struct kmp_stack_block {
2217   kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2218   struct kmp_stack_block *sb_next;
2219   struct kmp_stack_block *sb_prev;
2220 } kmp_stack_block_t;
2221
2222 typedef struct kmp_task_stack {
2223   kmp_stack_block_t ts_first_block; // first block of stack entries
2224   kmp_taskdata_t **ts_top; // pointer to the top of stack
2225   kmp_int32 ts_entries; // number of entries on the stack
2226 } kmp_task_stack_t;
2227
2228 #endif // BUILD_TIED_TASK_STACK
2229
2230 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2231   /* Compiler flags */ /* Total compiler flags must be 16 bits */
2232   unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2233   unsigned final : 1; /* task is final(1) so execute immediately */
2234   unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2235                               code path */
2236   unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2237                                      invoke destructors from the runtime */
2238   unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2239                          context of the RTL) */
2240   unsigned priority_specified : 1; /* set if the compiler provides priority
2241                                       setting for the task */
2242   unsigned detachable : 1; /* 1 == can detach */
2243   unsigned reserved : 9; /* reserved for compiler use */
2244
2245   /* Library flags */ /* Total library flags must be 16 bits */
2246   unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2247   unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2248   unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2249   // (1) or may be deferred (0)
2250   unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2251   // (0) [>= 2 threads]
2252   /* If either team_serial or tasking_ser is set, task team may be NULL */
2253   /* Task State Flags: */
2254   unsigned started : 1; /* 1==started, 0==not started     */
2255   unsigned executing : 1; /* 1==executing, 0==not executing */
2256   unsigned complete : 1; /* 1==complete, 0==not complete   */
2257   unsigned freed : 1; /* 1==freed, 0==allocateed        */
2258   unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2259   unsigned reserved31 : 7; /* reserved for library use */
2260
2261 } kmp_tasking_flags_t;
2262
2263 struct kmp_taskdata { /* aligned during dynamic allocation       */
2264   kmp_int32 td_task_id; /* id, assigned by debugger                */
2265   kmp_tasking_flags_t td_flags; /* task flags                              */
2266   kmp_team_t *td_team; /* team for this task                      */
2267   kmp_info_p *td_alloc_thread; /* thread that allocated data structures   */
2268   /* Currently not used except for perhaps IDB */
2269   kmp_taskdata_t *td_parent; /* parent task                             */
2270   kmp_int32 td_level; /* task nesting level                      */
2271   std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2272   ident_t *td_ident; /* task identifier                         */
2273   // Taskwait data.
2274   ident_t *td_taskwait_ident;
2275   kmp_uint32 td_taskwait_counter;
2276   kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2277   KMP_ALIGN_CACHE kmp_internal_control_t
2278       td_icvs; /* Internal control variables for the task */
2279   KMP_ALIGN_CACHE std::atomic<kmp_int32>
2280       td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2281                                    deallocated */
2282   std::atomic<kmp_int32>
2283       td_incomplete_child_tasks; /* Child tasks not yet complete */
2284   kmp_taskgroup_t
2285       *td_taskgroup; // Each task keeps pointer to its current taskgroup
2286   kmp_dephash_t
2287       *td_dephash; // Dependencies for children tasks are tracked from here
2288   kmp_depnode_t
2289       *td_depnode; // Pointer to graph node if this task has dependencies
2290   kmp_task_team_t *td_task_team;
2291   kmp_int32 td_size_alloc; // The size of task structure, including shareds etc.
2292 #if defined(KMP_GOMP_COMPAT)
2293   // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2294   kmp_int32 td_size_loop_bounds;
2295 #endif
2296   kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2297 #if defined(KMP_GOMP_COMPAT)
2298   // GOMP sends in a copy function for copy constructors
2299   void (*td_copy_func)(void *, void *);
2300 #endif
2301   kmp_event_t td_allow_completion_event;
2302 #if OMPT_SUPPORT
2303   ompt_task_info_t ompt_task_info;
2304 #endif
2305 }; // struct kmp_taskdata
2306
2307 // Make sure padding above worked
2308 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2309
2310 // Data for task team but per thread
2311 typedef struct kmp_base_thread_data {
2312   kmp_info_p *td_thr; // Pointer back to thread info
2313   // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2314   // queued?
2315   kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2316   kmp_taskdata_t *
2317       *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2318   kmp_int32 td_deque_size; // Size of deck
2319   kmp_uint32 td_deque_head; // Head of deque (will wrap)
2320   kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2321   kmp_int32 td_deque_ntasks; // Number of tasks in deque
2322   // GEH: shouldn't this be volatile since used in while-spin?
2323   kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2324 #ifdef BUILD_TIED_TASK_STACK
2325   kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2326 // scheduling constraint
2327 #endif // BUILD_TIED_TASK_STACK
2328 } kmp_base_thread_data_t;
2329
2330 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2331 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2332
2333 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2334 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2335
2336 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2337   kmp_base_thread_data_t td;
2338   double td_align; /* use worst case alignment */
2339   char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2340 } kmp_thread_data_t;
2341
2342 // Data for task teams which are used when tasking is enabled for the team
2343 typedef struct kmp_base_task_team {
2344   kmp_bootstrap_lock_t
2345       tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2346   /* must be bootstrap lock since used at library shutdown*/
2347   kmp_task_team_t *tt_next; /* For linking the task team free list */
2348   kmp_thread_data_t
2349       *tt_threads_data; /* Array of per-thread structures for task team */
2350   /* Data survives task team deallocation */
2351   kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2352                                executing this team? */
2353   /* TRUE means tt_threads_data is set up and initialized */
2354   kmp_int32 tt_nproc; /* #threads in team           */
2355   kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2356   kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2357   kmp_int32 tt_untied_task_encountered;
2358
2359   KMP_ALIGN_CACHE
2360   std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2361
2362   KMP_ALIGN_CACHE
2363   volatile kmp_uint32
2364       tt_active; /* is the team still actively executing tasks */
2365 } kmp_base_task_team_t;
2366
2367 union KMP_ALIGN_CACHE kmp_task_team {
2368   kmp_base_task_team_t tt;
2369   double tt_align; /* use worst case alignment */
2370   char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2371 };
2372
2373 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2374 // Free lists keep same-size free memory slots for fast memory allocation
2375 // routines
2376 typedef struct kmp_free_list {
2377   void *th_free_list_self; // Self-allocated tasks free list
2378   void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2379   // threads
2380   void *th_free_list_other; // Non-self free list (to be returned to owner's
2381   // sync list)
2382 } kmp_free_list_t;
2383 #endif
2384 #if KMP_NESTED_HOT_TEAMS
2385 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2386 // are not put in teams pool, and they don't put threads in threads pool.
2387 typedef struct kmp_hot_team_ptr {
2388   kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2389   kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2390 } kmp_hot_team_ptr_t;
2391 #endif
2392 typedef struct kmp_teams_size {
2393   kmp_int32 nteams; // number of teams in a league
2394   kmp_int32 nth; // number of threads in each team of the league
2395 } kmp_teams_size_t;
2396
2397 // This struct stores a thread that acts as a "root" for a contention
2398 // group. Contention groups are rooted at kmp_root threads, but also at
2399 // each master thread of each team created in the teams construct.
2400 // This struct therefore also stores a thread_limit associated with
2401 // that contention group, and a counter to track the number of threads
2402 // active in that contention group. Each thread has a list of these: CG
2403 // root threads have an entry in their list in which cg_root refers to
2404 // the thread itself, whereas other workers in the CG will have a
2405 // single entry where cg_root is same as the entry containing their CG
2406 // root. When a thread encounters a teams construct, it will add a new
2407 // entry to the front of its list, because it now roots a new CG.
2408 typedef struct kmp_cg_root {
2409   kmp_info_p *cg_root; // "root" thread for a contention group
2410   // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2411   // thread_limit clause for teams masters
2412   kmp_int32 cg_thread_limit;
2413   kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2414   struct kmp_cg_root *up; // pointer to higher level CG root in list
2415 } kmp_cg_root_t;
2416
2417 // OpenMP thread data structures
2418
2419 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2420   /* Start with the readonly data which is cache aligned and padded. This is
2421      written before the thread starts working by the master. Uber masters may
2422      update themselves later. Usage does not consider serialized regions.  */
2423   kmp_desc_t th_info;
2424   kmp_team_p *th_team; /* team we belong to */
2425   kmp_root_p *th_root; /* pointer to root of task hierarchy */
2426   kmp_info_p *th_next_pool; /* next available thread in the pool */
2427   kmp_disp_t *th_dispatch; /* thread's dispatch data */
2428   int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2429
2430   /* The following are cached from the team info structure */
2431   /* TODO use these in more places as determined to be needed via profiling */
2432   int th_team_nproc; /* number of threads in a team */
2433   kmp_info_p *th_team_master; /* the team's master thread */
2434   int th_team_serialized; /* team is serialized */
2435   microtask_t th_teams_microtask; /* save entry address for teams construct */
2436   int th_teams_level; /* save initial level of teams construct */
2437 /* it is 0 on device but may be any on host */
2438
2439 /* The blocktime info is copied from the team struct to the thread sruct */
2440 /* at the start of a barrier, and the values stored in the team are used */
2441 /* at points in the code where the team struct is no longer guaranteed   */
2442 /* to exist (from the POV of worker threads).                            */
2443 #if KMP_USE_MONITOR
2444   int th_team_bt_intervals;
2445   int th_team_bt_set;
2446 #else
2447   kmp_uint64 th_team_bt_intervals;
2448 #endif
2449
2450 #if KMP_AFFINITY_SUPPORTED
2451   kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2452 #endif
2453   omp_allocator_handle_t th_def_allocator; /* default allocator */
2454   /* The data set by the master at reinit, then R/W by the worker */
2455   KMP_ALIGN_CACHE int
2456       th_set_nproc; /* if > 0, then only use this request for the next fork */
2457 #if KMP_NESTED_HOT_TEAMS
2458   kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2459 #endif
2460   kmp_proc_bind_t
2461       th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2462   kmp_teams_size_t
2463       th_teams_size; /* number of teams/threads in teams construct */
2464 #if KMP_AFFINITY_SUPPORTED
2465   int th_current_place; /* place currently bound to */
2466   int th_new_place; /* place to bind to in par reg */
2467   int th_first_place; /* first place in partition */
2468   int th_last_place; /* last place in partition */
2469 #endif
2470   int th_prev_level; /* previous level for affinity format */
2471   int th_prev_num_threads; /* previous num_threads for affinity format */
2472 #if USE_ITT_BUILD
2473   kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2474   kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2475   kmp_uint64 th_frame_time; /* frame timestamp */
2476 #endif /* USE_ITT_BUILD */
2477   kmp_local_t th_local;
2478   struct private_common *th_pri_head;
2479
2480   /* Now the data only used by the worker (after initial allocation) */
2481   /* TODO the first serial team should actually be stored in the info_t
2482      structure.  this will help reduce initial allocation overhead */
2483   KMP_ALIGN_CACHE kmp_team_p
2484       *th_serial_team; /*serialized team held in reserve*/
2485
2486 #if OMPT_SUPPORT
2487   ompt_thread_info_t ompt_thread_info;
2488 #endif
2489
2490   /* The following are also read by the master during reinit */
2491   struct common_table *th_pri_common;
2492
2493   volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2494   /* while awaiting queuing lock acquire */
2495
2496   volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2497
2498   ident_t *th_ident;
2499   unsigned th_x; // Random number generator data
2500   unsigned th_a; // Random number generator data
2501
2502   /* Tasking-related data for the thread */
2503   kmp_task_team_t *th_task_team; // Task team struct
2504   kmp_taskdata_t *th_current_task; // Innermost Task being executed
2505   kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2506   kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2507   // at nested levels
2508   kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2509   kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2510   kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2511   // tasking, thus safe to reap
2512
2513   /* More stuff for keeping track of active/sleeping threads (this part is
2514      written by the worker thread) */
2515   kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2516   int th_active; // ! sleeping; 32 bits for TCR/TCW
2517   struct cons_header *th_cons; // used for consistency check
2518 #if KMP_USE_HIER_SCHED
2519   // used for hierarchical scheduling
2520   kmp_hier_private_bdata_t *th_hier_bar_data;
2521 #endif
2522
2523   /* Add the syncronizing data which is cache aligned and padded. */
2524   KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2525
2526   KMP_ALIGN_CACHE volatile kmp_int32
2527       th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2528
2529 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2530 #define NUM_LISTS 4
2531   kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2532 // allocation routines
2533 #endif
2534
2535 #if KMP_OS_WINDOWS
2536   kmp_win32_cond_t th_suspend_cv;
2537   kmp_win32_mutex_t th_suspend_mx;
2538   std::atomic<int> th_suspend_init;
2539 #endif
2540 #if KMP_OS_UNIX
2541   kmp_cond_align_t th_suspend_cv;
2542   kmp_mutex_align_t th_suspend_mx;
2543   std::atomic<int> th_suspend_init_count;
2544 #endif
2545
2546 #if USE_ITT_BUILD
2547   kmp_itt_mark_t th_itt_mark_single;
2548 // alignment ???
2549 #endif /* USE_ITT_BUILD */
2550 #if KMP_STATS_ENABLED
2551   kmp_stats_list *th_stats;
2552 #endif
2553 #if KMP_OS_UNIX
2554   std::atomic<bool> th_blocking;
2555 #endif
2556   kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2557 } kmp_base_info_t;
2558
2559 typedef union KMP_ALIGN_CACHE kmp_info {
2560   double th_align; /* use worst case alignment */
2561   char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2562   kmp_base_info_t th;
2563 } kmp_info_t;
2564
2565 // OpenMP thread team data structures
2566
2567 typedef struct kmp_base_data { volatile kmp_uint32 t_value; } kmp_base_data_t;
2568
2569 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2570   double dt_align; /* use worst case alignment */
2571   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2572   kmp_base_data_t dt;
2573 } kmp_sleep_team_t;
2574
2575 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2576   double dt_align; /* use worst case alignment */
2577   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2578   kmp_base_data_t dt;
2579 } kmp_ordered_team_t;
2580
2581 typedef int (*launch_t)(int gtid);
2582
2583 /* Minimum number of ARGV entries to malloc if necessary */
2584 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2585
2586 // Set up how many argv pointers will fit in cache lines containing
2587 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2588 // larger value for more space between the master write/worker read section and
2589 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2590 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2591 #define KMP_INLINE_ARGV_BYTES                                                  \
2592   (4 * CACHE_LINE -                                                            \
2593    ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) +               \
2594      sizeof(kmp_int16) + sizeof(kmp_uint32)) %                                 \
2595     CACHE_LINE))
2596 #else
2597 #define KMP_INLINE_ARGV_BYTES                                                  \
2598   (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2599 #endif
2600 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2601
2602 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2603   // Synchronization Data
2604   // ---------------------------------------------------------------------------
2605   KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2606   kmp_balign_team_t t_bar[bs_last_barrier];
2607   std::atomic<int> t_construct; // count of single directive encountered by team
2608   char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2609
2610   // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2611   std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2612   std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2613
2614   // Master only
2615   // ---------------------------------------------------------------------------
2616   KMP_ALIGN_CACHE int t_master_tid; // tid of master in parent team
2617   int t_master_this_cons; // "this_construct" single counter of master in parent
2618   // team
2619   ident_t *t_ident; // if volatile, have to change too much other crud to
2620   // volatile too
2621   kmp_team_p *t_parent; // parent team
2622   kmp_team_p *t_next_pool; // next free team in the team pool
2623   kmp_disp_t *t_dispatch; // thread's dispatch data
2624   kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2625   kmp_proc_bind_t t_proc_bind; // bind type for par region
2626 #if USE_ITT_BUILD
2627   kmp_uint64 t_region_time; // region begin timestamp
2628 #endif /* USE_ITT_BUILD */
2629
2630   // Master write, workers read
2631   // --------------------------------------------------------------------------
2632   KMP_ALIGN_CACHE void **t_argv;
2633   int t_argc;
2634   int t_nproc; // number of threads in team
2635   microtask_t t_pkfn;
2636   launch_t t_invoke; // procedure to launch the microtask
2637
2638 #if OMPT_SUPPORT
2639   ompt_team_info_t ompt_team_info;
2640   ompt_lw_taskteam_t *ompt_serialized_team_info;
2641 #endif
2642
2643 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2644   kmp_int8 t_fp_control_saved;
2645   kmp_int8 t_pad2b;
2646   kmp_int16 t_x87_fpu_control_word; // FP control regs
2647   kmp_uint32 t_mxcsr;
2648 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2649
2650   void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2651
2652   KMP_ALIGN_CACHE kmp_info_t **t_threads;
2653   kmp_taskdata_t
2654       *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2655   int t_level; // nested parallel level
2656
2657   KMP_ALIGN_CACHE int t_max_argc;
2658   int t_max_nproc; // max threads this team can handle (dynamicly expandable)
2659   int t_serialized; // levels deep of serialized teams
2660   dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2661   int t_id; // team's id, assigned by debugger.
2662   int t_active_level; // nested active parallel level
2663   kmp_r_sched_t t_sched; // run-time schedule for the team
2664 #if KMP_AFFINITY_SUPPORTED
2665   int t_first_place; // first & last place in parent thread's partition.
2666   int t_last_place; // Restore these values to master after par region.
2667 #endif // KMP_AFFINITY_SUPPORTED
2668   int t_display_affinity;
2669   int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2670   // omp_set_num_threads() call
2671   omp_allocator_handle_t t_def_allocator; /* default allocator */
2672
2673 // Read/write by workers as well
2674 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2675   // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2676   // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2677   // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2678   // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2679   char dummy_padding[1024];
2680 #endif
2681   // Internal control stack for additional nested teams.
2682   KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2683   // for SERIALIZED teams nested 2 or more levels deep
2684   // typed flag to store request state of cancellation
2685   std::atomic<kmp_int32> t_cancel_request;
2686   int t_master_active; // save on fork, restore on join
2687   void *t_copypriv_data; // team specific pointer to copyprivate data array
2688 #if KMP_OS_WINDOWS
2689   std::atomic<kmp_uint32> t_copyin_counter;
2690 #endif
2691 #if USE_ITT_BUILD
2692   void *t_stack_id; // team specific stack stitching id (for ittnotify)
2693 #endif /* USE_ITT_BUILD */
2694 } kmp_base_team_t;
2695
2696 union KMP_ALIGN_CACHE kmp_team {
2697   kmp_base_team_t t;
2698   double t_align; /* use worst case alignment */
2699   char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2700 };
2701
2702 typedef union KMP_ALIGN_CACHE kmp_time_global {
2703   double dt_align; /* use worst case alignment */
2704   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2705   kmp_base_data_t dt;
2706 } kmp_time_global_t;
2707
2708 typedef struct kmp_base_global {
2709   /* cache-aligned */
2710   kmp_time_global_t g_time;
2711
2712   /* non cache-aligned */
2713   volatile int g_abort;
2714   volatile int g_done;
2715
2716   int g_dynamic;
2717   enum dynamic_mode g_dynamic_mode;
2718 } kmp_base_global_t;
2719
2720 typedef union KMP_ALIGN_CACHE kmp_global {
2721   kmp_base_global_t g;
2722   double g_align; /* use worst case alignment */
2723   char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2724 } kmp_global_t;
2725
2726 typedef struct kmp_base_root {
2727   // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2728   // (r_in_parallel>= 0)
2729   // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2730   // the synch overhead or keeping r_active
2731   volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2732   // keeps a count of active parallel regions per root
2733   std::atomic<int> r_in_parallel;
2734   // GEH: This is misnamed, should be r_active_levels
2735   kmp_team_t *r_root_team;
2736   kmp_team_t *r_hot_team;
2737   kmp_info_t *r_uber_thread;
2738   kmp_lock_t r_begin_lock;
2739   volatile int r_begin;
2740   int r_blocktime; /* blocktime for this root and descendants */
2741 } kmp_base_root_t;
2742
2743 typedef union KMP_ALIGN_CACHE kmp_root {
2744   kmp_base_root_t r;
2745   double r_align; /* use worst case alignment */
2746   char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2747 } kmp_root_t;
2748
2749 struct fortran_inx_info {
2750   kmp_int32 data;
2751 };
2752
2753 /* ------------------------------------------------------------------------ */
2754
2755 extern int __kmp_settings;
2756 extern int __kmp_duplicate_library_ok;
2757 #if USE_ITT_BUILD
2758 extern int __kmp_forkjoin_frames;
2759 extern int __kmp_forkjoin_frames_mode;
2760 #endif
2761 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2762 extern int __kmp_determ_red;
2763
2764 #ifdef KMP_DEBUG
2765 extern int kmp_a_debug;
2766 extern int kmp_b_debug;
2767 extern int kmp_c_debug;
2768 extern int kmp_d_debug;
2769 extern int kmp_e_debug;
2770 extern int kmp_f_debug;
2771 #endif /* KMP_DEBUG */
2772
2773 /* For debug information logging using rotating buffer */
2774 #define KMP_DEBUG_BUF_LINES_INIT 512
2775 #define KMP_DEBUG_BUF_LINES_MIN 1
2776
2777 #define KMP_DEBUG_BUF_CHARS_INIT 128
2778 #define KMP_DEBUG_BUF_CHARS_MIN 2
2779
2780 extern int
2781     __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2782 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2783 extern int
2784     __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2785 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2786                                       entry pointer */
2787
2788 extern char *__kmp_debug_buffer; /* Debug buffer itself */
2789 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2790                                               printed in buffer so far */
2791 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2792                                           recommended in warnings */
2793 /* end rotating debug buffer */
2794
2795 #ifdef KMP_DEBUG
2796 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2797
2798 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
2799 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2800 #define KMP_PAR_RANGE_FILENAME_LEN 1024
2801 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2802 extern int __kmp_par_range_lb;
2803 extern int __kmp_par_range_ub;
2804 #endif
2805
2806 /* For printing out dynamic storage map for threads and teams */
2807 extern int
2808     __kmp_storage_map; /* True means print storage map for threads and teams */
2809 extern int __kmp_storage_map_verbose; /* True means storage map includes
2810                                          placement info */
2811 extern int __kmp_storage_map_verbose_specified;
2812
2813 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2814 extern kmp_cpuinfo_t __kmp_cpuinfo;
2815 #endif
2816
2817 extern volatile int __kmp_init_serial;
2818 extern volatile int __kmp_init_gtid;
2819 extern volatile int __kmp_init_common;
2820 extern volatile int __kmp_init_middle;
2821 extern volatile int __kmp_init_parallel;
2822 #if KMP_USE_MONITOR
2823 extern volatile int __kmp_init_monitor;
2824 #endif
2825 extern volatile int __kmp_init_user_locks;
2826 extern int __kmp_init_counter;
2827 extern int __kmp_root_counter;
2828 extern int __kmp_version;
2829
2830 /* list of address of allocated caches for commons */
2831 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
2832
2833 /* Barrier algorithm types and options */
2834 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
2835 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
2836 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
2837 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
2838 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
2839 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
2840 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
2841 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
2842 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
2843 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
2844 extern char const *__kmp_barrier_type_name[bs_last_barrier];
2845 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
2846
2847 /* Global Locks */
2848 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
2849 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
2850 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
2851 extern kmp_bootstrap_lock_t
2852     __kmp_exit_lock; /* exit() is not always thread-safe */
2853 #if KMP_USE_MONITOR
2854 extern kmp_bootstrap_lock_t
2855     __kmp_monitor_lock; /* control monitor thread creation */
2856 #endif
2857 extern kmp_bootstrap_lock_t
2858     __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
2859                              __kmp_threads expansion to co-exist */
2860
2861 extern kmp_lock_t __kmp_global_lock; /* control OS/global access  */
2862 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access  */
2863 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
2864
2865 extern enum library_type __kmp_library;
2866
2867 extern enum sched_type __kmp_sched; /* default runtime scheduling */
2868 extern enum sched_type __kmp_static; /* default static scheduling method */
2869 extern enum sched_type __kmp_guided; /* default guided scheduling method */
2870 extern enum sched_type __kmp_auto; /* default auto scheduling method */
2871 extern int __kmp_chunk; /* default runtime chunk size */
2872
2873 extern size_t __kmp_stksize; /* stack size per thread         */
2874 #if KMP_USE_MONITOR
2875 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
2876 #endif
2877 extern size_t __kmp_stkoffset; /* stack offset per thread       */
2878 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
2879
2880 extern size_t
2881     __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
2882 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
2883 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
2884 extern int __kmp_env_checks; /* was KMP_CHECKS specified?    */
2885 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
2886 extern int __kmp_generate_warnings; /* should we issue warnings? */
2887 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
2888
2889 #ifdef DEBUG_SUSPEND
2890 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
2891 #endif
2892
2893 extern kmp_int32 __kmp_use_yield;
2894 extern kmp_int32 __kmp_use_yield_exp_set;
2895 extern kmp_uint32 __kmp_yield_init;
2896 extern kmp_uint32 __kmp_yield_next;
2897
2898 /* ------------------------------------------------------------------------- */
2899 extern int __kmp_allThreadsSpecified;
2900
2901 extern size_t __kmp_align_alloc;
2902 /* following data protected by initialization routines */
2903 extern int __kmp_xproc; /* number of processors in the system */
2904 extern int __kmp_avail_proc; /* number of processors available to the process */
2905 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
2906 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
2907 // maximum total number of concurrently-existing threads on device
2908 extern int __kmp_max_nth;
2909 // maximum total number of concurrently-existing threads in a contention group
2910 extern int __kmp_cg_max_nth;
2911 extern int __kmp_teams_max_nth; // max threads used in a teams construct
2912 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
2913                                       __kmp_root */
2914 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
2915                                    region a la OMP_NUM_THREADS */
2916 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
2917                                       initialization */
2918 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
2919                                  used (fixed) */
2920 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
2921                                (__kmpc_threadprivate_cached()) */
2922 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
2923                                     blocking (env setting) */
2924 #if KMP_USE_MONITOR
2925 extern int
2926     __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
2927 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
2928                                   blocking */
2929 #endif
2930 #ifdef KMP_ADJUST_BLOCKTIME
2931 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
2932 #endif /* KMP_ADJUST_BLOCKTIME */
2933 #ifdef KMP_DFLT_NTH_CORES
2934 extern int __kmp_ncores; /* Total number of cores for threads placement */
2935 #endif
2936 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
2937 extern int __kmp_abort_delay;
2938
2939 extern int __kmp_need_register_atfork_specified;
2940 extern int
2941     __kmp_need_register_atfork; /* At initialization, call pthread_atfork to
2942                                    install fork handler */
2943 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
2944                                0 - not set, will be set at runtime
2945                                1 - using stack search
2946                                2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
2947                                    X*) or TlsGetValue(Windows* OS))
2948                                3 - static TLS (__declspec(thread) __kmp_gtid),
2949                                    Linux* OS .so only.  */
2950 extern int
2951     __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
2952 #ifdef KMP_TDATA_GTID
2953 extern KMP_THREAD_LOCAL int __kmp_gtid;
2954 #endif
2955 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
2956 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
2957 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2958 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
2959 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
2960 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
2961 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2962
2963 // max_active_levels for nested parallelism enabled by default via
2964 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
2965 extern int __kmp_dflt_max_active_levels;
2966 // Indicates whether value of __kmp_dflt_max_active_levels was already
2967 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
2968 extern bool __kmp_dflt_max_active_levels_set;
2969 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
2970                                           concurrent execution per team */
2971 #if KMP_NESTED_HOT_TEAMS
2972 extern int __kmp_hot_teams_mode;
2973 extern int __kmp_hot_teams_max_level;
2974 #endif
2975
2976 #if KMP_OS_LINUX
2977 extern enum clock_function_type __kmp_clock_function;
2978 extern int __kmp_clock_function_param;
2979 #endif /* KMP_OS_LINUX */
2980
2981 #if KMP_MIC_SUPPORTED
2982 extern enum mic_type __kmp_mic_type;
2983 #endif
2984
2985 #ifdef USE_LOAD_BALANCE
2986 extern double __kmp_load_balance_interval; // load balance algorithm interval
2987 #endif /* USE_LOAD_BALANCE */
2988
2989 // OpenMP 3.1 - Nested num threads array
2990 typedef struct kmp_nested_nthreads_t {
2991   int *nth;
2992   int size;
2993   int used;
2994 } kmp_nested_nthreads_t;
2995
2996 extern kmp_nested_nthreads_t __kmp_nested_nth;
2997
2998 #if KMP_USE_ADAPTIVE_LOCKS
2999
3000 // Parameters for the speculative lock backoff system.
3001 struct kmp_adaptive_backoff_params_t {
3002   // Number of soft retries before it counts as a hard retry.
3003   kmp_uint32 max_soft_retries;
3004   // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3005   // the right
3006   kmp_uint32 max_badness;
3007 };
3008
3009 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3010
3011 #if KMP_DEBUG_ADAPTIVE_LOCKS
3012 extern const char *__kmp_speculative_statsfile;
3013 #endif
3014
3015 #endif // KMP_USE_ADAPTIVE_LOCKS
3016
3017 extern int __kmp_display_env; /* TRUE or FALSE */
3018 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3019 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3020
3021 /* ------------------------------------------------------------------------- */
3022
3023 /* the following are protected by the fork/join lock */
3024 /* write: lock  read: anytime */
3025 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3026 /* read/write: lock */
3027 extern volatile kmp_team_t *__kmp_team_pool;
3028 extern volatile kmp_info_t *__kmp_thread_pool;
3029 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3030
3031 // total num threads reachable from some root thread including all root threads
3032 extern volatile int __kmp_nth;
3033 /* total number of threads reachable from some root thread including all root
3034    threads, and those in the thread pool */
3035 extern volatile int __kmp_all_nth;
3036 extern std::atomic<int> __kmp_thread_pool_active_nth;
3037
3038 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3039 /* end data protected by fork/join lock */
3040 /* ------------------------------------------------------------------------- */
3041
3042 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3043 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3044 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3045 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3046 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3047
3048 // AT: Which way is correct?
3049 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3050 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3051 #define __kmp_get_team_num_threads(gtid)                                       \
3052   (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3053
3054 static inline bool KMP_UBER_GTID(int gtid) {
3055   KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3056   KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3057   return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3058           __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3059 }
3060
3061 static inline int __kmp_tid_from_gtid(int gtid) {
3062   KMP_DEBUG_ASSERT(gtid >= 0);
3063   return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3064 }
3065
3066 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3067   KMP_DEBUG_ASSERT(tid >= 0 && team);
3068   return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3069 }
3070
3071 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3072   KMP_DEBUG_ASSERT(thr);
3073   return thr->th.th_info.ds.ds_gtid;
3074 }
3075
3076 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3077   KMP_DEBUG_ASSERT(gtid >= 0);
3078   return __kmp_threads[gtid];
3079 }
3080
3081 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3082   KMP_DEBUG_ASSERT(gtid >= 0);
3083   return __kmp_threads[gtid]->th.th_team;
3084 }
3085
3086 /* ------------------------------------------------------------------------- */
3087
3088 extern kmp_global_t __kmp_global; /* global status */
3089
3090 extern kmp_info_t __kmp_monitor;
3091 // For Debugging Support Library
3092 extern std::atomic<kmp_int32> __kmp_team_counter;
3093 // For Debugging Support Library
3094 extern std::atomic<kmp_int32> __kmp_task_counter;
3095
3096 #if USE_DEBUGGER
3097 #define _KMP_GEN_ID(counter)                                                   \
3098   (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3099 #else
3100 #define _KMP_GEN_ID(counter) (~0)
3101 #endif /* USE_DEBUGGER */
3102
3103 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3104 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3105
3106 /* ------------------------------------------------------------------------ */
3107
3108 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3109                                          size_t size, char const *format, ...);
3110
3111 extern void __kmp_serial_initialize(void);
3112 extern void __kmp_middle_initialize(void);
3113 extern void __kmp_parallel_initialize(void);
3114
3115 extern void __kmp_internal_begin(void);
3116 extern void __kmp_internal_end_library(int gtid);
3117 extern void __kmp_internal_end_thread(int gtid);
3118 extern void __kmp_internal_end_atexit(void);
3119 extern void __kmp_internal_end_fini(void);
3120 extern void __kmp_internal_end_dtor(void);
3121 extern void __kmp_internal_end_dest(void *);
3122
3123 extern int __kmp_register_root(int initial_thread);
3124 extern void __kmp_unregister_root(int gtid);
3125
3126 extern int __kmp_ignore_mppbeg(void);
3127 extern int __kmp_ignore_mppend(void);
3128
3129 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3130 extern void __kmp_exit_single(int gtid);
3131
3132 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3133 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3134
3135 #ifdef USE_LOAD_BALANCE
3136 extern int __kmp_get_load_balance(int);
3137 #endif
3138
3139 extern int __kmp_get_global_thread_id(void);
3140 extern int __kmp_get_global_thread_id_reg(void);
3141 extern void __kmp_exit_thread(int exit_status);
3142 extern void __kmp_abort(char const *format, ...);
3143 extern void __kmp_abort_thread(void);
3144 KMP_NORETURN extern void __kmp_abort_process(void);
3145 extern void __kmp_warn(char const *format, ...);
3146
3147 extern void __kmp_set_num_threads(int new_nth, int gtid);
3148
3149 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3150 // registered.
3151 static inline kmp_info_t *__kmp_entry_thread() {
3152   int gtid = __kmp_entry_gtid();
3153
3154   return __kmp_threads[gtid];
3155 }
3156
3157 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3158 extern int __kmp_get_max_active_levels(int gtid);
3159 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3160 extern int __kmp_get_team_size(int gtid, int level);
3161 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3162 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3163
3164 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3165 extern void __kmp_init_random(kmp_info_t *thread);
3166
3167 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3168 extern void __kmp_adjust_num_threads(int new_nproc);
3169 extern void __kmp_check_stksize(size_t *val);
3170
3171 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3172 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3173 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3174 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3175 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3176 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3177
3178 #if USE_FAST_MEMORY
3179 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3180                                   size_t size KMP_SRC_LOC_DECL);
3181 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3182 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3183 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3184 #define __kmp_fast_allocate(this_thr, size)                                    \
3185   ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3186 #define __kmp_fast_free(this_thr, ptr)                                         \
3187   ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3188 #endif
3189
3190 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3191 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3192                                   size_t elsize KMP_SRC_LOC_DECL);
3193 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3194                                    size_t size KMP_SRC_LOC_DECL);
3195 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3196 #define __kmp_thread_malloc(th, size)                                          \
3197   ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3198 #define __kmp_thread_calloc(th, nelem, elsize)                                 \
3199   ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3200 #define __kmp_thread_realloc(th, ptr, size)                                    \
3201   ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3202 #define __kmp_thread_free(th, ptr)                                             \
3203   ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3204
3205 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3206 #define KMP_INTERNAL_FREE(p) free(p)
3207 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3208 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3209
3210 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3211
3212 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3213                                  kmp_proc_bind_t proc_bind);
3214 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3215                                  int num_threads);
3216
3217 extern void __kmp_yield();
3218
3219 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3220                                    enum sched_type schedule, kmp_int32 lb,
3221                                    kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3222 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3223                                     enum sched_type schedule, kmp_uint32 lb,
3224                                     kmp_uint32 ub, kmp_int32 st,
3225                                     kmp_int32 chunk);
3226 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3227                                    enum sched_type schedule, kmp_int64 lb,
3228                                    kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3229 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3230                                     enum sched_type schedule, kmp_uint64 lb,
3231                                     kmp_uint64 ub, kmp_int64 st,
3232                                     kmp_int64 chunk);
3233
3234 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3235                                   kmp_int32 *p_last, kmp_int32 *p_lb,
3236                                   kmp_int32 *p_ub, kmp_int32 *p_st);
3237 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3238                                    kmp_int32 *p_last, kmp_uint32 *p_lb,
3239                                    kmp_uint32 *p_ub, kmp_int32 *p_st);
3240 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3241                                   kmp_int32 *p_last, kmp_int64 *p_lb,
3242                                   kmp_int64 *p_ub, kmp_int64 *p_st);
3243 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3244                                    kmp_int32 *p_last, kmp_uint64 *p_lb,
3245                                    kmp_uint64 *p_ub, kmp_int64 *p_st);
3246
3247 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3248 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3249 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3250 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3251
3252 #ifdef KMP_GOMP_COMPAT
3253
3254 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3255                                       enum sched_type schedule, kmp_int32 lb,
3256                                       kmp_int32 ub, kmp_int32 st,
3257                                       kmp_int32 chunk, int push_ws);
3258 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3259                                        enum sched_type schedule, kmp_uint32 lb,
3260                                        kmp_uint32 ub, kmp_int32 st,
3261                                        kmp_int32 chunk, int push_ws);
3262 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3263                                       enum sched_type schedule, kmp_int64 lb,
3264                                       kmp_int64 ub, kmp_int64 st,
3265                                       kmp_int64 chunk, int push_ws);
3266 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3267                                        enum sched_type schedule, kmp_uint64 lb,
3268                                        kmp_uint64 ub, kmp_int64 st,
3269                                        kmp_int64 chunk, int push_ws);
3270 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3271 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3272 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3273 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3274
3275 #endif /* KMP_GOMP_COMPAT */
3276
3277 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3278 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3279 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3280 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3281 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3282 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3283                                kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3284                                void *obj);
3285 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3286                              kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3287
3288 class kmp_flag_32;
3289 class kmp_flag_64;
3290 class kmp_flag_oncore;
3291 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64 *flag,
3292                           int final_spin
3293 #if USE_ITT_BUILD
3294                           ,
3295                           void *itt_sync_obj
3296 #endif
3297                           );
3298 extern void __kmp_release_64(kmp_flag_64 *flag);
3299
3300 extern void __kmp_infinite_loop(void);
3301
3302 extern void __kmp_cleanup(void);
3303
3304 #if KMP_HANDLE_SIGNALS
3305 extern int __kmp_handle_signals;
3306 extern void __kmp_install_signals(int parallel_init);
3307 extern void __kmp_remove_signals(void);
3308 #endif
3309
3310 extern void __kmp_clear_system_time(void);
3311 extern void __kmp_read_system_time(double *delta);
3312
3313 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3314
3315 extern void __kmp_expand_host_name(char *buffer, size_t size);
3316 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3317
3318 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3319 extern void
3320 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3321 #endif
3322
3323 extern void
3324 __kmp_runtime_initialize(void); /* machine specific initialization */
3325 extern void __kmp_runtime_destroy(void);
3326
3327 #if KMP_AFFINITY_SUPPORTED
3328 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3329                                        kmp_affin_mask_t *mask);
3330 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3331                                                   kmp_affin_mask_t *mask);
3332 extern void __kmp_affinity_initialize(void);
3333 extern void __kmp_affinity_uninitialize(void);
3334 extern void __kmp_affinity_set_init_mask(
3335     int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3336 extern void __kmp_affinity_set_place(int gtid);
3337 extern void __kmp_affinity_determine_capable(const char *env_var);
3338 extern int __kmp_aux_set_affinity(void **mask);
3339 extern int __kmp_aux_get_affinity(void **mask);
3340 extern int __kmp_aux_get_affinity_max_proc();
3341 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3342 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3343 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3344 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3345 #if KMP_OS_LINUX
3346 extern int kmp_set_thread_affinity_mask_initial(void);
3347 #endif
3348 #endif /* KMP_AFFINITY_SUPPORTED */
3349 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3350 // format string is for affinity, so platforms that do not support
3351 // affinity can still use the other fields, e.g., %n for num_threads
3352 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3353                                          kmp_str_buf_t *buffer);
3354 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3355
3356 extern void __kmp_cleanup_hierarchy();
3357 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3358
3359 #if KMP_USE_FUTEX
3360
3361 extern int __kmp_futex_determine_capable(void);
3362
3363 #endif // KMP_USE_FUTEX
3364
3365 extern void __kmp_gtid_set_specific(int gtid);
3366 extern int __kmp_gtid_get_specific(void);
3367
3368 extern double __kmp_read_cpu_time(void);
3369
3370 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3371
3372 #if KMP_USE_MONITOR
3373 extern void __kmp_create_monitor(kmp_info_t *th);
3374 #endif
3375
3376 extern void *__kmp_launch_thread(kmp_info_t *thr);
3377
3378 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3379
3380 #if KMP_OS_WINDOWS
3381 extern int __kmp_still_running(kmp_info_t *th);
3382 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3383 extern void __kmp_free_handle(kmp_thread_t tHandle);
3384 #endif
3385
3386 #if KMP_USE_MONITOR
3387 extern void __kmp_reap_monitor(kmp_info_t *th);
3388 #endif
3389 extern void __kmp_reap_worker(kmp_info_t *th);
3390 extern void __kmp_terminate_thread(int gtid);
3391
3392 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3393 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3394 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3395
3396 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag);
3397 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag);
3398 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
3399 extern void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag);
3400 extern void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag);
3401 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
3402
3403 extern void __kmp_elapsed(double *);
3404 extern void __kmp_elapsed_tick(double *);
3405
3406 extern void __kmp_enable(int old_state);
3407 extern void __kmp_disable(int *old_state);
3408
3409 extern void __kmp_thread_sleep(int millis);
3410
3411 extern void __kmp_common_initialize(void);
3412 extern void __kmp_common_destroy(void);
3413 extern void __kmp_common_destroy_gtid(int gtid);
3414
3415 #if KMP_OS_UNIX
3416 extern void __kmp_register_atfork(void);
3417 #endif
3418 extern void __kmp_suspend_initialize(void);
3419 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3420 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3421
3422 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3423                                          int tid);
3424 extern kmp_team_t *
3425 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3426 #if OMPT_SUPPORT
3427                     ompt_data_t ompt_parallel_data,
3428 #endif
3429                     kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3430                     int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3431 extern void __kmp_free_thread(kmp_info_t *);
3432 extern void __kmp_free_team(kmp_root_t *,
3433                             kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3434 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3435
3436 /* ------------------------------------------------------------------------ */
3437
3438 extern void __kmp_initialize_bget(kmp_info_t *th);
3439 extern void __kmp_finalize_bget(kmp_info_t *th);
3440
3441 KMP_EXPORT void *kmpc_malloc(size_t size);
3442 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3443 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3444 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3445 KMP_EXPORT void kmpc_free(void *ptr);
3446
3447 /* declarations for internal use */
3448
3449 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3450                          size_t reduce_size, void *reduce_data,
3451                          void (*reduce)(void *, void *));
3452 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3453 extern int __kmp_barrier_gomp_cancel(int gtid);
3454
3455 /*!
3456  * Tell the fork call which compiler generated the fork call, and therefore how
3457  * to deal with the call.
3458  */
3459 enum fork_context_e {
3460   fork_context_gnu, /**< Called from GNU generated code, so must not invoke the
3461                        microtask internally. */
3462   fork_context_intel, /**< Called from Intel generated code.  */
3463   fork_context_last
3464 };
3465 extern int __kmp_fork_call(ident_t *loc, int gtid,
3466                            enum fork_context_e fork_context, kmp_int32 argc,
3467                            microtask_t microtask, launch_t invoker,
3468 /* TODO: revert workaround for Intel(R) 64 tracker #96 */
3469 #if (KMP_ARCH_ARM || KMP_ARCH_X86_64 || KMP_ARCH_AARCH64) && KMP_OS_LINUX
3470                            va_list *ap
3471 #else
3472                            va_list ap
3473 #endif
3474                            );
3475
3476 extern void __kmp_join_call(ident_t *loc, int gtid
3477 #if OMPT_SUPPORT
3478                             ,
3479                             enum fork_context_e fork_context
3480 #endif
3481                             ,
3482                             int exit_teams = 0);
3483
3484 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3485 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3486 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3487 extern int __kmp_invoke_task_func(int gtid);
3488 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3489                                           kmp_info_t *this_thr,
3490                                           kmp_team_t *team);
3491 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3492                                          kmp_info_t *this_thr,
3493                                          kmp_team_t *team);
3494
3495 // should never have been exported
3496 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3497 extern int __kmp_invoke_teams_master(int gtid);
3498 extern void __kmp_teams_master(int gtid);
3499 extern int __kmp_aux_get_team_num();
3500 extern int __kmp_aux_get_num_teams();
3501 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3502 extern void __kmp_user_set_library(enum library_type arg);
3503 extern void __kmp_aux_set_library(enum library_type arg);
3504 extern void __kmp_aux_set_stacksize(size_t arg);
3505 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3506 extern void __kmp_aux_set_defaults(char const *str, int len);
3507
3508 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3509 void kmpc_set_blocktime(int arg);
3510 void ompc_set_nested(int flag);
3511 void ompc_set_dynamic(int flag);
3512 void ompc_set_num_threads(int arg);
3513
3514 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3515                                               kmp_team_t *team, int tid);
3516 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3517 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3518                                     kmp_tasking_flags_t *flags,
3519                                     size_t sizeof_kmp_task_t,
3520                                     size_t sizeof_shareds,
3521                                     kmp_routine_entry_t task_entry);
3522 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3523                                      kmp_team_t *team, int tid,
3524                                      int set_curr_task);
3525 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3526 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3527
3528 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3529                                                        int gtid,
3530                                                        kmp_task_t *task);
3531 extern void __kmp_fulfill_event(kmp_event_t *event);
3532
3533 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
3534                            kmp_flag_32 *flag, int final_spin,
3535                            int *thread_finished,
3536 #if USE_ITT_BUILD
3537                            void *itt_sync_obj,
3538 #endif /* USE_ITT_BUILD */
3539                            kmp_int32 is_constrained);
3540 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
3541                            kmp_flag_64 *flag, int final_spin,
3542                            int *thread_finished,
3543 #if USE_ITT_BUILD
3544                            void *itt_sync_obj,
3545 #endif /* USE_ITT_BUILD */
3546                            kmp_int32 is_constrained);
3547 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
3548                                kmp_flag_oncore *flag, int final_spin,
3549                                int *thread_finished,
3550 #if USE_ITT_BUILD
3551                                void *itt_sync_obj,
3552 #endif /* USE_ITT_BUILD */
3553                                kmp_int32 is_constrained);
3554
3555 extern void __kmp_free_task_team(kmp_info_t *thread,
3556                                  kmp_task_team_t *task_team);
3557 extern void __kmp_reap_task_teams(void);
3558 extern void __kmp_wait_to_unref_task_teams(void);
3559 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3560                                   int always);
3561 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3562 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3563 #if USE_ITT_BUILD
3564                                  ,
3565                                  void *itt_sync_obj
3566 #endif /* USE_ITT_BUILD */
3567                                  ,
3568                                  int wait = 1);
3569 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3570                                   int gtid);
3571
3572 extern int __kmp_is_address_mapped(void *addr);
3573 extern kmp_uint64 __kmp_hardware_timestamp(void);
3574
3575 #if KMP_OS_UNIX
3576 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3577 #endif
3578
3579 /* ------------------------------------------------------------------------ */
3580 //
3581 // Assembly routines that have no compiler intrinsic replacement
3582 //
3583
3584 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3585                                   void *argv[]
3586 #if OMPT_SUPPORT
3587                                   ,
3588                                   void **exit_frame_ptr
3589 #endif
3590                                   );
3591
3592 /* ------------------------------------------------------------------------ */
3593
3594 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3595 KMP_EXPORT void __kmpc_end(ident_t *);
3596
3597 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3598                                                   kmpc_ctor_vec ctor,
3599                                                   kmpc_cctor_vec cctor,
3600                                                   kmpc_dtor_vec dtor,
3601                                                   size_t vector_length);
3602 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3603                                               kmpc_ctor ctor, kmpc_cctor cctor,
3604                                               kmpc_dtor dtor);
3605 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3606                                       void *data, size_t size);
3607
3608 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3609 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3610 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3611 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3612
3613 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3614 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3615                                  kmpc_micro microtask, ...);
3616
3617 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3618 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3619
3620 KMP_EXPORT void __kmpc_flush(ident_t *);
3621 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3622 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3623 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3624 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3625 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3626 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3627                                 kmp_critical_name *);
3628 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3629                                     kmp_critical_name *);
3630 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3631                                           kmp_critical_name *, uint32_t hint);
3632
3633 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3634 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3635
3636 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3637                                                   kmp_int32 global_tid);
3638
3639 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3640 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3641
3642 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3643                                      kmp_int32 schedtype, kmp_int32 *plastiter,
3644                                      kmp_int *plower, kmp_int *pupper,
3645                                      kmp_int *pstride, kmp_int incr,
3646                                      kmp_int chunk);
3647
3648 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3649
3650 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3651                                    size_t cpy_size, void *cpy_data,
3652                                    void (*cpy_func)(void *, void *),
3653                                    kmp_int32 didit);
3654
3655 extern void KMPC_SET_NUM_THREADS(int arg);
3656 extern void KMPC_SET_DYNAMIC(int flag);
3657 extern void KMPC_SET_NESTED(int flag);
3658
3659 /* OMP 3.0 tasking interface routines */
3660 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3661                                      kmp_task_t *new_task);
3662 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3663                                              kmp_int32 flags,
3664                                              size_t sizeof_kmp_task_t,
3665                                              size_t sizeof_shareds,
3666                                              kmp_routine_entry_t task_entry);
3667 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3668                                                     kmp_int32 flags,
3669                                                     size_t sizeof_kmp_task_t,
3670                                                     size_t sizeof_shareds,
3671                                                     kmp_routine_entry_t task_entry,
3672                                                     kmp_int64 device_id);
3673 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3674                                           kmp_task_t *task);
3675 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3676                                              kmp_task_t *task);
3677 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3678                                            kmp_task_t *new_task);
3679 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3680
3681 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3682                                           int end_part);
3683
3684 #if TASK_UNUSED
3685 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3686 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3687                               kmp_task_t *task);
3688 #endif // TASK_UNUSED
3689
3690 /* ------------------------------------------------------------------------ */
3691
3692 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3693 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3694
3695 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3696     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3697     kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3698     kmp_depend_info_t *noalias_dep_list);
3699 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3700                                      kmp_int32 ndeps,
3701                                      kmp_depend_info_t *dep_list,
3702                                      kmp_int32 ndeps_noalias,
3703                                      kmp_depend_info_t *noalias_dep_list);
3704 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3705                                 bool serialize_immediate);
3706
3707 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3708                                    kmp_int32 cncl_kind);
3709 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3710                                               kmp_int32 cncl_kind);
3711 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3712 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3713
3714 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3715 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3716 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3717                                 kmp_int32 if_val, kmp_uint64 *lb,
3718                                 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3719                                 kmp_int32 sched, kmp_uint64 grainsize,
3720                                 void *task_dup);
3721 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3722 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3723 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3724 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3725                                                      int is_ws, int num,
3726                                                      void *data);
3727 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3728                                               int num, void *data);
3729 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3730                                                     int is_ws);
3731 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3732     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3733     kmp_task_affinity_info_t *affin_list);
3734
3735 /* Lock interface routines (fast versions with gtid passed in) */
3736 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3737                                  void **user_lock);
3738 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3739                                       void **user_lock);
3740 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3741                                     void **user_lock);
3742 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3743                                          void **user_lock);
3744 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3745 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3746                                      void **user_lock);
3747 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3748                                   void **user_lock);
3749 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3750                                        void **user_lock);
3751 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3752 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3753                                      void **user_lock);
3754
3755 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3756                                            void **user_lock, uintptr_t hint);
3757 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3758                                                 void **user_lock,
3759                                                 uintptr_t hint);
3760
3761 /* Interface to fast scalable reduce methods routines */
3762
3763 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3764     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3765     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3766     kmp_critical_name *lck);
3767 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3768                                          kmp_critical_name *lck);
3769 KMP_EXPORT kmp_int32 __kmpc_reduce(
3770     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3771     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3772     kmp_critical_name *lck);
3773 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3774                                   kmp_critical_name *lck);
3775
3776 /* Internal fast reduction routines */
3777
3778 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3779     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3780     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3781     kmp_critical_name *lck);
3782
3783 // this function is for testing set/get/determine reduce method
3784 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3785
3786 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3787 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3788
3789 // C++ port
3790 // missing 'extern "C"' declarations
3791
3792 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3793 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3794 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3795                                         kmp_int32 num_threads);
3796
3797 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3798                                       int proc_bind);
3799 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3800                                       kmp_int32 num_teams,
3801                                       kmp_int32 num_threads);
3802 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3803                                   kmpc_micro microtask, ...);
3804 struct kmp_dim { // loop bounds info casted to kmp_int64
3805   kmp_int64 lo; // lower
3806   kmp_int64 up; // upper
3807   kmp_int64 st; // stride
3808 };
3809 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3810                                      kmp_int32 num_dims,
3811                                      const struct kmp_dim *dims);
3812 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3813                                      const kmp_int64 *vec);
3814 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3815                                      const kmp_int64 *vec);
3816 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3817
3818 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3819                                              void *data, size_t size,
3820                                              void ***cache);
3821
3822 // Symbols for MS mutual detection.
3823 extern int _You_must_link_with_exactly_one_OpenMP_library;
3824 extern int _You_must_link_with_Intel_OpenMP_library;
3825 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
3826 extern int _You_must_link_with_Microsoft_OpenMP_library;
3827 #endif
3828
3829 // The routines below are not exported.
3830 // Consider making them 'static' in corresponding source files.
3831 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
3832                                            void *data_addr, size_t pc_size);
3833 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
3834                                                 void *data_addr,
3835                                                 size_t pc_size);
3836 void __kmp_threadprivate_resize_cache(int newCapacity);
3837 void __kmp_cleanup_threadprivate_caches();
3838
3839 // ompc_, kmpc_ entries moved from omp.h.
3840 #if KMP_OS_WINDOWS
3841 #define KMPC_CONVENTION __cdecl
3842 #else
3843 #define KMPC_CONVENTION
3844 #endif
3845
3846 #ifndef __OMP_H
3847 typedef enum omp_sched_t {
3848   omp_sched_static = 1,
3849   omp_sched_dynamic = 2,
3850   omp_sched_guided = 3,
3851   omp_sched_auto = 4
3852 } omp_sched_t;
3853 typedef void *kmp_affinity_mask_t;
3854 #endif
3855
3856 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
3857 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
3858 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
3859 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
3860 KMP_EXPORT int KMPC_CONVENTION
3861 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
3862 KMP_EXPORT int KMPC_CONVENTION
3863 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
3864 KMP_EXPORT int KMPC_CONVENTION
3865 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
3866
3867 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
3868 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
3869 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
3870 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
3871 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
3872
3873 enum kmp_target_offload_kind {
3874   tgt_disabled = 0,
3875   tgt_default = 1,
3876   tgt_mandatory = 2
3877 };
3878 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
3879 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
3880 extern kmp_target_offload_kind_t __kmp_target_offload;
3881 extern int __kmpc_get_target_offload();
3882
3883 // Constants used in libomptarget
3884 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
3885 #define KMP_HOST_DEVICE -10 // This is what it is in libomptarget, go figure.
3886 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
3887
3888 // OMP Pause Resource
3889
3890 // The following enum is used both to set the status in __kmp_pause_status, and
3891 // as the internal equivalent of the externally-visible omp_pause_resource_t.
3892 typedef enum kmp_pause_status_t {
3893   kmp_not_paused = 0, // status is not paused, or, requesting resume
3894   kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
3895   kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
3896 } kmp_pause_status_t;
3897
3898 // This stores the pause state of the runtime
3899 extern kmp_pause_status_t __kmp_pause_status;
3900 extern int __kmpc_pause_resource(kmp_pause_status_t level);
3901 extern int __kmp_pause_resource(kmp_pause_status_t level);
3902 // Soft resume sets __kmp_pause_status, and wakes up all threads.
3903 extern void __kmp_resume_if_soft_paused();
3904 // Hard resume simply resets the status to not paused. Library will appear to
3905 // be uninitialized after hard pause. Let OMP constructs trigger required
3906 // initializations.
3907 static inline void __kmp_resume_if_hard_paused() {
3908   if (__kmp_pause_status == kmp_hard_paused) {
3909     __kmp_pause_status = kmp_not_paused;
3910   }
3911 }
3912
3913 #ifdef __cplusplus
3914 }
3915 #endif
3916
3917 #endif /* KMP_H */