]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/openmp/runtime/src/kmp_lock.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / openmp / runtime / src / kmp_lock.cpp
1 /*
2  * kmp_lock.cpp -- lock-related functions
3  */
4
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include <stddef.h>
14 #include <atomic>
15
16 #include "kmp.h"
17 #include "kmp_i18n.h"
18 #include "kmp_io.h"
19 #include "kmp_itt.h"
20 #include "kmp_lock.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23
24 #include "tsan_annotations.h"
25
26 #if KMP_USE_FUTEX
27 #include <sys/syscall.h>
28 #include <unistd.h>
29 // We should really include <futex.h>, but that causes compatibility problems on
30 // different Linux* OS distributions that either require that you include (or
31 // break when you try to include) <pci/types.h>. Since all we need is the two
32 // macros below (which are part of the kernel ABI, so can't change) we just
33 // define the constants here and don't include <futex.h>
34 #ifndef FUTEX_WAIT
35 #define FUTEX_WAIT 0
36 #endif
37 #ifndef FUTEX_WAKE
38 #define FUTEX_WAKE 1
39 #endif
40 #endif
41
42 /* Implement spin locks for internal library use.             */
43 /* The algorithm implemented is Lamport's bakery lock [1974]. */
44
45 void __kmp_validate_locks(void) {
46   int i;
47   kmp_uint32 x, y;
48
49   /* Check to make sure unsigned arithmetic does wraps properly */
50   x = ~((kmp_uint32)0) - 2;
51   y = x - 2;
52
53   for (i = 0; i < 8; ++i, ++x, ++y) {
54     kmp_uint32 z = (x - y);
55     KMP_ASSERT(z == 2);
56   }
57
58   KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0);
59 }
60
61 /* ------------------------------------------------------------------------ */
62 /* test and set locks */
63
64 // For the non-nested locks, we can only assume that the first 4 bytes were
65 // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel
66 // compiler only allocates a 4 byte pointer on IA-32 architecture.  On
67 // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated.
68 //
69 // gcc reserves >= 8 bytes for nested locks, so we can assume that the
70 // entire 8 bytes were allocated for nested locks on all 64-bit platforms.
71
72 static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) {
73   return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1;
74 }
75
76 static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) {
77   return lck->lk.depth_locked != -1;
78 }
79
80 __forceinline static int
81 __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) {
82   KMP_MB();
83
84 #ifdef USE_LOCK_PROFILE
85   kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll);
86   if ((curr != 0) && (curr != gtid + 1))
87     __kmp_printf("LOCK CONTENTION: %p\n", lck);
88 /* else __kmp_printf( "." );*/
89 #endif /* USE_LOCK_PROFILE */
90
91   kmp_int32 tas_free = KMP_LOCK_FREE(tas);
92   kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
93
94   if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
95       __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
96     KMP_FSYNC_ACQUIRED(lck);
97     return KMP_LOCK_ACQUIRED_FIRST;
98   }
99
100   kmp_uint32 spins;
101   KMP_FSYNC_PREPARE(lck);
102   KMP_INIT_YIELD(spins);
103   kmp_backoff_t backoff = __kmp_spin_backoff_params;
104   do {
105     __kmp_spin_backoff(&backoff);
106     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
107   } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free ||
108            !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy));
109   KMP_FSYNC_ACQUIRED(lck);
110   return KMP_LOCK_ACQUIRED_FIRST;
111 }
112
113 int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
114   int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid);
115   ANNOTATE_TAS_ACQUIRED(lck);
116   return retval;
117 }
118
119 static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck,
120                                               kmp_int32 gtid) {
121   char const *const func = "omp_set_lock";
122   if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
123       __kmp_is_tas_lock_nestable(lck)) {
124     KMP_FATAL(LockNestableUsedAsSimple, func);
125   }
126   if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) {
127     KMP_FATAL(LockIsAlreadyOwned, func);
128   }
129   return __kmp_acquire_tas_lock(lck, gtid);
130 }
131
132 int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
133   kmp_int32 tas_free = KMP_LOCK_FREE(tas);
134   kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
135   if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
136       __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
137     KMP_FSYNC_ACQUIRED(lck);
138     return TRUE;
139   }
140   return FALSE;
141 }
142
143 static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck,
144                                            kmp_int32 gtid) {
145   char const *const func = "omp_test_lock";
146   if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
147       __kmp_is_tas_lock_nestable(lck)) {
148     KMP_FATAL(LockNestableUsedAsSimple, func);
149   }
150   return __kmp_test_tas_lock(lck, gtid);
151 }
152
153 int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
154   KMP_MB(); /* Flush all pending memory write invalidates.  */
155
156   KMP_FSYNC_RELEASING(lck);
157   ANNOTATE_TAS_RELEASED(lck);
158   KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas));
159   KMP_MB(); /* Flush all pending memory write invalidates.  */
160
161   KMP_YIELD_OVERSUB();
162   return KMP_LOCK_RELEASED;
163 }
164
165 static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck,
166                                               kmp_int32 gtid) {
167   char const *const func = "omp_unset_lock";
168   KMP_MB(); /* in case another processor initialized lock */
169   if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
170       __kmp_is_tas_lock_nestable(lck)) {
171     KMP_FATAL(LockNestableUsedAsSimple, func);
172   }
173   if (__kmp_get_tas_lock_owner(lck) == -1) {
174     KMP_FATAL(LockUnsettingFree, func);
175   }
176   if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) &&
177       (__kmp_get_tas_lock_owner(lck) != gtid)) {
178     KMP_FATAL(LockUnsettingSetByAnother, func);
179   }
180   return __kmp_release_tas_lock(lck, gtid);
181 }
182
183 void __kmp_init_tas_lock(kmp_tas_lock_t *lck) {
184   lck->lk.poll = KMP_LOCK_FREE(tas);
185 }
186
187 void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; }
188
189 static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) {
190   char const *const func = "omp_destroy_lock";
191   if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
192       __kmp_is_tas_lock_nestable(lck)) {
193     KMP_FATAL(LockNestableUsedAsSimple, func);
194   }
195   if (__kmp_get_tas_lock_owner(lck) != -1) {
196     KMP_FATAL(LockStillOwned, func);
197   }
198   __kmp_destroy_tas_lock(lck);
199 }
200
201 // nested test and set locks
202
203 int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
204   KMP_DEBUG_ASSERT(gtid >= 0);
205
206   if (__kmp_get_tas_lock_owner(lck) == gtid) {
207     lck->lk.depth_locked += 1;
208     return KMP_LOCK_ACQUIRED_NEXT;
209   } else {
210     __kmp_acquire_tas_lock_timed_template(lck, gtid);
211     ANNOTATE_TAS_ACQUIRED(lck);
212     lck->lk.depth_locked = 1;
213     return KMP_LOCK_ACQUIRED_FIRST;
214   }
215 }
216
217 static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
218                                                      kmp_int32 gtid) {
219   char const *const func = "omp_set_nest_lock";
220   if (!__kmp_is_tas_lock_nestable(lck)) {
221     KMP_FATAL(LockSimpleUsedAsNestable, func);
222   }
223   return __kmp_acquire_nested_tas_lock(lck, gtid);
224 }
225
226 int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
227   int retval;
228
229   KMP_DEBUG_ASSERT(gtid >= 0);
230
231   if (__kmp_get_tas_lock_owner(lck) == gtid) {
232     retval = ++lck->lk.depth_locked;
233   } else if (!__kmp_test_tas_lock(lck, gtid)) {
234     retval = 0;
235   } else {
236     KMP_MB();
237     retval = lck->lk.depth_locked = 1;
238   }
239   return retval;
240 }
241
242 static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
243                                                   kmp_int32 gtid) {
244   char const *const func = "omp_test_nest_lock";
245   if (!__kmp_is_tas_lock_nestable(lck)) {
246     KMP_FATAL(LockSimpleUsedAsNestable, func);
247   }
248   return __kmp_test_nested_tas_lock(lck, gtid);
249 }
250
251 int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
252   KMP_DEBUG_ASSERT(gtid >= 0);
253
254   KMP_MB();
255   if (--(lck->lk.depth_locked) == 0) {
256     __kmp_release_tas_lock(lck, gtid);
257     return KMP_LOCK_RELEASED;
258   }
259   return KMP_LOCK_STILL_HELD;
260 }
261
262 static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
263                                                      kmp_int32 gtid) {
264   char const *const func = "omp_unset_nest_lock";
265   KMP_MB(); /* in case another processor initialized lock */
266   if (!__kmp_is_tas_lock_nestable(lck)) {
267     KMP_FATAL(LockSimpleUsedAsNestable, func);
268   }
269   if (__kmp_get_tas_lock_owner(lck) == -1) {
270     KMP_FATAL(LockUnsettingFree, func);
271   }
272   if (__kmp_get_tas_lock_owner(lck) != gtid) {
273     KMP_FATAL(LockUnsettingSetByAnother, func);
274   }
275   return __kmp_release_nested_tas_lock(lck, gtid);
276 }
277
278 void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) {
279   __kmp_init_tas_lock(lck);
280   lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
281 }
282
283 void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) {
284   __kmp_destroy_tas_lock(lck);
285   lck->lk.depth_locked = 0;
286 }
287
288 static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
289   char const *const func = "omp_destroy_nest_lock";
290   if (!__kmp_is_tas_lock_nestable(lck)) {
291     KMP_FATAL(LockSimpleUsedAsNestable, func);
292   }
293   if (__kmp_get_tas_lock_owner(lck) != -1) {
294     KMP_FATAL(LockStillOwned, func);
295   }
296   __kmp_destroy_nested_tas_lock(lck);
297 }
298
299 #if KMP_USE_FUTEX
300
301 /* ------------------------------------------------------------------------ */
302 /* futex locks */
303
304 // futex locks are really just test and set locks, with a different method
305 // of handling contention.  They take the same amount of space as test and
306 // set locks, and are allocated the same way (i.e. use the area allocated by
307 // the compiler for non-nested locks / allocate nested locks on the heap).
308
309 static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) {
310   return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1;
311 }
312
313 static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) {
314   return lck->lk.depth_locked != -1;
315 }
316
317 __forceinline static int
318 __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) {
319   kmp_int32 gtid_code = (gtid + 1) << 1;
320
321   KMP_MB();
322
323 #ifdef USE_LOCK_PROFILE
324   kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll));
325   if ((curr != 0) && (curr != gtid_code))
326     __kmp_printf("LOCK CONTENTION: %p\n", lck);
327 /* else __kmp_printf( "." );*/
328 #endif /* USE_LOCK_PROFILE */
329
330   KMP_FSYNC_PREPARE(lck);
331   KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n",
332                   lck, lck->lk.poll, gtid));
333
334   kmp_int32 poll_val;
335
336   while ((poll_val = KMP_COMPARE_AND_STORE_RET32(
337               &(lck->lk.poll), KMP_LOCK_FREE(futex),
338               KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) {
339
340     kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1;
341     KA_TRACE(
342         1000,
343         ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n",
344          lck, gtid, poll_val, cond));
345
346     // NOTE: if you try to use the following condition for this branch
347     //
348     // if ( poll_val & 1 == 0 )
349     //
350     // Then the 12.0 compiler has a bug where the following block will
351     // always be skipped, regardless of the value of the LSB of poll_val.
352     if (!cond) {
353       // Try to set the lsb in the poll to indicate to the owner
354       // thread that they need to wake this thread up.
355       if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val,
356                                        poll_val | KMP_LOCK_BUSY(1, futex))) {
357         KA_TRACE(
358             1000,
359             ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n",
360              lck, lck->lk.poll, gtid));
361         continue;
362       }
363       poll_val |= KMP_LOCK_BUSY(1, futex);
364
365       KA_TRACE(1000,
366                ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck,
367                 lck->lk.poll, gtid));
368     }
369
370     KA_TRACE(
371         1000,
372         ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n",
373          lck, gtid, poll_val));
374
375     kmp_int32 rc;
376     if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL,
377                       NULL, 0)) != 0) {
378       KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) "
379                       "failed (rc=%d errno=%d)\n",
380                       lck, gtid, poll_val, rc, errno));
381       continue;
382     }
383
384     KA_TRACE(1000,
385              ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n",
386               lck, gtid, poll_val));
387     // This thread has now done a successful futex wait call and was entered on
388     // the OS futex queue.  We must now perform a futex wake call when releasing
389     // the lock, as we have no idea how many other threads are in the queue.
390     gtid_code |= 1;
391   }
392
393   KMP_FSYNC_ACQUIRED(lck);
394   KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
395                   lck->lk.poll, gtid));
396   return KMP_LOCK_ACQUIRED_FIRST;
397 }
398
399 int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
400   int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid);
401   ANNOTATE_FUTEX_ACQUIRED(lck);
402   return retval;
403 }
404
405 static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck,
406                                                 kmp_int32 gtid) {
407   char const *const func = "omp_set_lock";
408   if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
409       __kmp_is_futex_lock_nestable(lck)) {
410     KMP_FATAL(LockNestableUsedAsSimple, func);
411   }
412   if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) {
413     KMP_FATAL(LockIsAlreadyOwned, func);
414   }
415   return __kmp_acquire_futex_lock(lck, gtid);
416 }
417
418 int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
419   if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex),
420                                   KMP_LOCK_BUSY((gtid + 1) << 1, futex))) {
421     KMP_FSYNC_ACQUIRED(lck);
422     return TRUE;
423   }
424   return FALSE;
425 }
426
427 static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck,
428                                              kmp_int32 gtid) {
429   char const *const func = "omp_test_lock";
430   if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
431       __kmp_is_futex_lock_nestable(lck)) {
432     KMP_FATAL(LockNestableUsedAsSimple, func);
433   }
434   return __kmp_test_futex_lock(lck, gtid);
435 }
436
437 int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
438   KMP_MB(); /* Flush all pending memory write invalidates.  */
439
440   KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n",
441                   lck, lck->lk.poll, gtid));
442
443   KMP_FSYNC_RELEASING(lck);
444   ANNOTATE_FUTEX_RELEASED(lck);
445
446   kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex));
447
448   KA_TRACE(1000,
449            ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n",
450             lck, gtid, poll_val));
451
452   if (KMP_LOCK_STRIP(poll_val) & 1) {
453     KA_TRACE(1000,
454              ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n",
455               lck, gtid));
456     syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex),
457             NULL, NULL, 0);
458   }
459
460   KMP_MB(); /* Flush all pending memory write invalidates.  */
461
462   KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
463                   lck->lk.poll, gtid));
464
465   KMP_YIELD_OVERSUB();
466   return KMP_LOCK_RELEASED;
467 }
468
469 static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck,
470                                                 kmp_int32 gtid) {
471   char const *const func = "omp_unset_lock";
472   KMP_MB(); /* in case another processor initialized lock */
473   if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
474       __kmp_is_futex_lock_nestable(lck)) {
475     KMP_FATAL(LockNestableUsedAsSimple, func);
476   }
477   if (__kmp_get_futex_lock_owner(lck) == -1) {
478     KMP_FATAL(LockUnsettingFree, func);
479   }
480   if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) &&
481       (__kmp_get_futex_lock_owner(lck) != gtid)) {
482     KMP_FATAL(LockUnsettingSetByAnother, func);
483   }
484   return __kmp_release_futex_lock(lck, gtid);
485 }
486
487 void __kmp_init_futex_lock(kmp_futex_lock_t *lck) {
488   TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex));
489 }
490
491 void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; }
492
493 static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) {
494   char const *const func = "omp_destroy_lock";
495   if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
496       __kmp_is_futex_lock_nestable(lck)) {
497     KMP_FATAL(LockNestableUsedAsSimple, func);
498   }
499   if (__kmp_get_futex_lock_owner(lck) != -1) {
500     KMP_FATAL(LockStillOwned, func);
501   }
502   __kmp_destroy_futex_lock(lck);
503 }
504
505 // nested futex locks
506
507 int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
508   KMP_DEBUG_ASSERT(gtid >= 0);
509
510   if (__kmp_get_futex_lock_owner(lck) == gtid) {
511     lck->lk.depth_locked += 1;
512     return KMP_LOCK_ACQUIRED_NEXT;
513   } else {
514     __kmp_acquire_futex_lock_timed_template(lck, gtid);
515     ANNOTATE_FUTEX_ACQUIRED(lck);
516     lck->lk.depth_locked = 1;
517     return KMP_LOCK_ACQUIRED_FIRST;
518   }
519 }
520
521 static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
522                                                        kmp_int32 gtid) {
523   char const *const func = "omp_set_nest_lock";
524   if (!__kmp_is_futex_lock_nestable(lck)) {
525     KMP_FATAL(LockSimpleUsedAsNestable, func);
526   }
527   return __kmp_acquire_nested_futex_lock(lck, gtid);
528 }
529
530 int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
531   int retval;
532
533   KMP_DEBUG_ASSERT(gtid >= 0);
534
535   if (__kmp_get_futex_lock_owner(lck) == gtid) {
536     retval = ++lck->lk.depth_locked;
537   } else if (!__kmp_test_futex_lock(lck, gtid)) {
538     retval = 0;
539   } else {
540     KMP_MB();
541     retval = lck->lk.depth_locked = 1;
542   }
543   return retval;
544 }
545
546 static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
547                                                     kmp_int32 gtid) {
548   char const *const func = "omp_test_nest_lock";
549   if (!__kmp_is_futex_lock_nestable(lck)) {
550     KMP_FATAL(LockSimpleUsedAsNestable, func);
551   }
552   return __kmp_test_nested_futex_lock(lck, gtid);
553 }
554
555 int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
556   KMP_DEBUG_ASSERT(gtid >= 0);
557
558   KMP_MB();
559   if (--(lck->lk.depth_locked) == 0) {
560     __kmp_release_futex_lock(lck, gtid);
561     return KMP_LOCK_RELEASED;
562   }
563   return KMP_LOCK_STILL_HELD;
564 }
565
566 static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
567                                                        kmp_int32 gtid) {
568   char const *const func = "omp_unset_nest_lock";
569   KMP_MB(); /* in case another processor initialized lock */
570   if (!__kmp_is_futex_lock_nestable(lck)) {
571     KMP_FATAL(LockSimpleUsedAsNestable, func);
572   }
573   if (__kmp_get_futex_lock_owner(lck) == -1) {
574     KMP_FATAL(LockUnsettingFree, func);
575   }
576   if (__kmp_get_futex_lock_owner(lck) != gtid) {
577     KMP_FATAL(LockUnsettingSetByAnother, func);
578   }
579   return __kmp_release_nested_futex_lock(lck, gtid);
580 }
581
582 void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) {
583   __kmp_init_futex_lock(lck);
584   lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
585 }
586
587 void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) {
588   __kmp_destroy_futex_lock(lck);
589   lck->lk.depth_locked = 0;
590 }
591
592 static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
593   char const *const func = "omp_destroy_nest_lock";
594   if (!__kmp_is_futex_lock_nestable(lck)) {
595     KMP_FATAL(LockSimpleUsedAsNestable, func);
596   }
597   if (__kmp_get_futex_lock_owner(lck) != -1) {
598     KMP_FATAL(LockStillOwned, func);
599   }
600   __kmp_destroy_nested_futex_lock(lck);
601 }
602
603 #endif // KMP_USE_FUTEX
604
605 /* ------------------------------------------------------------------------ */
606 /* ticket (bakery) locks */
607
608 static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) {
609   return std::atomic_load_explicit(&lck->lk.owner_id,
610                                    std::memory_order_relaxed) -
611          1;
612 }
613
614 static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) {
615   return std::atomic_load_explicit(&lck->lk.depth_locked,
616                                    std::memory_order_relaxed) != -1;
617 }
618
619 static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) {
620   return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving,
621                                    std::memory_order_acquire) == my_ticket;
622 }
623
624 __forceinline static int
625 __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck,
626                                          kmp_int32 gtid) {
627   kmp_uint32 my_ticket = std::atomic_fetch_add_explicit(
628       &lck->lk.next_ticket, 1U, std::memory_order_relaxed);
629
630 #ifdef USE_LOCK_PROFILE
631   if (std::atomic_load_explicit(&lck->lk.now_serving,
632                                 std::memory_order_relaxed) != my_ticket)
633     __kmp_printf("LOCK CONTENTION: %p\n", lck);
634 /* else __kmp_printf( "." );*/
635 #endif /* USE_LOCK_PROFILE */
636
637   if (std::atomic_load_explicit(&lck->lk.now_serving,
638                                 std::memory_order_acquire) == my_ticket) {
639     return KMP_LOCK_ACQUIRED_FIRST;
640   }
641   KMP_WAIT_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck);
642   return KMP_LOCK_ACQUIRED_FIRST;
643 }
644
645 int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
646   int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid);
647   ANNOTATE_TICKET_ACQUIRED(lck);
648   return retval;
649 }
650
651 static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
652                                                  kmp_int32 gtid) {
653   char const *const func = "omp_set_lock";
654
655   if (!std::atomic_load_explicit(&lck->lk.initialized,
656                                  std::memory_order_relaxed)) {
657     KMP_FATAL(LockIsUninitialized, func);
658   }
659   if (lck->lk.self != lck) {
660     KMP_FATAL(LockIsUninitialized, func);
661   }
662   if (__kmp_is_ticket_lock_nestable(lck)) {
663     KMP_FATAL(LockNestableUsedAsSimple, func);
664   }
665   if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) {
666     KMP_FATAL(LockIsAlreadyOwned, func);
667   }
668
669   __kmp_acquire_ticket_lock(lck, gtid);
670
671   std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
672                              std::memory_order_relaxed);
673   return KMP_LOCK_ACQUIRED_FIRST;
674 }
675
676 int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
677   kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket,
678                                                    std::memory_order_relaxed);
679
680   if (std::atomic_load_explicit(&lck->lk.now_serving,
681                                 std::memory_order_relaxed) == my_ticket) {
682     kmp_uint32 next_ticket = my_ticket + 1;
683     if (std::atomic_compare_exchange_strong_explicit(
684             &lck->lk.next_ticket, &my_ticket, next_ticket,
685             std::memory_order_acquire, std::memory_order_acquire)) {
686       return TRUE;
687     }
688   }
689   return FALSE;
690 }
691
692 static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
693                                               kmp_int32 gtid) {
694   char const *const func = "omp_test_lock";
695
696   if (!std::atomic_load_explicit(&lck->lk.initialized,
697                                  std::memory_order_relaxed)) {
698     KMP_FATAL(LockIsUninitialized, func);
699   }
700   if (lck->lk.self != lck) {
701     KMP_FATAL(LockIsUninitialized, func);
702   }
703   if (__kmp_is_ticket_lock_nestable(lck)) {
704     KMP_FATAL(LockNestableUsedAsSimple, func);
705   }
706
707   int retval = __kmp_test_ticket_lock(lck, gtid);
708
709   if (retval) {
710     std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
711                                std::memory_order_relaxed);
712   }
713   return retval;
714 }
715
716 int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
717   kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket,
718                                                   std::memory_order_relaxed) -
719                         std::atomic_load_explicit(&lck->lk.now_serving,
720                                                   std::memory_order_relaxed);
721
722   ANNOTATE_TICKET_RELEASED(lck);
723   std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U,
724                                  std::memory_order_release);
725
726   KMP_YIELD(distance >
727             (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
728   return KMP_LOCK_RELEASED;
729 }
730
731 static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
732                                                  kmp_int32 gtid) {
733   char const *const func = "omp_unset_lock";
734
735   if (!std::atomic_load_explicit(&lck->lk.initialized,
736                                  std::memory_order_relaxed)) {
737     KMP_FATAL(LockIsUninitialized, func);
738   }
739   if (lck->lk.self != lck) {
740     KMP_FATAL(LockIsUninitialized, func);
741   }
742   if (__kmp_is_ticket_lock_nestable(lck)) {
743     KMP_FATAL(LockNestableUsedAsSimple, func);
744   }
745   if (__kmp_get_ticket_lock_owner(lck) == -1) {
746     KMP_FATAL(LockUnsettingFree, func);
747   }
748   if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) &&
749       (__kmp_get_ticket_lock_owner(lck) != gtid)) {
750     KMP_FATAL(LockUnsettingSetByAnother, func);
751   }
752   std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
753   return __kmp_release_ticket_lock(lck, gtid);
754 }
755
756 void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) {
757   lck->lk.location = NULL;
758   lck->lk.self = lck;
759   std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
760                              std::memory_order_relaxed);
761   std::atomic_store_explicit(&lck->lk.now_serving, 0U,
762                              std::memory_order_relaxed);
763   std::atomic_store_explicit(
764       &lck->lk.owner_id, 0,
765       std::memory_order_relaxed); // no thread owns the lock.
766   std::atomic_store_explicit(
767       &lck->lk.depth_locked, -1,
768       std::memory_order_relaxed); // -1 => not a nested lock.
769   std::atomic_store_explicit(&lck->lk.initialized, true,
770                              std::memory_order_release);
771 }
772
773 void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) {
774   std::atomic_store_explicit(&lck->lk.initialized, false,
775                              std::memory_order_release);
776   lck->lk.self = NULL;
777   lck->lk.location = NULL;
778   std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
779                              std::memory_order_relaxed);
780   std::atomic_store_explicit(&lck->lk.now_serving, 0U,
781                              std::memory_order_relaxed);
782   std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
783   std::atomic_store_explicit(&lck->lk.depth_locked, -1,
784                              std::memory_order_relaxed);
785 }
786
787 static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
788   char const *const func = "omp_destroy_lock";
789
790   if (!std::atomic_load_explicit(&lck->lk.initialized,
791                                  std::memory_order_relaxed)) {
792     KMP_FATAL(LockIsUninitialized, func);
793   }
794   if (lck->lk.self != lck) {
795     KMP_FATAL(LockIsUninitialized, func);
796   }
797   if (__kmp_is_ticket_lock_nestable(lck)) {
798     KMP_FATAL(LockNestableUsedAsSimple, func);
799   }
800   if (__kmp_get_ticket_lock_owner(lck) != -1) {
801     KMP_FATAL(LockStillOwned, func);
802   }
803   __kmp_destroy_ticket_lock(lck);
804 }
805
806 // nested ticket locks
807
808 int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
809   KMP_DEBUG_ASSERT(gtid >= 0);
810
811   if (__kmp_get_ticket_lock_owner(lck) == gtid) {
812     std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
813                                    std::memory_order_relaxed);
814     return KMP_LOCK_ACQUIRED_NEXT;
815   } else {
816     __kmp_acquire_ticket_lock_timed_template(lck, gtid);
817     ANNOTATE_TICKET_ACQUIRED(lck);
818     std::atomic_store_explicit(&lck->lk.depth_locked, 1,
819                                std::memory_order_relaxed);
820     std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
821                                std::memory_order_relaxed);
822     return KMP_LOCK_ACQUIRED_FIRST;
823   }
824 }
825
826 static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
827                                                         kmp_int32 gtid) {
828   char const *const func = "omp_set_nest_lock";
829
830   if (!std::atomic_load_explicit(&lck->lk.initialized,
831                                  std::memory_order_relaxed)) {
832     KMP_FATAL(LockIsUninitialized, func);
833   }
834   if (lck->lk.self != lck) {
835     KMP_FATAL(LockIsUninitialized, func);
836   }
837   if (!__kmp_is_ticket_lock_nestable(lck)) {
838     KMP_FATAL(LockSimpleUsedAsNestable, func);
839   }
840   return __kmp_acquire_nested_ticket_lock(lck, gtid);
841 }
842
843 int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
844   int retval;
845
846   KMP_DEBUG_ASSERT(gtid >= 0);
847
848   if (__kmp_get_ticket_lock_owner(lck) == gtid) {
849     retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
850                                             std::memory_order_relaxed) +
851              1;
852   } else if (!__kmp_test_ticket_lock(lck, gtid)) {
853     retval = 0;
854   } else {
855     std::atomic_store_explicit(&lck->lk.depth_locked, 1,
856                                std::memory_order_relaxed);
857     std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
858                                std::memory_order_relaxed);
859     retval = 1;
860   }
861   return retval;
862 }
863
864 static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
865                                                      kmp_int32 gtid) {
866   char const *const func = "omp_test_nest_lock";
867
868   if (!std::atomic_load_explicit(&lck->lk.initialized,
869                                  std::memory_order_relaxed)) {
870     KMP_FATAL(LockIsUninitialized, func);
871   }
872   if (lck->lk.self != lck) {
873     KMP_FATAL(LockIsUninitialized, func);
874   }
875   if (!__kmp_is_ticket_lock_nestable(lck)) {
876     KMP_FATAL(LockSimpleUsedAsNestable, func);
877   }
878   return __kmp_test_nested_ticket_lock(lck, gtid);
879 }
880
881 int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
882   KMP_DEBUG_ASSERT(gtid >= 0);
883
884   if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1,
885                                       std::memory_order_relaxed) -
886        1) == 0) {
887     std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
888     __kmp_release_ticket_lock(lck, gtid);
889     return KMP_LOCK_RELEASED;
890   }
891   return KMP_LOCK_STILL_HELD;
892 }
893
894 static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
895                                                         kmp_int32 gtid) {
896   char const *const func = "omp_unset_nest_lock";
897
898   if (!std::atomic_load_explicit(&lck->lk.initialized,
899                                  std::memory_order_relaxed)) {
900     KMP_FATAL(LockIsUninitialized, func);
901   }
902   if (lck->lk.self != lck) {
903     KMP_FATAL(LockIsUninitialized, func);
904   }
905   if (!__kmp_is_ticket_lock_nestable(lck)) {
906     KMP_FATAL(LockSimpleUsedAsNestable, func);
907   }
908   if (__kmp_get_ticket_lock_owner(lck) == -1) {
909     KMP_FATAL(LockUnsettingFree, func);
910   }
911   if (__kmp_get_ticket_lock_owner(lck) != gtid) {
912     KMP_FATAL(LockUnsettingSetByAnother, func);
913   }
914   return __kmp_release_nested_ticket_lock(lck, gtid);
915 }
916
917 void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) {
918   __kmp_init_ticket_lock(lck);
919   std::atomic_store_explicit(&lck->lk.depth_locked, 0,
920                              std::memory_order_relaxed);
921   // >= 0 for nestable locks, -1 for simple locks
922 }
923
924 void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) {
925   __kmp_destroy_ticket_lock(lck);
926   std::atomic_store_explicit(&lck->lk.depth_locked, 0,
927                              std::memory_order_relaxed);
928 }
929
930 static void
931 __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
932   char const *const func = "omp_destroy_nest_lock";
933
934   if (!std::atomic_load_explicit(&lck->lk.initialized,
935                                  std::memory_order_relaxed)) {
936     KMP_FATAL(LockIsUninitialized, func);
937   }
938   if (lck->lk.self != lck) {
939     KMP_FATAL(LockIsUninitialized, func);
940   }
941   if (!__kmp_is_ticket_lock_nestable(lck)) {
942     KMP_FATAL(LockSimpleUsedAsNestable, func);
943   }
944   if (__kmp_get_ticket_lock_owner(lck) != -1) {
945     KMP_FATAL(LockStillOwned, func);
946   }
947   __kmp_destroy_nested_ticket_lock(lck);
948 }
949
950 // access functions to fields which don't exist for all lock kinds.
951
952 static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) {
953   return lck->lk.location;
954 }
955
956 static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck,
957                                            const ident_t *loc) {
958   lck->lk.location = loc;
959 }
960
961 static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) {
962   return lck->lk.flags;
963 }
964
965 static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck,
966                                         kmp_lock_flags_t flags) {
967   lck->lk.flags = flags;
968 }
969
970 /* ------------------------------------------------------------------------ */
971 /* queuing locks */
972
973 /* First the states
974    (head,tail) =              0, 0  means lock is unheld, nobody on queue
975                  UINT_MAX or -1, 0  means lock is held, nobody on queue
976                               h, h  means lock held or about to transition,
977                                     1 element on queue
978                               h, t  h <> t, means lock is held or about to
979                                     transition, >1 elements on queue
980
981    Now the transitions
982       Acquire(0,0)  = -1 ,0
983       Release(0,0)  = Error
984       Acquire(-1,0) =  h ,h    h > 0
985       Release(-1,0) =  0 ,0
986       Acquire(h,h)  =  h ,t    h > 0, t > 0, h <> t
987       Release(h,h)  = -1 ,0    h > 0
988       Acquire(h,t)  =  h ,t'   h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t'
989       Release(h,t)  =  h',t    h > 0, t > 0, h <> t, h <> h', h' maybe = t
990
991    And pictorially
992
993            +-----+
994            | 0, 0|------- release -------> Error
995            +-----+
996              |  ^
997       acquire|  |release
998              |  |
999              |  |
1000              v  |
1001            +-----+
1002            |-1, 0|
1003            +-----+
1004              |  ^
1005       acquire|  |release
1006              |  |
1007              |  |
1008              v  |
1009            +-----+
1010            | h, h|
1011            +-----+
1012              |  ^
1013       acquire|  |release
1014              |  |
1015              |  |
1016              v  |
1017            +-----+
1018            | h, t|----- acquire, release loopback ---+
1019            +-----+                                   |
1020                 ^                                    |
1021                 |                                    |
1022                 +------------------------------------+
1023  */
1024
1025 #ifdef DEBUG_QUEUING_LOCKS
1026
1027 /* Stuff for circular trace buffer */
1028 #define TRACE_BUF_ELE 1024
1029 static char traces[TRACE_BUF_ELE][128] = {0};
1030 static int tc = 0;
1031 #define TRACE_LOCK(X, Y)                                                       \
1032   KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y);
1033 #define TRACE_LOCK_T(X, Y, Z)                                                  \
1034   KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z);
1035 #define TRACE_LOCK_HT(X, Y, Z, Q)                                              \
1036   KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y,   \
1037                Z, Q);
1038
1039 static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid,
1040                                     kmp_queuing_lock_t *lck, kmp_int32 head_id,
1041                                     kmp_int32 tail_id) {
1042   kmp_int32 t, i;
1043
1044   __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n");
1045
1046   i = tc % TRACE_BUF_ELE;
1047   __kmp_printf_no_lock("%s\n", traces[i]);
1048   i = (i + 1) % TRACE_BUF_ELE;
1049   while (i != (tc % TRACE_BUF_ELE)) {
1050     __kmp_printf_no_lock("%s", traces[i]);
1051     i = (i + 1) % TRACE_BUF_ELE;
1052   }
1053   __kmp_printf_no_lock("\n");
1054
1055   __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, "
1056                        "next_wait:%d, head_id:%d, tail_id:%d\n",
1057                        gtid + 1, this_thr->th.th_spin_here,
1058                        this_thr->th.th_next_waiting, head_id, tail_id);
1059
1060   __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id);
1061
1062   if (lck->lk.head_id >= 1) {
1063     t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting;
1064     while (t > 0) {
1065       __kmp_printf_no_lock("-> %d ", t);
1066       t = __kmp_threads[t - 1]->th.th_next_waiting;
1067     }
1068   }
1069   __kmp_printf_no_lock(";  tail: %d ", lck->lk.tail_id);
1070   __kmp_printf_no_lock("\n\n");
1071 }
1072
1073 #endif /* DEBUG_QUEUING_LOCKS */
1074
1075 static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) {
1076   return TCR_4(lck->lk.owner_id) - 1;
1077 }
1078
1079 static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) {
1080   return lck->lk.depth_locked != -1;
1081 }
1082
1083 /* Acquire a lock using a the queuing lock implementation */
1084 template <bool takeTime>
1085 /* [TLW] The unused template above is left behind because of what BEB believes
1086    is a potential compiler problem with __forceinline. */
1087 __forceinline static int
1088 __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck,
1089                                           kmp_int32 gtid) {
1090   kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid);
1091   volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1092   volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1093   volatile kmp_uint32 *spin_here_p;
1094   kmp_int32 need_mf = 1;
1095
1096 #if OMPT_SUPPORT
1097   ompt_state_t prev_state = ompt_state_undefined;
1098 #endif
1099
1100   KA_TRACE(1000,
1101            ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1102
1103   KMP_FSYNC_PREPARE(lck);
1104   KMP_DEBUG_ASSERT(this_thr != NULL);
1105   spin_here_p = &this_thr->th.th_spin_here;
1106
1107 #ifdef DEBUG_QUEUING_LOCKS
1108   TRACE_LOCK(gtid + 1, "acq ent");
1109   if (*spin_here_p)
1110     __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1111   if (this_thr->th.th_next_waiting != 0)
1112     __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1113 #endif
1114   KMP_DEBUG_ASSERT(!*spin_here_p);
1115   KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1116
1117   /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to
1118      head_id_p that may follow, not just in execution order, but also in
1119      visibility order. This way, when a releasing thread observes the changes to
1120      the queue by this thread, it can rightly assume that spin_here_p has
1121      already been set to TRUE, so that when it sets spin_here_p to FALSE, it is
1122      not premature.  If the releasing thread sets spin_here_p to FALSE before
1123      this thread sets it to TRUE, this thread will hang. */
1124   *spin_here_p = TRUE; /* before enqueuing to prevent race */
1125
1126   while (1) {
1127     kmp_int32 enqueued;
1128     kmp_int32 head;
1129     kmp_int32 tail;
1130
1131     head = *head_id_p;
1132
1133     switch (head) {
1134
1135     case -1: {
1136 #ifdef DEBUG_QUEUING_LOCKS
1137       tail = *tail_id_p;
1138       TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1139 #endif
1140       tail = 0; /* to make sure next link asynchronously read is not set
1141                 accidentally; this assignment prevents us from entering the
1142                 if ( t > 0 ) condition in the enqueued case below, which is not
1143                 necessary for this state transition */
1144
1145       need_mf = 0;
1146       /* try (-1,0)->(tid,tid) */
1147       enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p,
1148                                              KMP_PACK_64(-1, 0),
1149                                              KMP_PACK_64(gtid + 1, gtid + 1));
1150 #ifdef DEBUG_QUEUING_LOCKS
1151       if (enqueued)
1152         TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)");
1153 #endif
1154     } break;
1155
1156     default: {
1157       tail = *tail_id_p;
1158       KMP_DEBUG_ASSERT(tail != gtid + 1);
1159
1160 #ifdef DEBUG_QUEUING_LOCKS
1161       TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1162 #endif
1163
1164       if (tail == 0) {
1165         enqueued = FALSE;
1166       } else {
1167         need_mf = 0;
1168         /* try (h,t) or (h,h)->(h,tid) */
1169         enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1);
1170
1171 #ifdef DEBUG_QUEUING_LOCKS
1172         if (enqueued)
1173           TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)");
1174 #endif
1175       }
1176     } break;
1177
1178     case 0: /* empty queue */
1179     {
1180       kmp_int32 grabbed_lock;
1181
1182 #ifdef DEBUG_QUEUING_LOCKS
1183       tail = *tail_id_p;
1184       TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1185 #endif
1186       /* try (0,0)->(-1,0) */
1187
1188       /* only legal transition out of head = 0 is head = -1 with no change to
1189        * tail */
1190       grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1);
1191
1192       if (grabbed_lock) {
1193
1194         *spin_here_p = FALSE;
1195
1196         KA_TRACE(
1197             1000,
1198             ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n",
1199              lck, gtid));
1200 #ifdef DEBUG_QUEUING_LOCKS
1201         TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0);
1202 #endif
1203
1204 #if OMPT_SUPPORT
1205         if (ompt_enabled.enabled && prev_state != ompt_state_undefined) {
1206           /* change the state before clearing wait_id */
1207           this_thr->th.ompt_thread_info.state = prev_state;
1208           this_thr->th.ompt_thread_info.wait_id = 0;
1209         }
1210 #endif
1211
1212         KMP_FSYNC_ACQUIRED(lck);
1213         return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */
1214       }
1215       enqueued = FALSE;
1216     } break;
1217     }
1218
1219 #if OMPT_SUPPORT
1220     if (ompt_enabled.enabled && prev_state == ompt_state_undefined) {
1221       /* this thread will spin; set wait_id before entering wait state */
1222       prev_state = this_thr->th.ompt_thread_info.state;
1223       this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck;
1224       this_thr->th.ompt_thread_info.state = ompt_state_wait_lock;
1225     }
1226 #endif
1227
1228     if (enqueued) {
1229       if (tail > 0) {
1230         kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1);
1231         KMP_ASSERT(tail_thr != NULL);
1232         tail_thr->th.th_next_waiting = gtid + 1;
1233         /* corresponding wait for this write in release code */
1234       }
1235       KA_TRACE(1000,
1236                ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n",
1237                 lck, gtid));
1238
1239       KMP_MB();
1240       // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf
1241       KMP_WAIT(spin_here_p, FALSE, KMP_EQ, lck);
1242
1243 #ifdef DEBUG_QUEUING_LOCKS
1244       TRACE_LOCK(gtid + 1, "acq spin");
1245
1246       if (this_thr->th.th_next_waiting != 0)
1247         __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1248 #endif
1249       KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1250       KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after "
1251                       "waiting on queue\n",
1252                       lck, gtid));
1253
1254 #ifdef DEBUG_QUEUING_LOCKS
1255       TRACE_LOCK(gtid + 1, "acq exit 2");
1256 #endif
1257
1258 #if OMPT_SUPPORT
1259       /* change the state before clearing wait_id */
1260       this_thr->th.ompt_thread_info.state = prev_state;
1261       this_thr->th.ompt_thread_info.wait_id = 0;
1262 #endif
1263
1264       /* got lock, we were dequeued by the thread that released lock */
1265       return KMP_LOCK_ACQUIRED_FIRST;
1266     }
1267
1268     /* Yield if number of threads > number of logical processors */
1269     /* ToDo: Not sure why this should only be in oversubscription case,
1270        maybe should be traditional YIELD_INIT/YIELD_WHEN loop */
1271     KMP_YIELD_OVERSUB();
1272
1273 #ifdef DEBUG_QUEUING_LOCKS
1274     TRACE_LOCK(gtid + 1, "acq retry");
1275 #endif
1276   }
1277   KMP_ASSERT2(0, "should not get here");
1278   return KMP_LOCK_ACQUIRED_FIRST;
1279 }
1280
1281 int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1282   KMP_DEBUG_ASSERT(gtid >= 0);
1283
1284   int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1285   ANNOTATE_QUEUING_ACQUIRED(lck);
1286   return retval;
1287 }
1288
1289 static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1290                                                   kmp_int32 gtid) {
1291   char const *const func = "omp_set_lock";
1292   if (lck->lk.initialized != lck) {
1293     KMP_FATAL(LockIsUninitialized, func);
1294   }
1295   if (__kmp_is_queuing_lock_nestable(lck)) {
1296     KMP_FATAL(LockNestableUsedAsSimple, func);
1297   }
1298   if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1299     KMP_FATAL(LockIsAlreadyOwned, func);
1300   }
1301
1302   __kmp_acquire_queuing_lock(lck, gtid);
1303
1304   lck->lk.owner_id = gtid + 1;
1305   return KMP_LOCK_ACQUIRED_FIRST;
1306 }
1307
1308 int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1309   volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1310   kmp_int32 head;
1311 #ifdef KMP_DEBUG
1312   kmp_info_t *this_thr;
1313 #endif
1314
1315   KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid));
1316   KMP_DEBUG_ASSERT(gtid >= 0);
1317 #ifdef KMP_DEBUG
1318   this_thr = __kmp_thread_from_gtid(gtid);
1319   KMP_DEBUG_ASSERT(this_thr != NULL);
1320   KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1321 #endif
1322
1323   head = *head_id_p;
1324
1325   if (head == 0) { /* nobody on queue, nobody holding */
1326     /* try (0,0)->(-1,0) */
1327     if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) {
1328       KA_TRACE(1000,
1329                ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid));
1330       KMP_FSYNC_ACQUIRED(lck);
1331       ANNOTATE_QUEUING_ACQUIRED(lck);
1332       return TRUE;
1333     }
1334   }
1335
1336   KA_TRACE(1000,
1337            ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid));
1338   return FALSE;
1339 }
1340
1341 static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1342                                                kmp_int32 gtid) {
1343   char const *const func = "omp_test_lock";
1344   if (lck->lk.initialized != lck) {
1345     KMP_FATAL(LockIsUninitialized, func);
1346   }
1347   if (__kmp_is_queuing_lock_nestable(lck)) {
1348     KMP_FATAL(LockNestableUsedAsSimple, func);
1349   }
1350
1351   int retval = __kmp_test_queuing_lock(lck, gtid);
1352
1353   if (retval) {
1354     lck->lk.owner_id = gtid + 1;
1355   }
1356   return retval;
1357 }
1358
1359 int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1360   kmp_info_t *this_thr;
1361   volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1362   volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1363
1364   KA_TRACE(1000,
1365            ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1366   KMP_DEBUG_ASSERT(gtid >= 0);
1367   this_thr = __kmp_thread_from_gtid(gtid);
1368   KMP_DEBUG_ASSERT(this_thr != NULL);
1369 #ifdef DEBUG_QUEUING_LOCKS
1370   TRACE_LOCK(gtid + 1, "rel ent");
1371
1372   if (this_thr->th.th_spin_here)
1373     __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1374   if (this_thr->th.th_next_waiting != 0)
1375     __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1376 #endif
1377   KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1378   KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1379
1380   KMP_FSYNC_RELEASING(lck);
1381   ANNOTATE_QUEUING_RELEASED(lck);
1382
1383   while (1) {
1384     kmp_int32 dequeued;
1385     kmp_int32 head;
1386     kmp_int32 tail;
1387
1388     head = *head_id_p;
1389
1390 #ifdef DEBUG_QUEUING_LOCKS
1391     tail = *tail_id_p;
1392     TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail);
1393     if (head == 0)
1394       __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1395 #endif
1396     KMP_DEBUG_ASSERT(head !=
1397                      0); /* holding the lock, head must be -1 or queue head */
1398
1399     if (head == -1) { /* nobody on queue */
1400       /* try (-1,0)->(0,0) */
1401       if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) {
1402         KA_TRACE(
1403             1000,
1404             ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n",
1405              lck, gtid));
1406 #ifdef DEBUG_QUEUING_LOCKS
1407         TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0);
1408 #endif
1409
1410 #if OMPT_SUPPORT
1411 /* nothing to do - no other thread is trying to shift blame */
1412 #endif
1413         return KMP_LOCK_RELEASED;
1414       }
1415       dequeued = FALSE;
1416     } else {
1417       KMP_MB();
1418       tail = *tail_id_p;
1419       if (head == tail) { /* only one thread on the queue */
1420 #ifdef DEBUG_QUEUING_LOCKS
1421         if (head <= 0)
1422           __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1423 #endif
1424         KMP_DEBUG_ASSERT(head > 0);
1425
1426         /* try (h,h)->(-1,0) */
1427         dequeued = KMP_COMPARE_AND_STORE_REL64(
1428             RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head),
1429             KMP_PACK_64(-1, 0));
1430 #ifdef DEBUG_QUEUING_LOCKS
1431         TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)");
1432 #endif
1433
1434       } else {
1435         volatile kmp_int32 *waiting_id_p;
1436         kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1437         KMP_DEBUG_ASSERT(head_thr != NULL);
1438         waiting_id_p = &head_thr->th.th_next_waiting;
1439
1440 /* Does this require synchronous reads? */
1441 #ifdef DEBUG_QUEUING_LOCKS
1442         if (head <= 0 || tail <= 0)
1443           __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1444 #endif
1445         KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1446
1447         /* try (h,t)->(h',t) or (t,t) */
1448         KMP_MB();
1449         /* make sure enqueuing thread has time to update next waiting thread
1450          * field */
1451         *head_id_p =
1452             KMP_WAIT((volatile kmp_uint32 *)waiting_id_p, 0, KMP_NEQ, NULL);
1453 #ifdef DEBUG_QUEUING_LOCKS
1454         TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)");
1455 #endif
1456         dequeued = TRUE;
1457       }
1458     }
1459
1460     if (dequeued) {
1461       kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1462       KMP_DEBUG_ASSERT(head_thr != NULL);
1463
1464 /* Does this require synchronous reads? */
1465 #ifdef DEBUG_QUEUING_LOCKS
1466       if (head <= 0 || tail <= 0)
1467         __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1468 #endif
1469       KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1470
1471       /* For clean code only. Thread not released until next statement prevents
1472          race with acquire code. */
1473       head_thr->th.th_next_waiting = 0;
1474 #ifdef DEBUG_QUEUING_LOCKS
1475       TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head);
1476 #endif
1477
1478       KMP_MB();
1479       /* reset spin value */
1480       head_thr->th.th_spin_here = FALSE;
1481
1482       KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after "
1483                       "dequeuing\n",
1484                       lck, gtid));
1485 #ifdef DEBUG_QUEUING_LOCKS
1486       TRACE_LOCK(gtid + 1, "rel exit 2");
1487 #endif
1488       return KMP_LOCK_RELEASED;
1489     }
1490 /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring
1491    threads */
1492
1493 #ifdef DEBUG_QUEUING_LOCKS
1494     TRACE_LOCK(gtid + 1, "rel retry");
1495 #endif
1496
1497   } /* while */
1498   KMP_ASSERT2(0, "should not get here");
1499   return KMP_LOCK_RELEASED;
1500 }
1501
1502 static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1503                                                   kmp_int32 gtid) {
1504   char const *const func = "omp_unset_lock";
1505   KMP_MB(); /* in case another processor initialized lock */
1506   if (lck->lk.initialized != lck) {
1507     KMP_FATAL(LockIsUninitialized, func);
1508   }
1509   if (__kmp_is_queuing_lock_nestable(lck)) {
1510     KMP_FATAL(LockNestableUsedAsSimple, func);
1511   }
1512   if (__kmp_get_queuing_lock_owner(lck) == -1) {
1513     KMP_FATAL(LockUnsettingFree, func);
1514   }
1515   if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1516     KMP_FATAL(LockUnsettingSetByAnother, func);
1517   }
1518   lck->lk.owner_id = 0;
1519   return __kmp_release_queuing_lock(lck, gtid);
1520 }
1521
1522 void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) {
1523   lck->lk.location = NULL;
1524   lck->lk.head_id = 0;
1525   lck->lk.tail_id = 0;
1526   lck->lk.next_ticket = 0;
1527   lck->lk.now_serving = 0;
1528   lck->lk.owner_id = 0; // no thread owns the lock.
1529   lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
1530   lck->lk.initialized = lck;
1531
1532   KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck));
1533 }
1534
1535 void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) {
1536   lck->lk.initialized = NULL;
1537   lck->lk.location = NULL;
1538   lck->lk.head_id = 0;
1539   lck->lk.tail_id = 0;
1540   lck->lk.next_ticket = 0;
1541   lck->lk.now_serving = 0;
1542   lck->lk.owner_id = 0;
1543   lck->lk.depth_locked = -1;
1544 }
1545
1546 static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1547   char const *const func = "omp_destroy_lock";
1548   if (lck->lk.initialized != lck) {
1549     KMP_FATAL(LockIsUninitialized, func);
1550   }
1551   if (__kmp_is_queuing_lock_nestable(lck)) {
1552     KMP_FATAL(LockNestableUsedAsSimple, func);
1553   }
1554   if (__kmp_get_queuing_lock_owner(lck) != -1) {
1555     KMP_FATAL(LockStillOwned, func);
1556   }
1557   __kmp_destroy_queuing_lock(lck);
1558 }
1559
1560 // nested queuing locks
1561
1562 int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1563   KMP_DEBUG_ASSERT(gtid >= 0);
1564
1565   if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1566     lck->lk.depth_locked += 1;
1567     return KMP_LOCK_ACQUIRED_NEXT;
1568   } else {
1569     __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1570     ANNOTATE_QUEUING_ACQUIRED(lck);
1571     KMP_MB();
1572     lck->lk.depth_locked = 1;
1573     KMP_MB();
1574     lck->lk.owner_id = gtid + 1;
1575     return KMP_LOCK_ACQUIRED_FIRST;
1576   }
1577 }
1578
1579 static int
1580 __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1581                                               kmp_int32 gtid) {
1582   char const *const func = "omp_set_nest_lock";
1583   if (lck->lk.initialized != lck) {
1584     KMP_FATAL(LockIsUninitialized, func);
1585   }
1586   if (!__kmp_is_queuing_lock_nestable(lck)) {
1587     KMP_FATAL(LockSimpleUsedAsNestable, func);
1588   }
1589   return __kmp_acquire_nested_queuing_lock(lck, gtid);
1590 }
1591
1592 int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1593   int retval;
1594
1595   KMP_DEBUG_ASSERT(gtid >= 0);
1596
1597   if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1598     retval = ++lck->lk.depth_locked;
1599   } else if (!__kmp_test_queuing_lock(lck, gtid)) {
1600     retval = 0;
1601   } else {
1602     KMP_MB();
1603     retval = lck->lk.depth_locked = 1;
1604     KMP_MB();
1605     lck->lk.owner_id = gtid + 1;
1606   }
1607   return retval;
1608 }
1609
1610 static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1611                                                       kmp_int32 gtid) {
1612   char const *const func = "omp_test_nest_lock";
1613   if (lck->lk.initialized != lck) {
1614     KMP_FATAL(LockIsUninitialized, func);
1615   }
1616   if (!__kmp_is_queuing_lock_nestable(lck)) {
1617     KMP_FATAL(LockSimpleUsedAsNestable, func);
1618   }
1619   return __kmp_test_nested_queuing_lock(lck, gtid);
1620 }
1621
1622 int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1623   KMP_DEBUG_ASSERT(gtid >= 0);
1624
1625   KMP_MB();
1626   if (--(lck->lk.depth_locked) == 0) {
1627     KMP_MB();
1628     lck->lk.owner_id = 0;
1629     __kmp_release_queuing_lock(lck, gtid);
1630     return KMP_LOCK_RELEASED;
1631   }
1632   return KMP_LOCK_STILL_HELD;
1633 }
1634
1635 static int
1636 __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1637                                               kmp_int32 gtid) {
1638   char const *const func = "omp_unset_nest_lock";
1639   KMP_MB(); /* in case another processor initialized lock */
1640   if (lck->lk.initialized != lck) {
1641     KMP_FATAL(LockIsUninitialized, func);
1642   }
1643   if (!__kmp_is_queuing_lock_nestable(lck)) {
1644     KMP_FATAL(LockSimpleUsedAsNestable, func);
1645   }
1646   if (__kmp_get_queuing_lock_owner(lck) == -1) {
1647     KMP_FATAL(LockUnsettingFree, func);
1648   }
1649   if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1650     KMP_FATAL(LockUnsettingSetByAnother, func);
1651   }
1652   return __kmp_release_nested_queuing_lock(lck, gtid);
1653 }
1654
1655 void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1656   __kmp_init_queuing_lock(lck);
1657   lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
1658 }
1659
1660 void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1661   __kmp_destroy_queuing_lock(lck);
1662   lck->lk.depth_locked = 0;
1663 }
1664
1665 static void
1666 __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1667   char const *const func = "omp_destroy_nest_lock";
1668   if (lck->lk.initialized != lck) {
1669     KMP_FATAL(LockIsUninitialized, func);
1670   }
1671   if (!__kmp_is_queuing_lock_nestable(lck)) {
1672     KMP_FATAL(LockSimpleUsedAsNestable, func);
1673   }
1674   if (__kmp_get_queuing_lock_owner(lck) != -1) {
1675     KMP_FATAL(LockStillOwned, func);
1676   }
1677   __kmp_destroy_nested_queuing_lock(lck);
1678 }
1679
1680 // access functions to fields which don't exist for all lock kinds.
1681
1682 static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) {
1683   return lck->lk.location;
1684 }
1685
1686 static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck,
1687                                             const ident_t *loc) {
1688   lck->lk.location = loc;
1689 }
1690
1691 static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) {
1692   return lck->lk.flags;
1693 }
1694
1695 static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck,
1696                                          kmp_lock_flags_t flags) {
1697   lck->lk.flags = flags;
1698 }
1699
1700 #if KMP_USE_ADAPTIVE_LOCKS
1701
1702 /* RTM Adaptive locks */
1703
1704 #if (KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300) ||                          \
1705     (KMP_COMPILER_MSVC && _MSC_VER >= 1700) ||                                 \
1706     (KMP_COMPILER_CLANG && KMP_MSVC_COMPAT)
1707
1708 #include <immintrin.h>
1709 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1710
1711 #else
1712
1713 // Values from the status register after failed speculation.
1714 #define _XBEGIN_STARTED (~0u)
1715 #define _XABORT_EXPLICIT (1 << 0)
1716 #define _XABORT_RETRY (1 << 1)
1717 #define _XABORT_CONFLICT (1 << 2)
1718 #define _XABORT_CAPACITY (1 << 3)
1719 #define _XABORT_DEBUG (1 << 4)
1720 #define _XABORT_NESTED (1 << 5)
1721 #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF))
1722
1723 // Aborts for which it's worth trying again immediately
1724 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1725
1726 #define STRINGIZE_INTERNAL(arg) #arg
1727 #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg)
1728
1729 // Access to RTM instructions
1730 /*A version of XBegin which returns -1 on speculation, and the value of EAX on
1731   an abort. This is the same definition as the compiler intrinsic that will be
1732   supported at some point. */
1733 static __inline int _xbegin() {
1734   int res = -1;
1735
1736 #if KMP_OS_WINDOWS
1737 #if KMP_ARCH_X86_64
1738   _asm {
1739         _emit 0xC7
1740         _emit 0xF8
1741         _emit 2
1742         _emit 0
1743         _emit 0
1744         _emit 0
1745         jmp   L2
1746         mov   res, eax
1747     L2:
1748   }
1749 #else /* IA32 */
1750   _asm {
1751         _emit 0xC7
1752         _emit 0xF8
1753         _emit 2
1754         _emit 0
1755         _emit 0
1756         _emit 0
1757         jmp   L2
1758         mov   res, eax
1759     L2:
1760   }
1761 #endif // KMP_ARCH_X86_64
1762 #else
1763   /* Note that %eax must be noted as killed (clobbered), because the XSR is
1764      returned in %eax(%rax) on abort.  Other register values are restored, so
1765      don't need to be killed.
1766
1767      We must also mark 'res' as an input and an output, since otherwise
1768      'res=-1' may be dropped as being dead, whereas we do need the assignment on
1769      the successful (i.e., non-abort) path. */
1770   __asm__ volatile("1: .byte  0xC7; .byte 0xF8;\n"
1771                    "   .long  1f-1b-6\n"
1772                    "    jmp   2f\n"
1773                    "1:  movl  %%eax,%0\n"
1774                    "2:"
1775                    : "+r"(res)::"memory", "%eax");
1776 #endif // KMP_OS_WINDOWS
1777   return res;
1778 }
1779
1780 /* Transaction end */
1781 static __inline void _xend() {
1782 #if KMP_OS_WINDOWS
1783   __asm {
1784         _emit 0x0f
1785         _emit 0x01
1786         _emit 0xd5
1787   }
1788 #else
1789   __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory");
1790 #endif
1791 }
1792
1793 /* This is a macro, the argument must be a single byte constant which can be
1794    evaluated by the inline assembler, since it is emitted as a byte into the
1795    assembly code. */
1796 // clang-format off
1797 #if KMP_OS_WINDOWS
1798 #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG
1799 #else
1800 #define _xabort(ARG)                                                           \
1801   __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory");
1802 #endif
1803 // clang-format on
1804 #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
1805
1806 // Statistics is collected for testing purpose
1807 #if KMP_DEBUG_ADAPTIVE_LOCKS
1808
1809 // We accumulate speculative lock statistics when the lock is destroyed. We
1810 // keep locks that haven't been destroyed in the liveLocks list so that we can
1811 // grab their statistics too.
1812 static kmp_adaptive_lock_statistics_t destroyedStats;
1813
1814 // To hold the list of live locks.
1815 static kmp_adaptive_lock_info_t liveLocks;
1816
1817 // A lock so we can safely update the list of locks.
1818 static kmp_bootstrap_lock_t chain_lock =
1819     KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock);
1820
1821 // Initialize the list of stats.
1822 void __kmp_init_speculative_stats() {
1823   kmp_adaptive_lock_info_t *lck = &liveLocks;
1824
1825   memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0,
1826          sizeof(lck->stats));
1827   lck->stats.next = lck;
1828   lck->stats.prev = lck;
1829
1830   KMP_ASSERT(lck->stats.next->stats.prev == lck);
1831   KMP_ASSERT(lck->stats.prev->stats.next == lck);
1832
1833   __kmp_init_bootstrap_lock(&chain_lock);
1834 }
1835
1836 // Insert the lock into the circular list
1837 static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) {
1838   __kmp_acquire_bootstrap_lock(&chain_lock);
1839
1840   lck->stats.next = liveLocks.stats.next;
1841   lck->stats.prev = &liveLocks;
1842
1843   liveLocks.stats.next = lck;
1844   lck->stats.next->stats.prev = lck;
1845
1846   KMP_ASSERT(lck->stats.next->stats.prev == lck);
1847   KMP_ASSERT(lck->stats.prev->stats.next == lck);
1848
1849   __kmp_release_bootstrap_lock(&chain_lock);
1850 }
1851
1852 static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) {
1853   KMP_ASSERT(lck->stats.next->stats.prev == lck);
1854   KMP_ASSERT(lck->stats.prev->stats.next == lck);
1855
1856   kmp_adaptive_lock_info_t *n = lck->stats.next;
1857   kmp_adaptive_lock_info_t *p = lck->stats.prev;
1858
1859   n->stats.prev = p;
1860   p->stats.next = n;
1861 }
1862
1863 static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1864   memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0,
1865          sizeof(lck->stats));
1866   __kmp_remember_lock(lck);
1867 }
1868
1869 static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t,
1870                             kmp_adaptive_lock_info_t *lck) {
1871   kmp_adaptive_lock_statistics_t volatile *s = &lck->stats;
1872
1873   t->nonSpeculativeAcquireAttempts += lck->acquire_attempts;
1874   t->successfulSpeculations += s->successfulSpeculations;
1875   t->hardFailedSpeculations += s->hardFailedSpeculations;
1876   t->softFailedSpeculations += s->softFailedSpeculations;
1877   t->nonSpeculativeAcquires += s->nonSpeculativeAcquires;
1878   t->lemmingYields += s->lemmingYields;
1879 }
1880
1881 static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1882   __kmp_acquire_bootstrap_lock(&chain_lock);
1883
1884   __kmp_add_stats(&destroyedStats, lck);
1885   __kmp_forget_lock(lck);
1886
1887   __kmp_release_bootstrap_lock(&chain_lock);
1888 }
1889
1890 static float percent(kmp_uint32 count, kmp_uint32 total) {
1891   return (total == 0) ? 0.0 : (100.0 * count) / total;
1892 }
1893
1894 static FILE *__kmp_open_stats_file() {
1895   if (strcmp(__kmp_speculative_statsfile, "-") == 0)
1896     return stdout;
1897
1898   size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20;
1899   char buffer[buffLen];
1900   KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile,
1901                (kmp_int32)getpid());
1902   FILE *result = fopen(&buffer[0], "w");
1903
1904   // Maybe we should issue a warning here...
1905   return result ? result : stdout;
1906 }
1907
1908 void __kmp_print_speculative_stats() {
1909   kmp_adaptive_lock_statistics_t total = destroyedStats;
1910   kmp_adaptive_lock_info_t *lck;
1911
1912   for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) {
1913     __kmp_add_stats(&total, lck);
1914   }
1915   kmp_adaptive_lock_statistics_t *t = &total;
1916   kmp_uint32 totalSections =
1917       t->nonSpeculativeAcquires + t->successfulSpeculations;
1918   kmp_uint32 totalSpeculations = t->successfulSpeculations +
1919                                  t->hardFailedSpeculations +
1920                                  t->softFailedSpeculations;
1921   if (totalSections <= 0)
1922     return;
1923
1924   FILE *statsFile = __kmp_open_stats_file();
1925
1926   fprintf(statsFile, "Speculative lock statistics (all approximate!)\n");
1927   fprintf(statsFile, " Lock parameters: \n"
1928                      "   max_soft_retries               : %10d\n"
1929                      "   max_badness                    : %10d\n",
1930           __kmp_adaptive_backoff_params.max_soft_retries,
1931           __kmp_adaptive_backoff_params.max_badness);
1932   fprintf(statsFile, " Non-speculative acquire attempts : %10d\n",
1933           t->nonSpeculativeAcquireAttempts);
1934   fprintf(statsFile, " Total critical sections          : %10d\n",
1935           totalSections);
1936   fprintf(statsFile, " Successful speculations          : %10d (%5.1f%%)\n",
1937           t->successfulSpeculations,
1938           percent(t->successfulSpeculations, totalSections));
1939   fprintf(statsFile, " Non-speculative acquires         : %10d (%5.1f%%)\n",
1940           t->nonSpeculativeAcquires,
1941           percent(t->nonSpeculativeAcquires, totalSections));
1942   fprintf(statsFile, " Lemming yields                   : %10d\n\n",
1943           t->lemmingYields);
1944
1945   fprintf(statsFile, " Speculative acquire attempts     : %10d\n",
1946           totalSpeculations);
1947   fprintf(statsFile, " Successes                        : %10d (%5.1f%%)\n",
1948           t->successfulSpeculations,
1949           percent(t->successfulSpeculations, totalSpeculations));
1950   fprintf(statsFile, " Soft failures                    : %10d (%5.1f%%)\n",
1951           t->softFailedSpeculations,
1952           percent(t->softFailedSpeculations, totalSpeculations));
1953   fprintf(statsFile, " Hard failures                    : %10d (%5.1f%%)\n",
1954           t->hardFailedSpeculations,
1955           percent(t->hardFailedSpeculations, totalSpeculations));
1956
1957   if (statsFile != stdout)
1958     fclose(statsFile);
1959 }
1960
1961 #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++)
1962 #else
1963 #define KMP_INC_STAT(lck, stat)
1964
1965 #endif // KMP_DEBUG_ADAPTIVE_LOCKS
1966
1967 static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) {
1968   // It is enough to check that the head_id is zero.
1969   // We don't also need to check the tail.
1970   bool res = lck->lk.head_id == 0;
1971
1972 // We need a fence here, since we must ensure that no memory operations
1973 // from later in this thread float above that read.
1974 #if KMP_COMPILER_ICC
1975   _mm_mfence();
1976 #else
1977   __sync_synchronize();
1978 #endif
1979
1980   return res;
1981 }
1982
1983 // Functions for manipulating the badness
1984 static __inline void
1985 __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) {
1986   // Reset the badness to zero so we eagerly try to speculate again
1987   lck->lk.adaptive.badness = 0;
1988   KMP_INC_STAT(lck, successfulSpeculations);
1989 }
1990
1991 // Create a bit mask with one more set bit.
1992 static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) {
1993   kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1;
1994   if (newBadness > lck->lk.adaptive.max_badness) {
1995     return;
1996   } else {
1997     lck->lk.adaptive.badness = newBadness;
1998   }
1999 }
2000
2001 // Check whether speculation should be attempted.
2002 static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck,
2003                                            kmp_int32 gtid) {
2004   kmp_uint32 badness = lck->lk.adaptive.badness;
2005   kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts;
2006   int res = (attempts & badness) == 0;
2007   return res;
2008 }
2009
2010 // Attempt to acquire only the speculative lock.
2011 // Does not back off to the non-speculative lock.
2012 static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck,
2013                                          kmp_int32 gtid) {
2014   int retries = lck->lk.adaptive.max_soft_retries;
2015
2016   // We don't explicitly count the start of speculation, rather we record the
2017   // results (success, hard fail, soft fail). The sum of all of those is the
2018   // total number of times we started speculation since all speculations must
2019   // end one of those ways.
2020   do {
2021     kmp_uint32 status = _xbegin();
2022     // Switch this in to disable actual speculation but exercise at least some
2023     // of the rest of the code. Useful for debugging...
2024     // kmp_uint32 status = _XABORT_NESTED;
2025
2026     if (status == _XBEGIN_STARTED) {
2027       /* We have successfully started speculation. Check that no-one acquired
2028          the lock for real between when we last looked and now. This also gets
2029          the lock cache line into our read-set, which we need so that we'll
2030          abort if anyone later claims it for real. */
2031       if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2032         // Lock is now visibly acquired, so someone beat us to it. Abort the
2033         // transaction so we'll restart from _xbegin with the failure status.
2034         _xabort(0x01);
2035         KMP_ASSERT2(0, "should not get here");
2036       }
2037       return 1; // Lock has been acquired (speculatively)
2038     } else {
2039       // We have aborted, update the statistics
2040       if (status & SOFT_ABORT_MASK) {
2041         KMP_INC_STAT(lck, softFailedSpeculations);
2042         // and loop round to retry.
2043       } else {
2044         KMP_INC_STAT(lck, hardFailedSpeculations);
2045         // Give up if we had a hard failure.
2046         break;
2047       }
2048     }
2049   } while (retries--); // Loop while we have retries, and didn't fail hard.
2050
2051   // Either we had a hard failure or we didn't succeed softly after
2052   // the full set of attempts, so back off the badness.
2053   __kmp_step_badness(lck);
2054   return 0;
2055 }
2056
2057 // Attempt to acquire the speculative lock, or back off to the non-speculative
2058 // one if the speculative lock cannot be acquired.
2059 // We can succeed speculatively, non-speculatively, or fail.
2060 static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) {
2061   // First try to acquire the lock speculatively
2062   if (__kmp_should_speculate(lck, gtid) &&
2063       __kmp_test_adaptive_lock_only(lck, gtid))
2064     return 1;
2065
2066   // Speculative acquisition failed, so try to acquire it non-speculatively.
2067   // Count the non-speculative acquire attempt
2068   lck->lk.adaptive.acquire_attempts++;
2069
2070   // Use base, non-speculative lock.
2071   if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) {
2072     KMP_INC_STAT(lck, nonSpeculativeAcquires);
2073     return 1; // Lock is acquired (non-speculatively)
2074   } else {
2075     return 0; // Failed to acquire the lock, it's already visibly locked.
2076   }
2077 }
2078
2079 static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2080                                                 kmp_int32 gtid) {
2081   char const *const func = "omp_test_lock";
2082   if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2083     KMP_FATAL(LockIsUninitialized, func);
2084   }
2085
2086   int retval = __kmp_test_adaptive_lock(lck, gtid);
2087
2088   if (retval) {
2089     lck->lk.qlk.owner_id = gtid + 1;
2090   }
2091   return retval;
2092 }
2093
2094 // Block until we can acquire a speculative, adaptive lock. We check whether we
2095 // should be trying to speculate. If we should be, we check the real lock to see
2096 // if it is free, and, if not, pause without attempting to acquire it until it
2097 // is. Then we try the speculative acquire. This means that although we suffer
2098 // from lemmings a little (because all we can't acquire the lock speculatively
2099 // until the queue of threads waiting has cleared), we don't get into a state
2100 // where we can never acquire the lock speculatively (because we force the queue
2101 // to clear by preventing new arrivals from entering the queue). This does mean
2102 // that when we're trying to break lemmings, the lock is no longer fair. However
2103 // OpenMP makes no guarantee that its locks are fair, so this isn't a real
2104 // problem.
2105 static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck,
2106                                         kmp_int32 gtid) {
2107   if (__kmp_should_speculate(lck, gtid)) {
2108     if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2109       if (__kmp_test_adaptive_lock_only(lck, gtid))
2110         return;
2111       // We tried speculation and failed, so give up.
2112     } else {
2113       // We can't try speculation until the lock is free, so we pause here
2114       // (without suspending on the queueing lock, to allow it to drain, then
2115       // try again. All other threads will also see the same result for
2116       // shouldSpeculate, so will be doing the same if they try to claim the
2117       // lock from now on.
2118       while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2119         KMP_INC_STAT(lck, lemmingYields);
2120         KMP_YIELD(TRUE);
2121       }
2122
2123       if (__kmp_test_adaptive_lock_only(lck, gtid))
2124         return;
2125     }
2126   }
2127
2128   // Speculative acquisition failed, so acquire it non-speculatively.
2129   // Count the non-speculative acquire attempt
2130   lck->lk.adaptive.acquire_attempts++;
2131
2132   __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid);
2133   // We have acquired the base lock, so count that.
2134   KMP_INC_STAT(lck, nonSpeculativeAcquires);
2135   ANNOTATE_QUEUING_ACQUIRED(lck);
2136 }
2137
2138 static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2139                                                     kmp_int32 gtid) {
2140   char const *const func = "omp_set_lock";
2141   if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2142     KMP_FATAL(LockIsUninitialized, func);
2143   }
2144   if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) {
2145     KMP_FATAL(LockIsAlreadyOwned, func);
2146   }
2147
2148   __kmp_acquire_adaptive_lock(lck, gtid);
2149
2150   lck->lk.qlk.owner_id = gtid + 1;
2151 }
2152
2153 static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck,
2154                                        kmp_int32 gtid) {
2155   if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(
2156           lck))) { // If the lock doesn't look claimed we must be speculating.
2157     // (Or the user's code is buggy and they're releasing without locking;
2158     // if we had XTEST we'd be able to check that case...)
2159     _xend(); // Exit speculation
2160     __kmp_update_badness_after_success(lck);
2161   } else { // Since the lock *is* visibly locked we're not speculating,
2162     // so should use the underlying lock's release scheme.
2163     __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid);
2164   }
2165   return KMP_LOCK_RELEASED;
2166 }
2167
2168 static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2169                                                    kmp_int32 gtid) {
2170   char const *const func = "omp_unset_lock";
2171   KMP_MB(); /* in case another processor initialized lock */
2172   if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2173     KMP_FATAL(LockIsUninitialized, func);
2174   }
2175   if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) {
2176     KMP_FATAL(LockUnsettingFree, func);
2177   }
2178   if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) {
2179     KMP_FATAL(LockUnsettingSetByAnother, func);
2180   }
2181   lck->lk.qlk.owner_id = 0;
2182   __kmp_release_adaptive_lock(lck, gtid);
2183   return KMP_LOCK_RELEASED;
2184 }
2185
2186 static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) {
2187   __kmp_init_queuing_lock(GET_QLK_PTR(lck));
2188   lck->lk.adaptive.badness = 0;
2189   lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0;
2190   lck->lk.adaptive.max_soft_retries =
2191       __kmp_adaptive_backoff_params.max_soft_retries;
2192   lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness;
2193 #if KMP_DEBUG_ADAPTIVE_LOCKS
2194   __kmp_zero_speculative_stats(&lck->lk.adaptive);
2195 #endif
2196   KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck));
2197 }
2198
2199 static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) {
2200 #if KMP_DEBUG_ADAPTIVE_LOCKS
2201   __kmp_accumulate_speculative_stats(&lck->lk.adaptive);
2202 #endif
2203   __kmp_destroy_queuing_lock(GET_QLK_PTR(lck));
2204   // Nothing needed for the speculative part.
2205 }
2206
2207 static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
2208   char const *const func = "omp_destroy_lock";
2209   if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2210     KMP_FATAL(LockIsUninitialized, func);
2211   }
2212   if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) {
2213     KMP_FATAL(LockStillOwned, func);
2214   }
2215   __kmp_destroy_adaptive_lock(lck);
2216 }
2217
2218 #endif // KMP_USE_ADAPTIVE_LOCKS
2219
2220 /* ------------------------------------------------------------------------ */
2221 /* DRDPA ticket locks                                                */
2222 /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */
2223
2224 static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) {
2225   return lck->lk.owner_id - 1;
2226 }
2227
2228 static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) {
2229   return lck->lk.depth_locked != -1;
2230 }
2231
2232 __forceinline static int
2233 __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2234   kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket);
2235   kmp_uint64 mask = lck->lk.mask; // atomic load
2236   std::atomic<kmp_uint64> *polls = lck->lk.polls;
2237
2238 #ifdef USE_LOCK_PROFILE
2239   if (polls[ticket & mask] != ticket)
2240     __kmp_printf("LOCK CONTENTION: %p\n", lck);
2241 /* else __kmp_printf( "." );*/
2242 #endif /* USE_LOCK_PROFILE */
2243
2244   // Now spin-wait, but reload the polls pointer and mask, in case the
2245   // polling area has been reconfigured.  Unless it is reconfigured, the
2246   // reloads stay in L1 cache and are cheap.
2247   //
2248   // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!!
2249   // The current implementation of KMP_WAIT doesn't allow for mask
2250   // and poll to be re-read every spin iteration.
2251   kmp_uint32 spins;
2252   KMP_FSYNC_PREPARE(lck);
2253   KMP_INIT_YIELD(spins);
2254   while (polls[ticket & mask] < ticket) { // atomic load
2255     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
2256     // Re-read the mask and the poll pointer from the lock structure.
2257     //
2258     // Make certain that "mask" is read before "polls" !!!
2259     //
2260     // If another thread picks reconfigures the polling area and updates their
2261     // values, and we get the new value of mask and the old polls pointer, we
2262     // could access memory beyond the end of the old polling area.
2263     mask = lck->lk.mask; // atomic load
2264     polls = lck->lk.polls; // atomic load
2265   }
2266
2267   // Critical section starts here
2268   KMP_FSYNC_ACQUIRED(lck);
2269   KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n",
2270                   ticket, lck));
2271   lck->lk.now_serving = ticket; // non-volatile store
2272
2273   // Deallocate a garbage polling area if we know that we are the last
2274   // thread that could possibly access it.
2275   //
2276   // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup
2277   // ticket.
2278   if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) {
2279     __kmp_free(lck->lk.old_polls);
2280     lck->lk.old_polls = NULL;
2281     lck->lk.cleanup_ticket = 0;
2282   }
2283
2284   // Check to see if we should reconfigure the polling area.
2285   // If there is still a garbage polling area to be deallocated from a
2286   // previous reconfiguration, let a later thread reconfigure it.
2287   if (lck->lk.old_polls == NULL) {
2288     bool reconfigure = false;
2289     std::atomic<kmp_uint64> *old_polls = polls;
2290     kmp_uint32 num_polls = TCR_4(lck->lk.num_polls);
2291
2292     if (TCR_4(__kmp_nth) >
2293         (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
2294       // We are in oversubscription mode.  Contract the polling area
2295       // down to a single location, if that hasn't been done already.
2296       if (num_polls > 1) {
2297         reconfigure = true;
2298         num_polls = TCR_4(lck->lk.num_polls);
2299         mask = 0;
2300         num_polls = 1;
2301         polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2302                                                           sizeof(*polls));
2303         polls[0] = ticket;
2304       }
2305     } else {
2306       // We are in under/fully subscribed mode.  Check the number of
2307       // threads waiting on the lock.  The size of the polling area
2308       // should be at least the number of threads waiting.
2309       kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1;
2310       if (num_waiting > num_polls) {
2311         kmp_uint32 old_num_polls = num_polls;
2312         reconfigure = true;
2313         do {
2314           mask = (mask << 1) | 1;
2315           num_polls *= 2;
2316         } while (num_polls <= num_waiting);
2317
2318         // Allocate the new polling area, and copy the relevant portion
2319         // of the old polling area to the new area.  __kmp_allocate()
2320         // zeroes the memory it allocates, and most of the old area is
2321         // just zero padding, so we only copy the release counters.
2322         polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2323                                                           sizeof(*polls));
2324         kmp_uint32 i;
2325         for (i = 0; i < old_num_polls; i++) {
2326           polls[i].store(old_polls[i]);
2327         }
2328       }
2329     }
2330
2331     if (reconfigure) {
2332       // Now write the updated fields back to the lock structure.
2333       //
2334       // Make certain that "polls" is written before "mask" !!!
2335       //
2336       // If another thread picks up the new value of mask and the old polls
2337       // pointer , it could access memory beyond the end of the old polling
2338       // area.
2339       //
2340       // On x86, we need memory fences.
2341       KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring "
2342                       "lock %p to %d polls\n",
2343                       ticket, lck, num_polls));
2344
2345       lck->lk.old_polls = old_polls;
2346       lck->lk.polls = polls; // atomic store
2347
2348       KMP_MB();
2349
2350       lck->lk.num_polls = num_polls;
2351       lck->lk.mask = mask; // atomic store
2352
2353       KMP_MB();
2354
2355       // Only after the new polling area and mask have been flushed
2356       // to main memory can we update the cleanup ticket field.
2357       //
2358       // volatile load / non-volatile store
2359       lck->lk.cleanup_ticket = lck->lk.next_ticket;
2360     }
2361   }
2362   return KMP_LOCK_ACQUIRED_FIRST;
2363 }
2364
2365 int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2366   int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2367   ANNOTATE_DRDPA_ACQUIRED(lck);
2368   return retval;
2369 }
2370
2371 static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2372                                                 kmp_int32 gtid) {
2373   char const *const func = "omp_set_lock";
2374   if (lck->lk.initialized != lck) {
2375     KMP_FATAL(LockIsUninitialized, func);
2376   }
2377   if (__kmp_is_drdpa_lock_nestable(lck)) {
2378     KMP_FATAL(LockNestableUsedAsSimple, func);
2379   }
2380   if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) {
2381     KMP_FATAL(LockIsAlreadyOwned, func);
2382   }
2383
2384   __kmp_acquire_drdpa_lock(lck, gtid);
2385
2386   lck->lk.owner_id = gtid + 1;
2387   return KMP_LOCK_ACQUIRED_FIRST;
2388 }
2389
2390 int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2391   // First get a ticket, then read the polls pointer and the mask.
2392   // The polls pointer must be read before the mask!!! (See above)
2393   kmp_uint64 ticket = lck->lk.next_ticket; // atomic load
2394   std::atomic<kmp_uint64> *polls = lck->lk.polls;
2395   kmp_uint64 mask = lck->lk.mask; // atomic load
2396   if (polls[ticket & mask] == ticket) {
2397     kmp_uint64 next_ticket = ticket + 1;
2398     if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket,
2399                                        next_ticket)) {
2400       KMP_FSYNC_ACQUIRED(lck);
2401       KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n",
2402                       ticket, lck));
2403       lck->lk.now_serving = ticket; // non-volatile store
2404
2405       // Since no threads are waiting, there is no possibility that we would
2406       // want to reconfigure the polling area.  We might have the cleanup ticket
2407       // value (which says that it is now safe to deallocate old_polls), but
2408       // we'll let a later thread which calls __kmp_acquire_lock do that - this
2409       // routine isn't supposed to block, and we would risk blocks if we called
2410       // __kmp_free() to do the deallocation.
2411       return TRUE;
2412     }
2413   }
2414   return FALSE;
2415 }
2416
2417 static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2418                                              kmp_int32 gtid) {
2419   char const *const func = "omp_test_lock";
2420   if (lck->lk.initialized != lck) {
2421     KMP_FATAL(LockIsUninitialized, func);
2422   }
2423   if (__kmp_is_drdpa_lock_nestable(lck)) {
2424     KMP_FATAL(LockNestableUsedAsSimple, func);
2425   }
2426
2427   int retval = __kmp_test_drdpa_lock(lck, gtid);
2428
2429   if (retval) {
2430     lck->lk.owner_id = gtid + 1;
2431   }
2432   return retval;
2433 }
2434
2435 int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2436   // Read the ticket value from the lock data struct, then the polls pointer and
2437   // the mask.  The polls pointer must be read before the mask!!! (See above)
2438   kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load
2439   std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load
2440   kmp_uint64 mask = lck->lk.mask; // atomic load
2441   KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n",
2442                   ticket - 1, lck));
2443   KMP_FSYNC_RELEASING(lck);
2444   ANNOTATE_DRDPA_RELEASED(lck);
2445   polls[ticket & mask] = ticket; // atomic store
2446   return KMP_LOCK_RELEASED;
2447 }
2448
2449 static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2450                                                 kmp_int32 gtid) {
2451   char const *const func = "omp_unset_lock";
2452   KMP_MB(); /* in case another processor initialized lock */
2453   if (lck->lk.initialized != lck) {
2454     KMP_FATAL(LockIsUninitialized, func);
2455   }
2456   if (__kmp_is_drdpa_lock_nestable(lck)) {
2457     KMP_FATAL(LockNestableUsedAsSimple, func);
2458   }
2459   if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2460     KMP_FATAL(LockUnsettingFree, func);
2461   }
2462   if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) &&
2463       (__kmp_get_drdpa_lock_owner(lck) != gtid)) {
2464     KMP_FATAL(LockUnsettingSetByAnother, func);
2465   }
2466   lck->lk.owner_id = 0;
2467   return __kmp_release_drdpa_lock(lck, gtid);
2468 }
2469
2470 void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) {
2471   lck->lk.location = NULL;
2472   lck->lk.mask = 0;
2473   lck->lk.num_polls = 1;
2474   lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate(
2475       lck->lk.num_polls * sizeof(*(lck->lk.polls)));
2476   lck->lk.cleanup_ticket = 0;
2477   lck->lk.old_polls = NULL;
2478   lck->lk.next_ticket = 0;
2479   lck->lk.now_serving = 0;
2480   lck->lk.owner_id = 0; // no thread owns the lock.
2481   lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
2482   lck->lk.initialized = lck;
2483
2484   KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck));
2485 }
2486
2487 void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) {
2488   lck->lk.initialized = NULL;
2489   lck->lk.location = NULL;
2490   if (lck->lk.polls.load() != NULL) {
2491     __kmp_free(lck->lk.polls.load());
2492     lck->lk.polls = NULL;
2493   }
2494   if (lck->lk.old_polls != NULL) {
2495     __kmp_free(lck->lk.old_polls);
2496     lck->lk.old_polls = NULL;
2497   }
2498   lck->lk.mask = 0;
2499   lck->lk.num_polls = 0;
2500   lck->lk.cleanup_ticket = 0;
2501   lck->lk.next_ticket = 0;
2502   lck->lk.now_serving = 0;
2503   lck->lk.owner_id = 0;
2504   lck->lk.depth_locked = -1;
2505 }
2506
2507 static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2508   char const *const func = "omp_destroy_lock";
2509   if (lck->lk.initialized != lck) {
2510     KMP_FATAL(LockIsUninitialized, func);
2511   }
2512   if (__kmp_is_drdpa_lock_nestable(lck)) {
2513     KMP_FATAL(LockNestableUsedAsSimple, func);
2514   }
2515   if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2516     KMP_FATAL(LockStillOwned, func);
2517   }
2518   __kmp_destroy_drdpa_lock(lck);
2519 }
2520
2521 // nested drdpa ticket locks
2522
2523 int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2524   KMP_DEBUG_ASSERT(gtid >= 0);
2525
2526   if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2527     lck->lk.depth_locked += 1;
2528     return KMP_LOCK_ACQUIRED_NEXT;
2529   } else {
2530     __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2531     ANNOTATE_DRDPA_ACQUIRED(lck);
2532     KMP_MB();
2533     lck->lk.depth_locked = 1;
2534     KMP_MB();
2535     lck->lk.owner_id = gtid + 1;
2536     return KMP_LOCK_ACQUIRED_FIRST;
2537   }
2538 }
2539
2540 static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2541                                                         kmp_int32 gtid) {
2542   char const *const func = "omp_set_nest_lock";
2543   if (lck->lk.initialized != lck) {
2544     KMP_FATAL(LockIsUninitialized, func);
2545   }
2546   if (!__kmp_is_drdpa_lock_nestable(lck)) {
2547     KMP_FATAL(LockSimpleUsedAsNestable, func);
2548   }
2549   __kmp_acquire_nested_drdpa_lock(lck, gtid);
2550 }
2551
2552 int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2553   int retval;
2554
2555   KMP_DEBUG_ASSERT(gtid >= 0);
2556
2557   if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2558     retval = ++lck->lk.depth_locked;
2559   } else if (!__kmp_test_drdpa_lock(lck, gtid)) {
2560     retval = 0;
2561   } else {
2562     KMP_MB();
2563     retval = lck->lk.depth_locked = 1;
2564     KMP_MB();
2565     lck->lk.owner_id = gtid + 1;
2566   }
2567   return retval;
2568 }
2569
2570 static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2571                                                     kmp_int32 gtid) {
2572   char const *const func = "omp_test_nest_lock";
2573   if (lck->lk.initialized != lck) {
2574     KMP_FATAL(LockIsUninitialized, func);
2575   }
2576   if (!__kmp_is_drdpa_lock_nestable(lck)) {
2577     KMP_FATAL(LockSimpleUsedAsNestable, func);
2578   }
2579   return __kmp_test_nested_drdpa_lock(lck, gtid);
2580 }
2581
2582 int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2583   KMP_DEBUG_ASSERT(gtid >= 0);
2584
2585   KMP_MB();
2586   if (--(lck->lk.depth_locked) == 0) {
2587     KMP_MB();
2588     lck->lk.owner_id = 0;
2589     __kmp_release_drdpa_lock(lck, gtid);
2590     return KMP_LOCK_RELEASED;
2591   }
2592   return KMP_LOCK_STILL_HELD;
2593 }
2594
2595 static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2596                                                        kmp_int32 gtid) {
2597   char const *const func = "omp_unset_nest_lock";
2598   KMP_MB(); /* in case another processor initialized lock */
2599   if (lck->lk.initialized != lck) {
2600     KMP_FATAL(LockIsUninitialized, func);
2601   }
2602   if (!__kmp_is_drdpa_lock_nestable(lck)) {
2603     KMP_FATAL(LockSimpleUsedAsNestable, func);
2604   }
2605   if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2606     KMP_FATAL(LockUnsettingFree, func);
2607   }
2608   if (__kmp_get_drdpa_lock_owner(lck) != gtid) {
2609     KMP_FATAL(LockUnsettingSetByAnother, func);
2610   }
2611   return __kmp_release_nested_drdpa_lock(lck, gtid);
2612 }
2613
2614 void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2615   __kmp_init_drdpa_lock(lck);
2616   lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
2617 }
2618
2619 void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2620   __kmp_destroy_drdpa_lock(lck);
2621   lck->lk.depth_locked = 0;
2622 }
2623
2624 static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2625   char const *const func = "omp_destroy_nest_lock";
2626   if (lck->lk.initialized != lck) {
2627     KMP_FATAL(LockIsUninitialized, func);
2628   }
2629   if (!__kmp_is_drdpa_lock_nestable(lck)) {
2630     KMP_FATAL(LockSimpleUsedAsNestable, func);
2631   }
2632   if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2633     KMP_FATAL(LockStillOwned, func);
2634   }
2635   __kmp_destroy_nested_drdpa_lock(lck);
2636 }
2637
2638 // access functions to fields which don't exist for all lock kinds.
2639
2640 static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) {
2641   return lck->lk.location;
2642 }
2643
2644 static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck,
2645                                           const ident_t *loc) {
2646   lck->lk.location = loc;
2647 }
2648
2649 static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) {
2650   return lck->lk.flags;
2651 }
2652
2653 static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck,
2654                                        kmp_lock_flags_t flags) {
2655   lck->lk.flags = flags;
2656 }
2657
2658 // Time stamp counter
2659 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2660 #define __kmp_tsc() __kmp_hardware_timestamp()
2661 // Runtime's default backoff parameters
2662 kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100};
2663 #else
2664 // Use nanoseconds for other platforms
2665 extern kmp_uint64 __kmp_now_nsec();
2666 kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100};
2667 #define __kmp_tsc() __kmp_now_nsec()
2668 #endif
2669
2670 // A useful predicate for dealing with timestamps that may wrap.
2671 // Is a before b? Since the timestamps may wrap, this is asking whether it's
2672 // shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
2673 // Times where going clockwise is less distance than going anti-clockwise
2674 // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
2675 // then a > b (true) does not mean a reached b; whereas signed(a) = -2,
2676 // signed(b) = 0 captures the actual difference
2677 static inline bool before(kmp_uint64 a, kmp_uint64 b) {
2678   return ((kmp_int64)b - (kmp_int64)a) > 0;
2679 }
2680
2681 // Truncated binary exponential backoff function
2682 void __kmp_spin_backoff(kmp_backoff_t *boff) {
2683   // We could flatten this loop, but making it a nested loop gives better result
2684   kmp_uint32 i;
2685   for (i = boff->step; i > 0; i--) {
2686     kmp_uint64 goal = __kmp_tsc() + boff->min_tick;
2687     do {
2688       KMP_CPU_PAUSE();
2689     } while (before(__kmp_tsc(), goal));
2690   }
2691   boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1);
2692 }
2693
2694 #if KMP_USE_DYNAMIC_LOCK
2695
2696 // Direct lock initializers. It simply writes a tag to the low 8 bits of the
2697 // lock word.
2698 static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck,
2699                                    kmp_dyna_lockseq_t seq) {
2700   TCW_4(*lck, KMP_GET_D_TAG(seq));
2701   KA_TRACE(
2702       20,
2703       ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq));
2704 }
2705
2706 #if KMP_USE_TSX
2707
2708 // HLE lock functions - imported from the testbed runtime.
2709 #define HLE_ACQUIRE ".byte 0xf2;"
2710 #define HLE_RELEASE ".byte 0xf3;"
2711
2712 static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) {
2713   __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory");
2714   return v;
2715 }
2716
2717 static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); }
2718
2719 static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) {
2720   TCW_4(*lck, 0);
2721 }
2722
2723 static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2724   // Use gtid for KMP_LOCK_BUSY if necessary
2725   if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) {
2726     int delay = 1;
2727     do {
2728       while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) {
2729         for (int i = delay; i != 0; --i)
2730           KMP_CPU_PAUSE();
2731         delay = ((delay << 1) | 1) & 7;
2732       }
2733     } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle));
2734   }
2735 }
2736
2737 static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2738                                                kmp_int32 gtid) {
2739   __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks
2740 }
2741
2742 static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2743   __asm__ volatile(HLE_RELEASE "movl %1,%0"
2744                    : "=m"(*lck)
2745                    : "r"(KMP_LOCK_FREE(hle))
2746                    : "memory");
2747   return KMP_LOCK_RELEASED;
2748 }
2749
2750 static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2751                                               kmp_int32 gtid) {
2752   return __kmp_release_hle_lock(lck, gtid); // TODO: add checks
2753 }
2754
2755 static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2756   return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle);
2757 }
2758
2759 static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2760                                            kmp_int32 gtid) {
2761   return __kmp_test_hle_lock(lck, gtid); // TODO: add checks
2762 }
2763
2764 static void __kmp_init_rtm_lock(kmp_queuing_lock_t *lck) {
2765   __kmp_init_queuing_lock(lck);
2766 }
2767
2768 static void __kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck) {
2769   __kmp_destroy_queuing_lock(lck);
2770 }
2771
2772 static void __kmp_destroy_rtm_lock_with_checks(kmp_queuing_lock_t *lck) {
2773   __kmp_destroy_queuing_lock_with_checks(lck);
2774 }
2775
2776 static void __kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2777   unsigned retries = 3, status;
2778   do {
2779     status = _xbegin();
2780     if (status == _XBEGIN_STARTED) {
2781       if (__kmp_is_unlocked_queuing_lock(lck))
2782         return;
2783       _xabort(0xff);
2784     }
2785     if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
2786       // Wait until lock becomes free
2787       while (!__kmp_is_unlocked_queuing_lock(lck)) {
2788         KMP_YIELD(TRUE);
2789       }
2790     } else if (!(status & _XABORT_RETRY))
2791       break;
2792   } while (retries--);
2793
2794   // Fall-back non-speculative lock (xchg)
2795   __kmp_acquire_queuing_lock(lck, gtid);
2796 }
2797
2798 static void __kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2799                                                kmp_int32 gtid) {
2800   __kmp_acquire_rtm_lock(lck, gtid);
2801 }
2802
2803 static int __kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2804   if (__kmp_is_unlocked_queuing_lock(lck)) {
2805     // Releasing from speculation
2806     _xend();
2807   } else {
2808     // Releasing from a real lock
2809     __kmp_release_queuing_lock(lck, gtid);
2810   }
2811   return KMP_LOCK_RELEASED;
2812 }
2813
2814 static int __kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2815                                               kmp_int32 gtid) {
2816   return __kmp_release_rtm_lock(lck, gtid);
2817 }
2818
2819 static int __kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2820   unsigned retries = 3, status;
2821   do {
2822     status = _xbegin();
2823     if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) {
2824       return 1;
2825     }
2826     if (!(status & _XABORT_RETRY))
2827       break;
2828   } while (retries--);
2829
2830   return (__kmp_is_unlocked_queuing_lock(lck)) ? 1 : 0;
2831 }
2832
2833 static int __kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2834                                            kmp_int32 gtid) {
2835   return __kmp_test_rtm_lock(lck, gtid);
2836 }
2837
2838 #endif // KMP_USE_TSX
2839
2840 // Entry functions for indirect locks (first element of direct lock jump tables)
2841 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l,
2842                                      kmp_dyna_lockseq_t tag);
2843 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock);
2844 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2845 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2846 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2847 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2848                                                kmp_int32);
2849 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2850                                                  kmp_int32);
2851 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2852                                                 kmp_int32);
2853
2854 // Lock function definitions for the union parameter type
2855 #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a)
2856
2857 #define expand1(lk, op)                                                        \
2858   static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) {               \
2859     __kmp_##op##_##lk##_##lock(&lock->lk);                                     \
2860   }
2861 #define expand2(lk, op)                                                        \
2862   static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock,                  \
2863                                         kmp_int32 gtid) {                      \
2864     return __kmp_##op##_##lk##_##lock(&lock->lk, gtid);                        \
2865   }
2866 #define expand3(lk, op)                                                        \
2867   static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock,              \
2868                                             kmp_lock_flags_t flags) {          \
2869     __kmp_set_##lk##_lock_flags(&lock->lk, flags);                             \
2870   }
2871 #define expand4(lk, op)                                                        \
2872   static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock,           \
2873                                                const ident_t *loc) {           \
2874     __kmp_set_##lk##_lock_location(&lock->lk, loc);                            \
2875   }
2876
2877 KMP_FOREACH_LOCK_KIND(expand1, init)
2878 KMP_FOREACH_LOCK_KIND(expand1, init_nested)
2879 KMP_FOREACH_LOCK_KIND(expand1, destroy)
2880 KMP_FOREACH_LOCK_KIND(expand1, destroy_nested)
2881 KMP_FOREACH_LOCK_KIND(expand2, acquire)
2882 KMP_FOREACH_LOCK_KIND(expand2, acquire_nested)
2883 KMP_FOREACH_LOCK_KIND(expand2, release)
2884 KMP_FOREACH_LOCK_KIND(expand2, release_nested)
2885 KMP_FOREACH_LOCK_KIND(expand2, test)
2886 KMP_FOREACH_LOCK_KIND(expand2, test_nested)
2887 KMP_FOREACH_LOCK_KIND(expand3, )
2888 KMP_FOREACH_LOCK_KIND(expand4, )
2889
2890 #undef expand1
2891 #undef expand2
2892 #undef expand3
2893 #undef expand4
2894
2895 // Jump tables for the indirect lock functions
2896 // Only fill in the odd entries, that avoids the need to shift out the low bit
2897
2898 // init functions
2899 #define expand(l, op) 0, __kmp_init_direct_lock,
2900 void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = {
2901     __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)};
2902 #undef expand
2903
2904 // destroy functions
2905 #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock,
2906 static void (*direct_destroy[])(kmp_dyna_lock_t *) = {
2907     __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
2908 #undef expand
2909 #define expand(l, op)                                                          \
2910   0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks,
2911 static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = {
2912     __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
2913 #undef expand
2914
2915 // set/acquire functions
2916 #define expand(l, op)                                                          \
2917   0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
2918 static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = {
2919     __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)};
2920 #undef expand
2921 #define expand(l, op)                                                          \
2922   0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
2923 static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2924     __kmp_set_indirect_lock_with_checks, 0,
2925     KMP_FOREACH_D_LOCK(expand, acquire)};
2926 #undef expand
2927
2928 // unset/release and test functions
2929 #define expand(l, op)                                                          \
2930   0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
2931 static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = {
2932     __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)};
2933 static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = {
2934     __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)};
2935 #undef expand
2936 #define expand(l, op)                                                          \
2937   0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
2938 static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2939     __kmp_unset_indirect_lock_with_checks, 0,
2940     KMP_FOREACH_D_LOCK(expand, release)};
2941 static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2942     __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)};
2943 #undef expand
2944
2945 // Exposes only one set of jump tables (*lock or *lock_with_checks).
2946 void (*(*__kmp_direct_destroy))(kmp_dyna_lock_t *) = 0;
2947 int (*(*__kmp_direct_set))(kmp_dyna_lock_t *, kmp_int32) = 0;
2948 int (*(*__kmp_direct_unset))(kmp_dyna_lock_t *, kmp_int32) = 0;
2949 int (*(*__kmp_direct_test))(kmp_dyna_lock_t *, kmp_int32) = 0;
2950
2951 // Jump tables for the indirect lock functions
2952 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
2953 void (*__kmp_indirect_init[])(kmp_user_lock_p) = {
2954     KMP_FOREACH_I_LOCK(expand, init)};
2955 #undef expand
2956
2957 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
2958 static void (*indirect_destroy[])(kmp_user_lock_p) = {
2959     KMP_FOREACH_I_LOCK(expand, destroy)};
2960 #undef expand
2961 #define expand(l, op)                                                          \
2962   (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks,
2963 static void (*indirect_destroy_check[])(kmp_user_lock_p) = {
2964     KMP_FOREACH_I_LOCK(expand, destroy)};
2965 #undef expand
2966
2967 // set/acquire functions
2968 #define expand(l, op)                                                          \
2969   (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
2970 static int (*indirect_set[])(kmp_user_lock_p,
2971                              kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)};
2972 #undef expand
2973 #define expand(l, op)                                                          \
2974   (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
2975 static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = {
2976     KMP_FOREACH_I_LOCK(expand, acquire)};
2977 #undef expand
2978
2979 // unset/release and test functions
2980 #define expand(l, op)                                                          \
2981   (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
2982 static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = {
2983     KMP_FOREACH_I_LOCK(expand, release)};
2984 static int (*indirect_test[])(kmp_user_lock_p,
2985                               kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)};
2986 #undef expand
2987 #define expand(l, op)                                                          \
2988   (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
2989 static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = {
2990     KMP_FOREACH_I_LOCK(expand, release)};
2991 static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = {
2992     KMP_FOREACH_I_LOCK(expand, test)};
2993 #undef expand
2994
2995 // Exposes only one jump tables (*lock or *lock_with_checks).
2996 void (*(*__kmp_indirect_destroy))(kmp_user_lock_p) = 0;
2997 int (*(*__kmp_indirect_set))(kmp_user_lock_p, kmp_int32) = 0;
2998 int (*(*__kmp_indirect_unset))(kmp_user_lock_p, kmp_int32) = 0;
2999 int (*(*__kmp_indirect_test))(kmp_user_lock_p, kmp_int32) = 0;
3000
3001 // Lock index table.
3002 kmp_indirect_lock_table_t __kmp_i_lock_table;
3003
3004 // Size of indirect locks.
3005 static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0};
3006
3007 // Jump tables for lock accessor/modifier.
3008 void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3009                                                      const ident_t *) = {0};
3010 void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3011                                                   kmp_lock_flags_t) = {0};
3012 const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
3013     kmp_user_lock_p) = {0};
3014 kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
3015     kmp_user_lock_p) = {0};
3016
3017 // Use different lock pools for different lock types.
3018 static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0};
3019
3020 // User lock allocator for dynamically dispatched indirect locks. Every entry of
3021 // the indirect lock table holds the address and type of the allocated indrect
3022 // lock (kmp_indirect_lock_t), and the size of the table doubles when it is
3023 // full. A destroyed indirect lock object is returned to the reusable pool of
3024 // locks, unique to each lock type.
3025 kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock,
3026                                                   kmp_int32 gtid,
3027                                                   kmp_indirect_locktag_t tag) {
3028   kmp_indirect_lock_t *lck;
3029   kmp_lock_index_t idx;
3030
3031   __kmp_acquire_lock(&__kmp_global_lock, gtid);
3032
3033   if (__kmp_indirect_lock_pool[tag] != NULL) {
3034     // Reuse the allocated and destroyed lock object
3035     lck = __kmp_indirect_lock_pool[tag];
3036     if (OMP_LOCK_T_SIZE < sizeof(void *))
3037       idx = lck->lock->pool.index;
3038     __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next;
3039     KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n",
3040                   lck));
3041   } else {
3042     idx = __kmp_i_lock_table.next;
3043     // Check capacity and double the size if it is full
3044     if (idx == __kmp_i_lock_table.size) {
3045       // Double up the space for block pointers
3046       int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK;
3047       kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate(
3048           2 * row * sizeof(kmp_indirect_lock_t *));
3049       KMP_MEMCPY(new_table, __kmp_i_lock_table.table,
3050                  row * sizeof(kmp_indirect_lock_t *));
3051       kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table;
3052       __kmp_i_lock_table.table = new_table;
3053       __kmp_free(old_table);
3054       // Allocate new objects in the new blocks
3055       for (int i = row; i < 2 * row; ++i)
3056         *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate(
3057             KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3058       __kmp_i_lock_table.size = 2 * idx;
3059     }
3060     __kmp_i_lock_table.next++;
3061     lck = KMP_GET_I_LOCK(idx);
3062     // Allocate a new base lock object
3063     lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]);
3064     KA_TRACE(20,
3065              ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck));
3066   }
3067
3068   __kmp_release_lock(&__kmp_global_lock, gtid);
3069
3070   lck->type = tag;
3071
3072   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3073     *((kmp_lock_index_t *)user_lock) = idx
3074                                        << 1; // indirect lock word must be even
3075   } else {
3076     *((kmp_indirect_lock_t **)user_lock) = lck;
3077   }
3078
3079   return lck;
3080 }
3081
3082 // User lock lookup for dynamically dispatched locks.
3083 static __forceinline kmp_indirect_lock_t *
3084 __kmp_lookup_indirect_lock(void **user_lock, const char *func) {
3085   if (__kmp_env_consistency_check) {
3086     kmp_indirect_lock_t *lck = NULL;
3087     if (user_lock == NULL) {
3088       KMP_FATAL(LockIsUninitialized, func);
3089     }
3090     if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3091       kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock);
3092       if (idx >= __kmp_i_lock_table.size) {
3093         KMP_FATAL(LockIsUninitialized, func);
3094       }
3095       lck = KMP_GET_I_LOCK(idx);
3096     } else {
3097       lck = *((kmp_indirect_lock_t **)user_lock);
3098     }
3099     if (lck == NULL) {
3100       KMP_FATAL(LockIsUninitialized, func);
3101     }
3102     return lck;
3103   } else {
3104     if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3105       return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock));
3106     } else {
3107       return *((kmp_indirect_lock_t **)user_lock);
3108     }
3109   }
3110 }
3111
3112 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock,
3113                                      kmp_dyna_lockseq_t seq) {
3114 #if KMP_USE_ADAPTIVE_LOCKS
3115   if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) {
3116     KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive");
3117     seq = lockseq_queuing;
3118   }
3119 #endif
3120 #if KMP_USE_TSX
3121   if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) {
3122     seq = lockseq_queuing;
3123   }
3124 #endif
3125   kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq);
3126   kmp_indirect_lock_t *l =
3127       __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag);
3128   KMP_I_LOCK_FUNC(l, init)(l->lock);
3129   KA_TRACE(
3130       20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n",
3131            seq));
3132 }
3133
3134 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) {
3135   kmp_uint32 gtid = __kmp_entry_gtid();
3136   kmp_indirect_lock_t *l =
3137       __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock");
3138   KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3139   kmp_indirect_locktag_t tag = l->type;
3140
3141   __kmp_acquire_lock(&__kmp_global_lock, gtid);
3142
3143   // Use the base lock's space to keep the pool chain.
3144   l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag];
3145   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3146     l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock);
3147   }
3148   __kmp_indirect_lock_pool[tag] = l;
3149
3150   __kmp_release_lock(&__kmp_global_lock, gtid);
3151 }
3152
3153 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3154   kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3155   return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3156 }
3157
3158 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3159   kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3160   return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3161 }
3162
3163 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3164   kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3165   return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3166 }
3167
3168 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3169                                                kmp_int32 gtid) {
3170   kmp_indirect_lock_t *l =
3171       __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock");
3172   return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3173 }
3174
3175 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3176                                                  kmp_int32 gtid) {
3177   kmp_indirect_lock_t *l =
3178       __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock");
3179   return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3180 }
3181
3182 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3183                                                 kmp_int32 gtid) {
3184   kmp_indirect_lock_t *l =
3185       __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock");
3186   return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3187 }
3188
3189 kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing;
3190
3191 // This is used only in kmp_error.cpp when consistency checking is on.
3192 kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) {
3193   switch (seq) {
3194   case lockseq_tas:
3195   case lockseq_nested_tas:
3196     return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck);
3197 #if KMP_USE_FUTEX
3198   case lockseq_futex:
3199   case lockseq_nested_futex:
3200     return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck);
3201 #endif
3202   case lockseq_ticket:
3203   case lockseq_nested_ticket:
3204     return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck);
3205   case lockseq_queuing:
3206   case lockseq_nested_queuing:
3207 #if KMP_USE_ADAPTIVE_LOCKS
3208   case lockseq_adaptive:
3209 #endif
3210     return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck);
3211   case lockseq_drdpa:
3212   case lockseq_nested_drdpa:
3213     return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck);
3214   default:
3215     return 0;
3216   }
3217 }
3218
3219 // Initializes data for dynamic user locks.
3220 void __kmp_init_dynamic_user_locks() {
3221   // Initialize jump table for the lock functions
3222   if (__kmp_env_consistency_check) {
3223     __kmp_direct_set = direct_set_check;
3224     __kmp_direct_unset = direct_unset_check;
3225     __kmp_direct_test = direct_test_check;
3226     __kmp_direct_destroy = direct_destroy_check;
3227     __kmp_indirect_set = indirect_set_check;
3228     __kmp_indirect_unset = indirect_unset_check;
3229     __kmp_indirect_test = indirect_test_check;
3230     __kmp_indirect_destroy = indirect_destroy_check;
3231   } else {
3232     __kmp_direct_set = direct_set;
3233     __kmp_direct_unset = direct_unset;
3234     __kmp_direct_test = direct_test;
3235     __kmp_direct_destroy = direct_destroy;
3236     __kmp_indirect_set = indirect_set;
3237     __kmp_indirect_unset = indirect_unset;
3238     __kmp_indirect_test = indirect_test;
3239     __kmp_indirect_destroy = indirect_destroy;
3240   }
3241   // If the user locks have already been initialized, then return. Allow the
3242   // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate
3243   // new lock tables if they have already been allocated.
3244   if (__kmp_init_user_locks)
3245     return;
3246
3247   // Initialize lock index table
3248   __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK;
3249   __kmp_i_lock_table.table =
3250       (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *));
3251   *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate(
3252       KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3253   __kmp_i_lock_table.next = 0;
3254
3255   // Indirect lock size
3256   __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t);
3257   __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t);
3258 #if KMP_USE_ADAPTIVE_LOCKS
3259   __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t);
3260 #endif
3261   __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t);
3262 #if KMP_USE_TSX
3263   __kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t);
3264 #endif
3265   __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t);
3266 #if KMP_USE_FUTEX
3267   __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t);
3268 #endif
3269   __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t);
3270   __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t);
3271   __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t);
3272
3273 // Initialize lock accessor/modifier
3274 #define fill_jumps(table, expand, sep)                                         \
3275   {                                                                            \
3276     table[locktag##sep##ticket] = expand(ticket);                              \
3277     table[locktag##sep##queuing] = expand(queuing);                            \
3278     table[locktag##sep##drdpa] = expand(drdpa);                                \
3279   }
3280
3281 #if KMP_USE_ADAPTIVE_LOCKS
3282 #define fill_table(table, expand)                                              \
3283   {                                                                            \
3284     fill_jumps(table, expand, _);                                              \
3285     table[locktag_adaptive] = expand(queuing);                                 \
3286     fill_jumps(table, expand, _nested_);                                       \
3287   }
3288 #else
3289 #define fill_table(table, expand)                                              \
3290   {                                                                            \
3291     fill_jumps(table, expand, _);                                              \
3292     fill_jumps(table, expand, _nested_);                                       \
3293   }
3294 #endif // KMP_USE_ADAPTIVE_LOCKS
3295
3296 #define expand(l)                                                              \
3297   (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location
3298   fill_table(__kmp_indirect_set_location, expand);
3299 #undef expand
3300 #define expand(l)                                                              \
3301   (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags
3302   fill_table(__kmp_indirect_set_flags, expand);
3303 #undef expand
3304 #define expand(l)                                                              \
3305   (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location
3306   fill_table(__kmp_indirect_get_location, expand);
3307 #undef expand
3308 #define expand(l)                                                              \
3309   (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags
3310   fill_table(__kmp_indirect_get_flags, expand);
3311 #undef expand
3312
3313   __kmp_init_user_locks = TRUE;
3314 }
3315
3316 // Clean up the lock table.
3317 void __kmp_cleanup_indirect_user_locks() {
3318   kmp_lock_index_t i;
3319   int k;
3320
3321   // Clean up locks in the pools first (they were already destroyed before going
3322   // into the pools).
3323   for (k = 0; k < KMP_NUM_I_LOCKS; ++k) {
3324     kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k];
3325     while (l != NULL) {
3326       kmp_indirect_lock_t *ll = l;
3327       l = (kmp_indirect_lock_t *)l->lock->pool.next;
3328       KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n",
3329                     ll));
3330       __kmp_free(ll->lock);
3331       ll->lock = NULL;
3332     }
3333     __kmp_indirect_lock_pool[k] = NULL;
3334   }
3335   // Clean up the remaining undestroyed locks.
3336   for (i = 0; i < __kmp_i_lock_table.next; i++) {
3337     kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i);
3338     if (l->lock != NULL) {
3339       // Locks not destroyed explicitly need to be destroyed here.
3340       KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3341       KA_TRACE(
3342           20,
3343           ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n",
3344            l));
3345       __kmp_free(l->lock);
3346     }
3347   }
3348   // Free the table
3349   for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++)
3350     __kmp_free(__kmp_i_lock_table.table[i]);
3351   __kmp_free(__kmp_i_lock_table.table);
3352
3353   __kmp_init_user_locks = FALSE;
3354 }
3355
3356 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3357 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3358
3359 #else // KMP_USE_DYNAMIC_LOCK
3360
3361 static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3362   __kmp_init_tas_lock(lck);
3363 }
3364
3365 static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3366   __kmp_init_nested_tas_lock(lck);
3367 }
3368
3369 #if KMP_USE_FUTEX
3370 static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3371   __kmp_init_futex_lock(lck);
3372 }
3373
3374 static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3375   __kmp_init_nested_futex_lock(lck);
3376 }
3377 #endif
3378
3379 static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) {
3380   return lck == lck->lk.self;
3381 }
3382
3383 static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3384   __kmp_init_ticket_lock(lck);
3385 }
3386
3387 static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3388   __kmp_init_nested_ticket_lock(lck);
3389 }
3390
3391 static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) {
3392   return lck == lck->lk.initialized;
3393 }
3394
3395 static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3396   __kmp_init_queuing_lock(lck);
3397 }
3398
3399 static void
3400 __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3401   __kmp_init_nested_queuing_lock(lck);
3402 }
3403
3404 #if KMP_USE_ADAPTIVE_LOCKS
3405 static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
3406   __kmp_init_adaptive_lock(lck);
3407 }
3408 #endif
3409
3410 static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) {
3411   return lck == lck->lk.initialized;
3412 }
3413
3414 static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3415   __kmp_init_drdpa_lock(lck);
3416 }
3417
3418 static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3419   __kmp_init_nested_drdpa_lock(lck);
3420 }
3421
3422 /* user locks
3423  * They are implemented as a table of function pointers which are set to the
3424  * lock functions of the appropriate kind, once that has been determined. */
3425
3426 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3427
3428 size_t __kmp_base_user_lock_size = 0;
3429 size_t __kmp_user_lock_size = 0;
3430
3431 kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL;
3432 int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
3433                                             kmp_int32 gtid) = NULL;
3434
3435 int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
3436                                          kmp_int32 gtid) = NULL;
3437 int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
3438                                             kmp_int32 gtid) = NULL;
3439 void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3440 void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL;
3441 void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3442 int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3443                                                    kmp_int32 gtid) = NULL;
3444
3445 int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3446                                                 kmp_int32 gtid) = NULL;
3447 int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3448                                                    kmp_int32 gtid) = NULL;
3449 void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3450 void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3451
3452 int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL;
3453 const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL;
3454 void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
3455                                       const ident_t *loc) = NULL;
3456 kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL;
3457 void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
3458                                    kmp_lock_flags_t flags) = NULL;
3459
3460 void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) {
3461   switch (user_lock_kind) {
3462   case lk_default:
3463   default:
3464     KMP_ASSERT(0);
3465
3466   case lk_tas: {
3467     __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t);
3468     __kmp_user_lock_size = sizeof(kmp_tas_lock_t);
3469
3470     __kmp_get_user_lock_owner_ =
3471         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner);
3472
3473     if (__kmp_env_consistency_check) {
3474       KMP_BIND_USER_LOCK_WITH_CHECKS(tas);
3475       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas);
3476     } else {
3477       KMP_BIND_USER_LOCK(tas);
3478       KMP_BIND_NESTED_USER_LOCK(tas);
3479     }
3480
3481     __kmp_destroy_user_lock_ =
3482         (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock);
3483
3484     __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3485
3486     __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3487
3488     __kmp_set_user_lock_location_ =
3489         (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3490
3491     __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3492
3493     __kmp_set_user_lock_flags_ =
3494         (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3495   } break;
3496
3497 #if KMP_USE_FUTEX
3498
3499   case lk_futex: {
3500     __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t);
3501     __kmp_user_lock_size = sizeof(kmp_futex_lock_t);
3502
3503     __kmp_get_user_lock_owner_ =
3504         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner);
3505
3506     if (__kmp_env_consistency_check) {
3507       KMP_BIND_USER_LOCK_WITH_CHECKS(futex);
3508       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex);
3509     } else {
3510       KMP_BIND_USER_LOCK(futex);
3511       KMP_BIND_NESTED_USER_LOCK(futex);
3512     }
3513
3514     __kmp_destroy_user_lock_ =
3515         (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock);
3516
3517     __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3518
3519     __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3520
3521     __kmp_set_user_lock_location_ =
3522         (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3523
3524     __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3525
3526     __kmp_set_user_lock_flags_ =
3527         (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3528   } break;
3529
3530 #endif // KMP_USE_FUTEX
3531
3532   case lk_ticket: {
3533     __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t);
3534     __kmp_user_lock_size = sizeof(kmp_ticket_lock_t);
3535
3536     __kmp_get_user_lock_owner_ =
3537         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner);
3538
3539     if (__kmp_env_consistency_check) {
3540       KMP_BIND_USER_LOCK_WITH_CHECKS(ticket);
3541       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket);
3542     } else {
3543       KMP_BIND_USER_LOCK(ticket);
3544       KMP_BIND_NESTED_USER_LOCK(ticket);
3545     }
3546
3547     __kmp_destroy_user_lock_ =
3548         (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock);
3549
3550     __kmp_is_user_lock_initialized_ =
3551         (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized);
3552
3553     __kmp_get_user_lock_location_ =
3554         (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location);
3555
3556     __kmp_set_user_lock_location_ = (void (*)(
3557         kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location);
3558
3559     __kmp_get_user_lock_flags_ =
3560         (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags);
3561
3562     __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3563         &__kmp_set_ticket_lock_flags);
3564   } break;
3565
3566   case lk_queuing: {
3567     __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t);
3568     __kmp_user_lock_size = sizeof(kmp_queuing_lock_t);
3569
3570     __kmp_get_user_lock_owner_ =
3571         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3572
3573     if (__kmp_env_consistency_check) {
3574       KMP_BIND_USER_LOCK_WITH_CHECKS(queuing);
3575       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing);
3576     } else {
3577       KMP_BIND_USER_LOCK(queuing);
3578       KMP_BIND_NESTED_USER_LOCK(queuing);
3579     }
3580
3581     __kmp_destroy_user_lock_ =
3582         (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock);
3583
3584     __kmp_is_user_lock_initialized_ =
3585         (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3586
3587     __kmp_get_user_lock_location_ =
3588         (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3589
3590     __kmp_set_user_lock_location_ = (void (*)(
3591         kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3592
3593     __kmp_get_user_lock_flags_ =
3594         (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3595
3596     __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3597         &__kmp_set_queuing_lock_flags);
3598   } break;
3599
3600 #if KMP_USE_ADAPTIVE_LOCKS
3601   case lk_adaptive: {
3602     __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t);
3603     __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t);
3604
3605     __kmp_get_user_lock_owner_ =
3606         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3607
3608     if (__kmp_env_consistency_check) {
3609       KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive);
3610     } else {
3611       KMP_BIND_USER_LOCK(adaptive);
3612     }
3613
3614     __kmp_destroy_user_lock_ =
3615         (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock);
3616
3617     __kmp_is_user_lock_initialized_ =
3618         (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3619
3620     __kmp_get_user_lock_location_ =
3621         (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3622
3623     __kmp_set_user_lock_location_ = (void (*)(
3624         kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3625
3626     __kmp_get_user_lock_flags_ =
3627         (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3628
3629     __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3630         &__kmp_set_queuing_lock_flags);
3631
3632   } break;
3633 #endif // KMP_USE_ADAPTIVE_LOCKS
3634
3635   case lk_drdpa: {
3636     __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t);
3637     __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t);
3638
3639     __kmp_get_user_lock_owner_ =
3640         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner);
3641
3642     if (__kmp_env_consistency_check) {
3643       KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa);
3644       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa);
3645     } else {
3646       KMP_BIND_USER_LOCK(drdpa);
3647       KMP_BIND_NESTED_USER_LOCK(drdpa);
3648     }
3649
3650     __kmp_destroy_user_lock_ =
3651         (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock);
3652
3653     __kmp_is_user_lock_initialized_ =
3654         (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized);
3655
3656     __kmp_get_user_lock_location_ =
3657         (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location);
3658
3659     __kmp_set_user_lock_location_ = (void (*)(
3660         kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location);
3661
3662     __kmp_get_user_lock_flags_ =
3663         (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags);
3664
3665     __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3666         &__kmp_set_drdpa_lock_flags);
3667   } break;
3668   }
3669 }
3670
3671 // ----------------------------------------------------------------------------
3672 // User lock table & lock allocation
3673
3674 kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL};
3675 kmp_user_lock_p __kmp_lock_pool = NULL;
3676
3677 // Lock block-allocation support.
3678 kmp_block_of_locks *__kmp_lock_blocks = NULL;
3679 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3680
3681 static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) {
3682   // Assume that kmp_global_lock is held upon entry/exit.
3683   kmp_lock_index_t index;
3684   if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) {
3685     kmp_lock_index_t size;
3686     kmp_user_lock_p *table;
3687     // Reallocate lock table.
3688     if (__kmp_user_lock_table.allocated == 0) {
3689       size = 1024;
3690     } else {
3691       size = __kmp_user_lock_table.allocated * 2;
3692     }
3693     table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size);
3694     KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1,
3695                sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1));
3696     table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table;
3697     // We cannot free the previous table now, since it may be in use by other
3698     // threads. So save the pointer to the previous table in in the first
3699     // element of the new table. All the tables will be organized into a list,
3700     // and could be freed when library shutting down.
3701     __kmp_user_lock_table.table = table;
3702     __kmp_user_lock_table.allocated = size;
3703   }
3704   KMP_DEBUG_ASSERT(__kmp_user_lock_table.used <
3705                    __kmp_user_lock_table.allocated);
3706   index = __kmp_user_lock_table.used;
3707   __kmp_user_lock_table.table[index] = lck;
3708   ++__kmp_user_lock_table.used;
3709   return index;
3710 }
3711
3712 static kmp_user_lock_p __kmp_lock_block_allocate() {
3713   // Assume that kmp_global_lock is held upon entry/exit.
3714   static int last_index = 0;
3715   if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) {
3716     // Restart the index.
3717     last_index = 0;
3718     // Need to allocate a new block.
3719     KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3720     size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block;
3721     char *buffer =
3722         (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks));
3723     // Set up the new block.
3724     kmp_block_of_locks *new_block =
3725         (kmp_block_of_locks *)(&buffer[space_for_locks]);
3726     new_block->next_block = __kmp_lock_blocks;
3727     new_block->locks = (void *)buffer;
3728     // Publish the new block.
3729     KMP_MB();
3730     __kmp_lock_blocks = new_block;
3731   }
3732   kmp_user_lock_p ret = (kmp_user_lock_p)(&(
3733       ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size]));
3734   last_index++;
3735   return ret;
3736 }
3737
3738 // Get memory for a lock. It may be freshly allocated memory or reused memory
3739 // from lock pool.
3740 kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid,
3741                                          kmp_lock_flags_t flags) {
3742   kmp_user_lock_p lck;
3743   kmp_lock_index_t index;
3744   KMP_DEBUG_ASSERT(user_lock);
3745
3746   __kmp_acquire_lock(&__kmp_global_lock, gtid);
3747
3748   if (__kmp_lock_pool == NULL) {
3749     // Lock pool is empty. Allocate new memory.
3750
3751     // ANNOTATION: Found no good way to express the syncronisation
3752     // between allocation and usage, so ignore the allocation
3753     ANNOTATE_IGNORE_WRITES_BEGIN();
3754     if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point.
3755       lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size);
3756     } else {
3757       lck = __kmp_lock_block_allocate();
3758     }
3759     ANNOTATE_IGNORE_WRITES_END();
3760
3761     // Insert lock in the table so that it can be freed in __kmp_cleanup,
3762     // and debugger has info on all allocated locks.
3763     index = __kmp_lock_table_insert(lck);
3764   } else {
3765     // Pick up lock from pool.
3766     lck = __kmp_lock_pool;
3767     index = __kmp_lock_pool->pool.index;
3768     __kmp_lock_pool = __kmp_lock_pool->pool.next;
3769   }
3770
3771   // We could potentially differentiate between nested and regular locks
3772   // here, and do the lock table lookup for regular locks only.
3773   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3774     *((kmp_lock_index_t *)user_lock) = index;
3775   } else {
3776     *((kmp_user_lock_p *)user_lock) = lck;
3777   }
3778
3779   // mark the lock if it is critical section lock.
3780   __kmp_set_user_lock_flags(lck, flags);
3781
3782   __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper
3783
3784   return lck;
3785 }
3786
3787 // Put lock's memory to pool for reusing.
3788 void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
3789                           kmp_user_lock_p lck) {
3790   KMP_DEBUG_ASSERT(user_lock != NULL);
3791   KMP_DEBUG_ASSERT(lck != NULL);
3792
3793   __kmp_acquire_lock(&__kmp_global_lock, gtid);
3794
3795   lck->pool.next = __kmp_lock_pool;
3796   __kmp_lock_pool = lck;
3797   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3798     kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3799     KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used);
3800     lck->pool.index = index;
3801   }
3802
3803   __kmp_release_lock(&__kmp_global_lock, gtid);
3804 }
3805
3806 kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) {
3807   kmp_user_lock_p lck = NULL;
3808
3809   if (__kmp_env_consistency_check) {
3810     if (user_lock == NULL) {
3811       KMP_FATAL(LockIsUninitialized, func);
3812     }
3813   }
3814
3815   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3816     kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3817     if (__kmp_env_consistency_check) {
3818       if (!(0 < index && index < __kmp_user_lock_table.used)) {
3819         KMP_FATAL(LockIsUninitialized, func);
3820       }
3821     }
3822     KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used);
3823     KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3824     lck = __kmp_user_lock_table.table[index];
3825   } else {
3826     lck = *((kmp_user_lock_p *)user_lock);
3827   }
3828
3829   if (__kmp_env_consistency_check) {
3830     if (lck == NULL) {
3831       KMP_FATAL(LockIsUninitialized, func);
3832     }
3833   }
3834
3835   return lck;
3836 }
3837
3838 void __kmp_cleanup_user_locks(void) {
3839   // Reset lock pool. Don't worry about lock in the pool--we will free them when
3840   // iterating through lock table (it includes all the locks, dead or alive).
3841   __kmp_lock_pool = NULL;
3842
3843 #define IS_CRITICAL(lck)                                                       \
3844   ((__kmp_get_user_lock_flags_ != NULL) &&                                     \
3845    ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section))
3846
3847   // Loop through lock table, free all locks.
3848   // Do not free item [0], it is reserved for lock tables list.
3849   //
3850   // FIXME - we are iterating through a list of (pointers to) objects of type
3851   // union kmp_user_lock, but we have no way of knowing whether the base type is
3852   // currently "pool" or whatever the global user lock type is.
3853   //
3854   // We are relying on the fact that for all of the user lock types
3855   // (except "tas"), the first field in the lock struct is the "initialized"
3856   // field, which is set to the address of the lock object itself when
3857   // the lock is initialized.  When the union is of type "pool", the
3858   // first field is a pointer to the next object in the free list, which
3859   // will not be the same address as the object itself.
3860   //
3861   // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail
3862   // for "pool" objects on the free list.  This must happen as the "location"
3863   // field of real user locks overlaps the "index" field of "pool" objects.
3864   //
3865   // It would be better to run through the free list, and remove all "pool"
3866   // objects from the lock table before executing this loop.  However,
3867   // "pool" objects do not always have their index field set (only on
3868   // lin_32e), and I don't want to search the lock table for the address
3869   // of every "pool" object on the free list.
3870   while (__kmp_user_lock_table.used > 1) {
3871     const ident *loc;
3872
3873     // reduce __kmp_user_lock_table.used before freeing the lock,
3874     // so that state of locks is consistent
3875     kmp_user_lock_p lck =
3876         __kmp_user_lock_table.table[--__kmp_user_lock_table.used];
3877
3878     if ((__kmp_is_user_lock_initialized_ != NULL) &&
3879         (*__kmp_is_user_lock_initialized_)(lck)) {
3880       // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND
3881       // it is NOT a critical section (user is not responsible for destroying
3882       // criticals) AND we know source location to report.
3883       if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) &&
3884           ((loc = __kmp_get_user_lock_location(lck)) != NULL) &&
3885           (loc->psource != NULL)) {
3886         kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 0);
3887         KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line);
3888         __kmp_str_loc_free(&str_loc);
3889       }
3890
3891 #ifdef KMP_DEBUG
3892       if (IS_CRITICAL(lck)) {
3893         KA_TRACE(
3894             20,
3895             ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n",
3896              lck, *(void **)lck));
3897       } else {
3898         KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck,
3899                       *(void **)lck));
3900       }
3901 #endif // KMP_DEBUG
3902
3903       // Cleanup internal lock dynamic resources (for drdpa locks particularly).
3904       __kmp_destroy_user_lock(lck);
3905     }
3906
3907     // Free the lock if block allocation of locks is not used.
3908     if (__kmp_lock_blocks == NULL) {
3909       __kmp_free(lck);
3910     }
3911   }
3912
3913 #undef IS_CRITICAL
3914
3915   // delete lock table(s).
3916   kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table;
3917   __kmp_user_lock_table.table = NULL;
3918   __kmp_user_lock_table.allocated = 0;
3919
3920   while (table_ptr != NULL) {
3921     // In the first element we saved the pointer to the previous
3922     // (smaller) lock table.
3923     kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]);
3924     __kmp_free(table_ptr);
3925     table_ptr = next;
3926   }
3927
3928   // Free buffers allocated for blocks of locks.
3929   kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks;
3930   __kmp_lock_blocks = NULL;
3931
3932   while (block_ptr != NULL) {
3933     kmp_block_of_locks_t *next = block_ptr->next_block;
3934     __kmp_free(block_ptr->locks);
3935     // *block_ptr itself was allocated at the end of the locks vector.
3936     block_ptr = next;
3937   }
3938
3939   TCW_4(__kmp_init_user_locks, FALSE);
3940 }
3941
3942 #endif // KMP_USE_DYNAMIC_LOCK