]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/openmp/runtime/src/z_Linux_util.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / openmp / runtime / src / z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <sys/time.h>
31 #include <sys/times.h>
32 #include <unistd.h>
33
34 #if KMP_OS_LINUX && !KMP_OS_CNK
35 #include <sys/sysinfo.h>
36 #if KMP_USE_FUTEX
37 // We should really include <futex.h>, but that causes compatibility problems on
38 // different Linux* OS distributions that either require that you include (or
39 // break when you try to include) <pci/types.h>. Since all we need is the two
40 // macros below (which are part of the kernel ABI, so can't change) we just
41 // define the constants here and don't include <futex.h>
42 #ifndef FUTEX_WAIT
43 #define FUTEX_WAIT 0
44 #endif
45 #ifndef FUTEX_WAKE
46 #define FUTEX_WAKE 1
47 #endif
48 #endif
49 #elif KMP_OS_DARWIN
50 #include <mach/mach.h>
51 #include <sys/sysctl.h>
52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53 #include <pthread_np.h>
54 #elif KMP_OS_NETBSD
55 #include <sys/types.h>
56 #include <sys/sysctl.h>
57 #endif
58
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62
63 #include "tsan_annotations.h"
64
65 struct kmp_sys_timer {
66   struct timespec start;
67 };
68
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79
80 static int __kmp_init_runtime = FALSE;
81
82 static int __kmp_fork_count = 0;
83
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96                cond->c_cond.__c_waiting);
97 }
98 #endif
99
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101
102 /* Affinity support */
103
104 void __kmp_affinity_bind_thread(int which) {
105   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106               "Illegal set affinity operation when not capable");
107
108   kmp_affin_mask_t *mask;
109   KMP_CPU_ALLOC_ON_STACK(mask);
110   KMP_CPU_ZERO(mask);
111   KMP_CPU_SET(which, mask);
112   __kmp_set_system_affinity(mask, TRUE);
113   KMP_CPU_FREE_FROM_STACK(mask);
114 }
115
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123
124   int gCode;
125   int sCode;
126   unsigned char *buf;
127   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128
129   // If Linux* OS:
130   // If the syscall fails or returns a suggestion for the size,
131   // then we don't have to search for an appropriate size.
132   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134                 "initial getaffinity call returned %d errno = %d\n",
135                 gCode, errno));
136
137   // if ((gCode < 0) && (errno == ENOSYS))
138   if (gCode < 0) {
139     // System call not supported
140     if (__kmp_affinity_verbose ||
141         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142          (__kmp_affinity_type != affinity_default) &&
143          (__kmp_affinity_type != affinity_disabled))) {
144       int error = errno;
145       kmp_msg_t err_code = KMP_ERR(error);
146       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147                 err_code, __kmp_msg_null);
148       if (__kmp_generate_warnings == kmp_warnings_off) {
149         __kmp_str_free(&err_code.str);
150       }
151     }
152     KMP_AFFINITY_DISABLE();
153     KMP_INTERNAL_FREE(buf);
154     return;
155   }
156   if (gCode > 0) { // Linux* OS only
157     // The optimal situation: the OS returns the size of the buffer it expects.
158     //
159     // A verification of correct behavior is that Isetaffinity on a NULL
160     // buffer with the same size fails with errno set to EFAULT.
161     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163                   "setaffinity for mask size %d returned %d errno = %d\n",
164                   gCode, sCode, errno));
165     if (sCode < 0) {
166       if (errno == ENOSYS) {
167         if (__kmp_affinity_verbose ||
168             (__kmp_affinity_warnings &&
169              (__kmp_affinity_type != affinity_none) &&
170              (__kmp_affinity_type != affinity_default) &&
171              (__kmp_affinity_type != affinity_disabled))) {
172           int error = errno;
173           kmp_msg_t err_code = KMP_ERR(error);
174           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175                     err_code, __kmp_msg_null);
176           if (__kmp_generate_warnings == kmp_warnings_off) {
177             __kmp_str_free(&err_code.str);
178           }
179         }
180         KMP_AFFINITY_DISABLE();
181         KMP_INTERNAL_FREE(buf);
182       }
183       if (errno == EFAULT) {
184         KMP_AFFINITY_ENABLE(gCode);
185         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186                       "affinity supported (mask size %d)\n",
187                       (int)__kmp_affin_mask_size));
188         KMP_INTERNAL_FREE(buf);
189         return;
190       }
191     }
192   }
193
194   // Call the getaffinity system call repeatedly with increasing set sizes
195   // until we succeed, or reach an upper bound on the search.
196   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197                 "searching for proper set size\n"));
198   int size;
199   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202                   "getaffinity for mask size %d returned %d errno = %d\n",
203                   size, gCode, errno));
204
205     if (gCode < 0) {
206       if (errno == ENOSYS) {
207         // We shouldn't get here
208         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209                       "inconsistent OS call behavior: errno == ENOSYS for mask "
210                       "size %d\n",
211                       size));
212         if (__kmp_affinity_verbose ||
213             (__kmp_affinity_warnings &&
214              (__kmp_affinity_type != affinity_none) &&
215              (__kmp_affinity_type != affinity_default) &&
216              (__kmp_affinity_type != affinity_disabled))) {
217           int error = errno;
218           kmp_msg_t err_code = KMP_ERR(error);
219           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220                     err_code, __kmp_msg_null);
221           if (__kmp_generate_warnings == kmp_warnings_off) {
222             __kmp_str_free(&err_code.str);
223           }
224         }
225         KMP_AFFINITY_DISABLE();
226         KMP_INTERNAL_FREE(buf);
227         return;
228       }
229       continue;
230     }
231
232     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234                   "setaffinity for mask size %d returned %d errno = %d\n",
235                   gCode, sCode, errno));
236     if (sCode < 0) {
237       if (errno == ENOSYS) { // Linux* OS only
238         // We shouldn't get here
239         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240                       "inconsistent OS call behavior: errno == ENOSYS for mask "
241                       "size %d\n",
242                       size));
243         if (__kmp_affinity_verbose ||
244             (__kmp_affinity_warnings &&
245              (__kmp_affinity_type != affinity_none) &&
246              (__kmp_affinity_type != affinity_default) &&
247              (__kmp_affinity_type != affinity_disabled))) {
248           int error = errno;
249           kmp_msg_t err_code = KMP_ERR(error);
250           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251                     err_code, __kmp_msg_null);
252           if (__kmp_generate_warnings == kmp_warnings_off) {
253             __kmp_str_free(&err_code.str);
254           }
255         }
256         KMP_AFFINITY_DISABLE();
257         KMP_INTERNAL_FREE(buf);
258         return;
259       }
260       if (errno == EFAULT) {
261         KMP_AFFINITY_ENABLE(gCode);
262         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263                       "affinity supported (mask size %d)\n",
264                       (int)__kmp_affin_mask_size));
265         KMP_INTERNAL_FREE(buf);
266         return;
267       }
268     }
269   }
270   // save uncaught error code
271   // int error = errno;
272   KMP_INTERNAL_FREE(buf);
273   // restore uncaught error code, will be printed at the next KMP_WARNING below
274   // errno = error;
275
276   // Affinity is not supported
277   KMP_AFFINITY_DISABLE();
278   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279                 "cannot determine mask size - affinity not supported\n"));
280   if (__kmp_affinity_verbose ||
281       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282        (__kmp_affinity_type != affinity_default) &&
283        (__kmp_affinity_type != affinity_disabled))) {
284     KMP_WARNING(AffCantGetMaskSize, env_var);
285   }
286 }
287
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289
290 #if KMP_USE_FUTEX
291
292 int __kmp_futex_determine_capable() {
293   int loc = 0;
294   int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295   int retval = (rc == 0) || (errno != ENOSYS);
296
297   KA_TRACE(10,
298            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300                 retval ? "" : " not"));
301
302   return retval;
303 }
304
305 #endif // KMP_USE_FUTEX
306
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309    use compare_and_store for these routines */
310
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312   kmp_int8 old_value, new_value;
313
314   old_value = TCR_1(*p);
315   new_value = old_value | d;
316
317   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318     KMP_CPU_PAUSE();
319     old_value = TCR_1(*p);
320     new_value = old_value | d;
321   }
322   return old_value;
323 }
324
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326   kmp_int8 old_value, new_value;
327
328   old_value = TCR_1(*p);
329   new_value = old_value & d;
330
331   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332     KMP_CPU_PAUSE();
333     old_value = TCR_1(*p);
334     new_value = old_value & d;
335   }
336   return old_value;
337 }
338
339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
340   kmp_uint32 old_value, new_value;
341
342   old_value = TCR_4(*p);
343   new_value = old_value | d;
344
345   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346     KMP_CPU_PAUSE();
347     old_value = TCR_4(*p);
348     new_value = old_value | d;
349   }
350   return old_value;
351 }
352
353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
354   kmp_uint32 old_value, new_value;
355
356   old_value = TCR_4(*p);
357   new_value = old_value & d;
358
359   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360     KMP_CPU_PAUSE();
361     old_value = TCR_4(*p);
362     new_value = old_value & d;
363   }
364   return old_value;
365 }
366
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369   kmp_int8 old_value, new_value;
370
371   old_value = TCR_1(*p);
372   new_value = old_value + d;
373
374   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375     KMP_CPU_PAUSE();
376     old_value = TCR_1(*p);
377     new_value = old_value + d;
378   }
379   return old_value;
380 }
381
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383   kmp_int64 old_value, new_value;
384
385   old_value = TCR_8(*p);
386   new_value = old_value + d;
387
388   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389     KMP_CPU_PAUSE();
390     old_value = TCR_8(*p);
391     new_value = old_value + d;
392   }
393   return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396
397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
398   kmp_uint64 old_value, new_value;
399
400   old_value = TCR_8(*p);
401   new_value = old_value | d;
402   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403     KMP_CPU_PAUSE();
404     old_value = TCR_8(*p);
405     new_value = old_value | d;
406   }
407   return old_value;
408 }
409
410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
411   kmp_uint64 old_value, new_value;
412
413   old_value = TCR_8(*p);
414   new_value = old_value & d;
415   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416     KMP_CPU_PAUSE();
417     old_value = TCR_8(*p);
418     new_value = old_value & d;
419   }
420   return old_value;
421 }
422
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424
425 void __kmp_terminate_thread(int gtid) {
426   int status;
427   kmp_info_t *th = __kmp_threads[gtid];
428
429   if (!th)
430     return;
431
432 #ifdef KMP_CANCEL_THREADS
433   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434   status = pthread_cancel(th->th.th_info.ds.ds_thread);
435   if (status != 0 && status != ESRCH) {
436     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437                 __kmp_msg_null);
438   }
439 #endif
440   KMP_YIELD(TRUE);
441 } //
442
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444    If values are unreasonable, assume call failed and use incremental stack
445    refinement method instead. Returns TRUE if the stack parameters could be
446    determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448   int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
450         KMP_OS_HURD
451   pthread_attr_t attr;
452   int status;
453   size_t size = 0;
454   void *addr = 0;
455
456   /* Always do incremental stack refinement for ubermaster threads since the
457      initial thread stack range can be reduced by sibling thread creation so
458      pthread_attr_getstack may cause thread gtid aliasing */
459   if (!KMP_UBER_GTID(gtid)) {
460
461     /* Fetch the real thread attributes */
462     status = pthread_attr_init(&attr);
463     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
465     status = pthread_attr_get_np(pthread_self(), &attr);
466     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468     status = pthread_getattr_np(pthread_self(), &attr);
469     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471     status = pthread_attr_getstack(&attr, &addr, &size);
472     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473     KA_TRACE(60,
474              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475               " %lu, low addr: %p\n",
476               gtid, size, addr));
477     status = pthread_attr_destroy(&attr);
478     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479   }
480
481   if (size != 0 && addr != 0) { // was stack parameter determination successful?
482     /* Store the correct base and size */
483     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486     return TRUE;
487   }
488 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
489               KMP_OS_HURD */
490   /* Use incremental refinement starting from initial conservative estimate */
491   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
492   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
493   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
494   return FALSE;
495 }
496
497 static void *__kmp_launch_worker(void *thr) {
498   int status, old_type, old_state;
499 #ifdef KMP_BLOCK_SIGNALS
500   sigset_t new_set, old_set;
501 #endif /* KMP_BLOCK_SIGNALS */
502   void *exit_val;
503 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
504         KMP_OS_OPENBSD || KMP_OS_HURD
505   void *volatile padding = 0;
506 #endif
507   int gtid;
508
509   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
510   __kmp_gtid_set_specific(gtid);
511 #ifdef KMP_TDATA_GTID
512   __kmp_gtid = gtid;
513 #endif
514 #if KMP_STATS_ENABLED
515   // set thread local index to point to thread-specific stats
516   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
517   __kmp_stats_thread_ptr->startLife();
518   KMP_SET_THREAD_STATE(IDLE);
519   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
520 #endif
521
522 #if USE_ITT_BUILD
523   __kmp_itt_thread_name(gtid);
524 #endif /* USE_ITT_BUILD */
525
526 #if KMP_AFFINITY_SUPPORTED
527   __kmp_affinity_set_init_mask(gtid, FALSE);
528 #endif
529
530 #ifdef KMP_CANCEL_THREADS
531   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
532   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
533   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
534   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
535   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
536 #endif
537
538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
539   // Set FP control regs to be a copy of the parallel initialization thread's.
540   __kmp_clear_x87_fpu_status_word();
541   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
542   __kmp_load_mxcsr(&__kmp_init_mxcsr);
543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
544
545 #ifdef KMP_BLOCK_SIGNALS
546   status = sigfillset(&new_set);
547   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
548   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
549   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
550 #endif /* KMP_BLOCK_SIGNALS */
551
552 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
553         KMP_OS_OPENBSD
554   if (__kmp_stkoffset > 0 && gtid > 0) {
555     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
556   }
557 #endif
558
559   KMP_MB();
560   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
561
562   __kmp_check_stack_overlap((kmp_info_t *)thr);
563
564   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
565
566 #ifdef KMP_BLOCK_SIGNALS
567   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
568   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
569 #endif /* KMP_BLOCK_SIGNALS */
570
571   return exit_val;
572 }
573
574 #if KMP_USE_MONITOR
575 /* The monitor thread controls all of the threads in the complex */
576
577 static void *__kmp_launch_monitor(void *thr) {
578   int status, old_type, old_state;
579 #ifdef KMP_BLOCK_SIGNALS
580   sigset_t new_set;
581 #endif /* KMP_BLOCK_SIGNALS */
582   struct timespec interval;
583
584   KMP_MB(); /* Flush all pending memory write invalidates.  */
585
586   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
587
588   /* register us as the monitor thread */
589   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
590 #ifdef KMP_TDATA_GTID
591   __kmp_gtid = KMP_GTID_MONITOR;
592 #endif
593
594   KMP_MB();
595
596 #if USE_ITT_BUILD
597   // Instruct Intel(R) Threading Tools to ignore monitor thread.
598   __kmp_itt_thread_ignore();
599 #endif /* USE_ITT_BUILD */
600
601   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
602                        (kmp_info_t *)thr);
603
604   __kmp_check_stack_overlap((kmp_info_t *)thr);
605
606 #ifdef KMP_CANCEL_THREADS
607   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
608   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
609   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
610   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
611   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
612 #endif
613
614 #if KMP_REAL_TIME_FIX
615   // This is a potential fix which allows application with real-time scheduling
616   // policy work. However, decision about the fix is not made yet, so it is
617   // disabled by default.
618   { // Are program started with real-time scheduling policy?
619     int sched = sched_getscheduler(0);
620     if (sched == SCHED_FIFO || sched == SCHED_RR) {
621       // Yes, we are a part of real-time application. Try to increase the
622       // priority of the monitor.
623       struct sched_param param;
624       int max_priority = sched_get_priority_max(sched);
625       int rc;
626       KMP_WARNING(RealTimeSchedNotSupported);
627       sched_getparam(0, &param);
628       if (param.sched_priority < max_priority) {
629         param.sched_priority += 1;
630         rc = sched_setscheduler(0, sched, &param);
631         if (rc != 0) {
632           int error = errno;
633           kmp_msg_t err_code = KMP_ERR(error);
634           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
635                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
636           if (__kmp_generate_warnings == kmp_warnings_off) {
637             __kmp_str_free(&err_code.str);
638           }
639         }
640       } else {
641         // We cannot abort here, because number of CPUs may be enough for all
642         // the threads, including the monitor thread, so application could
643         // potentially work...
644         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
645                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
646                   __kmp_msg_null);
647       }
648     }
649     // AC: free thread that waits for monitor started
650     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
651   }
652 #endif // KMP_REAL_TIME_FIX
653
654   KMP_MB(); /* Flush all pending memory write invalidates.  */
655
656   if (__kmp_monitor_wakeups == 1) {
657     interval.tv_sec = 1;
658     interval.tv_nsec = 0;
659   } else {
660     interval.tv_sec = 0;
661     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
662   }
663
664   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
665
666   while (!TCR_4(__kmp_global.g.g_done)) {
667     struct timespec now;
668     struct timeval tval;
669
670     /*  This thread monitors the state of the system */
671
672     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
673
674     status = gettimeofday(&tval, NULL);
675     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
676     TIMEVAL_TO_TIMESPEC(&tval, &now);
677
678     now.tv_sec += interval.tv_sec;
679     now.tv_nsec += interval.tv_nsec;
680
681     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
682       now.tv_sec += 1;
683       now.tv_nsec -= KMP_NSEC_PER_SEC;
684     }
685
686     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
687     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
688     // AC: the monitor should not fall asleep if g_done has been set
689     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
690       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
691                                       &__kmp_wait_mx.m_mutex, &now);
692       if (status != 0) {
693         if (status != ETIMEDOUT && status != EINTR) {
694           KMP_SYSFAIL("pthread_cond_timedwait", status);
695         }
696       }
697     }
698     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
699     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
700
701     TCW_4(__kmp_global.g.g_time.dt.t_value,
702           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
703
704     KMP_MB(); /* Flush all pending memory write invalidates.  */
705   }
706
707   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
708
709 #ifdef KMP_BLOCK_SIGNALS
710   status = sigfillset(&new_set);
711   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
712   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
713   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
714 #endif /* KMP_BLOCK_SIGNALS */
715
716   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
717
718   if (__kmp_global.g.g_abort != 0) {
719     /* now we need to terminate the worker threads  */
720     /* the value of t_abort is the signal we caught */
721
722     int gtid;
723
724     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
725                   __kmp_global.g.g_abort));
726
727     /* terminate the OpenMP worker threads */
728     /* TODO this is not valid for sibling threads!!
729      * the uber master might not be 0 anymore.. */
730     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
731       __kmp_terminate_thread(gtid);
732
733     __kmp_cleanup();
734
735     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
736                   __kmp_global.g.g_abort));
737
738     if (__kmp_global.g.g_abort > 0)
739       raise(__kmp_global.g.g_abort);
740   }
741
742   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
743
744   return thr;
745 }
746 #endif // KMP_USE_MONITOR
747
748 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
749   pthread_t handle;
750   pthread_attr_t thread_attr;
751   int status;
752
753   th->th.th_info.ds.ds_gtid = gtid;
754
755 #if KMP_STATS_ENABLED
756   // sets up worker thread stats
757   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
758
759   // th->th.th_stats is used to transfer thread-specific stats-pointer to
760   // __kmp_launch_worker. So when thread is created (goes into
761   // __kmp_launch_worker) it will set its thread local pointer to
762   // th->th.th_stats
763   if (!KMP_UBER_GTID(gtid)) {
764     th->th.th_stats = __kmp_stats_list->push_back(gtid);
765   } else {
766     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
767     // so set the th->th.th_stats field to it.
768     th->th.th_stats = __kmp_stats_thread_ptr;
769   }
770   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
771
772 #endif // KMP_STATS_ENABLED
773
774   if (KMP_UBER_GTID(gtid)) {
775     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
776     th->th.th_info.ds.ds_thread = pthread_self();
777     __kmp_set_stack_info(gtid, th);
778     __kmp_check_stack_overlap(th);
779     return;
780   }
781
782   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
783
784   KMP_MB(); /* Flush all pending memory write invalidates.  */
785
786 #ifdef KMP_THREAD_ATTR
787   status = pthread_attr_init(&thread_attr);
788   if (status != 0) {
789     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
790   }
791   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
792   if (status != 0) {
793     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
794   }
795
796   /* Set stack size for this thread now.
797      The multiple of 2 is there because on some machines, requesting an unusual
798      stacksize causes the thread to have an offset before the dummy alloca()
799      takes place to create the offset.  Since we want the user to have a
800      sufficient stacksize AND support a stack offset, we alloca() twice the
801      offset so that the upcoming alloca() does not eliminate any premade offset,
802      and also gives the user the stack space they requested for all threads */
803   stack_size += gtid * __kmp_stkoffset * 2;
804
805   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
806                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
807                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
808
809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
810   status = pthread_attr_setstacksize(&thread_attr, stack_size);
811 #ifdef KMP_BACKUP_STKSIZE
812   if (status != 0) {
813     if (!__kmp_env_stksize) {
814       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
815       __kmp_stksize = KMP_BACKUP_STKSIZE;
816       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
817                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
818                     "bytes\n",
819                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
820       status = pthread_attr_setstacksize(&thread_attr, stack_size);
821     }
822   }
823 #endif /* KMP_BACKUP_STKSIZE */
824   if (status != 0) {
825     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
826                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
827   }
828 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
829
830 #endif /* KMP_THREAD_ATTR */
831
832   status =
833       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
834   if (status != 0 || !handle) { // ??? Why do we check handle??
835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
836     if (status == EINVAL) {
837       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
838                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
839     }
840     if (status == ENOMEM) {
841       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
842                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
843     }
844 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
845     if (status == EAGAIN) {
846       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
847                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
848     }
849     KMP_SYSFAIL("pthread_create", status);
850   }
851
852   th->th.th_info.ds.ds_thread = handle;
853
854 #ifdef KMP_THREAD_ATTR
855   status = pthread_attr_destroy(&thread_attr);
856   if (status) {
857     kmp_msg_t err_code = KMP_ERR(status);
858     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
859               __kmp_msg_null);
860     if (__kmp_generate_warnings == kmp_warnings_off) {
861       __kmp_str_free(&err_code.str);
862     }
863   }
864 #endif /* KMP_THREAD_ATTR */
865
866   KMP_MB(); /* Flush all pending memory write invalidates.  */
867
868   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
869
870 } // __kmp_create_worker
871
872 #if KMP_USE_MONITOR
873 void __kmp_create_monitor(kmp_info_t *th) {
874   pthread_t handle;
875   pthread_attr_t thread_attr;
876   size_t size;
877   int status;
878   int auto_adj_size = FALSE;
879
880   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
881     // We don't need monitor thread in case of MAX_BLOCKTIME
882     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
883                   "MAX blocktime\n"));
884     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
885     th->th.th_info.ds.ds_gtid = 0;
886     return;
887   }
888   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
889
890   KMP_MB(); /* Flush all pending memory write invalidates.  */
891
892   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
893   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
894 #if KMP_REAL_TIME_FIX
895   TCW_4(__kmp_global.g.g_time.dt.t_value,
896         -1); // Will use it for synchronization a bit later.
897 #else
898   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
899 #endif // KMP_REAL_TIME_FIX
900
901 #ifdef KMP_THREAD_ATTR
902   if (__kmp_monitor_stksize == 0) {
903     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
904     auto_adj_size = TRUE;
905   }
906   status = pthread_attr_init(&thread_attr);
907   if (status != 0) {
908     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
909   }
910   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
911   if (status != 0) {
912     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
913   }
914
915 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
916   status = pthread_attr_getstacksize(&thread_attr, &size);
917   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
918 #else
919   size = __kmp_sys_min_stksize;
920 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
921 #endif /* KMP_THREAD_ATTR */
922
923   if (__kmp_monitor_stksize == 0) {
924     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
925   }
926   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
927     __kmp_monitor_stksize = __kmp_sys_min_stksize;
928   }
929
930   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
931                 "requested stacksize = %lu bytes\n",
932                 size, __kmp_monitor_stksize));
933
934 retry:
935
936 /* Set stack size for this thread now. */
937 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
938   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
939                 __kmp_monitor_stksize));
940   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
941   if (status != 0) {
942     if (auto_adj_size) {
943       __kmp_monitor_stksize *= 2;
944       goto retry;
945     }
946     kmp_msg_t err_code = KMP_ERR(status);
947     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
948               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
949               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
950     if (__kmp_generate_warnings == kmp_warnings_off) {
951       __kmp_str_free(&err_code.str);
952     }
953   }
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955
956   status =
957       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
958
959   if (status != 0) {
960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
961     if (status == EINVAL) {
962       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
963         __kmp_monitor_stksize *= 2;
964         goto retry;
965       }
966       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
967                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
968                   __kmp_msg_null);
969     }
970     if (status == ENOMEM) {
971       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
972                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
973                   __kmp_msg_null);
974     }
975 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
976     if (status == EAGAIN) {
977       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
978                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
979     }
980     KMP_SYSFAIL("pthread_create", status);
981   }
982
983   th->th.th_info.ds.ds_thread = handle;
984
985 #if KMP_REAL_TIME_FIX
986   // Wait for the monitor thread is really started and set its *priority*.
987   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
988                    sizeof(__kmp_global.g.g_time.dt.t_value));
989   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
990                &__kmp_neq_4, NULL);
991 #endif // KMP_REAL_TIME_FIX
992
993 #ifdef KMP_THREAD_ATTR
994   status = pthread_attr_destroy(&thread_attr);
995   if (status != 0) {
996     kmp_msg_t err_code = KMP_ERR(status);
997     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
998               __kmp_msg_null);
999     if (__kmp_generate_warnings == kmp_warnings_off) {
1000       __kmp_str_free(&err_code.str);
1001     }
1002   }
1003 #endif
1004
1005   KMP_MB(); /* Flush all pending memory write invalidates.  */
1006
1007   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1008                 th->th.th_info.ds.ds_thread));
1009
1010 } // __kmp_create_monitor
1011 #endif // KMP_USE_MONITOR
1012
1013 void __kmp_exit_thread(int exit_status) {
1014   pthread_exit((void *)(intptr_t)exit_status);
1015 } // __kmp_exit_thread
1016
1017 #if KMP_USE_MONITOR
1018 void __kmp_resume_monitor();
1019
1020 void __kmp_reap_monitor(kmp_info_t *th) {
1021   int status;
1022   void *exit_val;
1023
1024   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1025                 " %#.8lx\n",
1026                 th->th.th_info.ds.ds_thread));
1027
1028   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1029   // If both tid and gtid are 0, it means the monitor did not ever start.
1030   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1031   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1032   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1033     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1034     return;
1035   }
1036
1037   KMP_MB(); /* Flush all pending memory write invalidates.  */
1038
1039   /* First, check to see whether the monitor thread exists to wake it up. This
1040      is to avoid performance problem when the monitor sleeps during
1041      blocktime-size interval */
1042
1043   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1044   if (status != ESRCH) {
1045     __kmp_resume_monitor(); // Wake up the monitor thread
1046   }
1047   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1048   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1049   if (exit_val != th) {
1050     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1051   }
1052
1053   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1054   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1055
1056   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1057                 " %#.8lx\n",
1058                 th->th.th_info.ds.ds_thread));
1059
1060   KMP_MB(); /* Flush all pending memory write invalidates.  */
1061 }
1062 #endif // KMP_USE_MONITOR
1063
1064 void __kmp_reap_worker(kmp_info_t *th) {
1065   int status;
1066   void *exit_val;
1067
1068   KMP_MB(); /* Flush all pending memory write invalidates.  */
1069
1070   KA_TRACE(
1071       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1072
1073   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1074 #ifdef KMP_DEBUG
1075   /* Don't expose these to the user until we understand when they trigger */
1076   if (status != 0) {
1077     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1078   }
1079   if (exit_val != th) {
1080     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1081                   "exit_val = %p\n",
1082                   th->th.th_info.ds.ds_gtid, exit_val));
1083   }
1084 #endif /* KMP_DEBUG */
1085
1086   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1087                 th->th.th_info.ds.ds_gtid));
1088
1089   KMP_MB(); /* Flush all pending memory write invalidates.  */
1090 }
1091
1092 #if KMP_HANDLE_SIGNALS
1093
1094 static void __kmp_null_handler(int signo) {
1095   //  Do nothing, for doing SIG_IGN-type actions.
1096 } // __kmp_null_handler
1097
1098 static void __kmp_team_handler(int signo) {
1099   if (__kmp_global.g.g_abort == 0) {
1100 /* Stage 1 signal handler, let's shut down all of the threads */
1101 #ifdef KMP_DEBUG
1102     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1103 #endif
1104     switch (signo) {
1105     case SIGHUP:
1106     case SIGINT:
1107     case SIGQUIT:
1108     case SIGILL:
1109     case SIGABRT:
1110     case SIGFPE:
1111     case SIGBUS:
1112     case SIGSEGV:
1113 #ifdef SIGSYS
1114     case SIGSYS:
1115 #endif
1116     case SIGTERM:
1117       if (__kmp_debug_buf) {
1118         __kmp_dump_debug_buffer();
1119       }
1120       KMP_MB(); // Flush all pending memory write invalidates.
1121       TCW_4(__kmp_global.g.g_abort, signo);
1122       KMP_MB(); // Flush all pending memory write invalidates.
1123       TCW_4(__kmp_global.g.g_done, TRUE);
1124       KMP_MB(); // Flush all pending memory write invalidates.
1125       break;
1126     default:
1127 #ifdef KMP_DEBUG
1128       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1129 #endif
1130       break;
1131     }
1132   }
1133 } // __kmp_team_handler
1134
1135 static void __kmp_sigaction(int signum, const struct sigaction *act,
1136                             struct sigaction *oldact) {
1137   int rc = sigaction(signum, act, oldact);
1138   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1139 }
1140
1141 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1142                                       int parallel_init) {
1143   KMP_MB(); // Flush all pending memory write invalidates.
1144   KB_TRACE(60,
1145            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1146   if (parallel_init) {
1147     struct sigaction new_action;
1148     struct sigaction old_action;
1149     new_action.sa_handler = handler_func;
1150     new_action.sa_flags = 0;
1151     sigfillset(&new_action.sa_mask);
1152     __kmp_sigaction(sig, &new_action, &old_action);
1153     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1154       sigaddset(&__kmp_sigset, sig);
1155     } else {
1156       // Restore/keep user's handler if one previously installed.
1157       __kmp_sigaction(sig, &old_action, NULL);
1158     }
1159   } else {
1160     // Save initial/system signal handlers to see if user handlers installed.
1161     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1162   }
1163   KMP_MB(); // Flush all pending memory write invalidates.
1164 } // __kmp_install_one_handler
1165
1166 static void __kmp_remove_one_handler(int sig) {
1167   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1168   if (sigismember(&__kmp_sigset, sig)) {
1169     struct sigaction old;
1170     KMP_MB(); // Flush all pending memory write invalidates.
1171     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1172     if ((old.sa_handler != __kmp_team_handler) &&
1173         (old.sa_handler != __kmp_null_handler)) {
1174       // Restore the users signal handler.
1175       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1176                     "restoring: sig=%d\n",
1177                     sig));
1178       __kmp_sigaction(sig, &old, NULL);
1179     }
1180     sigdelset(&__kmp_sigset, sig);
1181     KMP_MB(); // Flush all pending memory write invalidates.
1182   }
1183 } // __kmp_remove_one_handler
1184
1185 void __kmp_install_signals(int parallel_init) {
1186   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1187   if (__kmp_handle_signals || !parallel_init) {
1188     // If ! parallel_init, we do not install handlers, just save original
1189     // handlers. Let us do it even __handle_signals is 0.
1190     sigemptyset(&__kmp_sigset);
1191     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1192     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1193     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1194     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1195     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1196     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1197     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1198     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1199 #ifdef SIGSYS
1200     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1201 #endif // SIGSYS
1202     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1203 #ifdef SIGPIPE
1204     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1205 #endif // SIGPIPE
1206   }
1207 } // __kmp_install_signals
1208
1209 void __kmp_remove_signals(void) {
1210   int sig;
1211   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1212   for (sig = 1; sig < NSIG; ++sig) {
1213     __kmp_remove_one_handler(sig);
1214   }
1215 } // __kmp_remove_signals
1216
1217 #endif // KMP_HANDLE_SIGNALS
1218
1219 void __kmp_enable(int new_state) {
1220 #ifdef KMP_CANCEL_THREADS
1221   int status, old_state;
1222   status = pthread_setcancelstate(new_state, &old_state);
1223   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1224   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1225 #endif
1226 }
1227
1228 void __kmp_disable(int *old_state) {
1229 #ifdef KMP_CANCEL_THREADS
1230   int status;
1231   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1232   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1233 #endif
1234 }
1235
1236 static void __kmp_atfork_prepare(void) {
1237   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1238   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1239 }
1240
1241 static void __kmp_atfork_parent(void) {
1242   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1243   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1244 }
1245
1246 /* Reset the library so execution in the child starts "all over again" with
1247    clean data structures in initial states.  Don't worry about freeing memory
1248    allocated by parent, just abandon it to be safe. */
1249 static void __kmp_atfork_child(void) {
1250   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1251   /* TODO make sure this is done right for nested/sibling */
1252   // ATT:  Memory leaks are here? TODO: Check it and fix.
1253   /* KMP_ASSERT( 0 ); */
1254
1255   ++__kmp_fork_count;
1256
1257 #if KMP_AFFINITY_SUPPORTED
1258 #if KMP_OS_LINUX
1259   // reset the affinity in the child to the initial thread
1260   // affinity in the parent
1261   kmp_set_thread_affinity_mask_initial();
1262 #endif
1263   // Set default not to bind threads tightly in the child (we’re expecting
1264   // over-subscription after the fork and this can improve things for
1265   // scripting languages that use OpenMP inside process-parallel code).
1266   __kmp_affinity_type = affinity_none;
1267   if (__kmp_nested_proc_bind.bind_types != NULL) {
1268     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1269   }
1270 #endif // KMP_AFFINITY_SUPPORTED
1271
1272   __kmp_init_runtime = FALSE;
1273 #if KMP_USE_MONITOR
1274   __kmp_init_monitor = 0;
1275 #endif
1276   __kmp_init_parallel = FALSE;
1277   __kmp_init_middle = FALSE;
1278   __kmp_init_serial = FALSE;
1279   TCW_4(__kmp_init_gtid, FALSE);
1280   __kmp_init_common = FALSE;
1281
1282   TCW_4(__kmp_init_user_locks, FALSE);
1283 #if !KMP_USE_DYNAMIC_LOCK
1284   __kmp_user_lock_table.used = 1;
1285   __kmp_user_lock_table.allocated = 0;
1286   __kmp_user_lock_table.table = NULL;
1287   __kmp_lock_blocks = NULL;
1288 #endif
1289
1290   __kmp_all_nth = 0;
1291   TCW_4(__kmp_nth, 0);
1292
1293   __kmp_thread_pool = NULL;
1294   __kmp_thread_pool_insert_pt = NULL;
1295   __kmp_team_pool = NULL;
1296
1297   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1298      here so threadprivate doesn't use stale data */
1299   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1300                 __kmp_threadpriv_cache_list));
1301
1302   while (__kmp_threadpriv_cache_list != NULL) {
1303
1304     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1305       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1306                     &(*__kmp_threadpriv_cache_list->addr)));
1307
1308       *__kmp_threadpriv_cache_list->addr = NULL;
1309     }
1310     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1311   }
1312
1313   __kmp_init_runtime = FALSE;
1314
1315   /* reset statically initialized locks */
1316   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1317   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1318   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1319   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1320
1321 #if USE_ITT_BUILD
1322   __kmp_itt_reset(); // reset ITT's global state
1323 #endif /* USE_ITT_BUILD */
1324
1325   /* This is necessary to make sure no stale data is left around */
1326   /* AC: customers complain that we use unsafe routines in the atfork
1327      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1328      in dynamic_link when check the presence of shared tbbmalloc library.
1329      Suggestion is to make the library initialization lazier, similar
1330      to what done for __kmpc_begin(). */
1331   // TODO: synchronize all static initializations with regular library
1332   //       startup; look at kmp_global.cpp and etc.
1333   //__kmp_internal_begin ();
1334 }
1335
1336 void __kmp_register_atfork(void) {
1337   if (__kmp_need_register_atfork) {
1338     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1339                                 __kmp_atfork_child);
1340     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1341     __kmp_need_register_atfork = FALSE;
1342   }
1343 }
1344
1345 void __kmp_suspend_initialize(void) {
1346   int status;
1347   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1348   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1349   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1350   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1351 }
1352
1353 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1354   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1355   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1356   int new_value = __kmp_fork_count + 1;
1357   // Return if already initialized
1358   if (old_value == new_value)
1359     return;
1360   // Wait, then return if being initialized
1361   if (old_value == -1 ||
1362       !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value,
1363                                   -1)) {
1364     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1365       KMP_CPU_PAUSE();
1366     }
1367   } else {
1368     // Claim to be the initializer and do initializations
1369     int status;
1370     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1371                                &__kmp_suspend_cond_attr);
1372     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1373     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1374                                 &__kmp_suspend_mutex_attr);
1375     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1376     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1377     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1378   }
1379 }
1380
1381 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1382   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1383     /* this means we have initialize the suspension pthread objects for this
1384        thread in this instance of the process */
1385     int status;
1386
1387     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1388     if (status != 0 && status != EBUSY) {
1389       KMP_SYSFAIL("pthread_cond_destroy", status);
1390     }
1391     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1392     if (status != 0 && status != EBUSY) {
1393       KMP_SYSFAIL("pthread_mutex_destroy", status);
1394     }
1395     --th->th.th_suspend_init_count;
1396     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1397                      __kmp_fork_count);
1398   }
1399 }
1400
1401 // return true if lock obtained, false otherwise
1402 int __kmp_try_suspend_mx(kmp_info_t *th) {
1403   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1404 }
1405
1406 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1407   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1408   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1409 }
1410
1411 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1412   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1413   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1414 }
1415
1416 /* This routine puts the calling thread to sleep after setting the
1417    sleep bit for the indicated flag variable to true. */
1418 template <class C>
1419 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1420   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1421   kmp_info_t *th = __kmp_threads[th_gtid];
1422   int status;
1423   typename C::flag_t old_spin;
1424
1425   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1426                 flag->get()));
1427
1428   __kmp_suspend_initialize_thread(th);
1429
1430   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1431   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1432
1433   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1434                 th_gtid, flag->get()));
1435
1436   /* TODO: shouldn't this use release semantics to ensure that
1437      __kmp_suspend_initialize_thread gets called first? */
1438   old_spin = flag->set_sleeping();
1439   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1440       __kmp_pause_status != kmp_soft_paused) {
1441     flag->unset_sleeping();
1442     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1443     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1444     return;
1445   }
1446   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1447                " was %x\n",
1448                th_gtid, flag->get(), flag->load(), old_spin));
1449
1450   if (flag->done_check_val(old_spin)) {
1451     old_spin = flag->unset_sleeping();
1452     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1453                  "for spin(%p)\n",
1454                  th_gtid, flag->get()));
1455   } else {
1456     /* Encapsulate in a loop as the documentation states that this may
1457        "with low probability" return when the condition variable has
1458        not been signaled or broadcast */
1459     int deactivated = FALSE;
1460     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1461
1462     while (flag->is_sleeping()) {
1463 #ifdef DEBUG_SUSPEND
1464       char buffer[128];
1465       __kmp_suspend_count++;
1466       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1467       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1468                    buffer);
1469 #endif
1470       // Mark the thread as no longer active (only in the first iteration of the
1471       // loop).
1472       if (!deactivated) {
1473         th->th.th_active = FALSE;
1474         if (th->th.th_active_in_pool) {
1475           th->th.th_active_in_pool = FALSE;
1476           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1477           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1478         }
1479         deactivated = TRUE;
1480       }
1481
1482 #if USE_SUSPEND_TIMEOUT
1483       struct timespec now;
1484       struct timeval tval;
1485       int msecs;
1486
1487       status = gettimeofday(&tval, NULL);
1488       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1489       TIMEVAL_TO_TIMESPEC(&tval, &now);
1490
1491       msecs = (4 * __kmp_dflt_blocktime) + 200;
1492       now.tv_sec += msecs / 1000;
1493       now.tv_nsec += (msecs % 1000) * 1000;
1494
1495       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1496                     "pthread_cond_timedwait\n",
1497                     th_gtid));
1498       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1499                                       &th->th.th_suspend_mx.m_mutex, &now);
1500 #else
1501       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1502                     " pthread_cond_wait\n",
1503                     th_gtid));
1504       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1505                                  &th->th.th_suspend_mx.m_mutex);
1506 #endif
1507
1508       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1509         KMP_SYSFAIL("pthread_cond_wait", status);
1510       }
1511 #ifdef KMP_DEBUG
1512       if (status == ETIMEDOUT) {
1513         if (flag->is_sleeping()) {
1514           KF_TRACE(100,
1515                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1516         } else {
1517           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1518                        "not set!\n",
1519                        th_gtid));
1520         }
1521       } else if (flag->is_sleeping()) {
1522         KF_TRACE(100,
1523                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1524       }
1525 #endif
1526     } // while
1527
1528     // Mark the thread as active again (if it was previous marked as inactive)
1529     if (deactivated) {
1530       th->th.th_active = TRUE;
1531       if (TCR_4(th->th.th_in_pool)) {
1532         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1533         th->th.th_active_in_pool = TRUE;
1534       }
1535     }
1536   }
1537 #ifdef DEBUG_SUSPEND
1538   {
1539     char buffer[128];
1540     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1541     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1542                  buffer);
1543   }
1544 #endif
1545
1546   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1547   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1548   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1549 }
1550
1551 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1552   __kmp_suspend_template(th_gtid, flag);
1553 }
1554 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1555   __kmp_suspend_template(th_gtid, flag);
1556 }
1557 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1558   __kmp_suspend_template(th_gtid, flag);
1559 }
1560
1561 /* This routine signals the thread specified by target_gtid to wake up
1562    after setting the sleep bit indicated by the flag argument to FALSE.
1563    The target thread must already have called __kmp_suspend_template() */
1564 template <class C>
1565 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1566   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1567   kmp_info_t *th = __kmp_threads[target_gtid];
1568   int status;
1569
1570 #ifdef KMP_DEBUG
1571   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1572 #endif
1573
1574   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1575                 gtid, target_gtid));
1576   KMP_DEBUG_ASSERT(gtid != target_gtid);
1577
1578   __kmp_suspend_initialize_thread(th);
1579
1580   status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1581   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1582
1583   if (!flag) { // coming from __kmp_null_resume_wrapper
1584     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1585   }
1586
1587   // First, check if the flag is null or its type has changed. If so, someone
1588   // else woke it up.
1589   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1590     // simply shows what
1591     // flag was cast to
1592     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1593                  "awake: flag(%p)\n",
1594                  gtid, target_gtid, NULL));
1595     status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1596     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1597     return;
1598   } else { // if multiple threads are sleeping, flag should be internally
1599     // referring to a specific thread here
1600     typename C::flag_t old_spin = flag->unset_sleeping();
1601     if (!flag->is_sleeping_val(old_spin)) {
1602       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1603                    "awake: flag(%p): "
1604                    "%u => %u\n",
1605                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1606       status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1607       KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1608       return;
1609     }
1610     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1611                  "sleep bit for flag's loc(%p): "
1612                  "%u => %u\n",
1613                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1614   }
1615   TCW_PTR(th->th.th_sleep_loc, NULL);
1616
1617 #ifdef DEBUG_SUSPEND
1618   {
1619     char buffer[128];
1620     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1621     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1622                  target_gtid, buffer);
1623   }
1624 #endif
1625   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1626   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1627   status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1628   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1629   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1630                 " for T#%d\n",
1631                 gtid, target_gtid));
1632 }
1633
1634 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1635   __kmp_resume_template(target_gtid, flag);
1636 }
1637 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1638   __kmp_resume_template(target_gtid, flag);
1639 }
1640 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1641   __kmp_resume_template(target_gtid, flag);
1642 }
1643
1644 #if KMP_USE_MONITOR
1645 void __kmp_resume_monitor() {
1646   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1647   int status;
1648 #ifdef KMP_DEBUG
1649   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1650   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1651                 KMP_GTID_MONITOR));
1652   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1653 #endif
1654   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1655   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1656 #ifdef DEBUG_SUSPEND
1657   {
1658     char buffer[128];
1659     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1660     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1661                  KMP_GTID_MONITOR, buffer);
1662   }
1663 #endif
1664   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1665   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1666   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1667   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1668   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1669                 " for T#%d\n",
1670                 gtid, KMP_GTID_MONITOR));
1671 }
1672 #endif // KMP_USE_MONITOR
1673
1674 void __kmp_yield() { sched_yield(); }
1675
1676 void __kmp_gtid_set_specific(int gtid) {
1677   if (__kmp_init_gtid) {
1678     int status;
1679     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1680                                  (void *)(intptr_t)(gtid + 1));
1681     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1682   } else {
1683     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1684   }
1685 }
1686
1687 int __kmp_gtid_get_specific() {
1688   int gtid;
1689   if (!__kmp_init_gtid) {
1690     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1691                   "KMP_GTID_SHUTDOWN\n"));
1692     return KMP_GTID_SHUTDOWN;
1693   }
1694   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1695   if (gtid == 0) {
1696     gtid = KMP_GTID_DNE;
1697   } else {
1698     gtid--;
1699   }
1700   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1701                 __kmp_gtid_threadprivate_key, gtid));
1702   return gtid;
1703 }
1704
1705 double __kmp_read_cpu_time(void) {
1706   /*clock_t   t;*/
1707   struct tms buffer;
1708
1709   /*t =*/times(&buffer);
1710
1711   return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1712 }
1713
1714 int __kmp_read_system_info(struct kmp_sys_info *info) {
1715   int status;
1716   struct rusage r_usage;
1717
1718   memset(info, 0, sizeof(*info));
1719
1720   status = getrusage(RUSAGE_SELF, &r_usage);
1721   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1722
1723   // The maximum resident set size utilized (in kilobytes)
1724   info->maxrss = r_usage.ru_maxrss;
1725   // The number of page faults serviced without any I/O
1726   info->minflt = r_usage.ru_minflt;
1727   // The number of page faults serviced that required I/O
1728   info->majflt = r_usage.ru_majflt;
1729   // The number of times a process was "swapped" out of memory
1730   info->nswap = r_usage.ru_nswap;
1731   // The number of times the file system had to perform input
1732   info->inblock = r_usage.ru_inblock;
1733   // The number of times the file system had to perform output
1734   info->oublock = r_usage.ru_oublock;
1735   // The number of times a context switch was voluntarily
1736   info->nvcsw = r_usage.ru_nvcsw;
1737   // The number of times a context switch was forced
1738   info->nivcsw = r_usage.ru_nivcsw;
1739
1740   return (status != 0);
1741 }
1742
1743 void __kmp_read_system_time(double *delta) {
1744   double t_ns;
1745   struct timeval tval;
1746   struct timespec stop;
1747   int status;
1748
1749   status = gettimeofday(&tval, NULL);
1750   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1751   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1752   t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1753   *delta = (t_ns * 1e-9);
1754 }
1755
1756 void __kmp_clear_system_time(void) {
1757   struct timeval tval;
1758   int status;
1759   status = gettimeofday(&tval, NULL);
1760   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1761   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1762 }
1763
1764 static int __kmp_get_xproc(void) {
1765
1766   int r = 0;
1767
1768 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1769         KMP_OS_OPENBSD || KMP_OS_HURD
1770
1771   r = sysconf(_SC_NPROCESSORS_ONLN);
1772
1773 #elif KMP_OS_DARWIN
1774
1775   // Bug C77011 High "OpenMP Threads and number of active cores".
1776
1777   // Find the number of available CPUs.
1778   kern_return_t rc;
1779   host_basic_info_data_t info;
1780   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1781   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1782   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1783     // Cannot use KA_TRACE() here because this code works before trace support
1784     // is initialized.
1785     r = info.avail_cpus;
1786   } else {
1787     KMP_WARNING(CantGetNumAvailCPU);
1788     KMP_INFORM(AssumedNumCPU);
1789   }
1790
1791 #else
1792
1793 #error "Unknown or unsupported OS."
1794
1795 #endif
1796
1797   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1798
1799 } // __kmp_get_xproc
1800
1801 int __kmp_read_from_file(char const *path, char const *format, ...) {
1802   int result;
1803   va_list args;
1804
1805   va_start(args, format);
1806   FILE *f = fopen(path, "rb");
1807   if (f == NULL)
1808     return 0;
1809   result = vfscanf(f, format, args);
1810   fclose(f);
1811
1812   return result;
1813 }
1814
1815 void __kmp_runtime_initialize(void) {
1816   int status;
1817   pthread_mutexattr_t mutex_attr;
1818   pthread_condattr_t cond_attr;
1819
1820   if (__kmp_init_runtime) {
1821     return;
1822   }
1823
1824 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1825   if (!__kmp_cpuinfo.initialized) {
1826     __kmp_query_cpuid(&__kmp_cpuinfo);
1827   }
1828 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1829
1830   __kmp_xproc = __kmp_get_xproc();
1831
1832 #if ! KMP_32_BIT_ARCH
1833   struct rlimit rlim;
1834   // read stack size of calling thread, save it as default for worker threads;
1835   // this should be done before reading environment variables
1836   status = getrlimit(RLIMIT_STACK, &rlim);
1837   if (status == 0) { // success?
1838     __kmp_stksize = rlim.rlim_cur;
1839     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1840   }
1841 #endif /* KMP_32_BIT_ARCH */
1842
1843   if (sysconf(_SC_THREADS)) {
1844
1845     /* Query the maximum number of threads */
1846     __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1847     if (__kmp_sys_max_nth == -1) {
1848       /* Unlimited threads for NPTL */
1849       __kmp_sys_max_nth = INT_MAX;
1850     } else if (__kmp_sys_max_nth <= 1) {
1851       /* Can't tell, just use PTHREAD_THREADS_MAX */
1852       __kmp_sys_max_nth = KMP_MAX_NTH;
1853     }
1854
1855     /* Query the minimum stack size */
1856     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1857     if (__kmp_sys_min_stksize <= 1) {
1858       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1859     }
1860   }
1861
1862   /* Set up minimum number of threads to switch to TLS gtid */
1863   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1864
1865   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1866                               __kmp_internal_end_dest);
1867   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1868   status = pthread_mutexattr_init(&mutex_attr);
1869   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1870   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1871   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1872   status = pthread_condattr_init(&cond_attr);
1873   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1874   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1875   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1876 #if USE_ITT_BUILD
1877   __kmp_itt_initialize();
1878 #endif /* USE_ITT_BUILD */
1879
1880   __kmp_init_runtime = TRUE;
1881 }
1882
1883 void __kmp_runtime_destroy(void) {
1884   int status;
1885
1886   if (!__kmp_init_runtime) {
1887     return; // Nothing to do.
1888   }
1889
1890 #if USE_ITT_BUILD
1891   __kmp_itt_destroy();
1892 #endif /* USE_ITT_BUILD */
1893
1894   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1895   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1896
1897   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1898   if (status != 0 && status != EBUSY) {
1899     KMP_SYSFAIL("pthread_mutex_destroy", status);
1900   }
1901   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1902   if (status != 0 && status != EBUSY) {
1903     KMP_SYSFAIL("pthread_cond_destroy", status);
1904   }
1905 #if KMP_AFFINITY_SUPPORTED
1906   __kmp_affinity_uninitialize();
1907 #endif
1908
1909   __kmp_init_runtime = FALSE;
1910 }
1911
1912 /* Put the thread to sleep for a time period */
1913 /* NOTE: not currently used anywhere */
1914 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1915
1916 /* Calculate the elapsed wall clock time for the user */
1917 void __kmp_elapsed(double *t) {
1918   int status;
1919 #ifdef FIX_SGI_CLOCK
1920   struct timespec ts;
1921
1922   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1923   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1924   *t =
1925       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1926 #else
1927   struct timeval tv;
1928
1929   status = gettimeofday(&tv, NULL);
1930   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1931   *t =
1932       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1933 #endif
1934 }
1935
1936 /* Calculate the elapsed wall clock tick for the user */
1937 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1938
1939 /* Return the current time stamp in nsec */
1940 kmp_uint64 __kmp_now_nsec() {
1941   struct timeval t;
1942   gettimeofday(&t, NULL);
1943   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1944                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1945   return nsec;
1946 }
1947
1948 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1949 /* Measure clock ticks per millisecond */
1950 void __kmp_initialize_system_tick() {
1951   kmp_uint64 now, nsec2, diff;
1952   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1953   kmp_uint64 nsec = __kmp_now_nsec();
1954   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1955   while ((now = __kmp_hardware_timestamp()) < goal)
1956     ;
1957   nsec2 = __kmp_now_nsec();
1958   diff = nsec2 - nsec;
1959   if (diff > 0) {
1960     kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
1961     if (tpms > 0)
1962       __kmp_ticks_per_msec = tpms;
1963   }
1964 }
1965 #endif
1966
1967 /* Determine whether the given address is mapped into the current address
1968    space. */
1969
1970 int __kmp_is_address_mapped(void *addr) {
1971
1972   int found = 0;
1973   int rc;
1974
1975 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD
1976
1977   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
1978      ranges mapped into the address space. */
1979
1980   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1981   FILE *file = NULL;
1982
1983   file = fopen(name, "r");
1984   KMP_ASSERT(file != NULL);
1985
1986   for (;;) {
1987
1988     void *beginning = NULL;
1989     void *ending = NULL;
1990     char perms[5];
1991
1992     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1993     if (rc == EOF) {
1994       break;
1995     }
1996     KMP_ASSERT(rc == 3 &&
1997                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1998
1999     // Ending address is not included in the region, but beginning is.
2000     if ((addr >= beginning) && (addr < ending)) {
2001       perms[2] = 0; // 3th and 4th character does not matter.
2002       if (strcmp(perms, "rw") == 0) {
2003         // Memory we are looking for should be readable and writable.
2004         found = 1;
2005       }
2006       break;
2007     }
2008   }
2009
2010   // Free resources.
2011   fclose(file);
2012   KMP_INTERNAL_FREE(name);
2013
2014 #elif KMP_OS_DARWIN
2015
2016   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2017      using vm interface. */
2018
2019   int buffer;
2020   vm_size_t count;
2021   rc = vm_read_overwrite(
2022       mach_task_self(), // Task to read memory of.
2023       (vm_address_t)(addr), // Address to read from.
2024       1, // Number of bytes to be read.
2025       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2026       &count // Address of var to save number of read bytes in.
2027       );
2028   if (rc == 0) {
2029     // Memory successfully read.
2030     found = 1;
2031   }
2032
2033 #elif KMP_OS_NETBSD
2034
2035   int mib[5];
2036   mib[0] = CTL_VM;
2037   mib[1] = VM_PROC;
2038   mib[2] = VM_PROC_MAP;
2039   mib[3] = getpid();
2040   mib[4] = sizeof(struct kinfo_vmentry);
2041
2042   size_t size;
2043   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2044   KMP_ASSERT(!rc);
2045   KMP_ASSERT(size);
2046
2047   size = size * 4 / 3;
2048   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2049   KMP_ASSERT(kiv);
2050
2051   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2052   KMP_ASSERT(!rc);
2053   KMP_ASSERT(size);
2054
2055   for (size_t i = 0; i < size; i++) {
2056     if (kiv[i].kve_start >= (uint64_t)addr &&
2057         kiv[i].kve_end <= (uint64_t)addr) {
2058       found = 1;
2059       break;
2060     }
2061   }
2062   KMP_INTERNAL_FREE(kiv);
2063 #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD
2064
2065   // FIXME(DragonFly, OpenBSD): Implement this
2066   found = 1;
2067
2068 #else
2069
2070 #error "Unknown or unsupported OS"
2071
2072 #endif
2073
2074   return found;
2075
2076 } // __kmp_is_address_mapped
2077
2078 #ifdef USE_LOAD_BALANCE
2079
2080 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2081
2082 // The function returns the rounded value of the system load average
2083 // during given time interval which depends on the value of
2084 // __kmp_load_balance_interval variable (default is 60 sec, other values
2085 // may be 300 sec or 900 sec).
2086 // It returns -1 in case of error.
2087 int __kmp_get_load_balance(int max) {
2088   double averages[3];
2089   int ret_avg = 0;
2090
2091   int res = getloadavg(averages, 3);
2092
2093   // Check __kmp_load_balance_interval to determine which of averages to use.
2094   // getloadavg() may return the number of samples less than requested that is
2095   // less than 3.
2096   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2097     ret_avg = averages[0]; // 1 min
2098   } else if ((__kmp_load_balance_interval >= 180 &&
2099               __kmp_load_balance_interval < 600) &&
2100              (res >= 2)) {
2101     ret_avg = averages[1]; // 5 min
2102   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2103     ret_avg = averages[2]; // 15 min
2104   } else { // Error occurred
2105     return -1;
2106   }
2107
2108   return ret_avg;
2109 }
2110
2111 #else // Linux* OS
2112
2113 // The fuction returns number of running (not sleeping) threads, or -1 in case
2114 // of error. Error could be reported if Linux* OS kernel too old (without
2115 // "/proc" support). Counting running threads stops if max running threads
2116 // encountered.
2117 int __kmp_get_load_balance(int max) {
2118   static int permanent_error = 0;
2119   static int glb_running_threads = 0; // Saved count of the running threads for
2120   // the thread balance algortihm
2121   static double glb_call_time = 0; /* Thread balance algorithm call time */
2122
2123   int running_threads = 0; // Number of running threads in the system.
2124
2125   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2126   struct dirent *proc_entry = NULL;
2127
2128   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2129   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2130   struct dirent *task_entry = NULL;
2131   int task_path_fixed_len;
2132
2133   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2134   int stat_file = -1;
2135   int stat_path_fixed_len;
2136
2137   int total_processes = 0; // Total number of processes in system.
2138   int total_threads = 0; // Total number of threads in system.
2139
2140   double call_time = 0.0;
2141
2142   __kmp_str_buf_init(&task_path);
2143   __kmp_str_buf_init(&stat_path);
2144
2145   __kmp_elapsed(&call_time);
2146
2147   if (glb_call_time &&
2148       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2149     running_threads = glb_running_threads;
2150     goto finish;
2151   }
2152
2153   glb_call_time = call_time;
2154
2155   // Do not spend time on scanning "/proc/" if we have a permanent error.
2156   if (permanent_error) {
2157     running_threads = -1;
2158     goto finish;
2159   }
2160
2161   if (max <= 0) {
2162     max = INT_MAX;
2163   }
2164
2165   // Open "/proc/" directory.
2166   proc_dir = opendir("/proc");
2167   if (proc_dir == NULL) {
2168     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2169     // error now and in subsequent calls.
2170     running_threads = -1;
2171     permanent_error = 1;
2172     goto finish;
2173   }
2174
2175   // Initialize fixed part of task_path. This part will not change.
2176   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2177   task_path_fixed_len = task_path.used; // Remember number of used characters.
2178
2179   proc_entry = readdir(proc_dir);
2180   while (proc_entry != NULL) {
2181     // Proc entry is a directory and name starts with a digit. Assume it is a
2182     // process' directory.
2183     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2184
2185       ++total_processes;
2186       // Make sure init process is the very first in "/proc", so we can replace
2187       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2188       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2189       // true (where "=>" is implication). Since C++ does not have => operator,
2190       // let us replace it with its equivalent: a => b == ! a || b.
2191       KMP_DEBUG_ASSERT(total_processes != 1 ||
2192                        strcmp(proc_entry->d_name, "1") == 0);
2193
2194       // Construct task_path.
2195       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2196       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2197                         KMP_STRLEN(proc_entry->d_name));
2198       __kmp_str_buf_cat(&task_path, "/task", 5);
2199
2200       task_dir = opendir(task_path.str);
2201       if (task_dir == NULL) {
2202         // Process can finish between reading "/proc/" directory entry and
2203         // opening process' "task/" directory. So, in general case we should not
2204         // complain, but have to skip this process and read the next one. But on
2205         // systems with no "task/" support we will spend lot of time to scan
2206         // "/proc/" tree again and again without any benefit. "init" process
2207         // (its pid is 1) should exist always, so, if we cannot open
2208         // "/proc/1/task/" directory, it means "task/" is not supported by
2209         // kernel. Report an error now and in the future.
2210         if (strcmp(proc_entry->d_name, "1") == 0) {
2211           running_threads = -1;
2212           permanent_error = 1;
2213           goto finish;
2214         }
2215       } else {
2216         // Construct fixed part of stat file path.
2217         __kmp_str_buf_clear(&stat_path);
2218         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2219         __kmp_str_buf_cat(&stat_path, "/", 1);
2220         stat_path_fixed_len = stat_path.used;
2221
2222         task_entry = readdir(task_dir);
2223         while (task_entry != NULL) {
2224           // It is a directory and name starts with a digit.
2225           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2226             ++total_threads;
2227
2228             // Consruct complete stat file path. Easiest way would be:
2229             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2230             //  task_entry->d_name );
2231             // but seriae of __kmp_str_buf_cat works a bit faster.
2232             stat_path.used =
2233                 stat_path_fixed_len; // Reset stat path to its fixed part.
2234             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2235                               KMP_STRLEN(task_entry->d_name));
2236             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2237
2238             // Note: Low-level API (open/read/close) is used. High-level API
2239             // (fopen/fclose)  works ~ 30 % slower.
2240             stat_file = open(stat_path.str, O_RDONLY);
2241             if (stat_file == -1) {
2242               // We cannot report an error because task (thread) can terminate
2243               // just before reading this file.
2244             } else {
2245               /* Content of "stat" file looks like:
2246                  24285 (program) S ...
2247
2248                  It is a single line (if program name does not include funny
2249                  symbols). First number is a thread id, then name of executable
2250                  file name in paretheses, then state of the thread. We need just
2251                  thread state.
2252
2253                  Good news: Length of program name is 15 characters max. Longer
2254                  names are truncated.
2255
2256                  Thus, we need rather short buffer: 15 chars for program name +
2257                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2258
2259                  Bad news: Program name may contain special symbols like space,
2260                  closing parenthesis, or even new line. This makes parsing
2261                  "stat" file not 100 % reliable. In case of fanny program names
2262                  parsing may fail (report incorrect thread state).
2263
2264                  Parsing "status" file looks more promissing (due to different
2265                  file structure and escaping special symbols) but reading and
2266                  parsing of "status" file works slower.
2267                   -- ln
2268               */
2269               char buffer[65];
2270               int len;
2271               len = read(stat_file, buffer, sizeof(buffer) - 1);
2272               if (len >= 0) {
2273                 buffer[len] = 0;
2274                 // Using scanf:
2275                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2276                 // looks very nice, but searching for a closing parenthesis
2277                 // works a bit faster.
2278                 char *close_parent = strstr(buffer, ") ");
2279                 if (close_parent != NULL) {
2280                   char state = *(close_parent + 2);
2281                   if (state == 'R') {
2282                     ++running_threads;
2283                     if (running_threads >= max) {
2284                       goto finish;
2285                     }
2286                   }
2287                 }
2288               }
2289               close(stat_file);
2290               stat_file = -1;
2291             }
2292           }
2293           task_entry = readdir(task_dir);
2294         }
2295         closedir(task_dir);
2296         task_dir = NULL;
2297       }
2298     }
2299     proc_entry = readdir(proc_dir);
2300   }
2301
2302   // There _might_ be a timing hole where the thread executing this
2303   // code get skipped in the load balance, and running_threads is 0.
2304   // Assert in the debug builds only!!!
2305   KMP_DEBUG_ASSERT(running_threads > 0);
2306   if (running_threads <= 0) {
2307     running_threads = 1;
2308   }
2309
2310 finish: // Clean up and exit.
2311   if (proc_dir != NULL) {
2312     closedir(proc_dir);
2313   }
2314   __kmp_str_buf_free(&task_path);
2315   if (task_dir != NULL) {
2316     closedir(task_dir);
2317   }
2318   __kmp_str_buf_free(&stat_path);
2319   if (stat_file != -1) {
2320     close(stat_file);
2321   }
2322
2323   glb_running_threads = running_threads;
2324
2325   return running_threads;
2326
2327 } // __kmp_get_load_balance
2328
2329 #endif // KMP_OS_DARWIN
2330
2331 #endif // USE_LOAD_BALANCE
2332
2333 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2334       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2335
2336 // we really only need the case with 1 argument, because CLANG always build
2337 // a struct of pointers to shared variables referenced in the outlined function
2338 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2339                            void *p_argv[]
2340 #if OMPT_SUPPORT
2341                            ,
2342                            void **exit_frame_ptr
2343 #endif
2344                            ) {
2345 #if OMPT_SUPPORT
2346   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2347 #endif
2348
2349   switch (argc) {
2350   default:
2351     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2352     fflush(stderr);
2353     exit(-1);
2354   case 0:
2355     (*pkfn)(&gtid, &tid);
2356     break;
2357   case 1:
2358     (*pkfn)(&gtid, &tid, p_argv[0]);
2359     break;
2360   case 2:
2361     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2362     break;
2363   case 3:
2364     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2365     break;
2366   case 4:
2367     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2368     break;
2369   case 5:
2370     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2371     break;
2372   case 6:
2373     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2374             p_argv[5]);
2375     break;
2376   case 7:
2377     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2378             p_argv[5], p_argv[6]);
2379     break;
2380   case 8:
2381     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2382             p_argv[5], p_argv[6], p_argv[7]);
2383     break;
2384   case 9:
2385     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2386             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2387     break;
2388   case 10:
2389     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2390             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2391     break;
2392   case 11:
2393     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2394             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2395     break;
2396   case 12:
2397     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2398             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2399             p_argv[11]);
2400     break;
2401   case 13:
2402     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2403             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2404             p_argv[11], p_argv[12]);
2405     break;
2406   case 14:
2407     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2408             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2409             p_argv[11], p_argv[12], p_argv[13]);
2410     break;
2411   case 15:
2412     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2413             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2414             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2415     break;
2416   }
2417
2418 #if OMPT_SUPPORT
2419   *exit_frame_ptr = 0;
2420 #endif
2421
2422   return 1;
2423 }
2424
2425 #endif
2426
2427 // end of file //