]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/ntp/ntpd/ntp_control.c
MFH
[FreeBSD/FreeBSD.git] / contrib / ntp / ntpd / ntp_control.c
1 /*
2  * ntp_control.c - respond to mode 6 control messages and send async
3  *                 traps.  Provides service to ntpq and others.
4  */
5
6 /*
7  * $FreeBSD: projects/release-pkg/contrib/ntp/ntpd/ntp_control.c 277386 2015-01-19 16:15:12Z gjb $
8  */
9
10 #ifdef HAVE_CONFIG_H
11 # include <config.h>
12 #endif
13
14 #include <stdio.h>
15 #include <ctype.h>
16 #include <signal.h>
17 #include <sys/stat.h>
18 #ifdef HAVE_NETINET_IN_H
19 # include <netinet/in.h>
20 #endif
21 #include <arpa/inet.h>
22
23 #include "ntpd.h"
24 #include "ntp_io.h"
25 #include "ntp_refclock.h"
26 #include "ntp_control.h"
27 #include "ntp_unixtime.h"
28 #include "ntp_stdlib.h"
29 #include "ntp_config.h"
30 #include "ntp_crypto.h"
31 #include "ntp_assert.h"
32 #include "ntp_leapsec.h"
33 #include "ntp_md5.h"    /* provides OpenSSL digest API */
34 #include "lib_strbuf.h"
35 #include <rc_cmdlength.h>
36 #ifdef KERNEL_PLL
37 # include "ntp_syscall.h"
38 #endif
39
40
41 /*
42  * Structure to hold request procedure information
43  */
44
45 struct ctl_proc {
46         short control_code;             /* defined request code */
47 #define NO_REQUEST      (-1)
48         u_short flags;                  /* flags word */
49         /* Only one flag.  Authentication required or not. */
50 #define NOAUTH  0
51 #define AUTH    1
52         void (*handler) (struct recvbuf *, int); /* handle request */
53 };
54
55
56 /*
57  * Request processing routines
58  */
59 static  void    ctl_error       (u_char);
60 #ifdef REFCLOCK
61 static  u_short ctlclkstatus    (struct refclockstat *);
62 #endif
63 static  void    ctl_flushpkt    (u_char);
64 static  void    ctl_putdata     (const char *, unsigned int, int);
65 static  void    ctl_putstr      (const char *, const char *, size_t);
66 static  void    ctl_putdblf     (const char *, int, int, double);
67 #define ctl_putdbl(tag, d)      ctl_putdblf(tag, 1, 3, d)
68 #define ctl_putdbl6(tag, d)     ctl_putdblf(tag, 1, 6, d)
69 #define ctl_putsfp(tag, sfp)    ctl_putdblf(tag, 0, -1, \
70                                             FPTOD(sfp))
71 static  void    ctl_putuint     (const char *, u_long);
72 static  void    ctl_puthex      (const char *, u_long);
73 static  void    ctl_putint      (const char *, long);
74 static  void    ctl_putts       (const char *, l_fp *);
75 static  void    ctl_putadr      (const char *, u_int32,
76                                  sockaddr_u *);
77 static  void    ctl_putrefid    (const char *, u_int32);
78 static  void    ctl_putarray    (const char *, double *, int);
79 static  void    ctl_putsys      (int);
80 static  void    ctl_putpeer     (int, struct peer *);
81 static  void    ctl_putfs       (const char *, tstamp_t);
82 #ifdef REFCLOCK
83 static  void    ctl_putclock    (int, struct refclockstat *, int);
84 #endif  /* REFCLOCK */
85 static  const struct ctl_var *ctl_getitem(const struct ctl_var *,
86                                           char **);
87 static  u_short count_var       (const struct ctl_var *);
88 static  void    control_unspec  (struct recvbuf *, int);
89 static  void    read_status     (struct recvbuf *, int);
90 static  void    read_sysvars    (void);
91 static  void    read_peervars   (void);
92 static  void    read_variables  (struct recvbuf *, int);
93 static  void    write_variables (struct recvbuf *, int);
94 static  void    read_clockstatus(struct recvbuf *, int);
95 static  void    write_clockstatus(struct recvbuf *, int);
96 static  void    set_trap        (struct recvbuf *, int);
97 static  void    save_config     (struct recvbuf *, int);
98 static  void    configure       (struct recvbuf *, int);
99 static  void    send_mru_entry  (mon_entry *, int);
100 static  void    send_random_tag_value(int);
101 static  void    read_mru_list   (struct recvbuf *, int);
102 static  void    send_ifstats_entry(endpt *, u_int);
103 static  void    read_ifstats    (struct recvbuf *);
104 static  void    sockaddrs_from_restrict_u(sockaddr_u *, sockaddr_u *,
105                                           restrict_u *, int);
106 static  void    send_restrict_entry(restrict_u *, int, u_int);
107 static  void    send_restrict_list(restrict_u *, int, u_int *);
108 static  void    read_addr_restrictions(struct recvbuf *);
109 static  void    read_ordlist    (struct recvbuf *, int);
110 static  u_int32 derive_nonce    (sockaddr_u *, u_int32, u_int32);
111 static  void    generate_nonce  (struct recvbuf *, char *, size_t);
112 static  int     validate_nonce  (const char *, struct recvbuf *);
113 static  void    req_nonce       (struct recvbuf *, int);
114 static  void    unset_trap      (struct recvbuf *, int);
115 static  struct ctl_trap *ctlfindtrap(sockaddr_u *,
116                                      struct interface *);
117
118 static const struct ctl_proc control_codes[] = {
119         { CTL_OP_UNSPEC,                NOAUTH, control_unspec },
120         { CTL_OP_READSTAT,              NOAUTH, read_status },
121         { CTL_OP_READVAR,               NOAUTH, read_variables },
122         { CTL_OP_WRITEVAR,              AUTH,   write_variables },
123         { CTL_OP_READCLOCK,             NOAUTH, read_clockstatus },
124         { CTL_OP_WRITECLOCK,            NOAUTH, write_clockstatus },
125         { CTL_OP_SETTRAP,               NOAUTH, set_trap },
126         { CTL_OP_CONFIGURE,             AUTH,   configure },
127         { CTL_OP_SAVECONFIG,            AUTH,   save_config },
128         { CTL_OP_READ_MRU,              NOAUTH, read_mru_list },
129         { CTL_OP_READ_ORDLIST_A,        AUTH,   read_ordlist },
130         { CTL_OP_REQ_NONCE,             NOAUTH, req_nonce },
131         { CTL_OP_UNSETTRAP,             NOAUTH, unset_trap },
132         { NO_REQUEST,                   0,      NULL }
133 };
134
135 /*
136  * System variables we understand
137  */
138 #define CS_LEAP                 1
139 #define CS_STRATUM              2
140 #define CS_PRECISION            3
141 #define CS_ROOTDELAY            4
142 #define CS_ROOTDISPERSION       5
143 #define CS_REFID                6
144 #define CS_REFTIME              7
145 #define CS_POLL                 8
146 #define CS_PEERID               9
147 #define CS_OFFSET               10
148 #define CS_DRIFT                11
149 #define CS_JITTER               12
150 #define CS_ERROR                13
151 #define CS_CLOCK                14
152 #define CS_PROCESSOR            15
153 #define CS_SYSTEM               16
154 #define CS_VERSION              17
155 #define CS_STABIL               18
156 #define CS_VARLIST              19
157 #define CS_TAI                  20
158 #define CS_LEAPTAB              21
159 #define CS_LEAPEND              22
160 #define CS_RATE                 23
161 #define CS_MRU_ENABLED          24
162 #define CS_MRU_DEPTH            25
163 #define CS_MRU_DEEPEST          26
164 #define CS_MRU_MINDEPTH         27
165 #define CS_MRU_MAXAGE           28
166 #define CS_MRU_MAXDEPTH         29
167 #define CS_MRU_MEM              30
168 #define CS_MRU_MAXMEM           31
169 #define CS_SS_UPTIME            32
170 #define CS_SS_RESET             33
171 #define CS_SS_RECEIVED          34
172 #define CS_SS_THISVER           35
173 #define CS_SS_OLDVER            36
174 #define CS_SS_BADFORMAT         37
175 #define CS_SS_BADAUTH           38
176 #define CS_SS_DECLINED          39
177 #define CS_SS_RESTRICTED        40
178 #define CS_SS_LIMITED           41
179 #define CS_SS_KODSENT           42
180 #define CS_SS_PROCESSED         43
181 #define CS_PEERADR              44
182 #define CS_PEERMODE             45
183 #define CS_BCASTDELAY           46
184 #define CS_AUTHDELAY            47
185 #define CS_AUTHKEYS             48
186 #define CS_AUTHFREEK            49
187 #define CS_AUTHKLOOKUPS         50
188 #define CS_AUTHKNOTFOUND        51
189 #define CS_AUTHKUNCACHED        52
190 #define CS_AUTHKEXPIRED         53
191 #define CS_AUTHENCRYPTS         54
192 #define CS_AUTHDECRYPTS         55
193 #define CS_AUTHRESET            56
194 #define CS_K_OFFSET             57
195 #define CS_K_FREQ               58
196 #define CS_K_MAXERR             59
197 #define CS_K_ESTERR             60
198 #define CS_K_STFLAGS            61
199 #define CS_K_TIMECONST          62
200 #define CS_K_PRECISION          63
201 #define CS_K_FREQTOL            64
202 #define CS_K_PPS_FREQ           65
203 #define CS_K_PPS_STABIL         66
204 #define CS_K_PPS_JITTER         67
205 #define CS_K_PPS_CALIBDUR       68
206 #define CS_K_PPS_CALIBS         69
207 #define CS_K_PPS_CALIBERRS      70
208 #define CS_K_PPS_JITEXC         71
209 #define CS_K_PPS_STBEXC         72
210 #define CS_KERN_FIRST           CS_K_OFFSET
211 #define CS_KERN_LAST            CS_K_PPS_STBEXC
212 #define CS_IOSTATS_RESET        73
213 #define CS_TOTAL_RBUF           74
214 #define CS_FREE_RBUF            75
215 #define CS_USED_RBUF            76
216 #define CS_RBUF_LOWATER         77
217 #define CS_IO_DROPPED           78
218 #define CS_IO_IGNORED           79
219 #define CS_IO_RECEIVED          80
220 #define CS_IO_SENT              81
221 #define CS_IO_SENDFAILED        82
222 #define CS_IO_WAKEUPS           83
223 #define CS_IO_GOODWAKEUPS       84
224 #define CS_TIMERSTATS_RESET     85
225 #define CS_TIMER_OVERRUNS       86
226 #define CS_TIMER_XMTS           87
227 #define CS_FUZZ                 88
228 #define CS_WANDER_THRESH        89
229 #define CS_LEAPSMEARINTV        90
230 #define CS_LEAPSMEAROFFS        91
231 #define CS_MAX_NOAUTOKEY        CS_LEAPSMEAROFFS
232 #ifdef AUTOKEY
233 #define CS_FLAGS                (1 + CS_MAX_NOAUTOKEY)
234 #define CS_HOST                 (2 + CS_MAX_NOAUTOKEY)
235 #define CS_PUBLIC               (3 + CS_MAX_NOAUTOKEY)
236 #define CS_CERTIF               (4 + CS_MAX_NOAUTOKEY)
237 #define CS_SIGNATURE            (5 + CS_MAX_NOAUTOKEY)
238 #define CS_REVTIME              (6 + CS_MAX_NOAUTOKEY)
239 #define CS_IDENT                (7 + CS_MAX_NOAUTOKEY)
240 #define CS_DIGEST               (8 + CS_MAX_NOAUTOKEY)
241 #define CS_MAXCODE              CS_DIGEST
242 #else   /* !AUTOKEY follows */
243 #define CS_MAXCODE              CS_MAX_NOAUTOKEY
244 #endif  /* !AUTOKEY */
245
246 /*
247  * Peer variables we understand
248  */
249 #define CP_CONFIG               1
250 #define CP_AUTHENABLE           2
251 #define CP_AUTHENTIC            3
252 #define CP_SRCADR               4
253 #define CP_SRCPORT              5
254 #define CP_DSTADR               6
255 #define CP_DSTPORT              7
256 #define CP_LEAP                 8
257 #define CP_HMODE                9
258 #define CP_STRATUM              10
259 #define CP_PPOLL                11
260 #define CP_HPOLL                12
261 #define CP_PRECISION            13
262 #define CP_ROOTDELAY            14
263 #define CP_ROOTDISPERSION       15
264 #define CP_REFID                16
265 #define CP_REFTIME              17
266 #define CP_ORG                  18
267 #define CP_REC                  19
268 #define CP_XMT                  20
269 #define CP_REACH                21
270 #define CP_UNREACH              22
271 #define CP_TIMER                23
272 #define CP_DELAY                24
273 #define CP_OFFSET               25
274 #define CP_JITTER               26
275 #define CP_DISPERSION           27
276 #define CP_KEYID                28
277 #define CP_FILTDELAY            29
278 #define CP_FILTOFFSET           30
279 #define CP_PMODE                31
280 #define CP_RECEIVED             32
281 #define CP_SENT                 33
282 #define CP_FILTERROR            34
283 #define CP_FLASH                35
284 #define CP_TTL                  36
285 #define CP_VARLIST              37
286 #define CP_IN                   38
287 #define CP_OUT                  39
288 #define CP_RATE                 40
289 #define CP_BIAS                 41
290 #define CP_SRCHOST              42
291 #define CP_TIMEREC              43
292 #define CP_TIMEREACH            44
293 #define CP_BADAUTH              45
294 #define CP_BOGUSORG             46
295 #define CP_OLDPKT               47
296 #define CP_SELDISP              48
297 #define CP_SELBROKEN            49
298 #define CP_CANDIDATE            50
299 #define CP_MAX_NOAUTOKEY        CP_CANDIDATE
300 #ifdef AUTOKEY
301 #define CP_FLAGS                (1 + CP_MAX_NOAUTOKEY)
302 #define CP_HOST                 (2 + CP_MAX_NOAUTOKEY)
303 #define CP_VALID                (3 + CP_MAX_NOAUTOKEY)
304 #define CP_INITSEQ              (4 + CP_MAX_NOAUTOKEY)
305 #define CP_INITKEY              (5 + CP_MAX_NOAUTOKEY)
306 #define CP_INITTSP              (6 + CP_MAX_NOAUTOKEY)
307 #define CP_SIGNATURE            (7 + CP_MAX_NOAUTOKEY)
308 #define CP_IDENT                (8 + CP_MAX_NOAUTOKEY)
309 #define CP_MAXCODE              CP_IDENT
310 #else   /* !AUTOKEY follows */
311 #define CP_MAXCODE              CP_MAX_NOAUTOKEY
312 #endif  /* !AUTOKEY */
313
314 /*
315  * Clock variables we understand
316  */
317 #define CC_TYPE         1
318 #define CC_TIMECODE     2
319 #define CC_POLL         3
320 #define CC_NOREPLY      4
321 #define CC_BADFORMAT    5
322 #define CC_BADDATA      6
323 #define CC_FUDGETIME1   7
324 #define CC_FUDGETIME2   8
325 #define CC_FUDGEVAL1    9
326 #define CC_FUDGEVAL2    10
327 #define CC_FLAGS        11
328 #define CC_DEVICE       12
329 #define CC_VARLIST      13
330 #define CC_MAXCODE      CC_VARLIST
331
332 /*
333  * System variable values. The array can be indexed by the variable
334  * index to find the textual name.
335  */
336 static const struct ctl_var sys_var[] = {
337         { 0,            PADDING, "" },          /* 0 */
338         { CS_LEAP,      RW, "leap" },           /* 1 */
339         { CS_STRATUM,   RO, "stratum" },        /* 2 */
340         { CS_PRECISION, RO, "precision" },      /* 3 */
341         { CS_ROOTDELAY, RO, "rootdelay" },      /* 4 */
342         { CS_ROOTDISPERSION, RO, "rootdisp" },  /* 5 */
343         { CS_REFID,     RO, "refid" },          /* 6 */
344         { CS_REFTIME,   RO, "reftime" },        /* 7 */
345         { CS_POLL,      RO, "tc" },             /* 8 */
346         { CS_PEERID,    RO, "peer" },           /* 9 */
347         { CS_OFFSET,    RO, "offset" },         /* 10 */
348         { CS_DRIFT,     RO, "frequency" },      /* 11 */
349         { CS_JITTER,    RO, "sys_jitter" },     /* 12 */
350         { CS_ERROR,     RO, "clk_jitter" },     /* 13 */
351         { CS_CLOCK,     RO, "clock" },          /* 14 */
352         { CS_PROCESSOR, RO, "processor" },      /* 15 */
353         { CS_SYSTEM,    RO, "system" },         /* 16 */
354         { CS_VERSION,   RO, "version" },        /* 17 */
355         { CS_STABIL,    RO, "clk_wander" },     /* 18 */
356         { CS_VARLIST,   RO, "sys_var_list" },   /* 19 */
357         { CS_TAI,       RO, "tai" },            /* 20 */
358         { CS_LEAPTAB,   RO, "leapsec" },        /* 21 */
359         { CS_LEAPEND,   RO, "expire" },         /* 22 */
360         { CS_RATE,      RO, "mintc" },          /* 23 */
361         { CS_MRU_ENABLED,       RO, "mru_enabled" },    /* 24 */
362         { CS_MRU_DEPTH,         RO, "mru_depth" },      /* 25 */
363         { CS_MRU_DEEPEST,       RO, "mru_deepest" },    /* 26 */
364         { CS_MRU_MINDEPTH,      RO, "mru_mindepth" },   /* 27 */
365         { CS_MRU_MAXAGE,        RO, "mru_maxage" },     /* 28 */
366         { CS_MRU_MAXDEPTH,      RO, "mru_maxdepth" },   /* 29 */
367         { CS_MRU_MEM,           RO, "mru_mem" },        /* 30 */
368         { CS_MRU_MAXMEM,        RO, "mru_maxmem" },     /* 31 */
369         { CS_SS_UPTIME,         RO, "ss_uptime" },      /* 32 */
370         { CS_SS_RESET,          RO, "ss_reset" },       /* 33 */
371         { CS_SS_RECEIVED,       RO, "ss_received" },    /* 34 */
372         { CS_SS_THISVER,        RO, "ss_thisver" },     /* 35 */
373         { CS_SS_OLDVER,         RO, "ss_oldver" },      /* 36 */
374         { CS_SS_BADFORMAT,      RO, "ss_badformat" },   /* 37 */
375         { CS_SS_BADAUTH,        RO, "ss_badauth" },     /* 38 */
376         { CS_SS_DECLINED,       RO, "ss_declined" },    /* 39 */
377         { CS_SS_RESTRICTED,     RO, "ss_restricted" },  /* 40 */
378         { CS_SS_LIMITED,        RO, "ss_limited" },     /* 41 */
379         { CS_SS_KODSENT,        RO, "ss_kodsent" },     /* 42 */
380         { CS_SS_PROCESSED,      RO, "ss_processed" },   /* 43 */
381         { CS_PEERADR,           RO, "peeradr" },        /* 44 */
382         { CS_PEERMODE,          RO, "peermode" },       /* 45 */
383         { CS_BCASTDELAY,        RO, "bcastdelay" },     /* 46 */
384         { CS_AUTHDELAY,         RO, "authdelay" },      /* 47 */
385         { CS_AUTHKEYS,          RO, "authkeys" },       /* 48 */
386         { CS_AUTHFREEK,         RO, "authfreek" },      /* 49 */
387         { CS_AUTHKLOOKUPS,      RO, "authklookups" },   /* 50 */
388         { CS_AUTHKNOTFOUND,     RO, "authknotfound" },  /* 51 */
389         { CS_AUTHKUNCACHED,     RO, "authkuncached" },  /* 52 */
390         { CS_AUTHKEXPIRED,      RO, "authkexpired" },   /* 53 */
391         { CS_AUTHENCRYPTS,      RO, "authencrypts" },   /* 54 */
392         { CS_AUTHDECRYPTS,      RO, "authdecrypts" },   /* 55 */
393         { CS_AUTHRESET,         RO, "authreset" },      /* 56 */
394         { CS_K_OFFSET,          RO, "koffset" },        /* 57 */
395         { CS_K_FREQ,            RO, "kfreq" },          /* 58 */
396         { CS_K_MAXERR,          RO, "kmaxerr" },        /* 59 */
397         { CS_K_ESTERR,          RO, "kesterr" },        /* 60 */
398         { CS_K_STFLAGS,         RO, "kstflags" },       /* 61 */
399         { CS_K_TIMECONST,       RO, "ktimeconst" },     /* 62 */
400         { CS_K_PRECISION,       RO, "kprecis" },        /* 63 */
401         { CS_K_FREQTOL,         RO, "kfreqtol" },       /* 64 */
402         { CS_K_PPS_FREQ,        RO, "kppsfreq" },       /* 65 */
403         { CS_K_PPS_STABIL,      RO, "kppsstab" },       /* 66 */
404         { CS_K_PPS_JITTER,      RO, "kppsjitter" },     /* 67 */
405         { CS_K_PPS_CALIBDUR,    RO, "kppscalibdur" },   /* 68 */
406         { CS_K_PPS_CALIBS,      RO, "kppscalibs" },     /* 69 */
407         { CS_K_PPS_CALIBERRS,   RO, "kppscaliberrs" },  /* 70 */
408         { CS_K_PPS_JITEXC,      RO, "kppsjitexc" },     /* 71 */
409         { CS_K_PPS_STBEXC,      RO, "kppsstbexc" },     /* 72 */
410         { CS_IOSTATS_RESET,     RO, "iostats_reset" },  /* 73 */
411         { CS_TOTAL_RBUF,        RO, "total_rbuf" },     /* 74 */
412         { CS_FREE_RBUF,         RO, "free_rbuf" },      /* 75 */
413         { CS_USED_RBUF,         RO, "used_rbuf" },      /* 76 */
414         { CS_RBUF_LOWATER,      RO, "rbuf_lowater" },   /* 77 */
415         { CS_IO_DROPPED,        RO, "io_dropped" },     /* 78 */
416         { CS_IO_IGNORED,        RO, "io_ignored" },     /* 79 */
417         { CS_IO_RECEIVED,       RO, "io_received" },    /* 80 */
418         { CS_IO_SENT,           RO, "io_sent" },        /* 81 */
419         { CS_IO_SENDFAILED,     RO, "io_sendfailed" },  /* 82 */
420         { CS_IO_WAKEUPS,        RO, "io_wakeups" },     /* 83 */
421         { CS_IO_GOODWAKEUPS,    RO, "io_goodwakeups" }, /* 84 */
422         { CS_TIMERSTATS_RESET,  RO, "timerstats_reset" },/* 85 */
423         { CS_TIMER_OVERRUNS,    RO, "timer_overruns" }, /* 86 */
424         { CS_TIMER_XMTS,        RO, "timer_xmts" },     /* 87 */
425         { CS_FUZZ,              RO, "fuzz" },           /* 88 */
426         { CS_WANDER_THRESH,     RO, "clk_wander_threshold" }, /* 89 */
427
428         { CS_LEAPSMEARINTV,     RO, "leapsmearinterval" },    /* 90 */
429         { CS_LEAPSMEAROFFS,     RO, "leapsmearoffset" },      /* 91 */
430
431 #ifdef AUTOKEY
432         { CS_FLAGS,     RO, "flags" },          /* 1 + CS_MAX_NOAUTOKEY */
433         { CS_HOST,      RO, "host" },           /* 2 + CS_MAX_NOAUTOKEY */
434         { CS_PUBLIC,    RO, "update" },         /* 3 + CS_MAX_NOAUTOKEY */
435         { CS_CERTIF,    RO, "cert" },           /* 4 + CS_MAX_NOAUTOKEY */
436         { CS_SIGNATURE, RO, "signature" },      /* 5 + CS_MAX_NOAUTOKEY */
437         { CS_REVTIME,   RO, "until" },          /* 6 + CS_MAX_NOAUTOKEY */
438         { CS_IDENT,     RO, "ident" },          /* 7 + CS_MAX_NOAUTOKEY */
439         { CS_DIGEST,    RO, "digest" },         /* 8 + CS_MAX_NOAUTOKEY */
440 #endif  /* AUTOKEY */
441         { 0,            EOV, "" }               /* 87/95 */
442 };
443
444 static struct ctl_var *ext_sys_var = NULL;
445
446 /*
447  * System variables we print by default (in fuzzball order,
448  * more-or-less)
449  */
450 static const u_char def_sys_var[] = {
451         CS_VERSION,
452         CS_PROCESSOR,
453         CS_SYSTEM,
454         CS_LEAP,
455         CS_STRATUM,
456         CS_PRECISION,
457         CS_ROOTDELAY,
458         CS_ROOTDISPERSION,
459         CS_REFID,
460         CS_REFTIME,
461         CS_CLOCK,
462         CS_PEERID,
463         CS_POLL,
464         CS_RATE,
465         CS_OFFSET,
466         CS_DRIFT,
467         CS_JITTER,
468         CS_ERROR,
469         CS_STABIL,
470         CS_TAI,
471         CS_LEAPTAB,
472         CS_LEAPEND,
473         CS_LEAPSMEARINTV,
474         CS_LEAPSMEAROFFS,
475 #ifdef AUTOKEY
476         CS_HOST,
477         CS_IDENT,
478         CS_FLAGS,
479         CS_DIGEST,
480         CS_SIGNATURE,
481         CS_PUBLIC,
482         CS_CERTIF,
483 #endif  /* AUTOKEY */
484         0
485 };
486
487
488 /*
489  * Peer variable list
490  */
491 static const struct ctl_var peer_var[] = {
492         { 0,            PADDING, "" },          /* 0 */
493         { CP_CONFIG,    RO, "config" },         /* 1 */
494         { CP_AUTHENABLE, RO,    "authenable" }, /* 2 */
495         { CP_AUTHENTIC, RO, "authentic" },      /* 3 */
496         { CP_SRCADR,    RO, "srcadr" },         /* 4 */
497         { CP_SRCPORT,   RO, "srcport" },        /* 5 */
498         { CP_DSTADR,    RO, "dstadr" },         /* 6 */
499         { CP_DSTPORT,   RO, "dstport" },        /* 7 */
500         { CP_LEAP,      RO, "leap" },           /* 8 */
501         { CP_HMODE,     RO, "hmode" },          /* 9 */
502         { CP_STRATUM,   RO, "stratum" },        /* 10 */
503         { CP_PPOLL,     RO, "ppoll" },          /* 11 */
504         { CP_HPOLL,     RO, "hpoll" },          /* 12 */
505         { CP_PRECISION, RO, "precision" },      /* 13 */
506         { CP_ROOTDELAY, RO, "rootdelay" },      /* 14 */
507         { CP_ROOTDISPERSION, RO, "rootdisp" },  /* 15 */
508         { CP_REFID,     RO, "refid" },          /* 16 */
509         { CP_REFTIME,   RO, "reftime" },        /* 17 */
510         { CP_ORG,       RO, "org" },            /* 18 */
511         { CP_REC,       RO, "rec" },            /* 19 */
512         { CP_XMT,       RO, "xleave" },         /* 20 */
513         { CP_REACH,     RO, "reach" },          /* 21 */
514         { CP_UNREACH,   RO, "unreach" },        /* 22 */
515         { CP_TIMER,     RO, "timer" },          /* 23 */
516         { CP_DELAY,     RO, "delay" },          /* 24 */
517         { CP_OFFSET,    RO, "offset" },         /* 25 */
518         { CP_JITTER,    RO, "jitter" },         /* 26 */
519         { CP_DISPERSION, RO, "dispersion" },    /* 27 */
520         { CP_KEYID,     RO, "keyid" },          /* 28 */
521         { CP_FILTDELAY, RO, "filtdelay" },      /* 29 */
522         { CP_FILTOFFSET, RO, "filtoffset" },    /* 30 */
523         { CP_PMODE,     RO, "pmode" },          /* 31 */
524         { CP_RECEIVED,  RO, "received"},        /* 32 */
525         { CP_SENT,      RO, "sent" },           /* 33 */
526         { CP_FILTERROR, RO, "filtdisp" },       /* 34 */
527         { CP_FLASH,     RO, "flash" },          /* 35 */
528         { CP_TTL,       RO, "ttl" },            /* 36 */
529         { CP_VARLIST,   RO, "peer_var_list" },  /* 37 */
530         { CP_IN,        RO, "in" },             /* 38 */
531         { CP_OUT,       RO, "out" },            /* 39 */
532         { CP_RATE,      RO, "headway" },        /* 40 */
533         { CP_BIAS,      RO, "bias" },           /* 41 */
534         { CP_SRCHOST,   RO, "srchost" },        /* 42 */
535         { CP_TIMEREC,   RO, "timerec" },        /* 43 */
536         { CP_TIMEREACH, RO, "timereach" },      /* 44 */
537         { CP_BADAUTH,   RO, "badauth" },        /* 45 */
538         { CP_BOGUSORG,  RO, "bogusorg" },       /* 46 */
539         { CP_OLDPKT,    RO, "oldpkt" },         /* 47 */
540         { CP_SELDISP,   RO, "seldisp" },        /* 48 */
541         { CP_SELBROKEN, RO, "selbroken" },      /* 49 */
542         { CP_CANDIDATE, RO, "candidate" },      /* 50 */
543 #ifdef AUTOKEY
544         { CP_FLAGS,     RO, "flags" },          /* 1 + CP_MAX_NOAUTOKEY */
545         { CP_HOST,      RO, "host" },           /* 2 + CP_MAX_NOAUTOKEY */
546         { CP_VALID,     RO, "valid" },          /* 3 + CP_MAX_NOAUTOKEY */
547         { CP_INITSEQ,   RO, "initsequence" },   /* 4 + CP_MAX_NOAUTOKEY */
548         { CP_INITKEY,   RO, "initkey" },        /* 5 + CP_MAX_NOAUTOKEY */
549         { CP_INITTSP,   RO, "timestamp" },      /* 6 + CP_MAX_NOAUTOKEY */
550         { CP_SIGNATURE, RO, "signature" },      /* 7 + CP_MAX_NOAUTOKEY */
551         { CP_IDENT,     RO, "ident" },          /* 8 + CP_MAX_NOAUTOKEY */
552 #endif  /* AUTOKEY */
553         { 0,            EOV, "" }               /* 50/58 */
554 };
555
556
557 /*
558  * Peer variables we print by default
559  */
560 static const u_char def_peer_var[] = {
561         CP_SRCADR,
562         CP_SRCPORT,
563         CP_SRCHOST,
564         CP_DSTADR,
565         CP_DSTPORT,
566         CP_OUT,
567         CP_IN,
568         CP_LEAP,
569         CP_STRATUM,
570         CP_PRECISION,
571         CP_ROOTDELAY,
572         CP_ROOTDISPERSION,
573         CP_REFID,
574         CP_REFTIME,
575         CP_REC,
576         CP_REACH,
577         CP_UNREACH,
578         CP_HMODE,
579         CP_PMODE,
580         CP_HPOLL,
581         CP_PPOLL,
582         CP_RATE,
583         CP_FLASH,
584         CP_KEYID,
585         CP_TTL,
586         CP_OFFSET,
587         CP_DELAY,
588         CP_DISPERSION,
589         CP_JITTER,
590         CP_XMT,
591         CP_BIAS,
592         CP_FILTDELAY,
593         CP_FILTOFFSET,
594         CP_FILTERROR,
595 #ifdef AUTOKEY
596         CP_HOST,
597         CP_FLAGS,
598         CP_SIGNATURE,
599         CP_VALID,
600         CP_INITSEQ,
601         CP_IDENT,
602 #endif  /* AUTOKEY */
603         0
604 };
605
606
607 #ifdef REFCLOCK
608 /*
609  * Clock variable list
610  */
611 static const struct ctl_var clock_var[] = {
612         { 0,            PADDING, "" },          /* 0 */
613         { CC_TYPE,      RO, "type" },           /* 1 */
614         { CC_TIMECODE,  RO, "timecode" },       /* 2 */
615         { CC_POLL,      RO, "poll" },           /* 3 */
616         { CC_NOREPLY,   RO, "noreply" },        /* 4 */
617         { CC_BADFORMAT, RO, "badformat" },      /* 5 */
618         { CC_BADDATA,   RO, "baddata" },        /* 6 */
619         { CC_FUDGETIME1, RO, "fudgetime1" },    /* 7 */
620         { CC_FUDGETIME2, RO, "fudgetime2" },    /* 8 */
621         { CC_FUDGEVAL1, RO, "stratum" },        /* 9 */
622         { CC_FUDGEVAL2, RO, "refid" },          /* 10 */
623         { CC_FLAGS,     RO, "flags" },          /* 11 */
624         { CC_DEVICE,    RO, "device" },         /* 12 */
625         { CC_VARLIST,   RO, "clock_var_list" }, /* 13 */
626         { 0,            EOV, ""  }              /* 14 */
627 };
628
629
630 /*
631  * Clock variables printed by default
632  */
633 static const u_char def_clock_var[] = {
634         CC_DEVICE,
635         CC_TYPE,        /* won't be output if device = known */
636         CC_TIMECODE,
637         CC_POLL,
638         CC_NOREPLY,
639         CC_BADFORMAT,
640         CC_BADDATA,
641         CC_FUDGETIME1,
642         CC_FUDGETIME2,
643         CC_FUDGEVAL1,
644         CC_FUDGEVAL2,
645         CC_FLAGS,
646         0
647 };
648 #endif
649
650 /*
651  * MRU string constants shared by send_mru_entry() and read_mru_list().
652  */
653 static const char addr_fmt[] =          "addr.%d";
654 static const char last_fmt[] =          "last.%d";
655
656 /*
657  * System and processor definitions.
658  */
659 #ifndef HAVE_UNAME
660 # ifndef STR_SYSTEM
661 #  define               STR_SYSTEM      "UNIX"
662 # endif
663 # ifndef STR_PROCESSOR
664 #  define               STR_PROCESSOR   "unknown"
665 # endif
666
667 static const char str_system[] = STR_SYSTEM;
668 static const char str_processor[] = STR_PROCESSOR;
669 #else
670 # include <sys/utsname.h>
671 static struct utsname utsnamebuf;
672 #endif /* HAVE_UNAME */
673
674 /*
675  * Trap structures. We only allow a few of these, and send a copy of
676  * each async message to each live one. Traps time out after an hour, it
677  * is up to the trap receipient to keep resetting it to avoid being
678  * timed out.
679  */
680 /* ntp_request.c */
681 struct ctl_trap ctl_traps[CTL_MAXTRAPS];
682 int num_ctl_traps;
683
684 /*
685  * Type bits, for ctlsettrap() call.
686  */
687 #define TRAP_TYPE_CONFIG        0       /* used by configuration code */
688 #define TRAP_TYPE_PRIO          1       /* priority trap */
689 #define TRAP_TYPE_NONPRIO       2       /* nonpriority trap */
690
691
692 /*
693  * List relating reference clock types to control message time sources.
694  * Index by the reference clock type. This list will only be used iff
695  * the reference clock driver doesn't set peer->sstclktype to something
696  * different than CTL_SST_TS_UNSPEC.
697  */
698 #ifdef REFCLOCK
699 static const u_char clocktypes[] = {
700         CTL_SST_TS_NTP,         /* REFCLK_NONE (0) */
701         CTL_SST_TS_LOCAL,       /* REFCLK_LOCALCLOCK (1) */
702         CTL_SST_TS_UHF,         /* deprecated REFCLK_GPS_TRAK (2) */
703         CTL_SST_TS_HF,          /* REFCLK_WWV_PST (3) */
704         CTL_SST_TS_LF,          /* REFCLK_WWVB_SPECTRACOM (4) */
705         CTL_SST_TS_UHF,         /* REFCLK_TRUETIME (5) */
706         CTL_SST_TS_UHF,         /* REFCLK_IRIG_AUDIO (6) */
707         CTL_SST_TS_HF,          /* REFCLK_CHU (7) */
708         CTL_SST_TS_LF,          /* REFCLOCK_PARSE (default) (8) */
709         CTL_SST_TS_LF,          /* REFCLK_GPS_MX4200 (9) */
710         CTL_SST_TS_UHF,         /* REFCLK_GPS_AS2201 (10) */
711         CTL_SST_TS_UHF,         /* REFCLK_GPS_ARBITER (11) */
712         CTL_SST_TS_UHF,         /* REFCLK_IRIG_TPRO (12) */
713         CTL_SST_TS_ATOM,        /* REFCLK_ATOM_LEITCH (13) */
714         CTL_SST_TS_LF,          /* deprecated REFCLK_MSF_EES (14) */
715         CTL_SST_TS_NTP,         /* not used (15) */
716         CTL_SST_TS_UHF,         /* REFCLK_IRIG_BANCOMM (16) */
717         CTL_SST_TS_UHF,         /* REFCLK_GPS_DATU (17) */
718         CTL_SST_TS_TELEPHONE,   /* REFCLK_NIST_ACTS (18) */
719         CTL_SST_TS_HF,          /* REFCLK_WWV_HEATH (19) */
720         CTL_SST_TS_UHF,         /* REFCLK_GPS_NMEA (20) */
721         CTL_SST_TS_UHF,         /* REFCLK_GPS_VME (21) */
722         CTL_SST_TS_ATOM,        /* REFCLK_ATOM_PPS (22) */
723         CTL_SST_TS_NTP,         /* not used (23) */
724         CTL_SST_TS_NTP,         /* not used (24) */
725         CTL_SST_TS_NTP,         /* not used (25) */
726         CTL_SST_TS_UHF,         /* REFCLK_GPS_HP (26) */
727         CTL_SST_TS_LF,          /* REFCLK_ARCRON_MSF (27) */
728         CTL_SST_TS_UHF,         /* REFCLK_SHM (28) */
729         CTL_SST_TS_UHF,         /* REFCLK_PALISADE (29) */
730         CTL_SST_TS_UHF,         /* REFCLK_ONCORE (30) */
731         CTL_SST_TS_UHF,         /* REFCLK_JUPITER (31) */
732         CTL_SST_TS_LF,          /* REFCLK_CHRONOLOG (32) */
733         CTL_SST_TS_LF,          /* REFCLK_DUMBCLOCK (33) */
734         CTL_SST_TS_LF,          /* REFCLK_ULINK (34) */
735         CTL_SST_TS_LF,          /* REFCLK_PCF (35) */
736         CTL_SST_TS_HF,          /* REFCLK_WWV (36) */
737         CTL_SST_TS_LF,          /* REFCLK_FG (37) */
738         CTL_SST_TS_UHF,         /* REFCLK_HOPF_SERIAL (38) */
739         CTL_SST_TS_UHF,         /* REFCLK_HOPF_PCI (39) */
740         CTL_SST_TS_LF,          /* REFCLK_JJY (40) */
741         CTL_SST_TS_UHF,         /* REFCLK_TT560 (41) */
742         CTL_SST_TS_UHF,         /* REFCLK_ZYFER (42) */
743         CTL_SST_TS_UHF,         /* REFCLK_RIPENCC (43) */
744         CTL_SST_TS_UHF,         /* REFCLK_NEOCLOCK4X (44) */
745         CTL_SST_TS_UHF,         /* REFCLK_TSYNCPCI (45) */
746         CTL_SST_TS_UHF          /* REFCLK_GPSDJSON (46) */
747 };
748 #endif  /* REFCLOCK */
749
750
751 /*
752  * Keyid used for authenticating write requests.
753  */
754 keyid_t ctl_auth_keyid;
755
756 /*
757  * We keep track of the last error reported by the system internally
758  */
759 static  u_char ctl_sys_last_event;
760 static  u_char ctl_sys_num_events;
761
762
763 /*
764  * Statistic counters to keep track of requests and responses.
765  */
766 u_long ctltimereset;            /* time stats reset */
767 u_long numctlreq;               /* number of requests we've received */
768 u_long numctlbadpkts;           /* number of bad control packets */
769 u_long numctlresponses;         /* number of resp packets sent with data */
770 u_long numctlfrags;             /* number of fragments sent */
771 u_long numctlerrors;            /* number of error responses sent */
772 u_long numctltooshort;          /* number of too short input packets */
773 u_long numctlinputresp;         /* number of responses on input */
774 u_long numctlinputfrag;         /* number of fragments on input */
775 u_long numctlinputerr;          /* number of input pkts with err bit set */
776 u_long numctlbadoffset;         /* number of input pkts with nonzero offset */
777 u_long numctlbadversion;        /* number of input pkts with unknown version */
778 u_long numctldatatooshort;      /* data too short for count */
779 u_long numctlbadop;             /* bad op code found in packet */
780 u_long numasyncmsgs;            /* number of async messages we've sent */
781
782 /*
783  * Response packet used by these routines. Also some state information
784  * so that we can handle packet formatting within a common set of
785  * subroutines.  Note we try to enter data in place whenever possible,
786  * but the need to set the more bit correctly means we occasionally
787  * use the extra buffer and copy.
788  */
789 static struct ntp_control rpkt;
790 static u_char   res_version;
791 static u_char   res_opcode;
792 static associd_t res_associd;
793 static u_short  res_frags;      /* datagrams in this response */
794 static int      res_offset;     /* offset of payload in response */
795 static u_char * datapt;
796 static u_char * dataend;
797 static int      datalinelen;
798 static int      datasent;       /* flag to avoid initial ", " */
799 static int      datanotbinflag;
800 static sockaddr_u *rmt_addr;
801 static struct interface *lcl_inter;
802
803 static u_char   res_authenticate;
804 static u_char   res_authokay;
805 static keyid_t  res_keyid;
806
807 #define MAXDATALINELEN  (72)
808
809 static u_char   res_async;      /* sending async trap response? */
810
811 /*
812  * Pointers for saving state when decoding request packets
813  */
814 static  char *reqpt;
815 static  char *reqend;
816
817 #ifndef MIN
818 #define MIN(a, b) (((a) <= (b)) ? (a) : (b))
819 #endif
820
821 /*
822  * init_control - initialize request data
823  */
824 void
825 init_control(void)
826 {
827         size_t i;
828
829 #ifdef HAVE_UNAME
830         uname(&utsnamebuf);
831 #endif /* HAVE_UNAME */
832
833         ctl_clr_stats();
834
835         ctl_auth_keyid = 0;
836         ctl_sys_last_event = EVNT_UNSPEC;
837         ctl_sys_num_events = 0;
838
839         num_ctl_traps = 0;
840         for (i = 0; i < COUNTOF(ctl_traps); i++)
841                 ctl_traps[i].tr_flags = 0;
842 }
843
844
845 /*
846  * ctl_error - send an error response for the current request
847  */
848 static void
849 ctl_error(
850         u_char errcode
851         )
852 {
853         size_t          maclen;
854
855         numctlerrors++;
856         DPRINTF(3, ("sending control error %u\n", errcode));
857
858         /*
859          * Fill in the fields. We assume rpkt.sequence and rpkt.associd
860          * have already been filled in.
861          */
862         rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
863                         (res_opcode & CTL_OP_MASK);
864         rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
865         rpkt.count = 0;
866
867         /*
868          * send packet and bump counters
869          */
870         if (res_authenticate && sys_authenticate) {
871                 maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
872                                      CTL_HEADER_LEN);
873                 sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
874                         CTL_HEADER_LEN + maclen);
875         } else
876                 sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
877                         CTL_HEADER_LEN);
878 }
879
880 /*
881  * save_config - Implements ntpq -c "saveconfig <filename>"
882  *               Writes current configuration including any runtime
883  *               changes by ntpq's :config or config-from-file
884  */
885 void
886 save_config(
887         struct recvbuf *rbufp,
888         int restrict_mask
889         )
890 {
891         /* block directory traversal by searching for characters that
892          * indicate directory components in a file path.
893          *
894          * Conceptually we should be searching for DIRSEP in filename,
895          * however Windows actually recognizes both forward and
896          * backslashes as equivalent directory separators at the API
897          * level.  On POSIX systems we could allow '\\' but such
898          * filenames are tricky to manipulate from a shell, so just
899          * reject both types of slashes on all platforms.
900          */     
901         /* TALOS-CAN-0062: block directory traversal for VMS, too */
902         static const char * illegal_in_filename =
903 #if defined(VMS)
904             ":[]"       /* do not allow drive and path components here */
905 #elif defined(SYS_WINNT)
906             ":\\/"      /* path and drive separators */
907 #else
908             "\\/"       /* separator and critical char for POSIX */
909 #endif
910             ;
911
912
913         char reply[128];
914 #ifdef SAVECONFIG
915         char filespec[128];
916         char filename[128];
917         char fullpath[512];
918         const char savedconfig_eq[] = "savedconfig=";
919         char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
920         time_t now;
921         int fd;
922         FILE *fptr;
923 #endif
924
925         if (RES_NOMODIFY & restrict_mask) {
926                 snprintf(reply, sizeof(reply),
927                          "saveconfig prohibited by restrict ... nomodify");
928                 ctl_putdata(reply, strlen(reply), 0);
929                 ctl_flushpkt(0);
930                 NLOG(NLOG_SYSINFO)
931                         msyslog(LOG_NOTICE,
932                                 "saveconfig from %s rejected due to nomodify restriction",
933                                 stoa(&rbufp->recv_srcadr));
934                 sys_restricted++;
935                 return;
936         }
937
938 #ifdef SAVECONFIG
939         if (NULL == saveconfigdir) {
940                 snprintf(reply, sizeof(reply),
941                          "saveconfig prohibited, no saveconfigdir configured");
942                 ctl_putdata(reply, strlen(reply), 0);
943                 ctl_flushpkt(0);
944                 NLOG(NLOG_SYSINFO)
945                         msyslog(LOG_NOTICE,
946                                 "saveconfig from %s rejected, no saveconfigdir",
947                                 stoa(&rbufp->recv_srcadr));
948                 return;
949         }
950
951         if (0 == reqend - reqpt)
952                 return;
953
954         strlcpy(filespec, reqpt, sizeof(filespec));
955         time(&now);
956
957         /*
958          * allow timestamping of the saved config filename with
959          * strftime() format such as:
960          *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
961          * XXX: Nice feature, but not too safe.
962          */
963         if (0 == strftime(filename, sizeof(filename), filespec,
964                                localtime(&now)))
965                 strlcpy(filename, filespec, sizeof(filename));
966
967         /* block directory/drive traversal */
968         /* TALOS-CAN-0062: block directory traversal for VMS, too */
969         if (NULL != strpbrk(filename, illegal_in_filename)) {
970                 snprintf(reply, sizeof(reply),
971                          "saveconfig does not allow directory in filename");
972                 ctl_putdata(reply, strlen(reply), 0);
973                 ctl_flushpkt(0);
974                 msyslog(LOG_NOTICE,
975                         "saveconfig with path from %s rejected",
976                         stoa(&rbufp->recv_srcadr));
977                 return;
978         }
979
980         snprintf(fullpath, sizeof(fullpath), "%s%s",
981                  saveconfigdir, filename);
982
983         fd = open(fullpath, O_CREAT | O_TRUNC | O_WRONLY,
984                   S_IRUSR | S_IWUSR);
985         if (-1 == fd)
986                 fptr = NULL;
987         else
988                 fptr = fdopen(fd, "w");
989
990         if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
991                 snprintf(reply, sizeof(reply),
992                          "Unable to save configuration to file %s",
993                          filename);
994                 msyslog(LOG_ERR,
995                         "saveconfig %s from %s failed", filename,
996                         stoa(&rbufp->recv_srcadr));
997         } else {
998                 snprintf(reply, sizeof(reply),
999                          "Configuration saved to %s", filename);
1000                 msyslog(LOG_NOTICE,
1001                         "Configuration saved to %s (requested by %s)",
1002                         fullpath, stoa(&rbufp->recv_srcadr));
1003                 /*
1004                  * save the output filename in system variable
1005                  * savedconfig, retrieved with:
1006                  *   ntpq -c "rv 0 savedconfig"
1007                  */
1008                 snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1009                          savedconfig_eq, filename);
1010                 set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1011         }
1012
1013         if (NULL != fptr)
1014                 fclose(fptr);
1015 #else   /* !SAVECONFIG follows */
1016         snprintf(reply, sizeof(reply),
1017                  "saveconfig unavailable, configured with --disable-saveconfig");
1018 #endif
1019
1020         ctl_putdata(reply, strlen(reply), 0);
1021         ctl_flushpkt(0);
1022 }
1023
1024
1025 /*
1026  * process_control - process an incoming control message
1027  */
1028 void
1029 process_control(
1030         struct recvbuf *rbufp,
1031         int restrict_mask
1032         )
1033 {
1034         struct ntp_control *pkt;
1035         int req_count;
1036         int req_data;
1037         const struct ctl_proc *cc;
1038         keyid_t *pkid;
1039         int properlen;
1040         size_t maclen;
1041
1042         DPRINTF(3, ("in process_control()\n"));
1043
1044         /*
1045          * Save the addresses for error responses
1046          */
1047         numctlreq++;
1048         rmt_addr = &rbufp->recv_srcadr;
1049         lcl_inter = rbufp->dstadr;
1050         pkt = (struct ntp_control *)&rbufp->recv_pkt;
1051
1052         /*
1053          * If the length is less than required for the header, or
1054          * it is a response or a fragment, ignore this.
1055          */
1056         if (rbufp->recv_length < (int)CTL_HEADER_LEN
1057             || (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1058             || pkt->offset != 0) {
1059                 DPRINTF(1, ("invalid format in control packet\n"));
1060                 if (rbufp->recv_length < (int)CTL_HEADER_LEN)
1061                         numctltooshort++;
1062                 if (CTL_RESPONSE & pkt->r_m_e_op)
1063                         numctlinputresp++;
1064                 if (CTL_MORE & pkt->r_m_e_op)
1065                         numctlinputfrag++;
1066                 if (CTL_ERROR & pkt->r_m_e_op)
1067                         numctlinputerr++;
1068                 if (pkt->offset != 0)
1069                         numctlbadoffset++;
1070                 return;
1071         }
1072         res_version = PKT_VERSION(pkt->li_vn_mode);
1073         if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1074                 DPRINTF(1, ("unknown version %d in control packet\n",
1075                             res_version));
1076                 numctlbadversion++;
1077                 return;
1078         }
1079
1080         /*
1081          * Pull enough data from the packet to make intelligent
1082          * responses
1083          */
1084         rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1085                                          MODE_CONTROL);
1086         res_opcode = pkt->r_m_e_op;
1087         rpkt.sequence = pkt->sequence;
1088         rpkt.associd = pkt->associd;
1089         rpkt.status = 0;
1090         res_frags = 1;
1091         res_offset = 0;
1092         res_associd = htons(pkt->associd);
1093         res_async = FALSE;
1094         res_authenticate = FALSE;
1095         res_keyid = 0;
1096         res_authokay = FALSE;
1097         req_count = (int)ntohs(pkt->count);
1098         datanotbinflag = FALSE;
1099         datalinelen = 0;
1100         datasent = 0;
1101         datapt = rpkt.u.data;
1102         dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1103
1104         if ((rbufp->recv_length & 0x3) != 0)
1105                 DPRINTF(3, ("Control packet length %d unrounded\n",
1106                             rbufp->recv_length));
1107
1108         /*
1109          * We're set up now. Make sure we've got at least enough
1110          * incoming data space to match the count.
1111          */
1112         req_data = rbufp->recv_length - CTL_HEADER_LEN;
1113         if (req_data < req_count || rbufp->recv_length & 0x3) {
1114                 ctl_error(CERR_BADFMT);
1115                 numctldatatooshort++;
1116                 return;
1117         }
1118
1119         properlen = req_count + CTL_HEADER_LEN;
1120         /* round up proper len to a 8 octet boundary */
1121
1122         properlen = (properlen + 7) & ~7;
1123         maclen = rbufp->recv_length - properlen;
1124         if ((rbufp->recv_length & 3) == 0 &&
1125             maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1126             sys_authenticate) {
1127                 res_authenticate = TRUE;
1128                 pkid = (void *)((char *)pkt + properlen);
1129                 res_keyid = ntohl(*pkid);
1130                 DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1131                             rbufp->recv_length, properlen, res_keyid,
1132                             maclen));
1133
1134                 if (!authistrusted(res_keyid))
1135                         DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1136                 else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1137                                      rbufp->recv_length - maclen,
1138                                      maclen)) {
1139                         res_authokay = TRUE;
1140                         DPRINTF(3, ("authenticated okay\n"));
1141                 } else {
1142                         res_keyid = 0;
1143                         DPRINTF(3, ("authentication failed\n"));
1144                 }
1145         }
1146
1147         /*
1148          * Set up translate pointers
1149          */
1150         reqpt = (char *)pkt->u.data;
1151         reqend = reqpt + req_count;
1152
1153         /*
1154          * Look for the opcode processor
1155          */
1156         for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1157                 if (cc->control_code == res_opcode) {
1158                         DPRINTF(3, ("opcode %d, found command handler\n",
1159                                     res_opcode));
1160                         if (cc->flags == AUTH
1161                             && (!res_authokay
1162                                 || res_keyid != ctl_auth_keyid)) {
1163                                 ctl_error(CERR_PERMISSION);
1164                                 return;
1165                         }
1166                         (cc->handler)(rbufp, restrict_mask);
1167                         return;
1168                 }
1169         }
1170
1171         /*
1172          * Can't find this one, return an error.
1173          */
1174         numctlbadop++;
1175         ctl_error(CERR_BADOP);
1176         return;
1177 }
1178
1179
1180 /*
1181  * ctlpeerstatus - return a status word for this peer
1182  */
1183 u_short
1184 ctlpeerstatus(
1185         register struct peer *p
1186         )
1187 {
1188         u_short status;
1189
1190         status = p->status;
1191         if (FLAG_CONFIG & p->flags)
1192                 status |= CTL_PST_CONFIG;
1193         if (p->keyid)
1194                 status |= CTL_PST_AUTHENABLE;
1195         if (FLAG_AUTHENTIC & p->flags)
1196                 status |= CTL_PST_AUTHENTIC;
1197         if (p->reach)
1198                 status |= CTL_PST_REACH;
1199         if (MDF_TXONLY_MASK & p->cast_flags)
1200                 status |= CTL_PST_BCAST;
1201
1202         return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1203 }
1204
1205
1206 /*
1207  * ctlclkstatus - return a status word for this clock
1208  */
1209 #ifdef REFCLOCK
1210 static u_short
1211 ctlclkstatus(
1212         struct refclockstat *pcs
1213         )
1214 {
1215         return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1216 }
1217 #endif
1218
1219
1220 /*
1221  * ctlsysstatus - return the system status word
1222  */
1223 u_short
1224 ctlsysstatus(void)
1225 {
1226         register u_char this_clock;
1227
1228         this_clock = CTL_SST_TS_UNSPEC;
1229 #ifdef REFCLOCK
1230         if (sys_peer != NULL) {
1231                 if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1232                         this_clock = sys_peer->sstclktype;
1233                 else if (sys_peer->refclktype < COUNTOF(clocktypes))
1234                         this_clock = clocktypes[sys_peer->refclktype];
1235         }
1236 #else /* REFCLOCK */
1237         if (sys_peer != 0)
1238                 this_clock = CTL_SST_TS_NTP;
1239 #endif /* REFCLOCK */
1240         return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1241                               ctl_sys_last_event);
1242 }
1243
1244
1245 /*
1246  * ctl_flushpkt - write out the current packet and prepare
1247  *                another if necessary.
1248  */
1249 static void
1250 ctl_flushpkt(
1251         u_char more
1252         )
1253 {
1254         size_t i;
1255         size_t dlen;
1256         size_t sendlen;
1257         size_t maclen;
1258         size_t totlen;
1259         keyid_t keyid;
1260
1261         dlen = datapt - rpkt.u.data;
1262         if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1263                 /*
1264                  * Big hack, output a trailing \r\n
1265                  */
1266                 *datapt++ = '\r';
1267                 *datapt++ = '\n';
1268                 dlen += 2;
1269         }
1270         sendlen = dlen + CTL_HEADER_LEN;
1271
1272         /*
1273          * Pad to a multiple of 32 bits
1274          */
1275         while (sendlen & 0x3) {
1276                 *datapt++ = '\0';
1277                 sendlen++;
1278         }
1279
1280         /*
1281          * Fill in the packet with the current info
1282          */
1283         rpkt.r_m_e_op = CTL_RESPONSE | more |
1284                         (res_opcode & CTL_OP_MASK);
1285         rpkt.count = htons((u_short)dlen);
1286         rpkt.offset = htons((u_short)res_offset);
1287         if (res_async) {
1288                 for (i = 0; i < COUNTOF(ctl_traps); i++) {
1289                         if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1290                                 rpkt.li_vn_mode =
1291                                     PKT_LI_VN_MODE(
1292                                         sys_leap,
1293                                         ctl_traps[i].tr_version,
1294                                         MODE_CONTROL);
1295                                 rpkt.sequence =
1296                                     htons(ctl_traps[i].tr_sequence);
1297                                 sendpkt(&ctl_traps[i].tr_addr,
1298                                         ctl_traps[i].tr_localaddr, -4,
1299                                         (struct pkt *)&rpkt, sendlen);
1300                                 if (!more)
1301                                         ctl_traps[i].tr_sequence++;
1302                                 numasyncmsgs++;
1303                         }
1304                 }
1305         } else {
1306                 if (res_authenticate && sys_authenticate) {
1307                         totlen = sendlen;
1308                         /*
1309                          * If we are going to authenticate, then there
1310                          * is an additional requirement that the MAC
1311                          * begin on a 64 bit boundary.
1312                          */
1313                         while (totlen & 7) {
1314                                 *datapt++ = '\0';
1315                                 totlen++;
1316                         }
1317                         keyid = htonl(res_keyid);
1318                         memcpy(datapt, &keyid, sizeof(keyid));
1319                         maclen = authencrypt(res_keyid,
1320                                              (u_int32 *)&rpkt, totlen);
1321                         sendpkt(rmt_addr, lcl_inter, -5,
1322                                 (struct pkt *)&rpkt, totlen + maclen);
1323                 } else {
1324                         sendpkt(rmt_addr, lcl_inter, -6,
1325                                 (struct pkt *)&rpkt, sendlen);
1326                 }
1327                 if (more)
1328                         numctlfrags++;
1329                 else
1330                         numctlresponses++;
1331         }
1332
1333         /*
1334          * Set us up for another go around.
1335          */
1336         res_frags++;
1337         res_offset += dlen;
1338         datapt = rpkt.u.data;
1339 }
1340
1341
1342 /*
1343  * ctl_putdata - write data into the packet, fragmenting and starting
1344  * another if this one is full.
1345  */
1346 static void
1347 ctl_putdata(
1348         const char *dp,
1349         unsigned int dlen,
1350         int bin                 /* set to 1 when data is binary */
1351         )
1352 {
1353         int overhead;
1354         unsigned int currentlen;
1355
1356         overhead = 0;
1357         if (!bin) {
1358                 datanotbinflag = TRUE;
1359                 overhead = 3;
1360                 if (datasent) {
1361                         *datapt++ = ',';
1362                         datalinelen++;
1363                         if ((dlen + datalinelen + 1) >= MAXDATALINELEN) {
1364                                 *datapt++ = '\r';
1365                                 *datapt++ = '\n';
1366                                 datalinelen = 0;
1367                         } else {
1368                                 *datapt++ = ' ';
1369                                 datalinelen++;
1370                         }
1371                 }
1372         }
1373
1374         /*
1375          * Save room for trailing junk
1376          */
1377         while (dlen + overhead + datapt > dataend) {
1378                 /*
1379                  * Not enough room in this one, flush it out.
1380                  */
1381                 currentlen = MIN(dlen, (unsigned int)(dataend - datapt));
1382
1383                 memcpy(datapt, dp, currentlen);
1384
1385                 datapt += currentlen;
1386                 dp += currentlen;
1387                 dlen -= currentlen;
1388                 datalinelen += currentlen;
1389
1390                 ctl_flushpkt(CTL_MORE);
1391         }
1392
1393         memcpy(datapt, dp, dlen);
1394         datapt += dlen;
1395         datalinelen += dlen;
1396         datasent = TRUE;
1397 }
1398
1399
1400 /*
1401  * ctl_putstr - write a tagged string into the response packet
1402  *              in the form:
1403  *
1404  *              tag="data"
1405  *
1406  *              len is the data length excluding the NUL terminator,
1407  *              as in ctl_putstr("var", "value", strlen("value"));
1408  */
1409 static void
1410 ctl_putstr(
1411         const char *    tag,
1412         const char *    data,
1413         size_t          len
1414         )
1415 {
1416         char buffer[512];
1417         char *cp;
1418         size_t tl;
1419
1420         tl = strlen(tag);
1421         memcpy(buffer, tag, tl);
1422         cp = buffer + tl;
1423         if (len > 0) {
1424                 INSIST(tl + 3 + len <= sizeof(buffer));
1425                 *cp++ = '=';
1426                 *cp++ = '"';
1427                 memcpy(cp, data, len);
1428                 cp += len;
1429                 *cp++ = '"';
1430         }
1431         ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1432 }
1433
1434
1435 /*
1436  * ctl_putunqstr - write a tagged string into the response packet
1437  *                 in the form:
1438  *
1439  *                 tag=data
1440  *
1441  *      len is the data length excluding the NUL terminator.
1442  *      data must not contain a comma or whitespace.
1443  */
1444 static void
1445 ctl_putunqstr(
1446         const char *    tag,
1447         const char *    data,
1448         size_t          len
1449         )
1450 {
1451         char buffer[512];
1452         char *cp;
1453         size_t tl;
1454
1455         tl = strlen(tag);
1456         memcpy(buffer, tag, tl);
1457         cp = buffer + tl;
1458         if (len > 0) {
1459                 INSIST(tl + 1 + len <= sizeof(buffer));
1460                 *cp++ = '=';
1461                 memcpy(cp, data, len);
1462                 cp += len;
1463         }
1464         ctl_putdata(buffer, (u_int)(cp - buffer), 0);
1465 }
1466
1467
1468 /*
1469  * ctl_putdblf - write a tagged, signed double into the response packet
1470  */
1471 static void
1472 ctl_putdblf(
1473         const char *    tag,
1474         int             use_f,
1475         int             precision,
1476         double          d
1477         )
1478 {
1479         char *cp;
1480         const char *cq;
1481         char buffer[200];
1482
1483         cp = buffer;
1484         cq = tag;
1485         while (*cq != '\0')
1486                 *cp++ = *cq++;
1487         *cp++ = '=';
1488         INSIST((size_t)(cp - buffer) < sizeof(buffer));
1489         snprintf(cp, sizeof(buffer) - (cp - buffer), use_f ? "%.*f" : "%.*g",
1490             precision, d);
1491         cp += strlen(cp);
1492         ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1493 }
1494
1495 /*
1496  * ctl_putuint - write a tagged unsigned integer into the response
1497  */
1498 static void
1499 ctl_putuint(
1500         const char *tag,
1501         u_long uval
1502         )
1503 {
1504         register char *cp;
1505         register const char *cq;
1506         char buffer[200];
1507
1508         cp = buffer;
1509         cq = tag;
1510         while (*cq != '\0')
1511                 *cp++ = *cq++;
1512
1513         *cp++ = '=';
1514         INSIST((cp - buffer) < (int)sizeof(buffer));
1515         snprintf(cp, sizeof(buffer) - (cp - buffer), "%lu", uval);
1516         cp += strlen(cp);
1517         ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1518 }
1519
1520 /*
1521  * ctl_putcal - write a decoded calendar data into the response
1522  */
1523 static void
1524 ctl_putcal(
1525         const char *tag,
1526         const struct calendar *pcal
1527         )
1528 {
1529         char buffer[100];
1530         unsigned numch;
1531
1532         numch = snprintf(buffer, sizeof(buffer),
1533                         "%s=%04d%02d%02d%02d%02d",
1534                         tag,
1535                         pcal->year,
1536                         pcal->month,
1537                         pcal->monthday,
1538                         pcal->hour,
1539                         pcal->minute
1540                         );
1541         INSIST(numch < sizeof(buffer));
1542         ctl_putdata(buffer, numch, 0);
1543
1544         return;
1545 }
1546
1547 /*
1548  * ctl_putfs - write a decoded filestamp into the response
1549  */
1550 static void
1551 ctl_putfs(
1552         const char *tag,
1553         tstamp_t uval
1554         )
1555 {
1556         register char *cp;
1557         register const char *cq;
1558         char buffer[200];
1559         struct tm *tm = NULL;
1560         time_t fstamp;
1561
1562         cp = buffer;
1563         cq = tag;
1564         while (*cq != '\0')
1565                 *cp++ = *cq++;
1566
1567         *cp++ = '=';
1568         fstamp = uval - JAN_1970;
1569         tm = gmtime(&fstamp);
1570         if (NULL ==  tm)
1571                 return;
1572         INSIST((cp - buffer) < (int)sizeof(buffer));
1573         snprintf(cp, sizeof(buffer) - (cp - buffer),
1574                  "%04d%02d%02d%02d%02d", tm->tm_year + 1900,
1575                  tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min);
1576         cp += strlen(cp);
1577         ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1578 }
1579
1580
1581 /*
1582  * ctl_puthex - write a tagged unsigned integer, in hex, into the
1583  * response
1584  */
1585 static void
1586 ctl_puthex(
1587         const char *tag,
1588         u_long uval
1589         )
1590 {
1591         register char *cp;
1592         register const char *cq;
1593         char buffer[200];
1594
1595         cp = buffer;
1596         cq = tag;
1597         while (*cq != '\0')
1598                 *cp++ = *cq++;
1599
1600         *cp++ = '=';
1601         INSIST((cp - buffer) < (int)sizeof(buffer));
1602         snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%lx", uval);
1603         cp += strlen(cp);
1604         ctl_putdata(buffer,(unsigned)( cp - buffer ), 0);
1605 }
1606
1607
1608 /*
1609  * ctl_putint - write a tagged signed integer into the response
1610  */
1611 static void
1612 ctl_putint(
1613         const char *tag,
1614         long ival
1615         )
1616 {
1617         register char *cp;
1618         register const char *cq;
1619         char buffer[200];
1620
1621         cp = buffer;
1622         cq = tag;
1623         while (*cq != '\0')
1624                 *cp++ = *cq++;
1625
1626         *cp++ = '=';
1627         INSIST((cp - buffer) < (int)sizeof(buffer));
1628         snprintf(cp, sizeof(buffer) - (cp - buffer), "%ld", ival);
1629         cp += strlen(cp);
1630         ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1631 }
1632
1633
1634 /*
1635  * ctl_putts - write a tagged timestamp, in hex, into the response
1636  */
1637 static void
1638 ctl_putts(
1639         const char *tag,
1640         l_fp *ts
1641         )
1642 {
1643         register char *cp;
1644         register const char *cq;
1645         char buffer[200];
1646
1647         cp = buffer;
1648         cq = tag;
1649         while (*cq != '\0')
1650                 *cp++ = *cq++;
1651
1652         *cp++ = '=';
1653         INSIST((size_t)(cp - buffer) < sizeof(buffer));
1654         snprintf(cp, sizeof(buffer) - (cp - buffer), "0x%08x.%08x",
1655                  (u_int)ts->l_ui, (u_int)ts->l_uf);
1656         cp += strlen(cp);
1657         ctl_putdata(buffer, (unsigned)( cp - buffer ), 0);
1658 }
1659
1660
1661 /*
1662  * ctl_putadr - write an IP address into the response
1663  */
1664 static void
1665 ctl_putadr(
1666         const char *tag,
1667         u_int32 addr32,
1668         sockaddr_u *addr
1669         )
1670 {
1671         register char *cp;
1672         register const char *cq;
1673         char buffer[200];
1674
1675         cp = buffer;
1676         cq = tag;
1677         while (*cq != '\0')
1678                 *cp++ = *cq++;
1679
1680         *cp++ = '=';
1681         if (NULL == addr)
1682                 cq = numtoa(addr32);
1683         else
1684                 cq = stoa(addr);
1685         INSIST((cp - buffer) < (int)sizeof(buffer));
1686         snprintf(cp, sizeof(buffer) - (cp - buffer), "%s", cq);
1687         cp += strlen(cp);
1688         ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1689 }
1690
1691
1692 /*
1693  * ctl_putrefid - send a u_int32 refid as printable text
1694  */
1695 static void
1696 ctl_putrefid(
1697         const char *    tag,
1698         u_int32         refid
1699         )
1700 {
1701         char    output[16];
1702         char *  optr;
1703         char *  oplim;
1704         char *  iptr;
1705         char *  iplim;
1706         char *  past_eq;
1707
1708         optr = output;
1709         oplim = output + sizeof(output);
1710         while (optr < oplim && '\0' != *tag)
1711                 *optr++ = *tag++;
1712         if (optr < oplim) {
1713                 *optr++ = '=';
1714                 past_eq = optr;
1715         }
1716         if (!(optr < oplim))
1717                 return;
1718         iptr = (char *)&refid;
1719         iplim = iptr + sizeof(refid);
1720         for ( ; optr < oplim && iptr < iplim && '\0' != *iptr;
1721              iptr++, optr++)
1722                 if (isprint((int)*iptr))
1723                         *optr = *iptr;
1724                 else
1725                         *optr = '.';
1726         if (!(optr <= oplim))
1727                 optr = past_eq;
1728         ctl_putdata(output, (u_int)(optr - output), FALSE);
1729 }
1730
1731
1732 /*
1733  * ctl_putarray - write a tagged eight element double array into the response
1734  */
1735 static void
1736 ctl_putarray(
1737         const char *tag,
1738         double *arr,
1739         int start
1740         )
1741 {
1742         register char *cp;
1743         register const char *cq;
1744         char buffer[200];
1745         int i;
1746         cp = buffer;
1747         cq = tag;
1748         while (*cq != '\0')
1749                 *cp++ = *cq++;
1750         *cp++ = '=';
1751         i = start;
1752         do {
1753                 if (i == 0)
1754                         i = NTP_SHIFT;
1755                 i--;
1756                 INSIST((cp - buffer) < (int)sizeof(buffer));
1757                 snprintf(cp, sizeof(buffer) - (cp - buffer),
1758                          " %.2f", arr[i] * 1e3);
1759                 cp += strlen(cp);
1760         } while (i != start);
1761         ctl_putdata(buffer, (unsigned)(cp - buffer), 0);
1762 }
1763
1764
1765 /*
1766  * ctl_putsys - output a system variable
1767  */
1768 static void
1769 ctl_putsys(
1770         int varid
1771         )
1772 {
1773         l_fp tmp;
1774         char str[256];
1775         u_int u;
1776         double kb;
1777         double dtemp;
1778         const char *ss;
1779 #ifdef AUTOKEY
1780         struct cert_info *cp;
1781 #endif  /* AUTOKEY */
1782 #ifdef KERNEL_PLL
1783         static struct timex ntx;
1784         static u_long ntp_adjtime_time;
1785
1786         static const double to_ms =
1787 # ifdef STA_NANO
1788                 1.0e-6; /* nsec to msec */
1789 # else
1790                 1.0e-3; /* usec to msec */
1791 # endif
1792
1793         /*
1794          * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1795          */
1796         if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1797             current_time != ntp_adjtime_time) {
1798                 ZERO(ntx);
1799                 if (ntp_adjtime(&ntx) < 0)
1800                         msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1801                 else
1802                         ntp_adjtime_time = current_time;
1803         }
1804 #endif  /* KERNEL_PLL */
1805
1806         switch (varid) {
1807
1808         case CS_LEAP:
1809                 ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1810                 break;
1811
1812         case CS_STRATUM:
1813                 ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1814                 break;
1815
1816         case CS_PRECISION:
1817                 ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1818                 break;
1819
1820         case CS_ROOTDELAY:
1821                 ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1822                            1e3);
1823                 break;
1824
1825         case CS_ROOTDISPERSION:
1826                 ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1827                            sys_rootdisp * 1e3);
1828                 break;
1829
1830         case CS_REFID:
1831                 if (sys_stratum > 1 && sys_stratum < STRATUM_UNSPEC)
1832                         ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1833                 else
1834                         ctl_putrefid(sys_var[varid].text, sys_refid);
1835                 break;
1836
1837         case CS_REFTIME:
1838                 ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1839                 break;
1840
1841         case CS_POLL:
1842                 ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1843                 break;
1844
1845         case CS_PEERID:
1846                 if (sys_peer == NULL)
1847                         ctl_putuint(sys_var[CS_PEERID].text, 0);
1848                 else
1849                         ctl_putuint(sys_var[CS_PEERID].text,
1850                                     sys_peer->associd);
1851                 break;
1852
1853         case CS_PEERADR:
1854                 if (sys_peer != NULL && sys_peer->dstadr != NULL)
1855                         ss = sptoa(&sys_peer->srcadr);
1856                 else
1857                         ss = "0.0.0.0:0";
1858                 ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1859                 break;
1860
1861         case CS_PEERMODE:
1862                 u = (sys_peer != NULL)
1863                         ? sys_peer->hmode
1864                         : MODE_UNSPEC;
1865                 ctl_putuint(sys_var[CS_PEERMODE].text, u);
1866                 break;
1867
1868         case CS_OFFSET:
1869                 ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
1870                 break;
1871
1872         case CS_DRIFT:
1873                 ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
1874                 break;
1875
1876         case CS_JITTER:
1877                 ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
1878                 break;
1879
1880         case CS_ERROR:
1881                 ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
1882                 break;
1883
1884         case CS_CLOCK:
1885                 get_systime(&tmp);
1886                 ctl_putts(sys_var[CS_CLOCK].text, &tmp);
1887                 break;
1888
1889         case CS_PROCESSOR:
1890 #ifndef HAVE_UNAME
1891                 ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
1892                            sizeof(str_processor) - 1);
1893 #else
1894                 ctl_putstr(sys_var[CS_PROCESSOR].text,
1895                            utsnamebuf.machine, strlen(utsnamebuf.machine));
1896 #endif /* HAVE_UNAME */
1897                 break;
1898
1899         case CS_SYSTEM:
1900 #ifndef HAVE_UNAME
1901                 ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
1902                            sizeof(str_system) - 1);
1903 #else
1904                 snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
1905                          utsnamebuf.release);
1906                 ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
1907 #endif /* HAVE_UNAME */
1908                 break;
1909
1910         case CS_VERSION:
1911                 ctl_putstr(sys_var[CS_VERSION].text, Version,
1912                            strlen(Version));
1913                 break;
1914
1915         case CS_STABIL:
1916                 ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
1917                            1e6);
1918                 break;
1919
1920         case CS_VARLIST:
1921         {
1922                 char buf[CTL_MAX_DATA_LEN];
1923                 //buffPointer, firstElementPointer, buffEndPointer
1924                 char *buffp, *buffend;
1925                 int firstVarName;
1926                 const char *ss1;
1927                 int len;
1928                 const struct ctl_var *k;
1929
1930                 buffp = buf;
1931                 buffend = buf + sizeof(buf);
1932                 if (buffp + strlen(sys_var[CS_VARLIST].text) + 4 > buffend)
1933                         break;  /* really long var name */
1934
1935                 snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
1936                 buffp += strlen(buffp);
1937                 firstVarName = TRUE;
1938                 for (k = sys_var; !(k->flags & EOV); k++) {
1939                         if (k->flags & PADDING)
1940                                 continue;
1941                         len = strlen(k->text);
1942                         if (buffp + len + 1 >= buffend)
1943                                 break;
1944                         if (!firstVarName)
1945                                 *buffp++ = ',';
1946                         else
1947                                 firstVarName = FALSE;
1948                         memcpy(buffp, k->text, len);
1949                         buffp += len;
1950                 }
1951
1952                 for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
1953                         if (k->flags & PADDING)
1954                                 continue;
1955                         if (NULL == k->text)
1956                                 continue;
1957                         ss1 = strchr(k->text, '=');
1958                         if (NULL == ss1)
1959                                 len = strlen(k->text);
1960                         else
1961                                 len = ss1 - k->text;
1962                         if (buffp + len + 1 >= buffend)
1963                                 break;
1964                         if (firstVarName) {
1965                                 *buffp++ = ',';
1966                                 firstVarName = FALSE;
1967                         }
1968                         memcpy(buffp, k->text,(unsigned)len);
1969                         buffp += len;
1970                 }
1971                 if (buffp + 2 >= buffend)
1972                         break;
1973
1974                 *buffp++ = '"';
1975                 *buffp = '\0';
1976
1977                 ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
1978                 break;
1979         }
1980
1981         case CS_TAI:
1982                 if (sys_tai > 0)
1983                         ctl_putuint(sys_var[CS_TAI].text, sys_tai);
1984                 break;
1985
1986         case CS_LEAPTAB:
1987         {
1988                 leap_signature_t lsig;
1989                 leapsec_getsig(&lsig);
1990                 if (lsig.ttime > 0)
1991                         ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
1992                 break;
1993         }
1994
1995         case CS_LEAPEND:
1996         {
1997                 leap_signature_t lsig;
1998                 leapsec_getsig(&lsig);
1999                 if (lsig.etime > 0)
2000                         ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2001                 break;
2002         }
2003
2004 #ifdef LEAP_SMEAR
2005         case CS_LEAPSMEARINTV:
2006                 if (leap_smear_intv > 0)
2007                         ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2008                 break;
2009
2010         case CS_LEAPSMEAROFFS:
2011                 if (leap_smear_intv > 0)
2012                         ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2013                                    leap_smear.doffset * 1e3);
2014                 break;
2015 #endif  /* LEAP_SMEAR */
2016
2017         case CS_RATE:
2018                 ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2019                 break;
2020
2021         case CS_MRU_ENABLED:
2022                 ctl_puthex(sys_var[varid].text, mon_enabled);
2023                 break;
2024
2025         case CS_MRU_DEPTH:
2026                 ctl_putuint(sys_var[varid].text, mru_entries);
2027                 break;
2028
2029         case CS_MRU_MEM:
2030                 kb = mru_entries * (sizeof(mon_entry) / 1024.);
2031                 u = (u_int)kb;
2032                 if (kb - u >= 0.5)
2033                         u++;
2034                 ctl_putuint(sys_var[varid].text, u);
2035                 break;
2036
2037         case CS_MRU_DEEPEST:
2038                 ctl_putuint(sys_var[varid].text, mru_peakentries);
2039                 break;
2040
2041         case CS_MRU_MINDEPTH:
2042                 ctl_putuint(sys_var[varid].text, mru_mindepth);
2043                 break;
2044
2045         case CS_MRU_MAXAGE:
2046                 ctl_putint(sys_var[varid].text, mru_maxage);
2047                 break;
2048
2049         case CS_MRU_MAXDEPTH:
2050                 ctl_putuint(sys_var[varid].text, mru_maxdepth);
2051                 break;
2052
2053         case CS_MRU_MAXMEM:
2054                 kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2055                 u = (u_int)kb;
2056                 if (kb - u >= 0.5)
2057                         u++;
2058                 ctl_putuint(sys_var[varid].text, u);
2059                 break;
2060
2061         case CS_SS_UPTIME:
2062                 ctl_putuint(sys_var[varid].text, current_time);
2063                 break;
2064
2065         case CS_SS_RESET:
2066                 ctl_putuint(sys_var[varid].text,
2067                             current_time - sys_stattime);
2068                 break;
2069
2070         case CS_SS_RECEIVED:
2071                 ctl_putuint(sys_var[varid].text, sys_received);
2072                 break;
2073
2074         case CS_SS_THISVER:
2075                 ctl_putuint(sys_var[varid].text, sys_newversion);
2076                 break;
2077
2078         case CS_SS_OLDVER:
2079                 ctl_putuint(sys_var[varid].text, sys_oldversion);
2080                 break;
2081
2082         case CS_SS_BADFORMAT:
2083                 ctl_putuint(sys_var[varid].text, sys_badlength);
2084                 break;
2085
2086         case CS_SS_BADAUTH:
2087                 ctl_putuint(sys_var[varid].text, sys_badauth);
2088                 break;
2089
2090         case CS_SS_DECLINED:
2091                 ctl_putuint(sys_var[varid].text, sys_declined);
2092                 break;
2093
2094         case CS_SS_RESTRICTED:
2095                 ctl_putuint(sys_var[varid].text, sys_restricted);
2096                 break;
2097
2098         case CS_SS_LIMITED:
2099                 ctl_putuint(sys_var[varid].text, sys_limitrejected);
2100                 break;
2101
2102         case CS_SS_KODSENT:
2103                 ctl_putuint(sys_var[varid].text, sys_kodsent);
2104                 break;
2105
2106         case CS_SS_PROCESSED:
2107                 ctl_putuint(sys_var[varid].text, sys_processed);
2108                 break;
2109
2110         case CS_BCASTDELAY:
2111                 ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2112                 break;
2113
2114         case CS_AUTHDELAY:
2115                 LFPTOD(&sys_authdelay, dtemp);
2116                 ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2117                 break;
2118
2119         case CS_AUTHKEYS:
2120                 ctl_putuint(sys_var[varid].text, authnumkeys);
2121                 break;
2122
2123         case CS_AUTHFREEK:
2124                 ctl_putuint(sys_var[varid].text, authnumfreekeys);
2125                 break;
2126
2127         case CS_AUTHKLOOKUPS:
2128                 ctl_putuint(sys_var[varid].text, authkeylookups);
2129                 break;
2130
2131         case CS_AUTHKNOTFOUND:
2132                 ctl_putuint(sys_var[varid].text, authkeynotfound);
2133                 break;
2134
2135         case CS_AUTHKUNCACHED:
2136                 ctl_putuint(sys_var[varid].text, authkeyuncached);
2137                 break;
2138
2139         case CS_AUTHKEXPIRED:
2140                 ctl_putuint(sys_var[varid].text, authkeyexpired);
2141                 break;
2142
2143         case CS_AUTHENCRYPTS:
2144                 ctl_putuint(sys_var[varid].text, authencryptions);
2145                 break;
2146
2147         case CS_AUTHDECRYPTS:
2148                 ctl_putuint(sys_var[varid].text, authdecryptions);
2149                 break;
2150
2151         case CS_AUTHRESET:
2152                 ctl_putuint(sys_var[varid].text,
2153                             current_time - auth_timereset);
2154                 break;
2155
2156                 /*
2157                  * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2158                  * unavailable, otherwise calls putfunc with args.
2159                  */
2160 #ifndef KERNEL_PLL
2161 # define        CTL_IF_KERNLOOP(putfunc, args)  \
2162                 ctl_putint(sys_var[varid].text, 0)
2163 #else
2164 # define        CTL_IF_KERNLOOP(putfunc, args)  \
2165                 putfunc args
2166 #endif
2167
2168                 /*
2169                  * CTL_IF_KERNPPS() puts a zero if either the kernel
2170                  * loop is unavailable, or kernel hard PPS is not
2171                  * active, otherwise calls putfunc with args.
2172                  */
2173 #ifndef KERNEL_PLL
2174 # define        CTL_IF_KERNPPS(putfunc, args)   \
2175                 ctl_putint(sys_var[varid].text, 0)
2176 #else
2177 # define        CTL_IF_KERNPPS(putfunc, args)                   \
2178                 if (0 == ntx.shift)                             \
2179                         ctl_putint(sys_var[varid].text, 0);     \
2180                 else                                            \
2181                         putfunc args    /* no trailing ; */
2182 #endif
2183
2184         case CS_K_OFFSET:
2185                 CTL_IF_KERNLOOP(
2186                         ctl_putdblf,
2187                         (sys_var[varid].text, 0, -1, to_ms * ntx.offset)
2188                 );
2189                 break;
2190
2191         case CS_K_FREQ:
2192                 CTL_IF_KERNLOOP(
2193                         ctl_putsfp,
2194                         (sys_var[varid].text, ntx.freq)
2195                 );
2196                 break;
2197
2198         case CS_K_MAXERR:
2199                 CTL_IF_KERNLOOP(
2200                         ctl_putdblf,
2201                         (sys_var[varid].text, 0, 6,
2202                          to_ms * ntx.maxerror)
2203                 );
2204                 break;
2205
2206         case CS_K_ESTERR:
2207                 CTL_IF_KERNLOOP(
2208                         ctl_putdblf,
2209                         (sys_var[varid].text, 0, 6,
2210                          to_ms * ntx.esterror)
2211                 );
2212                 break;
2213
2214         case CS_K_STFLAGS:
2215 #ifndef KERNEL_PLL
2216                 ss = "";
2217 #else
2218                 ss = k_st_flags(ntx.status);
2219 #endif
2220                 ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2221                 break;
2222
2223         case CS_K_TIMECONST:
2224                 CTL_IF_KERNLOOP(
2225                         ctl_putint,
2226                         (sys_var[varid].text, ntx.constant)
2227                 );
2228                 break;
2229
2230         case CS_K_PRECISION:
2231                 CTL_IF_KERNLOOP(
2232                         ctl_putdblf,
2233                         (sys_var[varid].text, 0, 6,
2234                             to_ms * ntx.precision)
2235                 );
2236                 break;
2237
2238         case CS_K_FREQTOL:
2239                 CTL_IF_KERNLOOP(
2240                         ctl_putsfp,
2241                         (sys_var[varid].text, ntx.tolerance)
2242                 );
2243                 break;
2244
2245         case CS_K_PPS_FREQ:
2246                 CTL_IF_KERNPPS(
2247                         ctl_putsfp,
2248                         (sys_var[varid].text, ntx.ppsfreq)
2249                 );
2250                 break;
2251
2252         case CS_K_PPS_STABIL:
2253                 CTL_IF_KERNPPS(
2254                         ctl_putsfp,
2255                         (sys_var[varid].text, ntx.stabil)
2256                 );
2257                 break;
2258
2259         case CS_K_PPS_JITTER:
2260                 CTL_IF_KERNPPS(
2261                         ctl_putdbl,
2262                         (sys_var[varid].text, to_ms * ntx.jitter)
2263                 );
2264                 break;
2265
2266         case CS_K_PPS_CALIBDUR:
2267                 CTL_IF_KERNPPS(
2268                         ctl_putint,
2269                         (sys_var[varid].text, 1 << ntx.shift)
2270                 );
2271                 break;
2272
2273         case CS_K_PPS_CALIBS:
2274                 CTL_IF_KERNPPS(
2275                         ctl_putint,
2276                         (sys_var[varid].text, ntx.calcnt)
2277                 );
2278                 break;
2279
2280         case CS_K_PPS_CALIBERRS:
2281                 CTL_IF_KERNPPS(
2282                         ctl_putint,
2283                         (sys_var[varid].text, ntx.errcnt)
2284                 );
2285                 break;
2286
2287         case CS_K_PPS_JITEXC:
2288                 CTL_IF_KERNPPS(
2289                         ctl_putint,
2290                         (sys_var[varid].text, ntx.jitcnt)
2291                 );
2292                 break;
2293
2294         case CS_K_PPS_STBEXC:
2295                 CTL_IF_KERNPPS(
2296                         ctl_putint,
2297                         (sys_var[varid].text, ntx.stbcnt)
2298                 );
2299                 break;
2300
2301         case CS_IOSTATS_RESET:
2302                 ctl_putuint(sys_var[varid].text,
2303                             current_time - io_timereset);
2304                 break;
2305
2306         case CS_TOTAL_RBUF:
2307                 ctl_putuint(sys_var[varid].text, total_recvbuffs());
2308                 break;
2309
2310         case CS_FREE_RBUF:
2311                 ctl_putuint(sys_var[varid].text, free_recvbuffs());
2312                 break;
2313
2314         case CS_USED_RBUF:
2315                 ctl_putuint(sys_var[varid].text, full_recvbuffs());
2316                 break;
2317
2318         case CS_RBUF_LOWATER:
2319                 ctl_putuint(sys_var[varid].text, lowater_additions());
2320                 break;
2321
2322         case CS_IO_DROPPED:
2323                 ctl_putuint(sys_var[varid].text, packets_dropped);
2324                 break;
2325
2326         case CS_IO_IGNORED:
2327                 ctl_putuint(sys_var[varid].text, packets_ignored);
2328                 break;
2329
2330         case CS_IO_RECEIVED:
2331                 ctl_putuint(sys_var[varid].text, packets_received);
2332                 break;
2333
2334         case CS_IO_SENT:
2335                 ctl_putuint(sys_var[varid].text, packets_sent);
2336                 break;
2337
2338         case CS_IO_SENDFAILED:
2339                 ctl_putuint(sys_var[varid].text, packets_notsent);
2340                 break;
2341
2342         case CS_IO_WAKEUPS:
2343                 ctl_putuint(sys_var[varid].text, handler_calls);
2344                 break;
2345
2346         case CS_IO_GOODWAKEUPS:
2347                 ctl_putuint(sys_var[varid].text, handler_pkts);
2348                 break;
2349
2350         case CS_TIMERSTATS_RESET:
2351                 ctl_putuint(sys_var[varid].text,
2352                             current_time - timer_timereset);
2353                 break;
2354
2355         case CS_TIMER_OVERRUNS:
2356                 ctl_putuint(sys_var[varid].text, alarm_overflow);
2357                 break;
2358
2359         case CS_TIMER_XMTS:
2360                 ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2361                 break;
2362
2363         case CS_FUZZ:
2364                 ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2365                 break;
2366         case CS_WANDER_THRESH:
2367                 ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2368                 break;
2369 #ifdef AUTOKEY
2370         case CS_FLAGS:
2371                 if (crypto_flags)
2372                         ctl_puthex(sys_var[CS_FLAGS].text,
2373                             crypto_flags);
2374                 break;
2375
2376         case CS_DIGEST:
2377                 if (crypto_flags) {
2378                         strlcpy(str, OBJ_nid2ln(crypto_nid),
2379                             COUNTOF(str));
2380                         ctl_putstr(sys_var[CS_DIGEST].text, str,
2381                             strlen(str));
2382                 }
2383                 break;
2384
2385         case CS_SIGNATURE:
2386                 if (crypto_flags) {
2387                         const EVP_MD *dp;
2388
2389                         dp = EVP_get_digestbynid(crypto_flags >> 16);
2390                         strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2391                             COUNTOF(str));
2392                         ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2393                             strlen(str));
2394                 }
2395                 break;
2396
2397         case CS_HOST:
2398                 if (hostval.ptr != NULL)
2399                         ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2400                             strlen(hostval.ptr));
2401                 break;
2402
2403         case CS_IDENT:
2404                 if (sys_ident != NULL)
2405                         ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2406                             strlen(sys_ident));
2407                 break;
2408
2409         case CS_CERTIF:
2410                 for (cp = cinfo; cp != NULL; cp = cp->link) {
2411                         snprintf(str, sizeof(str), "%s %s 0x%x",
2412                             cp->subject, cp->issuer, cp->flags);
2413                         ctl_putstr(sys_var[CS_CERTIF].text, str,
2414                             strlen(str));
2415                         ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2416                 }
2417                 break;
2418
2419         case CS_PUBLIC:
2420                 if (hostval.tstamp != 0)
2421                         ctl_putfs(sys_var[CS_PUBLIC].text,
2422                             ntohl(hostval.tstamp));
2423                 break;
2424 #endif  /* AUTOKEY */
2425
2426         default:
2427                 break;
2428         }
2429 }
2430
2431
2432 /*
2433  * ctl_putpeer - output a peer variable
2434  */
2435 static void
2436 ctl_putpeer(
2437         int id,
2438         struct peer *p
2439         )
2440 {
2441         char buf[CTL_MAX_DATA_LEN];
2442         char *s;
2443         char *t;
2444         char *be;
2445         int i;
2446         const struct ctl_var *k;
2447 #ifdef AUTOKEY
2448         struct autokey *ap;
2449         const EVP_MD *dp;
2450         const char *str;
2451 #endif  /* AUTOKEY */
2452
2453         switch (id) {
2454
2455         case CP_CONFIG:
2456                 ctl_putuint(peer_var[id].text,
2457                             !(FLAG_PREEMPT & p->flags));
2458                 break;
2459
2460         case CP_AUTHENABLE:
2461                 ctl_putuint(peer_var[id].text, !(p->keyid));
2462                 break;
2463
2464         case CP_AUTHENTIC:
2465                 ctl_putuint(peer_var[id].text,
2466                             !!(FLAG_AUTHENTIC & p->flags));
2467                 break;
2468
2469         case CP_SRCADR:
2470                 ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2471                 break;
2472
2473         case CP_SRCPORT:
2474                 ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2475                 break;
2476
2477         case CP_SRCHOST:
2478                 if (p->hostname != NULL)
2479                         ctl_putstr(peer_var[id].text, p->hostname,
2480                                    strlen(p->hostname));
2481                 break;
2482
2483         case CP_DSTADR:
2484                 ctl_putadr(peer_var[id].text, 0,
2485                            (p->dstadr != NULL)
2486                                 ? &p->dstadr->sin
2487                                 : NULL);
2488                 break;
2489
2490         case CP_DSTPORT:
2491                 ctl_putuint(peer_var[id].text,
2492                             (p->dstadr != NULL)
2493                                 ? SRCPORT(&p->dstadr->sin)
2494                                 : 0);
2495                 break;
2496
2497         case CP_IN:
2498                 if (p->r21 > 0.)
2499                         ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2500                 break;
2501
2502         case CP_OUT:
2503                 if (p->r34 > 0.)
2504                         ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2505                 break;
2506
2507         case CP_RATE:
2508                 ctl_putuint(peer_var[id].text, p->throttle);
2509                 break;
2510
2511         case CP_LEAP:
2512                 ctl_putuint(peer_var[id].text, p->leap);
2513                 break;
2514
2515         case CP_HMODE:
2516                 ctl_putuint(peer_var[id].text, p->hmode);
2517                 break;
2518
2519         case CP_STRATUM:
2520                 ctl_putuint(peer_var[id].text, p->stratum);
2521                 break;
2522
2523         case CP_PPOLL:
2524                 ctl_putuint(peer_var[id].text, p->ppoll);
2525                 break;
2526
2527         case CP_HPOLL:
2528                 ctl_putuint(peer_var[id].text, p->hpoll);
2529                 break;
2530
2531         case CP_PRECISION:
2532                 ctl_putint(peer_var[id].text, p->precision);
2533                 break;
2534
2535         case CP_ROOTDELAY:
2536                 ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2537                 break;
2538
2539         case CP_ROOTDISPERSION:
2540                 ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2541                 break;
2542
2543         case CP_REFID:
2544 #ifdef REFCLOCK
2545                 if (p->flags & FLAG_REFCLOCK) {
2546                         ctl_putrefid(peer_var[id].text, p->refid);
2547                         break;
2548                 }
2549 #endif
2550                 if (p->stratum > 1 && p->stratum < STRATUM_UNSPEC)
2551                         ctl_putadr(peer_var[id].text, p->refid,
2552                                    NULL);
2553                 else
2554                         ctl_putrefid(peer_var[id].text, p->refid);
2555                 break;
2556
2557         case CP_REFTIME:
2558                 ctl_putts(peer_var[id].text, &p->reftime);
2559                 break;
2560
2561         case CP_ORG:
2562                 ctl_putts(peer_var[id].text, &p->aorg);
2563                 break;
2564
2565         case CP_REC:
2566                 ctl_putts(peer_var[id].text, &p->dst);
2567                 break;
2568
2569         case CP_XMT:
2570                 if (p->xleave)
2571                         ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2572                 break;
2573
2574         case CP_BIAS:
2575                 if (p->bias != 0.)
2576                         ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2577                 break;
2578
2579         case CP_REACH:
2580                 ctl_puthex(peer_var[id].text, p->reach);
2581                 break;
2582
2583         case CP_FLASH:
2584                 ctl_puthex(peer_var[id].text, p->flash);
2585                 break;
2586
2587         case CP_TTL:
2588 #ifdef REFCLOCK
2589                 if (p->flags & FLAG_REFCLOCK) {
2590                         ctl_putuint(peer_var[id].text, p->ttl);
2591                         break;
2592                 }
2593 #endif
2594                 if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2595                         ctl_putint(peer_var[id].text,
2596                                    sys_ttl[p->ttl]);
2597                 break;
2598
2599         case CP_UNREACH:
2600                 ctl_putuint(peer_var[id].text, p->unreach);
2601                 break;
2602
2603         case CP_TIMER:
2604                 ctl_putuint(peer_var[id].text,
2605                             p->nextdate - current_time);
2606                 break;
2607
2608         case CP_DELAY:
2609                 ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2610                 break;
2611
2612         case CP_OFFSET:
2613                 ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2614                 break;
2615
2616         case CP_JITTER:
2617                 ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2618                 break;
2619
2620         case CP_DISPERSION:
2621                 ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2622                 break;
2623
2624         case CP_KEYID:
2625                 if (p->keyid > NTP_MAXKEY)
2626                         ctl_puthex(peer_var[id].text, p->keyid);
2627                 else
2628                         ctl_putuint(peer_var[id].text, p->keyid);
2629                 break;
2630
2631         case CP_FILTDELAY:
2632                 ctl_putarray(peer_var[id].text, p->filter_delay,
2633                              p->filter_nextpt);
2634                 break;
2635
2636         case CP_FILTOFFSET:
2637                 ctl_putarray(peer_var[id].text, p->filter_offset,
2638                              p->filter_nextpt);
2639                 break;
2640
2641         case CP_FILTERROR:
2642                 ctl_putarray(peer_var[id].text, p->filter_disp,
2643                              p->filter_nextpt);
2644                 break;
2645
2646         case CP_PMODE:
2647                 ctl_putuint(peer_var[id].text, p->pmode);
2648                 break;
2649
2650         case CP_RECEIVED:
2651                 ctl_putuint(peer_var[id].text, p->received);
2652                 break;
2653
2654         case CP_SENT:
2655                 ctl_putuint(peer_var[id].text, p->sent);
2656                 break;
2657
2658         case CP_VARLIST:
2659                 s = buf;
2660                 be = buf + sizeof(buf);
2661                 if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2662                         break;  /* really long var name */
2663
2664                 snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2665                 s += strlen(s);
2666                 t = s;
2667                 for (k = peer_var; !(EOV & k->flags); k++) {
2668                         if (PADDING & k->flags)
2669                                 continue;
2670                         i = strlen(k->text);
2671                         if (s + i + 1 >= be)
2672                                 break;
2673                         if (s != t)
2674                                 *s++ = ',';
2675                         memcpy(s, k->text, i);
2676                         s += i;
2677                 }
2678                 if (s + 2 < be) {
2679                         *s++ = '"';
2680                         *s = '\0';
2681                         ctl_putdata(buf, (u_int)(s - buf), 0);
2682                 }
2683                 break;
2684
2685         case CP_TIMEREC:
2686                 ctl_putuint(peer_var[id].text,
2687                             current_time - p->timereceived);
2688                 break;
2689
2690         case CP_TIMEREACH:
2691                 ctl_putuint(peer_var[id].text,
2692                             current_time - p->timereachable);
2693                 break;
2694
2695         case CP_BADAUTH:
2696                 ctl_putuint(peer_var[id].text, p->badauth);
2697                 break;
2698
2699         case CP_BOGUSORG:
2700                 ctl_putuint(peer_var[id].text, p->bogusorg);
2701                 break;
2702
2703         case CP_OLDPKT:
2704                 ctl_putuint(peer_var[id].text, p->oldpkt);
2705                 break;
2706
2707         case CP_SELDISP:
2708                 ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2709                 break;
2710
2711         case CP_SELBROKEN:
2712                 ctl_putuint(peer_var[id].text, p->selbroken);
2713                 break;
2714
2715         case CP_CANDIDATE:
2716                 ctl_putuint(peer_var[id].text, p->status);
2717                 break;
2718 #ifdef AUTOKEY
2719         case CP_FLAGS:
2720                 if (p->crypto)
2721                         ctl_puthex(peer_var[id].text, p->crypto);
2722                 break;
2723
2724         case CP_SIGNATURE:
2725                 if (p->crypto) {
2726                         dp = EVP_get_digestbynid(p->crypto >> 16);
2727                         str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2728                         ctl_putstr(peer_var[id].text, str, strlen(str));
2729                 }
2730                 break;
2731
2732         case CP_HOST:
2733                 if (p->subject != NULL)
2734                         ctl_putstr(peer_var[id].text, p->subject,
2735                             strlen(p->subject));
2736                 break;
2737
2738         case CP_VALID:          /* not used */
2739                 break;
2740
2741         case CP_INITSEQ:
2742                 if (NULL == (ap = p->recval.ptr))
2743                         break;
2744
2745                 ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2746                 ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2747                 ctl_putfs(peer_var[CP_INITTSP].text,
2748                           ntohl(p->recval.tstamp));
2749                 break;
2750
2751         case CP_IDENT:
2752                 if (p->ident != NULL)
2753                         ctl_putstr(peer_var[id].text, p->ident,
2754                             strlen(p->ident));
2755                 break;
2756
2757
2758 #endif  /* AUTOKEY */
2759         }
2760 }
2761
2762
2763 #ifdef REFCLOCK
2764 /*
2765  * ctl_putclock - output clock variables
2766  */
2767 static void
2768 ctl_putclock(
2769         int id,
2770         struct refclockstat *pcs,
2771         int mustput
2772         )
2773 {
2774         char buf[CTL_MAX_DATA_LEN];
2775         char *s, *t, *be;
2776         const char *ss;
2777         int i;
2778         const struct ctl_var *k;
2779
2780         switch (id) {
2781
2782         case CC_TYPE:
2783                 if (mustput || pcs->clockdesc == NULL
2784                     || *(pcs->clockdesc) == '\0') {
2785                         ctl_putuint(clock_var[id].text, pcs->type);
2786                 }
2787                 break;
2788         case CC_TIMECODE:
2789                 ctl_putstr(clock_var[id].text,
2790                            pcs->p_lastcode,
2791                            (unsigned)pcs->lencode);
2792                 break;
2793
2794         case CC_POLL:
2795                 ctl_putuint(clock_var[id].text, pcs->polls);
2796                 break;
2797
2798         case CC_NOREPLY:
2799                 ctl_putuint(clock_var[id].text,
2800                             pcs->noresponse);
2801                 break;
2802
2803         case CC_BADFORMAT:
2804                 ctl_putuint(clock_var[id].text,
2805                             pcs->badformat);
2806                 break;
2807
2808         case CC_BADDATA:
2809                 ctl_putuint(clock_var[id].text,
2810                             pcs->baddata);
2811                 break;
2812
2813         case CC_FUDGETIME1:
2814                 if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2815                         ctl_putdbl(clock_var[id].text,
2816                                    pcs->fudgetime1 * 1e3);
2817                 break;
2818
2819         case CC_FUDGETIME2:
2820                 if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2821                         ctl_putdbl(clock_var[id].text,
2822                                    pcs->fudgetime2 * 1e3);
2823                 break;
2824
2825         case CC_FUDGEVAL1:
2826                 if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2827                         ctl_putint(clock_var[id].text,
2828                                    pcs->fudgeval1);
2829                 break;
2830
2831         case CC_FUDGEVAL2:
2832                 if (mustput || (pcs->haveflags & CLK_HAVEVAL2)) {
2833                         if (pcs->fudgeval1 > 1)
2834                                 ctl_putadr(clock_var[id].text,
2835                                            pcs->fudgeval2, NULL);
2836                         else
2837                                 ctl_putrefid(clock_var[id].text,
2838                                              pcs->fudgeval2);
2839                 }
2840                 break;
2841
2842         case CC_FLAGS:
2843                 ctl_putuint(clock_var[id].text, pcs->flags);
2844                 break;
2845
2846         case CC_DEVICE:
2847                 if (pcs->clockdesc == NULL ||
2848                     *(pcs->clockdesc) == '\0') {
2849                         if (mustput)
2850                                 ctl_putstr(clock_var[id].text,
2851                                            "", 0);
2852                 } else {
2853                         ctl_putstr(clock_var[id].text,
2854                                    pcs->clockdesc,
2855                                    strlen(pcs->clockdesc));
2856                 }
2857                 break;
2858
2859         case CC_VARLIST:
2860                 s = buf;
2861                 be = buf + sizeof(buf);
2862                 if (strlen(clock_var[CC_VARLIST].text) + 4 >
2863                     sizeof(buf))
2864                         break;  /* really long var name */
2865
2866                 snprintf(s, sizeof(buf), "%s=\"",
2867                          clock_var[CC_VARLIST].text);
2868                 s += strlen(s);
2869                 t = s;
2870
2871                 for (k = clock_var; !(EOV & k->flags); k++) {
2872                         if (PADDING & k->flags)
2873                                 continue;
2874
2875                         i = strlen(k->text);
2876                         if (s + i + 1 >= be)
2877                                 break;
2878
2879                         if (s != t)
2880                                 *s++ = ',';
2881                         memcpy(s, k->text, i);
2882                         s += i;
2883                 }
2884
2885                 for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
2886                         if (PADDING & k->flags)
2887                                 continue;
2888
2889                         ss = k->text;
2890                         if (NULL == ss)
2891                                 continue;
2892
2893                         while (*ss && *ss != '=')
2894                                 ss++;
2895                         i = ss - k->text;
2896                         if (s + i + 1 >= be)
2897                                 break;
2898
2899                         if (s != t)
2900                                 *s++ = ',';
2901                         memcpy(s, k->text, (unsigned)i);
2902                         s += i;
2903                         *s = '\0';
2904                 }
2905                 if (s + 2 >= be)
2906                         break;
2907
2908                 *s++ = '"';
2909                 *s = '\0';
2910                 ctl_putdata(buf, (unsigned)(s - buf), 0);
2911                 break;
2912         }
2913 }
2914 #endif
2915
2916
2917
2918 /*
2919  * ctl_getitem - get the next data item from the incoming packet
2920  */
2921 static const struct ctl_var *
2922 ctl_getitem(
2923         const struct ctl_var *var_list,
2924         char **data
2925         )
2926 {
2927         static const struct ctl_var eol = { 0, EOV, NULL };
2928         static char buf[128];
2929         static u_long quiet_until;
2930         const struct ctl_var *v;
2931         const char *pch;
2932         char *cp;
2933         char *tp;
2934
2935         /*
2936          * Delete leading commas and white space
2937          */
2938         while (reqpt < reqend && (*reqpt == ',' ||
2939                                   isspace((unsigned char)*reqpt)))
2940                 reqpt++;
2941         if (reqpt >= reqend)
2942                 return NULL;
2943
2944         if (NULL == var_list)
2945                 return &eol;
2946
2947         /*
2948          * Look for a first character match on the tag.  If we find
2949          * one, see if it is a full match.
2950          */
2951         cp = reqpt;
2952         for (v = var_list; !(EOV & v->flags); v++) {
2953                 if (!(PADDING & v->flags) && *cp == *(v->text)) {
2954                         pch = v->text;
2955                         while ('\0' != *pch && '=' != *pch && cp < reqend
2956                                && *cp == *pch) {
2957                                 cp++;
2958                                 pch++;
2959                         }
2960                         if ('\0' == *pch || '=' == *pch) {
2961                                 while (cp < reqend && isspace((u_char)*cp))
2962                                         cp++;
2963                                 if (cp == reqend || ',' == *cp) {
2964                                         buf[0] = '\0';
2965                                         *data = buf;
2966                                         if (cp < reqend)
2967                                                 cp++;
2968                                         reqpt = cp;
2969                                         return v;
2970                                 }
2971                                 if ('=' == *cp) {
2972                                         cp++;
2973                                         tp = buf;
2974                                         while (cp < reqend && isspace((u_char)*cp))
2975                                                 cp++;
2976                                         while (cp < reqend && *cp != ',') {
2977                                                 *tp++ = *cp++;
2978                                                 if ((size_t)(tp - buf) >= sizeof(buf)) {
2979                                                         ctl_error(CERR_BADFMT);
2980                                                         numctlbadpkts++;
2981                                                         NLOG(NLOG_SYSEVENT)
2982                                                                 if (quiet_until <= current_time) {
2983                                                                         quiet_until = current_time + 300;
2984                                                                         msyslog(LOG_WARNING,
2985 "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)", stoa(rmt_addr), SRCPORT(rmt_addr));
2986                                                                 }
2987                                                         return NULL;
2988                                                 }
2989                                         }
2990                                         if (cp < reqend)
2991                                                 cp++;
2992                                         *tp-- = '\0';
2993                                         while (tp >= buf && isspace((u_char)*tp))
2994                                                 *tp-- = '\0';
2995                                         reqpt = cp;
2996                                         *data = buf;
2997                                         return v;
2998                                 }
2999                         }
3000                         cp = reqpt;
3001                 }
3002         }
3003         return v;
3004 }
3005
3006
3007 /*
3008  * control_unspec - response to an unspecified op-code
3009  */
3010 /*ARGSUSED*/
3011 static void
3012 control_unspec(
3013         struct recvbuf *rbufp,
3014         int restrict_mask
3015         )
3016 {
3017         struct peer *peer;
3018
3019         /*
3020          * What is an appropriate response to an unspecified op-code?
3021          * I return no errors and no data, unless a specified assocation
3022          * doesn't exist.
3023          */
3024         if (res_associd) {
3025                 peer = findpeerbyassoc(res_associd);
3026                 if (NULL == peer) {
3027                         ctl_error(CERR_BADASSOC);
3028                         return;
3029                 }
3030                 rpkt.status = htons(ctlpeerstatus(peer));
3031         } else
3032                 rpkt.status = htons(ctlsysstatus());
3033         ctl_flushpkt(0);
3034 }
3035
3036
3037 /*
3038  * read_status - return either a list of associd's, or a particular
3039  * peer's status.
3040  */
3041 /*ARGSUSED*/
3042 static void
3043 read_status(
3044         struct recvbuf *rbufp,
3045         int restrict_mask
3046         )
3047 {
3048         struct peer *peer;
3049         const u_char *cp;
3050         size_t n;
3051         /* a_st holds association ID, status pairs alternating */
3052         u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3053
3054 #ifdef DEBUG
3055         if (debug > 2)
3056                 printf("read_status: ID %d\n", res_associd);
3057 #endif
3058         /*
3059          * Two choices here. If the specified association ID is
3060          * zero we return all known assocation ID's.  Otherwise
3061          * we return a bunch of stuff about the particular peer.
3062          */
3063         if (res_associd) {
3064                 peer = findpeerbyassoc(res_associd);
3065                 if (NULL == peer) {
3066                         ctl_error(CERR_BADASSOC);
3067                         return;
3068                 }
3069                 rpkt.status = htons(ctlpeerstatus(peer));
3070                 if (res_authokay)
3071                         peer->num_events = 0;
3072                 /*
3073                  * For now, output everything we know about the
3074                  * peer. May be more selective later.
3075                  */
3076                 for (cp = def_peer_var; *cp != 0; cp++)
3077                         ctl_putpeer((int)*cp, peer);
3078                 ctl_flushpkt(0);
3079                 return;
3080         }
3081         n = 0;
3082         rpkt.status = htons(ctlsysstatus());
3083         for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3084                 a_st[n++] = htons(peer->associd);
3085                 a_st[n++] = htons(ctlpeerstatus(peer));
3086                 /* two entries each loop iteration, so n + 1 */
3087                 if (n + 1 >= COUNTOF(a_st)) {
3088                         ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3089                                     1);
3090                         n = 0;
3091                 }
3092         }
3093         if (n)
3094                 ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3095         ctl_flushpkt(0);
3096 }
3097
3098
3099 /*
3100  * read_peervars - half of read_variables() implementation
3101  */
3102 static void
3103 read_peervars(void)
3104 {
3105         const struct ctl_var *v;
3106         struct peer *peer;
3107         const u_char *cp;
3108         size_t i;
3109         char *  valuep;
3110         u_char  wants[CP_MAXCODE + 1];
3111         u_int   gotvar;
3112
3113         /*
3114          * Wants info for a particular peer. See if we know
3115          * the guy.
3116          */
3117         peer = findpeerbyassoc(res_associd);
3118         if (NULL == peer) {
3119                 ctl_error(CERR_BADASSOC);
3120                 return;
3121         }
3122         rpkt.status = htons(ctlpeerstatus(peer));
3123         if (res_authokay)
3124                 peer->num_events = 0;
3125         ZERO(wants);
3126         gotvar = 0;
3127         while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3128                 if (v->flags & EOV) {
3129                         ctl_error(CERR_UNKNOWNVAR);
3130                         return;
3131                 }
3132                 INSIST(v->code < COUNTOF(wants));
3133                 wants[v->code] = 1;
3134                 gotvar = 1;
3135         }
3136         if (gotvar) {
3137                 for (i = 1; i < COUNTOF(wants); i++)
3138                         if (wants[i])
3139                                 ctl_putpeer(i, peer);
3140         } else
3141                 for (cp = def_peer_var; *cp != 0; cp++)
3142                         ctl_putpeer((int)*cp, peer);
3143         ctl_flushpkt(0);
3144 }
3145
3146
3147 /*
3148  * read_sysvars - half of read_variables() implementation
3149  */
3150 static void
3151 read_sysvars(void)
3152 {
3153         const struct ctl_var *v;
3154         struct ctl_var *kv;
3155         u_int   n;
3156         u_int   gotvar;
3157         const u_char *cs;
3158         char *  valuep;
3159         const char * pch;
3160         u_char *wants;
3161         size_t  wants_count;
3162
3163         /*
3164          * Wants system variables. Figure out which he wants
3165          * and give them to him.
3166          */
3167         rpkt.status = htons(ctlsysstatus());
3168         if (res_authokay)
3169                 ctl_sys_num_events = 0;
3170         wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3171         wants = emalloc_zero(wants_count);
3172         gotvar = 0;
3173         while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3174                 if (!(EOV & v->flags)) {
3175                         INSIST(v->code < wants_count);
3176                         wants[v->code] = 1;
3177                         gotvar = 1;
3178                 } else {
3179                         v = ctl_getitem(ext_sys_var, &valuep);
3180                         INSIST(v != NULL);
3181                         if (EOV & v->flags) {
3182                                 ctl_error(CERR_UNKNOWNVAR);
3183                                 free(wants);
3184                                 return;
3185                         }
3186                         n = v->code + CS_MAXCODE + 1;
3187                         INSIST(n < wants_count);
3188                         wants[n] = 1;
3189                         gotvar = 1;
3190                 }
3191         }
3192         if (gotvar) {
3193                 for (n = 1; n <= CS_MAXCODE; n++)
3194                         if (wants[n])
3195                                 ctl_putsys(n);
3196                 for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3197                         if (wants[n + CS_MAXCODE + 1]) {
3198                                 pch = ext_sys_var[n].text;
3199                                 ctl_putdata(pch, strlen(pch), 0);
3200                         }
3201         } else {
3202                 for (cs = def_sys_var; *cs != 0; cs++)
3203                         ctl_putsys((int)*cs);
3204                 for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3205                         if (DEF & kv->flags)
3206                                 ctl_putdata(kv->text, strlen(kv->text),
3207                                             0);
3208         }
3209         free(wants);
3210         ctl_flushpkt(0);
3211 }
3212
3213
3214 /*
3215  * read_variables - return the variables the caller asks for
3216  */
3217 /*ARGSUSED*/
3218 static void
3219 read_variables(
3220         struct recvbuf *rbufp,
3221         int restrict_mask
3222         )
3223 {
3224         if (res_associd)
3225                 read_peervars();
3226         else
3227                 read_sysvars();
3228 }
3229
3230
3231 /*
3232  * write_variables - write into variables. We only allow leap bit
3233  * writing this way.
3234  */
3235 /*ARGSUSED*/
3236 static void
3237 write_variables(
3238         struct recvbuf *rbufp,
3239         int restrict_mask
3240         )
3241 {
3242         const struct ctl_var *v;
3243         int ext_var;
3244         char *valuep;
3245         long val;
3246         size_t octets;
3247         char *vareqv;
3248         const char *t;
3249         char *tt;
3250
3251         val = 0;
3252         /*
3253          * If he's trying to write into a peer tell him no way
3254          */
3255         if (res_associd != 0) {
3256                 ctl_error(CERR_PERMISSION);
3257                 return;
3258         }
3259
3260         /*
3261          * Set status
3262          */
3263         rpkt.status = htons(ctlsysstatus());
3264
3265         /*
3266          * Look through the variables. Dump out at the first sign of
3267          * trouble.
3268          */
3269         while ((v = ctl_getitem(sys_var, &valuep)) != 0) {
3270                 ext_var = 0;
3271                 if (v->flags & EOV) {
3272                         if ((v = ctl_getitem(ext_sys_var, &valuep)) !=
3273                             0) {
3274                                 if (v->flags & EOV) {
3275                                         ctl_error(CERR_UNKNOWNVAR);
3276                                         return;
3277                                 }
3278                                 ext_var = 1;
3279                         } else {
3280                                 break;
3281                         }
3282                 }
3283                 if (!(v->flags & CAN_WRITE)) {
3284                         ctl_error(CERR_PERMISSION);
3285                         return;
3286                 }
3287                 if (!ext_var && (*valuep == '\0' || !atoint(valuep,
3288                                                             &val))) {
3289                         ctl_error(CERR_BADFMT);
3290                         return;
3291                 }
3292                 if (!ext_var && (val & ~LEAP_NOTINSYNC) != 0) {
3293                         ctl_error(CERR_BADVALUE);
3294                         return;
3295                 }
3296
3297                 if (ext_var) {
3298                         octets = strlen(v->text) + strlen(valuep) + 2;
3299                         vareqv = emalloc(octets);
3300                         tt = vareqv;
3301                         t = v->text;
3302                         while (*t && *t != '=')
3303                                 *tt++ = *t++;
3304                         *tt++ = '=';
3305                         memcpy(tt, valuep, 1 + strlen(valuep));
3306                         set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3307                         free(vareqv);
3308                 } else {
3309                         ctl_error(CERR_UNSPEC); /* really */
3310                         return;
3311                 }
3312         }
3313
3314         /*
3315          * If we got anything, do it. xxx nothing to do ***
3316          */
3317         /*
3318           if (leapind != ~0 || leapwarn != ~0) {
3319           if (!leap_setleap((int)leapind, (int)leapwarn)) {
3320           ctl_error(CERR_PERMISSION);
3321           return;
3322           }
3323           }
3324         */
3325         ctl_flushpkt(0);
3326 }
3327
3328
3329 /*
3330  * configure() processes ntpq :config/config-from-file, allowing
3331  *              generic runtime reconfiguration.
3332  */
3333 static void configure(
3334         struct recvbuf *rbufp,
3335         int restrict_mask
3336         )
3337 {
3338         size_t data_count;
3339         int retval;
3340
3341         /* I haven't yet implemented changes to an existing association.
3342          * Hence check if the association id is 0
3343          */
3344         if (res_associd != 0) {
3345                 ctl_error(CERR_BADVALUE);
3346                 return;
3347         }
3348
3349         if (RES_NOMODIFY & restrict_mask) {
3350                 snprintf(remote_config.err_msg,
3351                          sizeof(remote_config.err_msg),
3352                          "runtime configuration prohibited by restrict ... nomodify");
3353                 ctl_putdata(remote_config.err_msg,
3354                             strlen(remote_config.err_msg), 0);
3355                 ctl_flushpkt(0);
3356                 NLOG(NLOG_SYSINFO)
3357                         msyslog(LOG_NOTICE,
3358                                 "runtime config from %s rejected due to nomodify restriction",
3359                                 stoa(&rbufp->recv_srcadr));
3360                 sys_restricted++;
3361                 return;
3362         }
3363
3364         /* Initialize the remote config buffer */
3365         data_count = remoteconfig_cmdlength(reqpt, reqend);
3366
3367         if (data_count > sizeof(remote_config.buffer) - 2) {
3368                 snprintf(remote_config.err_msg,
3369                          sizeof(remote_config.err_msg),
3370                          "runtime configuration failed: request too long");
3371                 ctl_putdata(remote_config.err_msg,
3372                             strlen(remote_config.err_msg), 0);
3373                 ctl_flushpkt(0);
3374                 msyslog(LOG_NOTICE,
3375                         "runtime config from %s rejected: request too long",
3376                         stoa(&rbufp->recv_srcadr));
3377                 return;
3378         }
3379         /* Bug 2853 -- check if all characters were acceptable */
3380         if (data_count != (size_t)(reqend - reqpt)) {
3381                 snprintf(remote_config.err_msg,
3382                          sizeof(remote_config.err_msg),
3383                          "runtime configuration failed: request contains an unprintable character");
3384                 ctl_putdata(remote_config.err_msg,
3385                             strlen(remote_config.err_msg), 0);
3386                 ctl_flushpkt(0);
3387                 msyslog(LOG_NOTICE,
3388                         "runtime config from %s rejected: request contains an unprintable character: %0x",
3389                         stoa(&rbufp->recv_srcadr),
3390                         reqpt[data_count]);
3391                 return;
3392         }
3393
3394         memcpy(remote_config.buffer, reqpt, data_count);
3395         /* The buffer has no trailing linefeed or NUL right now. For
3396          * logging, we do not want a newline, so we do that first after
3397          * adding the necessary NUL byte.
3398          */
3399         remote_config.buffer[data_count] = '\0';
3400         DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3401                 remote_config.buffer));
3402         msyslog(LOG_NOTICE, "%s config: %s",
3403                 stoa(&rbufp->recv_srcadr),
3404                 remote_config.buffer);
3405
3406         /* Now we have to make sure there is a NL/NUL sequence at the
3407          * end of the buffer before we parse it.
3408          */
3409         remote_config.buffer[data_count++] = '\n';
3410         remote_config.buffer[data_count] = '\0';
3411         remote_config.pos = 0;
3412         remote_config.err_pos = 0;
3413         remote_config.no_errors = 0;
3414         config_remotely(&rbufp->recv_srcadr);
3415
3416         /*
3417          * Check if errors were reported. If not, output 'Config
3418          * Succeeded'.  Else output the error count.  It would be nice
3419          * to output any parser error messages.
3420          */
3421         if (0 == remote_config.no_errors) {
3422                 retval = snprintf(remote_config.err_msg,
3423                                   sizeof(remote_config.err_msg),
3424                                   "Config Succeeded");
3425                 if (retval > 0)
3426                         remote_config.err_pos += retval;
3427         }
3428
3429         ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3430         ctl_flushpkt(0);
3431
3432         DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3433
3434         if (remote_config.no_errors > 0)
3435                 msyslog(LOG_NOTICE, "%d error in %s config",
3436                         remote_config.no_errors,
3437                         stoa(&rbufp->recv_srcadr));
3438 }
3439
3440
3441 /*
3442  * derive_nonce - generate client-address-specific nonce value
3443  *                associated with a given timestamp.
3444  */
3445 static u_int32 derive_nonce(
3446         sockaddr_u *    addr,
3447         u_int32         ts_i,
3448         u_int32         ts_f
3449         )
3450 {
3451         static u_int32  salt[4];
3452         static u_long   last_salt_update;
3453         union d_tag {
3454                 u_char  digest[EVP_MAX_MD_SIZE];
3455                 u_int32 extract;
3456         }               d;
3457         EVP_MD_CTX      ctx;
3458         u_int           len;
3459
3460         while (!salt[0] || current_time - last_salt_update >= 3600) {
3461                 salt[0] = ntp_random();
3462                 salt[1] = ntp_random();
3463                 salt[2] = ntp_random();
3464                 salt[3] = ntp_random();
3465                 last_salt_update = current_time;
3466         }
3467
3468         EVP_DigestInit(&ctx, EVP_get_digestbynid(NID_md5));
3469         EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3470         EVP_DigestUpdate(&ctx, &ts_i, sizeof(ts_i));
3471         EVP_DigestUpdate(&ctx, &ts_f, sizeof(ts_f));
3472         if (IS_IPV4(addr))
3473                 EVP_DigestUpdate(&ctx, &SOCK_ADDR4(addr),
3474                                  sizeof(SOCK_ADDR4(addr)));
3475         else
3476                 EVP_DigestUpdate(&ctx, &SOCK_ADDR6(addr),
3477                                  sizeof(SOCK_ADDR6(addr)));
3478         EVP_DigestUpdate(&ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3479         EVP_DigestUpdate(&ctx, salt, sizeof(salt));
3480         EVP_DigestFinal(&ctx, d.digest, &len);
3481
3482         return d.extract;
3483 }
3484
3485
3486 /*
3487  * generate_nonce - generate client-address-specific nonce string.
3488  */
3489 static void generate_nonce(
3490         struct recvbuf *        rbufp,
3491         char *                  nonce,
3492         size_t                  nonce_octets
3493         )
3494 {
3495         u_int32 derived;
3496
3497         derived = derive_nonce(&rbufp->recv_srcadr,
3498                                rbufp->recv_time.l_ui,
3499                                rbufp->recv_time.l_uf);
3500         snprintf(nonce, nonce_octets, "%08x%08x%08x",
3501                  rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3502 }
3503
3504
3505 /*
3506  * validate_nonce - validate client-address-specific nonce string.
3507  *
3508  * Returns TRUE if the local calculation of the nonce matches the
3509  * client-provided value and the timestamp is recent enough.
3510  */
3511 static int validate_nonce(
3512         const char *            pnonce,
3513         struct recvbuf *        rbufp
3514         )
3515 {
3516         u_int   ts_i;
3517         u_int   ts_f;
3518         l_fp    ts;
3519         l_fp    now_delta;
3520         u_int   supposed;
3521         u_int   derived;
3522
3523         if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3524                 return FALSE;
3525
3526         ts.l_ui = (u_int32)ts_i;
3527         ts.l_uf = (u_int32)ts_f;
3528         derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3529         get_systime(&now_delta);
3530         L_SUB(&now_delta, &ts);
3531
3532         return (supposed == derived && now_delta.l_ui < 16);
3533 }
3534
3535
3536 /*
3537  * send_random_tag_value - send a randomly-generated three character
3538  *                         tag prefix, a '.', an index, a '=' and a
3539  *                         random integer value.
3540  *
3541  * To try to force clients to ignore unrecognized tags in mrulist,
3542  * reslist, and ifstats responses, the first and last rows are spiced
3543  * with randomly-generated tag names with correct .# index.  Make it
3544  * three characters knowing that none of the currently-used subscripted
3545  * tags have that length, avoiding the need to test for
3546  * tag collision.
3547  */
3548 static void
3549 send_random_tag_value(
3550         int     indx
3551         )
3552 {
3553         int     noise;
3554         char    buf[32];
3555
3556         noise = rand() ^ (rand() << 16);
3557         buf[0] = 'a' + noise % 26;
3558         noise >>= 5;
3559         buf[1] = 'a' + noise % 26;
3560         noise >>= 5;
3561         buf[2] = 'a' + noise % 26;
3562         noise >>= 5;
3563         buf[3] = '.';
3564         snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3565         ctl_putuint(buf, noise);
3566 }
3567
3568
3569 /*
3570  * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3571  *
3572  * To keep clients honest about not depending on the order of values,
3573  * and thereby avoid being locked into ugly workarounds to maintain
3574  * backward compatibility later as new fields are added to the response,
3575  * the order is random.
3576  */
3577 static void
3578 send_mru_entry(
3579         mon_entry *     mon,
3580         int             count
3581         )
3582 {
3583         const char first_fmt[] =        "first.%d";
3584         const char ct_fmt[] =           "ct.%d";
3585         const char mv_fmt[] =           "mv.%d";
3586         const char rs_fmt[] =           "rs.%d";
3587         char    tag[32];
3588         u_char  sent[6]; /* 6 tag=value pairs */
3589         u_int32 noise;
3590         u_int   which;
3591         u_int   remaining;
3592         const char * pch;
3593
3594         remaining = COUNTOF(sent);
3595         ZERO(sent);
3596         noise = (u_int32)(rand() ^ (rand() << 16));
3597         while (remaining > 0) {
3598                 which = (noise & 7) % COUNTOF(sent);
3599                 noise >>= 3;
3600                 while (sent[which])
3601                         which = (which + 1) % COUNTOF(sent);
3602
3603                 switch (which) {
3604
3605                 case 0:
3606                         snprintf(tag, sizeof(tag), addr_fmt, count);
3607                         pch = sptoa(&mon->rmtadr);
3608                         ctl_putunqstr(tag, pch, strlen(pch));
3609                         break;
3610
3611                 case 1:
3612                         snprintf(tag, sizeof(tag), last_fmt, count);
3613                         ctl_putts(tag, &mon->last);
3614                         break;
3615
3616                 case 2:
3617                         snprintf(tag, sizeof(tag), first_fmt, count);
3618                         ctl_putts(tag, &mon->first);
3619                         break;
3620
3621                 case 3:
3622                         snprintf(tag, sizeof(tag), ct_fmt, count);
3623                         ctl_putint(tag, mon->count);
3624                         break;
3625
3626                 case 4:
3627                         snprintf(tag, sizeof(tag), mv_fmt, count);
3628                         ctl_putuint(tag, mon->vn_mode);
3629                         break;
3630
3631                 case 5:
3632                         snprintf(tag, sizeof(tag), rs_fmt, count);
3633                         ctl_puthex(tag, mon->flags);
3634                         break;
3635                 }
3636                 sent[which] = TRUE;
3637                 remaining--;
3638         }
3639 }
3640
3641
3642 /*
3643  * read_mru_list - supports ntpq's mrulist command.
3644  *
3645  * The challenge here is to match ntpdc's monlist functionality without
3646  * being limited to hundreds of entries returned total, and without
3647  * requiring state on the server.  If state were required, ntpq's
3648  * mrulist command would require authentication.
3649  *
3650  * The approach was suggested by Ry Jones.  A finite and variable number
3651  * of entries are retrieved per request, to avoid having responses with
3652  * such large numbers of packets that socket buffers are overflowed and
3653  * packets lost.  The entries are retrieved oldest-first, taking into
3654  * account that the MRU list will be changing between each request.  We
3655  * can expect to see duplicate entries for addresses updated in the MRU
3656  * list during the fetch operation.  In the end, the client can assemble
3657  * a close approximation of the MRU list at the point in time the last
3658  * response was sent by ntpd.  The only difference is it may be longer,
3659  * containing some number of oldest entries which have since been
3660  * reclaimed.  If necessary, the protocol could be extended to zap those
3661  * from the client snapshot at the end, but so far that doesn't seem
3662  * useful.
3663  *
3664  * To accomodate the changing MRU list, the starting point for requests
3665  * after the first request is supplied as a series of last seen
3666  * timestamps and associated addresses, the newest ones the client has
3667  * received.  As long as at least one of those entries hasn't been
3668  * bumped to the head of the MRU list, ntpd can pick up at that point.
3669  * Otherwise, the request is failed and it is up to ntpq to back up and
3670  * provide the next newest entry's timestamps and addresses, conceivably
3671  * backing up all the way to the starting point.
3672  *
3673  * input parameters:
3674  *      nonce=          Regurgitated nonce retrieved by the client
3675  *                      previously using CTL_OP_REQ_NONCE, demonstrating
3676  *                      ability to receive traffic sent to its address.
3677  *      frags=          Limit on datagrams (fragments) in response.  Used
3678  *                      by newer ntpq versions instead of limit= when
3679  *                      retrieving multiple entries.
3680  *      limit=          Limit on MRU entries returned.  One of frags= or
3681  *                      limit= must be provided.
3682  *                      limit=1 is a special case:  Instead of fetching
3683  *                      beginning with the supplied starting point's
3684  *                      newer neighbor, fetch the supplied entry, and
3685  *                      in that case the #.last timestamp can be zero.
3686  *                      This enables fetching a single entry by IP
3687  *                      address.  When limit is not one and frags= is
3688  *                      provided, the fragment limit controls.
3689  *      mincount=       (decimal) Return entries with count >= mincount.
3690  *      laddr=          Return entries associated with the server's IP
3691  *                      address given.  No port specification is needed,
3692  *                      and any supplied is ignored.
3693  *      resall=         0x-prefixed hex restrict bits which must all be
3694  *                      lit for an MRU entry to be included.
3695  *                      Has precedence over any resany=.
3696  *      resany=         0x-prefixed hex restrict bits, at least one of
3697  *                      which must be list for an MRU entry to be
3698  *                      included.
3699  *      last.0=         0x-prefixed hex l_fp timestamp of newest entry
3700  *                      which client previously received.
3701  *      addr.0=         text of newest entry's IP address and port,
3702  *                      IPv6 addresses in bracketed form: [::]:123
3703  *      last.1=         timestamp of 2nd newest entry client has.
3704  *      addr.1=         address of 2nd newest entry.
3705  *      [...]
3706  *
3707  * ntpq provides as many last/addr pairs as will fit in a single request
3708  * packet, except for the first request in a MRU fetch operation.
3709  *
3710  * The response begins with a new nonce value to be used for any
3711  * followup request.  Following the nonce is the next newer entry than
3712  * referred to by last.0 and addr.0, if the "0" entry has not been
3713  * bumped to the front.  If it has, the first entry returned will be the
3714  * next entry newer than referred to by last.1 and addr.1, and so on.
3715  * If none of the referenced entries remain unchanged, the request fails
3716  * and ntpq backs up to the next earlier set of entries to resync.
3717  *
3718  * Except for the first response, the response begins with confirmation
3719  * of the entry that precedes the first additional entry provided:
3720  *
3721  *      last.older=     hex l_fp timestamp matching one of the input
3722  *                      .last timestamps, which entry now precedes the
3723  *                      response 0. entry in the MRU list.
3724  *      addr.older=     text of address corresponding to older.last.
3725  *
3726  * And in any case, a successful response contains sets of values
3727  * comprising entries, with the oldest numbered 0 and incrementing from
3728  * there:
3729  *
3730  *      addr.#          text of IPv4 or IPv6 address and port
3731  *      last.#          hex l_fp timestamp of last receipt
3732  *      first.#         hex l_fp timestamp of first receipt
3733  *      ct.#            count of packets received
3734  *      mv.#            mode and version
3735  *      rs.#            restriction mask (RES_* bits)
3736  *
3737  * Note the code currently assumes there are no valid three letter
3738  * tags sent with each row, and needs to be adjusted if that changes.
3739  *
3740  * The client should accept the values in any order, and ignore .#
3741  * values which it does not understand, to allow a smooth path to
3742  * future changes without requiring a new opcode.  Clients can rely
3743  * on all *.0 values preceding any *.1 values, that is all values for
3744  * a given index number are together in the response.
3745  *
3746  * The end of the response list is noted with one or two tag=value
3747  * pairs.  Unconditionally:
3748  *
3749  *      now=            0x-prefixed l_fp timestamp at the server marking
3750  *                      the end of the operation.
3751  *
3752  * If any entries were returned, now= is followed by:
3753  *
3754  *      last.newest=    hex l_fp identical to last.# of the prior
3755  *                      entry.
3756  */
3757 static void read_mru_list(
3758         struct recvbuf *rbufp,
3759         int restrict_mask
3760         )
3761 {
3762         const char              nonce_text[] =          "nonce";
3763         const char              frags_text[] =          "frags";
3764         const char              limit_text[] =          "limit";
3765         const char              mincount_text[] =       "mincount";
3766         const char              resall_text[] =         "resall";
3767         const char              resany_text[] =         "resany";
3768         const char              maxlstint_text[] =      "maxlstint";
3769         const char              laddr_text[] =          "laddr";
3770         const char              resaxx_fmt[] =          "0x%hx";
3771         u_int                   limit;
3772         u_short                 frags;
3773         u_short                 resall;
3774         u_short                 resany;
3775         int                     mincount;
3776         u_int                   maxlstint;
3777         sockaddr_u              laddr;
3778         struct interface *      lcladr;
3779         u_int                   count;
3780         u_int                   ui;
3781         u_int                   uf;
3782         l_fp                    last[16];
3783         sockaddr_u              addr[COUNTOF(last)];
3784         char                    buf[128];
3785         struct ctl_var *        in_parms;
3786         const struct ctl_var *  v;
3787         char *                  val;
3788         const char *            pch;
3789         char *                  pnonce;
3790         int                     nonce_valid;
3791         size_t                  i;
3792         int                     priors;
3793         u_short                 hash;
3794         mon_entry *             mon;
3795         mon_entry *             prior_mon;
3796         l_fp                    now;
3797
3798         if (RES_NOMRULIST & restrict_mask) {
3799                 ctl_error(CERR_PERMISSION);
3800                 NLOG(NLOG_SYSINFO)
3801                         msyslog(LOG_NOTICE,
3802                                 "mrulist from %s rejected due to nomrulist restriction",
3803                                 stoa(&rbufp->recv_srcadr));
3804                 sys_restricted++;
3805                 return;
3806         }
3807         /*
3808          * fill in_parms var list with all possible input parameters.
3809          */
3810         in_parms = NULL;
3811         set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
3812         set_var(&in_parms, frags_text, sizeof(frags_text), 0);
3813         set_var(&in_parms, limit_text, sizeof(limit_text), 0);
3814         set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
3815         set_var(&in_parms, resall_text, sizeof(resall_text), 0);
3816         set_var(&in_parms, resany_text, sizeof(resany_text), 0);
3817         set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
3818         set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
3819         for (i = 0; i < COUNTOF(last); i++) {
3820                 snprintf(buf, sizeof(buf), last_fmt, (int)i);
3821                 set_var(&in_parms, buf, strlen(buf) + 1, 0);
3822                 snprintf(buf, sizeof(buf), addr_fmt, (int)i);
3823                 set_var(&in_parms, buf, strlen(buf) + 1, 0);
3824         }
3825
3826         /* decode input parms */
3827         pnonce = NULL;
3828         frags = 0;
3829         limit = 0;
3830         mincount = 0;
3831         resall = 0;
3832         resany = 0;
3833         maxlstint = 0;
3834         lcladr = NULL;
3835         priors = 0;
3836         ZERO(last);
3837         ZERO(addr);
3838
3839         while (NULL != (v = ctl_getitem(in_parms, &val)) &&
3840                !(EOV & v->flags)) {
3841                 int si;
3842
3843                 if (!strcmp(nonce_text, v->text)) {
3844                         if (NULL != pnonce)
3845                                 free(pnonce);
3846                         pnonce = estrdup(val);
3847                 } else if (!strcmp(frags_text, v->text)) {
3848                         sscanf(val, "%hu", &frags);
3849                 } else if (!strcmp(limit_text, v->text)) {
3850                         sscanf(val, "%u", &limit);
3851                 } else if (!strcmp(mincount_text, v->text)) {
3852                         if (1 != sscanf(val, "%d", &mincount) ||
3853                             mincount < 0)
3854                                 mincount = 0;
3855                 } else if (!strcmp(resall_text, v->text)) {
3856                         sscanf(val, resaxx_fmt, &resall);
3857                 } else if (!strcmp(resany_text, v->text)) {
3858                         sscanf(val, resaxx_fmt, &resany);
3859                 } else if (!strcmp(maxlstint_text, v->text)) {
3860                         sscanf(val, "%u", &maxlstint);
3861                 } else if (!strcmp(laddr_text, v->text)) {
3862                         if (decodenetnum(val, &laddr))
3863                                 lcladr = getinterface(&laddr, 0);
3864                 } else if (1 == sscanf(v->text, last_fmt, &si) &&
3865                            (size_t)si < COUNTOF(last)) {
3866                         if (2 == sscanf(val, "0x%08x.%08x", &ui, &uf)) {
3867                                 last[si].l_ui = ui;
3868                                 last[si].l_uf = uf;
3869                                 if (!SOCK_UNSPEC(&addr[si]) &&
3870                                     si == priors)
3871                                         priors++;
3872                         }
3873                 } else if (1 == sscanf(v->text, addr_fmt, &si) &&
3874                            (size_t)si < COUNTOF(addr)) {
3875                         if (decodenetnum(val, &addr[si])
3876                             && last[si].l_ui && last[si].l_uf &&
3877                             si == priors)
3878                                 priors++;
3879                 }
3880         }
3881         free_varlist(in_parms);
3882         in_parms = NULL;
3883
3884         /* return no responses until the nonce is validated */
3885         if (NULL == pnonce)
3886                 return;
3887
3888         nonce_valid = validate_nonce(pnonce, rbufp);
3889         free(pnonce);
3890         if (!nonce_valid)
3891                 return;
3892
3893         if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
3894             frags > MRU_FRAGS_LIMIT) {
3895                 ctl_error(CERR_BADVALUE);
3896                 return;
3897         }
3898
3899         /*
3900          * If either frags or limit is not given, use the max.
3901          */
3902         if (0 != frags && 0 == limit)
3903                 limit = UINT_MAX;
3904         else if (0 != limit && 0 == frags)
3905                 frags = MRU_FRAGS_LIMIT;
3906
3907         /*
3908          * Find the starting point if one was provided.
3909          */
3910         mon = NULL;
3911         for (i = 0; i < (size_t)priors; i++) {
3912                 hash = MON_HASH(&addr[i]);
3913                 for (mon = mon_hash[hash];
3914                      mon != NULL;
3915                      mon = mon->hash_next)
3916                         if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
3917                                 break;
3918                 if (mon != NULL) {
3919                         if (L_ISEQU(&mon->last, &last[i]))
3920                                 break;
3921                         mon = NULL;
3922                 }
3923         }
3924
3925         /* If a starting point was provided... */
3926         if (priors) {
3927                 /* and none could be found unmodified... */
3928                 if (NULL == mon) {
3929                         /* tell ntpq to try again with older entries */
3930                         ctl_error(CERR_UNKNOWNVAR);
3931                         return;
3932                 }
3933                 /* confirm the prior entry used as starting point */
3934                 ctl_putts("last.older", &mon->last);
3935                 pch = sptoa(&mon->rmtadr);
3936                 ctl_putunqstr("addr.older", pch, strlen(pch));
3937
3938                 /*
3939                  * Move on to the first entry the client doesn't have,
3940                  * except in the special case of a limit of one.  In
3941                  * that case return the starting point entry.
3942                  */
3943                 if (limit > 1)
3944                         mon = PREV_DLIST(mon_mru_list, mon, mru);
3945         } else {        /* start with the oldest */
3946                 mon = TAIL_DLIST(mon_mru_list, mru);
3947         }
3948
3949         /*
3950          * send up to limit= entries in up to frags= datagrams
3951          */
3952         get_systime(&now);
3953         generate_nonce(rbufp, buf, sizeof(buf));
3954         ctl_putunqstr("nonce", buf, strlen(buf));
3955         prior_mon = NULL;
3956         for (count = 0;
3957              mon != NULL && res_frags < frags && count < limit;
3958              mon = PREV_DLIST(mon_mru_list, mon, mru)) {
3959
3960                 if (mon->count < mincount)
3961                         continue;
3962                 if (resall && resall != (resall & mon->flags))
3963                         continue;
3964                 if (resany && !(resany & mon->flags))
3965                         continue;
3966                 if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
3967                     maxlstint)
3968                         continue;
3969                 if (lcladr != NULL && mon->lcladr != lcladr)
3970                         continue;
3971
3972                 send_mru_entry(mon, count);
3973                 if (!count)
3974                         send_random_tag_value(0);
3975                 count++;
3976                 prior_mon = mon;
3977         }
3978
3979         /*
3980          * If this batch completes the MRU list, say so explicitly with
3981          * a now= l_fp timestamp.
3982          */
3983         if (NULL == mon) {
3984                 if (count > 1)
3985                         send_random_tag_value(count - 1);
3986                 ctl_putts("now", &now);
3987                 /* if any entries were returned confirm the last */
3988                 if (prior_mon != NULL)
3989                         ctl_putts("last.newest", &prior_mon->last);
3990         }
3991         ctl_flushpkt(0);
3992 }
3993
3994
3995 /*
3996  * Send a ifstats entry in response to a "ntpq -c ifstats" request.
3997  *
3998  * To keep clients honest about not depending on the order of values,
3999  * and thereby avoid being locked into ugly workarounds to maintain
4000  * backward compatibility later as new fields are added to the response,
4001  * the order is random.
4002  */
4003 static void
4004 send_ifstats_entry(
4005         endpt * la,
4006         u_int   ifnum
4007         )
4008 {
4009         const char addr_fmtu[] =        "addr.%u";
4010         const char bcast_fmt[] =        "bcast.%u";
4011         const char en_fmt[] =           "en.%u";        /* enabled */
4012         const char name_fmt[] =         "name.%u";
4013         const char flags_fmt[] =        "flags.%u";
4014         const char tl_fmt[] =           "tl.%u";        /* ttl */
4015         const char mc_fmt[] =           "mc.%u";        /* mcast count */
4016         const char rx_fmt[] =           "rx.%u";
4017         const char tx_fmt[] =           "tx.%u";
4018         const char txerr_fmt[] =        "txerr.%u";
4019         const char pc_fmt[] =           "pc.%u";        /* peer count */
4020         const char up_fmt[] =           "up.%u";        /* uptime */
4021         char    tag[32];
4022         u_char  sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4023         int     noisebits;
4024         u_int32 noise;
4025         u_int   which;
4026         u_int   remaining;
4027         const char *pch;
4028
4029         remaining = COUNTOF(sent);
4030         ZERO(sent);
4031         noise = 0;
4032         noisebits = 0;
4033         while (remaining > 0) {
4034                 if (noisebits < 4) {
4035                         noise = rand() ^ (rand() << 16);
4036                         noisebits = 31;
4037                 }
4038                 which = (noise & 0xf) % COUNTOF(sent);
4039                 noise >>= 4;
4040                 noisebits -= 4;
4041
4042                 while (sent[which])
4043                         which = (which + 1) % COUNTOF(sent);
4044
4045                 switch (which) {
4046
4047                 case 0:
4048                         snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4049                         pch = sptoa(&la->sin);
4050                         ctl_putunqstr(tag, pch, strlen(pch));
4051                         break;
4052
4053                 case 1:
4054                         snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4055                         if (INT_BCASTOPEN & la->flags)
4056                                 pch = sptoa(&la->bcast);
4057                         else
4058                                 pch = "";
4059                         ctl_putunqstr(tag, pch, strlen(pch));
4060                         break;
4061
4062                 case 2:
4063                         snprintf(tag, sizeof(tag), en_fmt, ifnum);
4064                         ctl_putint(tag, !la->ignore_packets);
4065                         break;
4066
4067                 case 3:
4068                         snprintf(tag, sizeof(tag), name_fmt, ifnum);
4069                         ctl_putstr(tag, la->name, strlen(la->name));
4070                         break;
4071
4072                 case 4:
4073                         snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4074                         ctl_puthex(tag, (u_int)la->flags);
4075                         break;
4076
4077                 case 5:
4078                         snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4079                         ctl_putint(tag, la->last_ttl);
4080                         break;
4081
4082                 case 6:
4083                         snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4084                         ctl_putint(tag, la->num_mcast);
4085                         break;
4086
4087                 case 7:
4088                         snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4089                         ctl_putint(tag, la->received);
4090                         break;
4091
4092                 case 8:
4093                         snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4094                         ctl_putint(tag, la->sent);
4095                         break;
4096
4097                 case 9:
4098                         snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4099                         ctl_putint(tag, la->notsent);
4100                         break;
4101
4102                 case 10:
4103                         snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4104                         ctl_putuint(tag, la->peercnt);
4105                         break;
4106
4107                 case 11:
4108                         snprintf(tag, sizeof(tag), up_fmt, ifnum);
4109                         ctl_putuint(tag, current_time - la->starttime);
4110                         break;
4111                 }
4112                 sent[which] = TRUE;
4113                 remaining--;
4114         }
4115         send_random_tag_value((int)ifnum);
4116 }
4117
4118
4119 /*
4120  * read_ifstats - send statistics for each local address, exposed by
4121  *                ntpq -c ifstats
4122  */
4123 static void
4124 read_ifstats(
4125         struct recvbuf *        rbufp
4126         )
4127 {
4128         u_int   ifidx;
4129         endpt * la;
4130
4131         /*
4132          * loop over [0..sys_ifnum] searching ep_list for each
4133          * ifnum in turn.
4134          */
4135         for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4136                 for (la = ep_list; la != NULL; la = la->elink)
4137                         if (ifidx == la->ifnum)
4138                                 break;
4139                 if (NULL == la)
4140                         continue;
4141                 /* return stats for one local address */
4142                 send_ifstats_entry(la, ifidx);
4143         }
4144         ctl_flushpkt(0);
4145 }
4146
4147 static void
4148 sockaddrs_from_restrict_u(
4149         sockaddr_u *    psaA,
4150         sockaddr_u *    psaM,
4151         restrict_u *    pres,
4152         int             ipv6
4153         )
4154 {
4155         ZERO(*psaA);
4156         ZERO(*psaM);
4157         if (!ipv6) {
4158                 psaA->sa.sa_family = AF_INET;
4159                 psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4160                 psaM->sa.sa_family = AF_INET;
4161                 psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4162         } else {
4163                 psaA->sa.sa_family = AF_INET6;
4164                 memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4165                        sizeof(psaA->sa6.sin6_addr));
4166                 psaM->sa.sa_family = AF_INET6;
4167                 memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4168                        sizeof(psaA->sa6.sin6_addr));
4169         }
4170 }
4171
4172
4173 /*
4174  * Send a restrict entry in response to a "ntpq -c reslist" request.
4175  *
4176  * To keep clients honest about not depending on the order of values,
4177  * and thereby avoid being locked into ugly workarounds to maintain
4178  * backward compatibility later as new fields are added to the response,
4179  * the order is random.
4180  */
4181 static void
4182 send_restrict_entry(
4183         restrict_u *    pres,
4184         int             ipv6,
4185         u_int           idx
4186         )
4187 {
4188         const char addr_fmtu[] =        "addr.%u";
4189         const char mask_fmtu[] =        "mask.%u";
4190         const char hits_fmt[] =         "hits.%u";
4191         const char flags_fmt[] =        "flags.%u";
4192         char            tag[32];
4193         u_char          sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4194         int             noisebits;
4195         u_int32         noise;
4196         u_int           which;
4197         u_int           remaining;
4198         sockaddr_u      addr;
4199         sockaddr_u      mask;
4200         const char *    pch;
4201         char *          buf;
4202         const char *    match_str;
4203         const char *    access_str;
4204
4205         sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4206         remaining = COUNTOF(sent);
4207         ZERO(sent);
4208         noise = 0;
4209         noisebits = 0;
4210         while (remaining > 0) {
4211                 if (noisebits < 2) {
4212                         noise = rand() ^ (rand() << 16);
4213                         noisebits = 31;
4214                 }
4215                 which = (noise & 0x3) % COUNTOF(sent);
4216                 noise >>= 2;
4217                 noisebits -= 2;
4218
4219                 while (sent[which])
4220                         which = (which + 1) % COUNTOF(sent);
4221
4222                 switch (which) {
4223
4224                 case 0:
4225                         snprintf(tag, sizeof(tag), addr_fmtu, idx);
4226                         pch = stoa(&addr);
4227                         ctl_putunqstr(tag, pch, strlen(pch));
4228                         break;
4229
4230                 case 1:
4231                         snprintf(tag, sizeof(tag), mask_fmtu, idx);
4232                         pch = stoa(&mask);
4233                         ctl_putunqstr(tag, pch, strlen(pch));
4234                         break;
4235
4236                 case 2:
4237                         snprintf(tag, sizeof(tag), hits_fmt, idx);
4238                         ctl_putuint(tag, pres->count);
4239                         break;
4240
4241                 case 3:
4242                         snprintf(tag, sizeof(tag), flags_fmt, idx);
4243                         match_str = res_match_flags(pres->mflags);
4244                         access_str = res_access_flags(pres->flags);
4245                         if ('\0' == match_str[0]) {
4246                                 pch = access_str;
4247                         } else {
4248                                 LIB_GETBUF(buf);
4249                                 snprintf(buf, LIB_BUFLENGTH, "%s %s",
4250                                          match_str, access_str);
4251                                 pch = buf;
4252                         }
4253                         ctl_putunqstr(tag, pch, strlen(pch));
4254                         break;
4255                 }
4256                 sent[which] = TRUE;
4257                 remaining--;
4258         }
4259         send_random_tag_value((int)idx);
4260 }
4261
4262
4263 static void
4264 send_restrict_list(
4265         restrict_u *    pres,
4266         int             ipv6,
4267         u_int *         pidx
4268         )
4269 {
4270         for ( ; pres != NULL; pres = pres->link) {
4271                 send_restrict_entry(pres, ipv6, *pidx);
4272                 (*pidx)++;
4273         }
4274 }
4275
4276
4277 /*
4278  * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4279  */
4280 static void
4281 read_addr_restrictions(
4282         struct recvbuf *        rbufp
4283 )
4284 {
4285         u_int idx;
4286
4287         idx = 0;
4288         send_restrict_list(restrictlist4, FALSE, &idx);
4289         send_restrict_list(restrictlist6, TRUE, &idx);
4290         ctl_flushpkt(0);
4291 }
4292
4293
4294 /*
4295  * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4296  */
4297 static void
4298 read_ordlist(
4299         struct recvbuf *        rbufp,
4300         int                     restrict_mask
4301         )
4302 {
4303         const char ifstats_s[] = "ifstats";
4304         const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4305         const char addr_rst_s[] = "addr_restrictions";
4306         const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4307         struct ntp_control *    cpkt;
4308         u_short                 qdata_octets;
4309
4310         /*
4311          * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4312          * used only for ntpq -c ifstats.  With the addition of reslist
4313          * the same opcode was generalized to retrieve ordered lists
4314          * which require authentication.  The request data is empty or
4315          * contains "ifstats" (not null terminated) to retrieve local
4316          * addresses and associated stats.  It is "addr_restrictions"
4317          * to retrieve the IPv4 then IPv6 remote address restrictions,
4318          * which are access control lists.  Other request data return
4319          * CERR_UNKNOWNVAR.
4320          */
4321         cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4322         qdata_octets = ntohs(cpkt->count);
4323         if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4324             !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4325                 read_ifstats(rbufp);
4326                 return;
4327         }
4328         if (a_r_chars == qdata_octets &&
4329             !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4330                 read_addr_restrictions(rbufp);
4331                 return;
4332         }
4333         ctl_error(CERR_UNKNOWNVAR);
4334 }
4335
4336
4337 /*
4338  * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4339  */
4340 static void req_nonce(
4341         struct recvbuf *        rbufp,
4342         int                     restrict_mask
4343         )
4344 {
4345         char    buf[64];
4346
4347         generate_nonce(rbufp, buf, sizeof(buf));
4348         ctl_putunqstr("nonce", buf, strlen(buf));
4349         ctl_flushpkt(0);
4350 }
4351
4352
4353 /*
4354  * read_clockstatus - return clock radio status
4355  */
4356 /*ARGSUSED*/
4357 static void
4358 read_clockstatus(
4359         struct recvbuf *rbufp,
4360         int restrict_mask
4361         )
4362 {
4363 #ifndef REFCLOCK
4364         /*
4365          * If no refclock support, no data to return
4366          */
4367         ctl_error(CERR_BADASSOC);
4368 #else
4369         const struct ctl_var *  v;
4370         int                     i;
4371         struct peer *           peer;
4372         char *                  valuep;
4373         u_char *                wants;
4374         size_t                  wants_alloc;
4375         int                     gotvar;
4376         const u_char *          cc;
4377         struct ctl_var *        kv;
4378         struct refclockstat     cs;
4379
4380         if (res_associd != 0) {
4381                 peer = findpeerbyassoc(res_associd);
4382         } else {
4383                 /*
4384                  * Find a clock for this jerk.  If the system peer
4385                  * is a clock use it, else search peer_list for one.
4386                  */
4387                 if (sys_peer != NULL && (FLAG_REFCLOCK &
4388                     sys_peer->flags))
4389                         peer = sys_peer;
4390                 else
4391                         for (peer = peer_list;
4392                              peer != NULL;
4393                              peer = peer->p_link)
4394                                 if (FLAG_REFCLOCK & peer->flags)
4395                                         break;
4396         }
4397         if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4398                 ctl_error(CERR_BADASSOC);
4399                 return;
4400         }
4401         /*
4402          * If we got here we have a peer which is a clock. Get his
4403          * status.
4404          */
4405         cs.kv_list = NULL;
4406         refclock_control(&peer->srcadr, NULL, &cs);
4407         kv = cs.kv_list;
4408         /*
4409          * Look for variables in the packet.
4410          */
4411         rpkt.status = htons(ctlclkstatus(&cs));
4412         wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4413         wants = emalloc_zero(wants_alloc);
4414         gotvar = FALSE;
4415         while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4416                 if (!(EOV & v->flags)) {
4417                         wants[v->code] = TRUE;
4418                         gotvar = TRUE;
4419                 } else {
4420                         v = ctl_getitem(kv, &valuep);
4421                         INSIST(NULL != v);
4422                         if (EOV & v->flags) {
4423                                 ctl_error(CERR_UNKNOWNVAR);
4424                                 free(wants);
4425                                 free_varlist(cs.kv_list);
4426                                 return;
4427                         }
4428                         wants[CC_MAXCODE + 1 + v->code] = TRUE;
4429                         gotvar = TRUE;
4430                 }
4431         }
4432
4433         if (gotvar) {
4434                 for (i = 1; i <= CC_MAXCODE; i++)
4435                         if (wants[i])
4436                                 ctl_putclock(i, &cs, TRUE);
4437                 if (kv != NULL)
4438                         for (i = 0; !(EOV & kv[i].flags); i++)
4439                                 if (wants[i + CC_MAXCODE + 1])
4440                                         ctl_putdata(kv[i].text,
4441                                                     strlen(kv[i].text),
4442                                                     FALSE);
4443         } else {
4444                 for (cc = def_clock_var; *cc != 0; cc++)
4445                         ctl_putclock((int)*cc, &cs, FALSE);
4446                 for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4447                         if (DEF & kv->flags)
4448                                 ctl_putdata(kv->text, strlen(kv->text),
4449                                             FALSE);
4450         }
4451
4452         free(wants);
4453         free_varlist(cs.kv_list);
4454
4455         ctl_flushpkt(0);
4456 #endif
4457 }
4458
4459
4460 /*
4461  * write_clockstatus - we don't do this
4462  */
4463 /*ARGSUSED*/
4464 static void
4465 write_clockstatus(
4466         struct recvbuf *rbufp,
4467         int restrict_mask
4468         )
4469 {
4470         ctl_error(CERR_PERMISSION);
4471 }
4472
4473 /*
4474  * Trap support from here on down. We send async trap messages when the
4475  * upper levels report trouble. Traps can by set either by control
4476  * messages or by configuration.
4477  */
4478 /*
4479  * set_trap - set a trap in response to a control message
4480  */
4481 static void
4482 set_trap(
4483         struct recvbuf *rbufp,
4484         int restrict_mask
4485         )
4486 {
4487         int traptype;
4488
4489         /*
4490          * See if this guy is allowed
4491          */
4492         if (restrict_mask & RES_NOTRAP) {
4493                 ctl_error(CERR_PERMISSION);
4494                 return;
4495         }
4496
4497         /*
4498          * Determine his allowed trap type.
4499          */
4500         traptype = TRAP_TYPE_PRIO;
4501         if (restrict_mask & RES_LPTRAP)
4502                 traptype = TRAP_TYPE_NONPRIO;
4503
4504         /*
4505          * Call ctlsettrap() to do the work.  Return
4506          * an error if it can't assign the trap.
4507          */
4508         if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4509                         (int)res_version))
4510                 ctl_error(CERR_NORESOURCE);
4511         ctl_flushpkt(0);
4512 }
4513
4514
4515 /*
4516  * unset_trap - unset a trap in response to a control message
4517  */
4518 static void
4519 unset_trap(
4520         struct recvbuf *rbufp,
4521         int restrict_mask
4522         )
4523 {
4524         int traptype;
4525
4526         /*
4527          * We don't prevent anyone from removing his own trap unless the
4528          * trap is configured. Note we also must be aware of the
4529          * possibility that restriction flags were changed since this
4530          * guy last set his trap. Set the trap type based on this.
4531          */
4532         traptype = TRAP_TYPE_PRIO;
4533         if (restrict_mask & RES_LPTRAP)
4534                 traptype = TRAP_TYPE_NONPRIO;
4535
4536         /*
4537          * Call ctlclrtrap() to clear this out.
4538          */
4539         if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4540                 ctl_error(CERR_BADASSOC);
4541         ctl_flushpkt(0);
4542 }
4543
4544
4545 /*
4546  * ctlsettrap - called to set a trap
4547  */
4548 int
4549 ctlsettrap(
4550         sockaddr_u *raddr,
4551         struct interface *linter,
4552         int traptype,
4553         int version
4554         )
4555 {
4556         size_t n;
4557         struct ctl_trap *tp;
4558         struct ctl_trap *tptouse;
4559
4560         /*
4561          * See if we can find this trap.  If so, we only need update
4562          * the flags and the time.
4563          */
4564         if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4565                 switch (traptype) {
4566
4567                 case TRAP_TYPE_CONFIG:
4568                         tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4569                         break;
4570
4571                 case TRAP_TYPE_PRIO:
4572                         if (tp->tr_flags & TRAP_CONFIGURED)
4573                                 return (1); /* don't change anything */
4574                         tp->tr_flags = TRAP_INUSE;
4575                         break;
4576
4577                 case TRAP_TYPE_NONPRIO:
4578                         if (tp->tr_flags & TRAP_CONFIGURED)
4579                                 return (1); /* don't change anything */
4580                         tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4581                         break;
4582                 }
4583                 tp->tr_settime = current_time;
4584                 tp->tr_resets++;
4585                 return (1);
4586         }
4587
4588         /*
4589          * First we heard of this guy.  Try to find a trap structure
4590          * for him to use, clearing out lesser priority guys if we
4591          * have to. Clear out anyone who's expired while we're at it.
4592          */
4593         tptouse = NULL;
4594         for (n = 0; n < COUNTOF(ctl_traps); n++) {
4595                 tp = &ctl_traps[n];
4596                 if ((TRAP_INUSE & tp->tr_flags) &&
4597                     !(TRAP_CONFIGURED & tp->tr_flags) &&
4598                     ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4599                         tp->tr_flags = 0;
4600                         num_ctl_traps--;
4601                 }
4602                 if (!(TRAP_INUSE & tp->tr_flags)) {
4603                         tptouse = tp;
4604                 } else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4605                         switch (traptype) {
4606
4607                         case TRAP_TYPE_CONFIG:
4608                                 if (tptouse == NULL) {
4609                                         tptouse = tp;
4610                                         break;
4611                                 }
4612                                 if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4613                                     !(TRAP_NONPRIO & tp->tr_flags))
4614                                         break;
4615
4616                                 if (!(TRAP_NONPRIO & tptouse->tr_flags)
4617                                     && (TRAP_NONPRIO & tp->tr_flags)) {
4618                                         tptouse = tp;
4619                                         break;
4620                                 }
4621                                 if (tptouse->tr_origtime <
4622                                     tp->tr_origtime)
4623                                         tptouse = tp;
4624                                 break;
4625
4626                         case TRAP_TYPE_PRIO:
4627                                 if ( TRAP_NONPRIO & tp->tr_flags) {
4628                                         if (tptouse == NULL ||
4629                                             ((TRAP_INUSE &
4630                                               tptouse->tr_flags) &&
4631                                              tptouse->tr_origtime <
4632                                              tp->tr_origtime))
4633                                                 tptouse = tp;
4634                                 }
4635                                 break;
4636
4637                         case TRAP_TYPE_NONPRIO:
4638                                 break;
4639                         }
4640                 }
4641         }
4642
4643         /*
4644          * If we don't have room for him return an error.
4645          */
4646         if (tptouse == NULL)
4647                 return (0);
4648
4649         /*
4650          * Set up this structure for him.
4651          */
4652         tptouse->tr_settime = tptouse->tr_origtime = current_time;
4653         tptouse->tr_count = tptouse->tr_resets = 0;
4654         tptouse->tr_sequence = 1;
4655         tptouse->tr_addr = *raddr;
4656         tptouse->tr_localaddr = linter;
4657         tptouse->tr_version = (u_char) version;
4658         tptouse->tr_flags = TRAP_INUSE;
4659         if (traptype == TRAP_TYPE_CONFIG)
4660                 tptouse->tr_flags |= TRAP_CONFIGURED;
4661         else if (traptype == TRAP_TYPE_NONPRIO)
4662                 tptouse->tr_flags |= TRAP_NONPRIO;
4663         num_ctl_traps++;
4664         return (1);
4665 }
4666
4667
4668 /*
4669  * ctlclrtrap - called to clear a trap
4670  */
4671 int
4672 ctlclrtrap(
4673         sockaddr_u *raddr,
4674         struct interface *linter,
4675         int traptype
4676         )
4677 {
4678         register struct ctl_trap *tp;
4679
4680         if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4681                 return (0);
4682
4683         if (tp->tr_flags & TRAP_CONFIGURED
4684             && traptype != TRAP_TYPE_CONFIG)
4685                 return (0);
4686
4687         tp->tr_flags = 0;
4688         num_ctl_traps--;
4689         return (1);
4690 }
4691
4692
4693 /*
4694  * ctlfindtrap - find a trap given the remote and local addresses
4695  */
4696 static struct ctl_trap *
4697 ctlfindtrap(
4698         sockaddr_u *raddr,
4699         struct interface *linter
4700         )
4701 {
4702         size_t  n;
4703
4704         for (n = 0; n < COUNTOF(ctl_traps); n++)
4705                 if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4706                     && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4707                     && (linter == ctl_traps[n].tr_localaddr))
4708                         return &ctl_traps[n];
4709
4710         return NULL;
4711 }
4712
4713
4714 /*
4715  * report_event - report an event to the trappers
4716  */
4717 void
4718 report_event(
4719         int     err,            /* error code */
4720         struct peer *peer,      /* peer structure pointer */
4721         const char *str         /* protostats string */
4722         )
4723 {
4724         char    statstr[NTP_MAXSTRLEN];
4725         int     i;
4726         size_t  len;
4727
4728         /*
4729          * Report the error to the protostats file, system log and
4730          * trappers.
4731          */
4732         if (peer == NULL) {
4733
4734                 /*
4735                  * Discard a system report if the number of reports of
4736                  * the same type exceeds the maximum.
4737                  */
4738                 if (ctl_sys_last_event != (u_char)err)
4739                         ctl_sys_num_events= 0;
4740                 if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4741                         return;
4742
4743                 ctl_sys_last_event = (u_char)err;
4744                 ctl_sys_num_events++;
4745                 snprintf(statstr, sizeof(statstr),
4746                     "0.0.0.0 %04x %02x %s",
4747                     ctlsysstatus(), err, eventstr(err));
4748                 if (str != NULL) {
4749                         len = strlen(statstr);
4750                         snprintf(statstr + len, sizeof(statstr) - len,
4751                             " %s", str);
4752                 }
4753                 NLOG(NLOG_SYSEVENT)
4754                         msyslog(LOG_INFO, "%s", statstr);
4755         } else {
4756
4757                 /*
4758                  * Discard a peer report if the number of reports of
4759                  * the same type exceeds the maximum for that peer.
4760                  */
4761                 const char *    src;
4762                 u_char          errlast;
4763
4764                 errlast = (u_char)err & ~PEER_EVENT;
4765                 if (peer->last_event == errlast)
4766                         peer->num_events = 0;
4767                 if (peer->num_events >= CTL_PEER_MAXEVENTS)
4768                         return;
4769
4770                 peer->last_event = errlast;
4771                 peer->num_events++;
4772                 if (ISREFCLOCKADR(&peer->srcadr))
4773                         src = refnumtoa(&peer->srcadr);
4774                 else
4775                         src = stoa(&peer->srcadr);
4776
4777                 snprintf(statstr, sizeof(statstr),
4778                     "%s %04x %02x %s", src,
4779                     ctlpeerstatus(peer), err, eventstr(err));
4780                 if (str != NULL) {
4781                         len = strlen(statstr);
4782                         snprintf(statstr + len, sizeof(statstr) - len,
4783                             " %s", str);
4784                 }
4785                 NLOG(NLOG_PEEREVENT)
4786                         msyslog(LOG_INFO, "%s", statstr);
4787         }
4788         record_proto_stats(statstr);
4789 #if DEBUG
4790         if (debug)
4791                 printf("event at %lu %s\n", current_time, statstr);
4792 #endif
4793
4794         /*
4795          * If no trappers, return.
4796          */
4797         if (num_ctl_traps <= 0)
4798                 return;
4799
4800         /*
4801          * Set up the outgoing packet variables
4802          */
4803         res_opcode = CTL_OP_ASYNCMSG;
4804         res_offset = 0;
4805         res_async = TRUE;
4806         res_authenticate = FALSE;
4807         datapt = rpkt.u.data;
4808         dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
4809         if (!(err & PEER_EVENT)) {
4810                 rpkt.associd = 0;
4811                 rpkt.status = htons(ctlsysstatus());
4812
4813                 /* Include the core system variables and the list. */
4814                 for (i = 1; i <= CS_VARLIST; i++)
4815                         ctl_putsys(i);
4816         } else {
4817                 INSIST(peer != NULL);
4818                 rpkt.associd = htons(peer->associd);
4819                 rpkt.status = htons(ctlpeerstatus(peer));
4820
4821                 /* Dump it all. Later, maybe less. */
4822                 for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
4823                         ctl_putpeer(i, peer);
4824 #ifdef REFCLOCK
4825                 /*
4826                  * for clock exception events: add clock variables to
4827                  * reflect info on exception
4828                  */
4829                 if (err == PEVNT_CLOCK) {
4830                         struct refclockstat cs;
4831                         struct ctl_var *kv;
4832
4833                         cs.kv_list = NULL;
4834                         refclock_control(&peer->srcadr, NULL, &cs);
4835
4836                         ctl_puthex("refclockstatus",
4837                                    ctlclkstatus(&cs));
4838
4839                         for (i = 1; i <= CC_MAXCODE; i++)
4840                                 ctl_putclock(i, &cs, FALSE);
4841                         for (kv = cs.kv_list;
4842                              kv != NULL && !(EOV & kv->flags);
4843                              kv++)
4844                                 if (DEF & kv->flags)
4845                                         ctl_putdata(kv->text,
4846                                                     strlen(kv->text),
4847                                                     FALSE);
4848                         free_varlist(cs.kv_list);
4849                 }
4850 #endif /* REFCLOCK */
4851         }
4852
4853         /*
4854          * We're done, return.
4855          */
4856         ctl_flushpkt(0);
4857 }
4858
4859
4860 /*
4861  * mprintf_event - printf-style varargs variant of report_event()
4862  */
4863 int
4864 mprintf_event(
4865         int             evcode,         /* event code */
4866         struct peer *   p,              /* may be NULL */
4867         const char *    fmt,            /* msnprintf format */
4868         ...
4869         )
4870 {
4871         va_list ap;
4872         int     rc;
4873         char    msg[512];
4874
4875         va_start(ap, fmt);
4876         rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
4877         va_end(ap);
4878         report_event(evcode, p, msg);
4879
4880         return rc;
4881 }
4882
4883
4884 /*
4885  * ctl_clr_stats - clear stat counters
4886  */
4887 void
4888 ctl_clr_stats(void)
4889 {
4890         ctltimereset = current_time;
4891         numctlreq = 0;
4892         numctlbadpkts = 0;
4893         numctlresponses = 0;
4894         numctlfrags = 0;
4895         numctlerrors = 0;
4896         numctlfrags = 0;
4897         numctltooshort = 0;
4898         numctlinputresp = 0;
4899         numctlinputfrag = 0;
4900         numctlinputerr = 0;
4901         numctlbadoffset = 0;
4902         numctlbadversion = 0;
4903         numctldatatooshort = 0;
4904         numctlbadop = 0;
4905         numasyncmsgs = 0;
4906 }
4907
4908 static u_short
4909 count_var(
4910         const struct ctl_var *k
4911         )
4912 {
4913         u_int c;
4914
4915         if (NULL == k)
4916                 return 0;
4917
4918         c = 0;
4919         while (!(EOV & (k++)->flags))
4920                 c++;
4921
4922         ENSURE(c <= USHRT_MAX);
4923         return (u_short)c;
4924 }
4925
4926
4927 char *
4928 add_var(
4929         struct ctl_var **kv,
4930         u_long size,
4931         u_short def
4932         )
4933 {
4934         u_short         c;
4935         struct ctl_var *k;
4936         char *          buf;
4937
4938         c = count_var(*kv);
4939         *kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
4940         k = *kv;
4941         buf = emalloc(size);
4942         k[c].code  = c;
4943         k[c].text  = buf;
4944         k[c].flags = def;
4945         k[c + 1].code  = 0;
4946         k[c + 1].text  = NULL;
4947         k[c + 1].flags = EOV;
4948
4949         return buf;
4950 }
4951
4952
4953 void
4954 set_var(
4955         struct ctl_var **kv,
4956         const char *data,
4957         u_long size,
4958         u_short def
4959         )
4960 {
4961         struct ctl_var *k;
4962         const char *s;
4963         const char *t;
4964         char *td;
4965
4966         if (NULL == data || !size)
4967                 return;
4968
4969         k = *kv;
4970         if (k != NULL) {
4971                 while (!(EOV & k->flags)) {
4972                         if (NULL == k->text)    {
4973                                 td = emalloc(size);
4974                                 memcpy(td, data, size);
4975                                 k->text = td;
4976                                 k->flags = def;
4977                                 return;
4978                         } else {
4979                                 s = data;
4980                                 t = k->text;
4981                                 while (*t != '=' && *s == *t) {
4982                                         s++;
4983                                         t++;
4984                                 }
4985                                 if (*s == *t && ((*t == '=') || !*t)) {
4986                                         td = erealloc((void *)(intptr_t)k->text, size);
4987                                         memcpy(td, data, size);
4988                                         k->text = td;
4989                                         k->flags = def;
4990                                         return;
4991                                 }
4992                         }
4993                         k++;
4994                 }
4995         }
4996         td = add_var(kv, size, def);
4997         memcpy(td, data, size);
4998 }
4999
5000
5001 void
5002 set_sys_var(
5003         const char *data,
5004         u_long size,
5005         u_short def
5006         )
5007 {
5008         set_var(&ext_sys_var, data, size, def);
5009 }
5010
5011
5012 /*
5013  * get_ext_sys_var() retrieves the value of a user-defined variable or
5014  * NULL if the variable has not been setvar'd.
5015  */
5016 const char *
5017 get_ext_sys_var(const char *tag)
5018 {
5019         struct ctl_var *        v;
5020         size_t                  c;
5021         const char *            val;
5022
5023         val = NULL;
5024         c = strlen(tag);
5025         for (v = ext_sys_var; !(EOV & v->flags); v++) {
5026                 if (NULL != v->text && !memcmp(tag, v->text, c)) {
5027                         if ('=' == v->text[c]) {
5028                                 val = v->text + c + 1;
5029                                 break;
5030                         } else if ('\0' == v->text[c]) {
5031                                 val = "";
5032                                 break;
5033                         }
5034                 }
5035         }
5036
5037         return val;
5038 }
5039
5040
5041 void
5042 free_varlist(
5043         struct ctl_var *kv
5044         )
5045 {
5046         struct ctl_var *k;
5047         if (kv) {
5048                 for (k = kv; !(k->flags & EOV); k++)
5049                         free((void *)(intptr_t)k->text);
5050                 free((void *)kv);
5051         }
5052 }