]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/tzcode/stdtime/localtime.c
dts: Import DTS from Linux 5.6
[FreeBSD/FreeBSD.git] / contrib / tzcode / stdtime / localtime.c
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 */
5
6 #include <sys/cdefs.h>
7 #ifndef lint
8 #ifndef NOID
9 static char     elsieid[] __unused = "@(#)localtime.c   8.14";
10 #endif /* !defined NOID */
11 #endif /* !defined lint */
12 __FBSDID("$FreeBSD$");
13
14 /*
15 ** Leap second handling from Bradley White.
16 ** POSIX-style TZ environment variable handling from Guy Harris.
17 */
18
19 /*LINTLIBRARY*/
20
21 #include "namespace.h"
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <errno.h>
25 #include <fcntl.h>
26 #include <pthread.h>
27 #include "private.h"
28 #include "un-namespace.h"
29
30 #include "tzfile.h"
31 #include "float.h"      /* for FLT_MAX and DBL_MAX */
32
33 #ifndef TZ_ABBR_MAX_LEN
34 #define TZ_ABBR_MAX_LEN 16
35 #endif /* !defined TZ_ABBR_MAX_LEN */
36
37 #ifndef TZ_ABBR_CHAR_SET
38 #define TZ_ABBR_CHAR_SET \
39         "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
40 #endif /* !defined TZ_ABBR_CHAR_SET */
41
42 #ifndef TZ_ABBR_ERR_CHAR
43 #define TZ_ABBR_ERR_CHAR        '_'
44 #endif /* !defined TZ_ABBR_ERR_CHAR */
45
46 #include "libc_private.h"
47
48 #define _MUTEX_LOCK(x)          if (__isthreaded) _pthread_mutex_lock(x)
49 #define _MUTEX_UNLOCK(x)        if (__isthreaded) _pthread_mutex_unlock(x)
50
51 #define _RWLOCK_RDLOCK(x)                                               \
52                 do {                                                    \
53                         if (__isthreaded) _pthread_rwlock_rdlock(x);    \
54                 } while (0)
55
56 #define _RWLOCK_WRLOCK(x)                                               \
57                 do {                                                    \
58                         if (__isthreaded) _pthread_rwlock_wrlock(x);    \
59                 } while (0)
60
61 #define _RWLOCK_UNLOCK(x)                                               \
62                 do {                                                    \
63                         if (__isthreaded) _pthread_rwlock_unlock(x);    \
64                 } while (0)
65
66 /*
67 ** SunOS 4.1.1 headers lack O_BINARY.
68 */
69
70 #ifdef O_BINARY
71 #define OPEN_MODE       (O_RDONLY | O_BINARY)
72 #endif /* defined O_BINARY */
73 #ifndef O_BINARY
74 #define OPEN_MODE       O_RDONLY
75 #endif /* !defined O_BINARY */
76
77 #ifndef WILDABBR
78 /*
79 ** Someone might make incorrect use of a time zone abbreviation:
80 **      1.      They might reference tzname[0] before calling tzset (explicitly
81 **              or implicitly).
82 **      2.      They might reference tzname[1] before calling tzset (explicitly
83 **              or implicitly).
84 **      3.      They might reference tzname[1] after setting to a time zone
85 **              in which Daylight Saving Time is never observed.
86 **      4.      They might reference tzname[0] after setting to a time zone
87 **              in which Standard Time is never observed.
88 **      5.      They might reference tm.TM_ZONE after calling offtime.
89 ** What's best to do in the above cases is open to debate;
90 ** for now, we just set things up so that in any of the five cases
91 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
92 ** string "tzname[0] used before set", and similarly for the other cases.
93 ** And another: initialize tzname[0] to "ERA", with an explanation in the
94 ** manual page of what this "time zone abbreviation" means (doing this so
95 ** that tzname[0] has the "normal" length of three characters).
96 */
97 #define WILDABBR        "   "
98 #endif /* !defined WILDABBR */
99
100 static char             wildabbr[] = WILDABBR;
101
102 /*
103  * In June 2004 it was decided UTC was a more appropriate default time
104  * zone than GMT.
105  */
106
107 static const char       gmt[] = "UTC";
108
109 /*
110 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
111 ** We default to US rules as of 1999-08-17.
112 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
113 ** implementation dependent; for historical reasons, US rules are a
114 ** common default.
115 */
116 #ifndef TZDEFRULESTRING
117 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
118 #endif /* !defined TZDEFDST */
119
120 struct ttinfo {                         /* time type information */
121         long            tt_gmtoff;      /* UTC offset in seconds */
122         int             tt_isdst;       /* used to set tm_isdst */
123         int             tt_abbrind;     /* abbreviation list index */
124         int             tt_ttisstd;     /* TRUE if transition is std time */
125         int             tt_ttisgmt;     /* TRUE if transition is UTC */
126 };
127
128 struct lsinfo {                         /* leap second information */
129         time_t          ls_trans;       /* transition time */
130         long            ls_corr;        /* correction to apply */
131 };
132
133 #define BIGGEST(a, b)   (((a) > (b)) ? (a) : (b))
134
135 #ifdef TZNAME_MAX
136 #define MY_TZNAME_MAX   TZNAME_MAX
137 #endif /* defined TZNAME_MAX */
138 #ifndef TZNAME_MAX
139 #define MY_TZNAME_MAX   255
140 #endif /* !defined TZNAME_MAX */
141
142 struct state {
143         int             leapcnt;
144         int             timecnt;
145         int             typecnt;
146         int             charcnt;
147         int             goback;
148         int             goahead;
149         time_t          ats[TZ_MAX_TIMES];
150         unsigned char   types[TZ_MAX_TIMES];
151         struct ttinfo   ttis[TZ_MAX_TYPES];
152         char            chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
153                                 (2 * (MY_TZNAME_MAX + 1)))];
154         struct lsinfo   lsis[TZ_MAX_LEAPS];
155 };
156
157 struct rule {
158         int             r_type;         /* type of rule--see below */
159         int             r_day;          /* day number of rule */
160         int             r_week;         /* week number of rule */
161         int             r_mon;          /* month number of rule */
162         long            r_time;         /* transition time of rule */
163 };
164
165 #define JULIAN_DAY              0       /* Jn - Julian day */
166 #define DAY_OF_YEAR             1       /* n - day of year */
167 #define MONTH_NTH_DAY_OF_WEEK   2       /* Mm.n.d - month, week, day of week */
168
169 /*
170 ** Prototypes for static functions.
171 */
172
173 static long             detzcode(const char * codep);
174 static time_t           detzcode64(const char * codep);
175 static int              differ_by_repeat(time_t t1, time_t t0);
176 static const char *     getzname(const char * strp) ATTRIBUTE_PURE;
177 static const char *     getqzname(const char * strp, const int delim)
178   ATTRIBUTE_PURE;
179 static const char *     getnum(const char * strp, int * nump, int min,
180                                 int max);
181 static const char *     getsecs(const char * strp, long * secsp);
182 static const char *     getoffset(const char * strp, long * offsetp);
183 static const char *     getrule(const char * strp, struct rule * rulep);
184 static void             gmtload(struct state * sp);
185 static struct tm *      gmtsub(const time_t * timep, long offset,
186                                 struct tm * tmp);
187 static struct tm *      localsub(const time_t * timep, long offset,
188                                 struct tm * tmp);
189 static int              increment_overflow(int * number, int delta);
190 static int              leaps_thru_end_of(int y) ATTRIBUTE_PURE;
191 static int              long_increment_overflow(long * number, int delta);
192 static int              long_normalize_overflow(long * tensptr,
193                                 int * unitsptr, int base);
194 static int              normalize_overflow(int * tensptr, int * unitsptr,
195                                 int base);
196 static void             settzname(void);
197 static time_t           time1(struct tm * tmp,
198                                 struct tm * (*funcp)(const time_t *,
199                                 long, struct tm *),
200                                 long offset);
201 static time_t           time2(struct tm *tmp,
202                                 struct tm * (*funcp)(const time_t *,
203                                 long, struct tm*),
204                                 long offset, int * okayp);
205 static time_t           time2sub(struct tm *tmp,
206                                 struct tm * (*funcp)(const time_t *,
207                                 long, struct tm*),
208                                 long offset, int * okayp, int do_norm_secs);
209 static struct tm *      timesub(const time_t * timep, long offset,
210                                 const struct state * sp, struct tm * tmp);
211 static int              tmcomp(const struct tm * atmp,
212                                 const struct tm * btmp);
213 static time_t           transtime(time_t janfirst, int year,
214                                   const struct rule * rulep, long offset)
215   ATTRIBUTE_PURE;
216 static int              typesequiv(const struct state * sp, int a, int b);
217 static int              tzload(const char * name, struct state * sp,
218                                 int doextend);
219 static int              tzparse(const char * name, struct state * sp,
220                                 int lastditch);
221
222 #ifdef ALL_STATE
223 static struct state *   lclptr;
224 static struct state *   gmtptr;
225 #endif /* defined ALL_STATE */
226
227 #ifndef ALL_STATE
228 static struct state     lclmem;
229 static struct state     gmtmem;
230 #define lclptr          (&lclmem)
231 #define gmtptr          (&gmtmem)
232 #endif /* State Farm */
233
234 #ifndef TZ_STRLEN_MAX
235 #define TZ_STRLEN_MAX 255
236 #endif /* !defined TZ_STRLEN_MAX */
237
238 static char             lcl_TZname[TZ_STRLEN_MAX + 1];
239 static int              lcl_is_set;
240 static pthread_once_t   gmt_once = PTHREAD_ONCE_INIT;
241 static pthread_rwlock_t lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
242 static pthread_once_t   gmtime_once = PTHREAD_ONCE_INIT;
243 static pthread_key_t    gmtime_key;
244 static int              gmtime_key_error;
245 static pthread_once_t   localtime_once = PTHREAD_ONCE_INIT;
246 static pthread_key_t    localtime_key;
247 static int              localtime_key_error;
248
249 char *                  tzname[2] = {
250         wildabbr,
251         wildabbr
252 };
253
254 /*
255 ** Section 4.12.3 of X3.159-1989 requires that
256 **      Except for the strftime function, these functions [asctime,
257 **      ctime, gmtime, localtime] return values in one of two static
258 **      objects: a broken-down time structure and an array of char.
259 ** Thanks to Paul Eggert for noting this.
260 */
261
262 static struct tm        tm;
263
264 #ifdef USG_COMPAT
265 time_t                  timezone = 0;
266 int                     daylight = 0;
267 #endif /* defined USG_COMPAT */
268
269 #ifdef ALTZONE
270 time_t                  altzone = 0;
271 #endif /* defined ALTZONE */
272
273 static long
274 detzcode(const char *const codep)
275 {
276         long    result;
277         int     i;
278
279         result = (codep[0] & 0x80) ? ~0L : 0;
280         for (i = 0; i < 4; ++i)
281                 result = (result << 8) | (codep[i] & 0xff);
282         return result;
283 }
284
285 static time_t
286 detzcode64(const char *const codep)
287 {
288         register time_t result;
289         register int    i;
290
291         result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
292         for (i = 0; i < 8; ++i)
293                 result = result * 256 + (codep[i] & 0xff);
294         return result;
295 }
296
297 static void
298 settzname(void)
299 {
300         struct state *  sp = lclptr;
301         int                     i;
302
303         tzname[0] = wildabbr;
304         tzname[1] = wildabbr;
305 #ifdef USG_COMPAT
306         daylight = 0;
307         timezone = 0;
308 #endif /* defined USG_COMPAT */
309 #ifdef ALTZONE
310         altzone = 0;
311 #endif /* defined ALTZONE */
312 #ifdef ALL_STATE
313         if (sp == NULL) {
314                 tzname[0] = tzname[1] = gmt;
315                 return;
316         }
317 #endif /* defined ALL_STATE */
318         /*
319         ** And to get the latest zone names into tzname. . .
320         */
321         for (i = 0; i < sp->typecnt; ++i) {
322                 const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
323
324                 tzname[ttisp->tt_isdst] =
325                         &sp->chars[ttisp->tt_abbrind];
326 #ifdef USG_COMPAT
327                 if (ttisp->tt_isdst)
328                         daylight = 1;
329                 if (!ttisp->tt_isdst)
330                         timezone = -(ttisp->tt_gmtoff);
331 #endif /* defined USG_COMPAT */
332 #ifdef ALTZONE
333                 if (ttisp->tt_isdst)
334                         altzone = -(ttisp->tt_gmtoff);
335 #endif /* defined ALTZONE */
336         }
337         /*
338         ** Finally, scrub the abbreviations.
339         ** First, replace bogus characters.
340         */
341         for (i = 0; i < sp->charcnt; ++i)
342                 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
343                         sp->chars[i] = TZ_ABBR_ERR_CHAR;
344         /*
345         ** Second, truncate long abbreviations.
346         */
347         for (i = 0; i < sp->typecnt; ++i) {
348                 register const struct ttinfo * const    ttisp = &sp->ttis[i];
349                 register char *                         cp = &sp->chars[ttisp->tt_abbrind];
350
351                 if (strlen(cp) > TZ_ABBR_MAX_LEN &&
352                         strcmp(cp, GRANDPARENTED) != 0)
353                                 *(cp + TZ_ABBR_MAX_LEN) = '\0';
354         }
355 }
356
357 static int
358 differ_by_repeat(const time_t t1, const time_t t0)
359 {
360         int_fast64_t _t0 = t0;
361         int_fast64_t _t1 = t1;
362
363         if (TYPE_INTEGRAL(time_t) &&
364                 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
365                         return 0;
366         //turn ((int_fast64_t)(t1 - t0) == SECSPERREPEAT);
367         return _t1 - _t0 == SECSPERREPEAT;
368 }
369
370 static int
371 tzload(name, sp, doextend)
372 const char *            name;
373 struct state * const    sp;
374 register const int      doextend;
375 {
376         const char *    p;
377         int             i;
378         int             fid;
379         int             stored;
380         int             nread;
381         int             res;
382         union {
383                 struct tzhead   tzhead;
384                 char            buf[2 * sizeof(struct tzhead) +
385                                         2 * sizeof *sp +
386                                         4 * TZ_MAX_TIMES];
387         } *u;
388
389         u = NULL;
390         res = -1;
391         sp->goback = sp->goahead = FALSE;
392
393         if (name != NULL && issetugid() != 0)
394                 if ((name[0] == ':' && name[1] == '/') || 
395                     name[0] == '/' || strchr(name, '.'))
396                         name = NULL;
397         if (name == NULL && (name = TZDEFAULT) == NULL)
398                 return -1;
399         {
400                 struct stat     stab;
401                 /*
402                 ** Section 4.9.1 of the C standard says that
403                 ** "FILENAME_MAX expands to an integral constant expression
404                 ** that is the size needed for an array of char large enough
405                 ** to hold the longest file name string that the implementation
406                 ** guarantees can be opened."
407                 */
408                 char            *fullname;
409
410                 fullname = malloc(FILENAME_MAX + 1);
411                 if (fullname == NULL)
412                         goto out;
413
414                 if (name[0] == ':')
415                         ++name;
416                 if (name[0] != '/') {
417                         if ((p = TZDIR) == NULL) {
418                                 free(fullname);
419                                 return -1;
420                         }
421                         if (strlen(p) + 1 + strlen(name) >= FILENAME_MAX) {
422                                 free(fullname);
423                                 return -1;
424                         }
425                         (void) strcpy(fullname, p);
426                         (void) strcat(fullname, "/");
427                         (void) strcat(fullname, name);
428                         name = fullname;
429                 }
430                 if ((fid = _open(name, OPEN_MODE)) == -1) {
431                         free(fullname);
432                         return -1;
433                 }
434                 if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
435                         free(fullname);
436                         _close(fid);
437                         return -1;
438                 }
439                 free(fullname);
440         }
441         u = malloc(sizeof(*u));
442         if (u == NULL)
443                 goto out;
444         nread = _read(fid, u->buf, sizeof u->buf);
445         if (_close(fid) < 0 || nread <= 0)
446                 goto out;
447         for (stored = 4; stored <= 8; stored *= 2) {
448                 int             ttisstdcnt;
449                 int             ttisgmtcnt;
450
451                 ttisstdcnt = (int) detzcode(u->tzhead.tzh_ttisstdcnt);
452                 ttisgmtcnt = (int) detzcode(u->tzhead.tzh_ttisgmtcnt);
453                 sp->leapcnt = (int) detzcode(u->tzhead.tzh_leapcnt);
454                 sp->timecnt = (int) detzcode(u->tzhead.tzh_timecnt);
455                 sp->typecnt = (int) detzcode(u->tzhead.tzh_typecnt);
456                 sp->charcnt = (int) detzcode(u->tzhead.tzh_charcnt);
457                 p = u->tzhead.tzh_charcnt + sizeof u->tzhead.tzh_charcnt;
458                 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
459                         sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
460                         sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
461                         sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
462                         (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
463                         (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
464                                 goto out;
465                 if (nread - (p - u->buf) <
466                         sp->timecnt * stored +          /* ats */
467                         sp->timecnt +                   /* types */
468                         sp->typecnt * 6 +               /* ttinfos */
469                         sp->charcnt +                   /* chars */
470                         sp->leapcnt * (stored + 4) +    /* lsinfos */
471                         ttisstdcnt +                    /* ttisstds */
472                         ttisgmtcnt)                     /* ttisgmts */
473                                 goto out;
474                 for (i = 0; i < sp->timecnt; ++i) {
475                         sp->ats[i] = (stored == 4) ?
476                                 detzcode(p) : detzcode64(p);
477                         p += stored;
478                 }
479                 for (i = 0; i < sp->timecnt; ++i) {
480                         sp->types[i] = (unsigned char) *p++;
481                         if (sp->types[i] >= sp->typecnt)
482                                 goto out;
483                 }
484                 for (i = 0; i < sp->typecnt; ++i) {
485                         struct ttinfo * ttisp;
486
487                         ttisp = &sp->ttis[i];
488                         ttisp->tt_gmtoff = detzcode(p);
489                         p += 4;
490                         ttisp->tt_isdst = (unsigned char) *p++;
491                         if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
492                                 goto out;
493                         ttisp->tt_abbrind = (unsigned char) *p++;
494                         if (ttisp->tt_abbrind < 0 ||
495                                 ttisp->tt_abbrind > sp->charcnt)
496                                         goto out;
497                 }
498                 for (i = 0; i < sp->charcnt; ++i)
499                         sp->chars[i] = *p++;
500                 sp->chars[i] = '\0';    /* ensure '\0' at end */
501                 for (i = 0; i < sp->leapcnt; ++i) {
502                         struct lsinfo * lsisp;
503
504                         lsisp = &sp->lsis[i];
505                         lsisp->ls_trans = (stored == 4) ?
506                                 detzcode(p) : detzcode64(p);
507                         p += stored;
508                         lsisp->ls_corr = detzcode(p);
509                         p += 4;
510                 }
511                 for (i = 0; i < sp->typecnt; ++i) {
512                         struct ttinfo * ttisp;
513
514                         ttisp = &sp->ttis[i];
515                         if (ttisstdcnt == 0)
516                                 ttisp->tt_ttisstd = FALSE;
517                         else {
518                                 ttisp->tt_ttisstd = *p++;
519                                 if (ttisp->tt_ttisstd != TRUE &&
520                                         ttisp->tt_ttisstd != FALSE)
521                                                 goto out;
522                         }
523                 }
524                 for (i = 0; i < sp->typecnt; ++i) {
525                         struct ttinfo * ttisp;
526
527                         ttisp = &sp->ttis[i];
528                         if (ttisgmtcnt == 0)
529                                 ttisp->tt_ttisgmt = FALSE;
530                         else {
531                                 ttisp->tt_ttisgmt = *p++;
532                                 if (ttisp->tt_ttisgmt != TRUE &&
533                                         ttisp->tt_ttisgmt != FALSE)
534                                                 goto out;
535                         }
536                 }
537                 /*
538                 ** Out-of-sort ats should mean we're running on a
539                 ** signed time_t system but using a data file with
540                 ** unsigned values (or vice versa).
541                 */
542                 for (i = 0; i < sp->timecnt - 2; ++i)
543                         if (sp->ats[i] > sp->ats[i + 1]) {
544                                 ++i;
545                                 if (TYPE_SIGNED(time_t)) {
546                                         /*
547                                         ** Ignore the end (easy).
548                                         */
549                                         sp->timecnt = i;
550                                 } else {
551                                         /*
552                                         ** Ignore the beginning (harder).
553                                         */
554                                         register int    j;
555
556                                         for (j = 0; j + i < sp->timecnt; ++j) {
557                                                 sp->ats[j] = sp->ats[j + i];
558                                                 sp->types[j] = sp->types[j + i];
559                                         }
560                                         sp->timecnt = j;
561                                 }
562                                 break;
563                         }
564                 /*
565                 ** If this is an old file, we're done.
566                 */
567                 if (u->tzhead.tzh_version[0] == '\0')
568                         break;
569                 nread -= p - u->buf;
570                 for (i = 0; i < nread; ++i)
571                         u->buf[i] = p[i];
572                 /*
573                 ** If this is a narrow integer time_t system, we're done.
574                 */
575                 if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
576                         break;
577         }
578         if (doextend && nread > 2 &&
579                 u->buf[0] == '\n' && u->buf[nread - 1] == '\n' &&
580                 sp->typecnt + 2 <= TZ_MAX_TYPES) {
581                         struct state    *ts;
582                         register int    result;
583
584                         ts = malloc(sizeof(*ts));
585                         if (ts == NULL)
586                                 goto out;
587                         u->buf[nread - 1] = '\0';
588                         result = tzparse(&u->buf[1], ts, FALSE);
589                         if (result == 0 && ts->typecnt == 2 &&
590                                 sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
591                                         for (i = 0; i < 2; ++i)
592                                                 ts->ttis[i].tt_abbrind +=
593                                                         sp->charcnt;
594                                         for (i = 0; i < ts->charcnt; ++i)
595                                                 sp->chars[sp->charcnt++] =
596                                                         ts->chars[i];
597                                         i = 0;
598                                         while (i < ts->timecnt &&
599                                                 ts->ats[i] <=
600                                                 sp->ats[sp->timecnt - 1])
601                                                         ++i;
602                                         while (i < ts->timecnt &&
603                                             sp->timecnt < TZ_MAX_TIMES) {
604                                                 sp->ats[sp->timecnt] =
605                                                         ts->ats[i];
606                                                 sp->types[sp->timecnt] =
607                                                         sp->typecnt +
608                                                         ts->types[i];
609                                                 ++sp->timecnt;
610                                                 ++i;
611                                         }
612                                         sp->ttis[sp->typecnt++] = ts->ttis[0];
613                                         sp->ttis[sp->typecnt++] = ts->ttis[1];
614                         }
615                         free(ts);
616         }
617         if (sp->timecnt > 1) {
618                 for (i = 1; i < sp->timecnt; ++i)
619                         if (typesequiv(sp, sp->types[i], sp->types[0]) &&
620                                 differ_by_repeat(sp->ats[i], sp->ats[0])) {
621                                         sp->goback = TRUE;
622                                         break;
623                                 }
624                 for (i = sp->timecnt - 2; i >= 0; --i)
625                         if (typesequiv(sp, sp->types[sp->timecnt - 1],
626                                 sp->types[i]) &&
627                                 differ_by_repeat(sp->ats[sp->timecnt - 1],
628                                 sp->ats[i])) {
629                                         sp->goahead = TRUE;
630                                         break;
631                 }
632         }
633         res = 0;
634 out:
635         free(u);
636         return (res);
637 }
638
639 static int
640 typesequiv(sp, a, b)
641 const struct state * const      sp;
642 const int                       a;
643 const int                       b;
644 {
645         register int    result;
646
647         if (sp == NULL ||
648                 a < 0 || a >= sp->typecnt ||
649                 b < 0 || b >= sp->typecnt)
650                         result = FALSE;
651         else {
652                 register const struct ttinfo *  ap = &sp->ttis[a];
653                 register const struct ttinfo *  bp = &sp->ttis[b];
654                 result = ap->tt_gmtoff == bp->tt_gmtoff &&
655                         ap->tt_isdst == bp->tt_isdst &&
656                         ap->tt_ttisstd == bp->tt_ttisstd &&
657                         ap->tt_ttisgmt == bp->tt_ttisgmt &&
658                         strcmp(&sp->chars[ap->tt_abbrind],
659                         &sp->chars[bp->tt_abbrind]) == 0;
660         }
661         return result;
662 }
663
664 static const int        mon_lengths[2][MONSPERYEAR] = {
665         { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
666         { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
667 };
668
669 static const int        year_lengths[2] = {
670         DAYSPERNYEAR, DAYSPERLYEAR
671 };
672
673 /*
674 ** Given a pointer into a time zone string, scan until a character that is not
675 ** a valid character in a zone name is found. Return a pointer to that
676 ** character.
677 */
678
679 static const char *
680 getzname(strp)
681 const char *    strp;
682 {
683         char    c;
684
685         while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
686                 c != '+')
687                         ++strp;
688         return strp;
689 }
690
691 /*
692 ** Given a pointer into an extended time zone string, scan until the ending
693 ** delimiter of the zone name is located. Return a pointer to the delimiter.
694 **
695 ** As with getzname above, the legal character set is actually quite
696 ** restricted, with other characters producing undefined results.
697 ** We don't do any checking here; checking is done later in common-case code.
698 */
699
700 static const char *
701 getqzname(register const char *strp, const int delim)
702 {
703         register int    c;
704
705         while ((c = *strp) != '\0' && c != delim)
706                 ++strp;
707         return strp;
708 }
709
710 /*
711 ** Given a pointer into a time zone string, extract a number from that string.
712 ** Check that the number is within a specified range; if it is not, return
713 ** NULL.
714 ** Otherwise, return a pointer to the first character not part of the number.
715 */
716
717 static const char *
718 getnum(strp, nump, min, max)
719 const char *    strp;
720 int * const             nump;
721 const int               min;
722 const int               max;
723 {
724         char    c;
725         int     num;
726
727         if (strp == NULL || !is_digit(c = *strp))
728                 return NULL;
729         num = 0;
730         do {
731                 num = num * 10 + (c - '0');
732                 if (num > max)
733                         return NULL;    /* illegal value */
734                 c = *++strp;
735         } while (is_digit(c));
736         if (num < min)
737                 return NULL;            /* illegal value */
738         *nump = num;
739         return strp;
740 }
741
742 /*
743 ** Given a pointer into a time zone string, extract a number of seconds,
744 ** in hh[:mm[:ss]] form, from the string.
745 ** If any error occurs, return NULL.
746 ** Otherwise, return a pointer to the first character not part of the number
747 ** of seconds.
748 */
749
750 static const char *
751 getsecs(strp, secsp)
752 const char *    strp;
753 long * const            secsp;
754 {
755         int     num;
756
757         /*
758         ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
759         ** "M10.4.6/26", which does not conform to Posix,
760         ** but which specifies the equivalent of
761         ** ``02:00 on the first Sunday on or after 23 Oct''.
762         */
763         strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
764         if (strp == NULL)
765                 return NULL;
766         *secsp = num * (long) SECSPERHOUR;
767         if (*strp == ':') {
768                 ++strp;
769                 strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
770                 if (strp == NULL)
771                         return NULL;
772                 *secsp += num * SECSPERMIN;
773                 if (*strp == ':') {
774                         ++strp;
775                         /* `SECSPERMIN' allows for leap seconds. */
776                         strp = getnum(strp, &num, 0, SECSPERMIN);
777                         if (strp == NULL)
778                                 return NULL;
779                         *secsp += num;
780                 }
781         }
782         return strp;
783 }
784
785 /*
786 ** Given a pointer into a time zone string, extract an offset, in
787 ** [+-]hh[:mm[:ss]] form, from the string.
788 ** If any error occurs, return NULL.
789 ** Otherwise, return a pointer to the first character not part of the time.
790 */
791
792 static const char *
793 getoffset(strp, offsetp)
794 const char *    strp;
795 long * const            offsetp;
796 {
797         int     neg = 0;
798
799         if (*strp == '-') {
800                 neg = 1;
801                 ++strp;
802         } else if (*strp == '+')
803                 ++strp;
804         strp = getsecs(strp, offsetp);
805         if (strp == NULL)
806                 return NULL;            /* illegal time */
807         if (neg)
808                 *offsetp = -*offsetp;
809         return strp;
810 }
811
812 /*
813 ** Given a pointer into a time zone string, extract a rule in the form
814 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
815 ** If a valid rule is not found, return NULL.
816 ** Otherwise, return a pointer to the first character not part of the rule.
817 */
818
819 static const char *
820 getrule(strp, rulep)
821 const char *                    strp;
822 struct rule * const     rulep;
823 {
824         if (*strp == 'J') {
825                 /*
826                 ** Julian day.
827                 */
828                 rulep->r_type = JULIAN_DAY;
829                 ++strp;
830                 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
831         } else if (*strp == 'M') {
832                 /*
833                 ** Month, week, day.
834                 */
835                 rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
836                 ++strp;
837                 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
838                 if (strp == NULL)
839                         return NULL;
840                 if (*strp++ != '.')
841                         return NULL;
842                 strp = getnum(strp, &rulep->r_week, 1, 5);
843                 if (strp == NULL)
844                         return NULL;
845                 if (*strp++ != '.')
846                         return NULL;
847                 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
848         } else if (is_digit(*strp)) {
849                 /*
850                 ** Day of year.
851                 */
852                 rulep->r_type = DAY_OF_YEAR;
853                 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
854         } else  return NULL;            /* invalid format */
855         if (strp == NULL)
856                 return NULL;
857         if (*strp == '/') {
858                 /*
859                 ** Time specified.
860                 */
861                 ++strp;
862                 strp = getsecs(strp, &rulep->r_time);
863         } else  rulep->r_time = 2 * SECSPERHOUR;        /* default = 2:00:00 */
864         return strp;
865 }
866
867 /*
868 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
869 ** year, a rule, and the offset from UTC at the time that rule takes effect,
870 ** calculate the Epoch-relative time that rule takes effect.
871 */
872
873 static time_t
874 transtime(janfirst, year, rulep, offset)
875 const time_t                            janfirst;
876 const int                               year;
877 const struct rule * const       rulep;
878 const long                              offset;
879 {
880         int     leapyear;
881         time_t  value;
882         int     i;
883         int             d, m1, yy0, yy1, yy2, dow;
884
885         INITIALIZE(value);
886         leapyear = isleap(year);
887         switch (rulep->r_type) {
888
889         case JULIAN_DAY:
890                 /*
891                 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
892                 ** years.
893                 ** In non-leap years, or if the day number is 59 or less, just
894                 ** add SECSPERDAY times the day number-1 to the time of
895                 ** January 1, midnight, to get the day.
896                 */
897                 value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
898                 if (leapyear && rulep->r_day >= 60)
899                         value += SECSPERDAY;
900                 break;
901
902         case DAY_OF_YEAR:
903                 /*
904                 ** n - day of year.
905                 ** Just add SECSPERDAY times the day number to the time of
906                 ** January 1, midnight, to get the day.
907                 */
908                 value = janfirst + rulep->r_day * SECSPERDAY;
909                 break;
910
911         case MONTH_NTH_DAY_OF_WEEK:
912                 /*
913                 ** Mm.n.d - nth "dth day" of month m.
914                 */
915                 value = janfirst;
916                 for (i = 0; i < rulep->r_mon - 1; ++i)
917                         value += mon_lengths[leapyear][i] * SECSPERDAY;
918
919                 /*
920                 ** Use Zeller's Congruence to get day-of-week of first day of
921                 ** month.
922                 */
923                 m1 = (rulep->r_mon + 9) % 12 + 1;
924                 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
925                 yy1 = yy0 / 100;
926                 yy2 = yy0 % 100;
927                 dow = ((26 * m1 - 2) / 10 +
928                         1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
929                 if (dow < 0)
930                         dow += DAYSPERWEEK;
931
932                 /*
933                 ** "dow" is the day-of-week of the first day of the month. Get
934                 ** the day-of-month (zero-origin) of the first "dow" day of the
935                 ** month.
936                 */
937                 d = rulep->r_day - dow;
938                 if (d < 0)
939                         d += DAYSPERWEEK;
940                 for (i = 1; i < rulep->r_week; ++i) {
941                         if (d + DAYSPERWEEK >=
942                                 mon_lengths[leapyear][rulep->r_mon - 1])
943                                         break;
944                         d += DAYSPERWEEK;
945                 }
946
947                 /*
948                 ** "d" is the day-of-month (zero-origin) of the day we want.
949                 */
950                 value += d * SECSPERDAY;
951                 break;
952         }
953
954         /*
955         ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
956         ** question. To get the Epoch-relative time of the specified local
957         ** time on that day, add the transition time and the current offset
958         ** from UTC.
959         */
960         return value + rulep->r_time + offset;
961 }
962
963 /*
964 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
965 ** appropriate.
966 */
967
968 static int
969 tzparse(name, sp, lastditch)
970 const char *                    name;
971 struct state * const    sp;
972 const int                       lastditch;
973 {
974         const char *                    stdname;
975         const char *                    dstname;
976         size_t                          stdlen;
977         size_t                          dstlen;
978         long                            stdoffset;
979         long                            dstoffset;
980         time_t *                atp;
981         unsigned char * typep;
982         char *                  cp;
983         int                     load_result;
984
985         INITIALIZE(dstname);
986         stdname = name;
987         if (lastditch) {
988                 stdlen = strlen(name);  /* length of standard zone name */
989                 name += stdlen;
990                 if (stdlen >= sizeof sp->chars)
991                         stdlen = (sizeof sp->chars) - 1;
992                 stdoffset = 0;
993         } else {
994                 if (*name == '<') {
995                         name++;
996                         stdname = name;
997                         name = getqzname(name, '>');
998                         if (*name != '>')
999                                 return (-1);
1000                         stdlen = name - stdname;
1001                         name++;
1002                 } else {
1003                         name = getzname(name);
1004                         stdlen = name - stdname;
1005                 }
1006                 if (*name == '\0')
1007                         return -1;      /* was "stdoffset = 0;" */
1008                 else {
1009                         name = getoffset(name, &stdoffset);
1010                         if (name == NULL)
1011                                 return -1;
1012                 }
1013         }
1014         load_result = tzload(TZDEFRULES, sp, FALSE);
1015         if (load_result != 0)
1016                 sp->leapcnt = 0;                /* so, we're off a little */
1017         if (*name != '\0') {
1018                 if (*name == '<') {
1019                         dstname = ++name;
1020                         name = getqzname(name, '>');
1021                         if (*name != '>')
1022                                 return -1;
1023                         dstlen = name - dstname;
1024                         name++;
1025                 } else {
1026                         dstname = name;
1027                         name = getzname(name);
1028                         dstlen = name - dstname; /* length of DST zone name */
1029                 }
1030                 if (*name != '\0' && *name != ',' && *name != ';') {
1031                         name = getoffset(name, &dstoffset);
1032                         if (name == NULL)
1033                                 return -1;
1034                 } else  dstoffset = stdoffset - SECSPERHOUR;
1035                 if (*name == '\0' && load_result != 0)
1036                         name = TZDEFRULESTRING;
1037                 if (*name == ',' || *name == ';') {
1038                         struct rule     start;
1039                         struct rule     end;
1040                         int     year;
1041                         time_t  janfirst;
1042                         time_t          starttime;
1043                         time_t          endtime;
1044
1045                         ++name;
1046                         if ((name = getrule(name, &start)) == NULL)
1047                                 return -1;
1048                         if (*name++ != ',')
1049                                 return -1;
1050                         if ((name = getrule(name, &end)) == NULL)
1051                                 return -1;
1052                         if (*name != '\0')
1053                                 return -1;
1054                         sp->typecnt = 2;        /* standard time and DST */
1055                         /*
1056                         ** Two transitions per year, from EPOCH_YEAR forward.
1057                         */
1058                         sp->ttis[0].tt_gmtoff = -dstoffset;
1059                         sp->ttis[0].tt_isdst = 1;
1060                         sp->ttis[0].tt_abbrind = stdlen + 1;
1061                         sp->ttis[1].tt_gmtoff = -stdoffset;
1062                         sp->ttis[1].tt_isdst = 0;
1063                         sp->ttis[1].tt_abbrind = 0;
1064                         atp = sp->ats;
1065                         typep = sp->types;
1066                         janfirst = 0;
1067                         sp->timecnt = 0;
1068                         for (year = EPOCH_YEAR;
1069                             sp->timecnt + 2 <= TZ_MAX_TIMES;
1070                             ++year) {
1071                                 time_t  newfirst;
1072
1073                                 starttime = transtime(janfirst, year, &start,
1074                                         stdoffset);
1075                                 endtime = transtime(janfirst, year, &end,
1076                                         dstoffset);
1077                                 if (starttime > endtime) {
1078                                         *atp++ = endtime;
1079                                         *typep++ = 1;   /* DST ends */
1080                                         *atp++ = starttime;
1081                                         *typep++ = 0;   /* DST begins */
1082                                 } else {
1083                                         *atp++ = starttime;
1084                                         *typep++ = 0;   /* DST begins */
1085                                         *atp++ = endtime;
1086                                         *typep++ = 1;   /* DST ends */
1087                                 }
1088                                 sp->timecnt += 2;
1089                                 newfirst = janfirst;
1090                                 newfirst += year_lengths[isleap(year)] *
1091                                         SECSPERDAY;
1092                                 if (newfirst <= janfirst)
1093                                         break;
1094                                 janfirst = newfirst;
1095                         }
1096                 } else {
1097                         long    theirstdoffset;
1098                         long    theirdstoffset;
1099                         long    theiroffset;
1100                         int     isdst;
1101                         int     i;
1102                         int     j;
1103
1104                         if (*name != '\0')
1105                                 return -1;
1106                         /*
1107                         ** Initial values of theirstdoffset and theirdstoffset.
1108                         */
1109                         theirstdoffset = 0;
1110                         for (i = 0; i < sp->timecnt; ++i) {
1111                                 j = sp->types[i];
1112                                 if (!sp->ttis[j].tt_isdst) {
1113                                         theirstdoffset =
1114                                                 -sp->ttis[j].tt_gmtoff;
1115                                         break;
1116                                 }
1117                         }
1118                         theirdstoffset = 0;
1119                         for (i = 0; i < sp->timecnt; ++i) {
1120                                 j = sp->types[i];
1121                                 if (sp->ttis[j].tt_isdst) {
1122                                         theirdstoffset =
1123                                                 -sp->ttis[j].tt_gmtoff;
1124                                         break;
1125                                 }
1126                         }
1127                         /*
1128                         ** Initially we're assumed to be in standard time.
1129                         */
1130                         isdst = FALSE;
1131                         theiroffset = theirstdoffset;
1132                         /*
1133                         ** Now juggle transition times and types
1134                         ** tracking offsets as you do.
1135                         */
1136                         for (i = 0; i < sp->timecnt; ++i) {
1137                                 j = sp->types[i];
1138                                 sp->types[i] = sp->ttis[j].tt_isdst;
1139                                 if (sp->ttis[j].tt_ttisgmt) {
1140                                         /* No adjustment to transition time */
1141                                 } else {
1142                                         /*
1143                                         ** If summer time is in effect, and the
1144                                         ** transition time was not specified as
1145                                         ** standard time, add the summer time
1146                                         ** offset to the transition time;
1147                                         ** otherwise, add the standard time
1148                                         ** offset to the transition time.
1149                                         */
1150                                         /*
1151                                         ** Transitions from DST to DDST
1152                                         ** will effectively disappear since
1153                                         ** POSIX provides for only one DST
1154                                         ** offset.
1155                                         */
1156                                         if (isdst && !sp->ttis[j].tt_ttisstd) {
1157                                                 sp->ats[i] += dstoffset -
1158                                                         theirdstoffset;
1159                                         } else {
1160                                                 sp->ats[i] += stdoffset -
1161                                                         theirstdoffset;
1162                                         }
1163                                 }
1164                                 theiroffset = -sp->ttis[j].tt_gmtoff;
1165                                 if (sp->ttis[j].tt_isdst)
1166                                         theirdstoffset = theiroffset;
1167                                 else    theirstdoffset = theiroffset;
1168                         }
1169                         /*
1170                         ** Finally, fill in ttis.
1171                         ** ttisstd and ttisgmt need not be handled.
1172                         */
1173                         sp->ttis[0].tt_gmtoff = -stdoffset;
1174                         sp->ttis[0].tt_isdst = FALSE;
1175                         sp->ttis[0].tt_abbrind = 0;
1176                         sp->ttis[1].tt_gmtoff = -dstoffset;
1177                         sp->ttis[1].tt_isdst = TRUE;
1178                         sp->ttis[1].tt_abbrind = stdlen + 1;
1179                         sp->typecnt = 2;
1180                 }
1181         } else {
1182                 dstlen = 0;
1183                 sp->typecnt = 1;                /* only standard time */
1184                 sp->timecnt = 0;
1185                 sp->ttis[0].tt_gmtoff = -stdoffset;
1186                 sp->ttis[0].tt_isdst = 0;
1187                 sp->ttis[0].tt_abbrind = 0;
1188         }
1189         sp->charcnt = stdlen + 1;
1190         if (dstlen != 0)
1191                 sp->charcnt += dstlen + 1;
1192         if ((size_t) sp->charcnt > sizeof sp->chars)
1193                 return -1;
1194         cp = sp->chars;
1195         (void) strncpy(cp, stdname, stdlen);
1196         cp += stdlen;
1197         *cp++ = '\0';
1198         if (dstlen != 0) {
1199                 (void) strncpy(cp, dstname, dstlen);
1200                 *(cp + dstlen) = '\0';
1201         }
1202         return 0;
1203 }
1204
1205 static void
1206 gmtload(struct state *const sp)
1207 {
1208         if (tzload(gmt, sp, TRUE) != 0)
1209                 (void) tzparse(gmt, sp, TRUE);
1210 }
1211
1212 static void
1213 tzsetwall_basic(int rdlocked)
1214 {
1215         if (!rdlocked)
1216                 _RWLOCK_RDLOCK(&lcl_rwlock);
1217         if (lcl_is_set < 0) {
1218                 if (!rdlocked)
1219                         _RWLOCK_UNLOCK(&lcl_rwlock);
1220                 return;
1221         }
1222         _RWLOCK_UNLOCK(&lcl_rwlock);
1223
1224         _RWLOCK_WRLOCK(&lcl_rwlock);
1225         lcl_is_set = -1;
1226
1227 #ifdef ALL_STATE
1228         if (lclptr == NULL) {
1229                 lclptr = calloc(1, sizeof *lclptr);
1230                 if (lclptr == NULL) {
1231                         settzname();    /* all we can do */
1232                         _RWLOCK_UNLOCK(&lcl_rwlock);
1233                         if (rdlocked)
1234                                 _RWLOCK_RDLOCK(&lcl_rwlock);
1235                         return;
1236                 }
1237         }
1238 #endif /* defined ALL_STATE */
1239         if (tzload((char *) NULL, lclptr, TRUE) != 0)
1240                 gmtload(lclptr);
1241         settzname();
1242         _RWLOCK_UNLOCK(&lcl_rwlock);
1243
1244         if (rdlocked)
1245                 _RWLOCK_RDLOCK(&lcl_rwlock);
1246 }
1247
1248 void
1249 tzsetwall(void)
1250 {
1251         tzsetwall_basic(0);
1252 }
1253
1254 static void
1255 tzset_basic(int rdlocked)
1256 {
1257         const char *    name;
1258
1259         name = getenv("TZ");
1260         if (name == NULL) {
1261                 tzsetwall_basic(rdlocked);
1262                 return;
1263         }
1264
1265         if (!rdlocked)
1266                 _RWLOCK_RDLOCK(&lcl_rwlock);
1267         if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1268                 if (!rdlocked)
1269                         _RWLOCK_UNLOCK(&lcl_rwlock);
1270                 return;
1271         }
1272         _RWLOCK_UNLOCK(&lcl_rwlock);
1273
1274         _RWLOCK_WRLOCK(&lcl_rwlock);
1275         lcl_is_set = strlen(name) < sizeof lcl_TZname;
1276         if (lcl_is_set)
1277                 (void) strcpy(lcl_TZname, name);
1278
1279 #ifdef ALL_STATE
1280         if (lclptr == NULL) {
1281                 lclptr = (struct state *) calloc(1, sizeof *lclptr);
1282                 if (lclptr == NULL) {
1283                         settzname();    /* all we can do */
1284                         _RWLOCK_UNLOCK(&lcl_rwlock);
1285                         if (rdlocked)
1286                                 _RWLOCK_RDLOCK(&lcl_rwlock);
1287                         return;
1288                 }
1289         }
1290 #endif /* defined ALL_STATE */
1291         if (*name == '\0') {
1292                 /*
1293                 ** User wants it fast rather than right.
1294                 */
1295                 lclptr->leapcnt = 0;            /* so, we're off a little */
1296                 lclptr->timecnt = 0;
1297                 lclptr->typecnt = 0;
1298                 lclptr->ttis[0].tt_isdst = 0;
1299                 lclptr->ttis[0].tt_gmtoff = 0;
1300                 lclptr->ttis[0].tt_abbrind = 0;
1301                 (void) strcpy(lclptr->chars, gmt);
1302         } else if (tzload(name, lclptr, TRUE) != 0)
1303                 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1304                         (void) gmtload(lclptr);
1305         settzname();
1306         _RWLOCK_UNLOCK(&lcl_rwlock);
1307
1308         if (rdlocked)
1309                 _RWLOCK_RDLOCK(&lcl_rwlock);
1310 }
1311
1312 void
1313 tzset(void)
1314 {
1315         tzset_basic(0);
1316 }
1317
1318 /*
1319 ** The easy way to behave "as if no library function calls" localtime
1320 ** is to not call it--so we drop its guts into "localsub", which can be
1321 ** freely called. (And no, the PANS doesn't require the above behavior--
1322 ** but it *is* desirable.)
1323 **
1324 ** The unused offset argument is for the benefit of mktime variants.
1325 */
1326
1327 /*ARGSUSED*/
1328 static struct tm *
1329 localsub(const time_t *const timep, const long offset, struct tm *const tmp)
1330 {
1331         struct state *          sp;
1332         const struct ttinfo *   ttisp;
1333         int                     i;
1334         struct tm *             result;
1335         const time_t            t = *timep;
1336
1337         sp = lclptr;
1338 #ifdef ALL_STATE
1339         if (sp == NULL)
1340                 return gmtsub(timep, offset, tmp);
1341 #endif /* defined ALL_STATE */
1342         if ((sp->goback && t < sp->ats[0]) ||
1343                 (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1344                         time_t                  newt = t;
1345                         register time_t         seconds;
1346                         register time_t         tcycles;
1347                         register int_fast64_t   icycles;
1348
1349                         if (t < sp->ats[0])
1350                                 seconds = sp->ats[0] - t;
1351                         else    seconds = t - sp->ats[sp->timecnt - 1];
1352                         --seconds;
1353                         tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1354                         ++tcycles;
1355                         icycles = tcycles;
1356                         if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1357                                 return NULL;
1358                         seconds = icycles;
1359                         seconds *= YEARSPERREPEAT;
1360                         seconds *= AVGSECSPERYEAR;
1361                         if (t < sp->ats[0])
1362                                 newt += seconds;
1363                         else    newt -= seconds;
1364                         if (newt < sp->ats[0] ||
1365                                 newt > sp->ats[sp->timecnt - 1])
1366                                         return NULL;    /* "cannot happen" */
1367                         result = localsub(&newt, offset, tmp);
1368                         if (result == tmp) {
1369                                 register time_t newy;
1370
1371                                 newy = tmp->tm_year;
1372                                 if (t < sp->ats[0])
1373                                         newy -= icycles * YEARSPERREPEAT;
1374                                 else    newy += icycles * YEARSPERREPEAT;
1375                                 tmp->tm_year = newy;
1376                                 if (tmp->tm_year != newy)
1377                                         return NULL;
1378                         }
1379                         return result;
1380         }
1381         if (sp->timecnt == 0 || t < sp->ats[0]) {
1382                 i = 0;
1383                 while (sp->ttis[i].tt_isdst)
1384                         if (++i >= sp->typecnt) {
1385                                 i = 0;
1386                                 break;
1387                         }
1388         } else {
1389                 register int    lo = 1;
1390                 register int    hi = sp->timecnt;
1391
1392                 while (lo < hi) {
1393                         register int    mid = (lo + hi) >> 1;
1394
1395                         if (t < sp->ats[mid])
1396                                 hi = mid;
1397                         else    lo = mid + 1;
1398                 }
1399                 i = (int) sp->types[lo - 1];
1400         }
1401         ttisp = &sp->ttis[i];
1402         /*
1403         ** To get (wrong) behavior that's compatible with System V Release 2.0
1404         ** you'd replace the statement below with
1405         **      t += ttisp->tt_gmtoff;
1406         **      timesub(&t, 0L, sp, tmp);
1407         */
1408         result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1409         tmp->tm_isdst = ttisp->tt_isdst;
1410         tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1411 #ifdef TM_ZONE
1412         tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1413 #endif /* defined TM_ZONE */
1414         return result;
1415 }
1416
1417 static void
1418 localtime_key_init(void)
1419 {
1420
1421         localtime_key_error = _pthread_key_create(&localtime_key, free);
1422 }
1423
1424 struct tm *
1425 localtime(const time_t *const timep)
1426 {
1427         struct tm *p_tm;
1428
1429         if (__isthreaded != 0) {
1430                 _pthread_once(&localtime_once, localtime_key_init);
1431                 if (localtime_key_error != 0) {
1432                         errno = localtime_key_error;
1433                         return(NULL);
1434                 }
1435                 p_tm = _pthread_getspecific(localtime_key);
1436                 if (p_tm == NULL) {
1437                         if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1438                             == NULL)
1439                                 return(NULL);
1440                         _pthread_setspecific(localtime_key, p_tm);
1441                 }
1442                 _RWLOCK_RDLOCK(&lcl_rwlock);
1443                 tzset_basic(1);
1444                 p_tm = localsub(timep, 0L, p_tm);
1445                 _RWLOCK_UNLOCK(&lcl_rwlock);
1446         } else {
1447                 tzset_basic(0);
1448                 p_tm = localsub(timep, 0L, &tm);
1449         }
1450         return(p_tm);
1451 }
1452
1453 /*
1454 ** Re-entrant version of localtime.
1455 */
1456
1457 struct tm *
1458 localtime_r(const time_t *const timep, struct tm *tmp)
1459 {
1460         _RWLOCK_RDLOCK(&lcl_rwlock);
1461         tzset_basic(1);
1462         tmp = localsub(timep, 0L, tmp);
1463         _RWLOCK_UNLOCK(&lcl_rwlock);
1464         return tmp;
1465 }
1466
1467 static void
1468 gmt_init(void)
1469 {
1470
1471 #ifdef ALL_STATE
1472         gmtptr = (struct state *) calloc(1, sizeof *gmtptr);
1473         if (gmtptr != NULL)
1474 #endif /* defined ALL_STATE */
1475                 gmtload(gmtptr);
1476 }
1477
1478 /*
1479 ** gmtsub is to gmtime as localsub is to localtime.
1480 */
1481
1482 static struct tm *
1483 gmtsub(timep, offset, tmp)
1484 const time_t * const    timep;
1485 const long              offset;
1486 struct tm * const       tmp;
1487 {
1488         register struct tm *    result;
1489
1490         _once(&gmt_once, gmt_init);
1491         result = timesub(timep, offset, gmtptr, tmp);
1492 #ifdef TM_ZONE
1493         /*
1494         ** Could get fancy here and deliver something such as
1495         ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1496         ** but this is no time for a treasure hunt.
1497         */
1498         if (offset != 0)
1499                 tmp->TM_ZONE = wildabbr;
1500         else {
1501 #ifdef ALL_STATE
1502                 if (gmtptr == NULL)
1503                         tmp->TM_ZONE = gmt;
1504                 else    tmp->TM_ZONE = gmtptr->chars;
1505 #endif /* defined ALL_STATE */
1506 #ifndef ALL_STATE
1507                 tmp->TM_ZONE = gmtptr->chars;
1508 #endif /* State Farm */
1509         }
1510 #endif /* defined TM_ZONE */
1511         return result;
1512 }
1513
1514 static void
1515 gmtime_key_init(void)
1516 {
1517
1518         gmtime_key_error = _pthread_key_create(&gmtime_key, free);
1519 }
1520
1521 struct tm *
1522 gmtime(const time_t *const timep)
1523 {
1524         struct tm *p_tm;
1525
1526         if (__isthreaded != 0) {
1527                 _pthread_once(&gmtime_once, gmtime_key_init);
1528                 if (gmtime_key_error != 0) {
1529                         errno = gmtime_key_error;
1530                         return(NULL);
1531                 }
1532                 /*
1533                  * Changed to follow POSIX.1 threads standard, which
1534                  * is what BSD currently has.
1535                  */
1536                 if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1537                         if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1538                             == NULL) {
1539                                 return(NULL);
1540                         }
1541                         _pthread_setspecific(gmtime_key, p_tm);
1542                 }
1543                 gmtsub(timep, 0L, p_tm);
1544                 return(p_tm);
1545         }
1546         else {
1547                 gmtsub(timep, 0L, &tm);
1548                 return(&tm);
1549         }
1550 }
1551
1552 /*
1553 * Re-entrant version of gmtime.
1554 */
1555
1556 struct tm *
1557 gmtime_r(const time_t *const timep, struct tm *tmp)
1558 {
1559         return gmtsub(timep, 0L, tmp);
1560 }
1561
1562 #ifdef STD_INSPIRED
1563
1564 struct tm *
1565 offtime(const time_t *const timep, const long offset)
1566 {
1567         return gmtsub(timep, offset, &tm);
1568 }
1569
1570 #endif /* defined STD_INSPIRED */
1571
1572 /*
1573 ** Return the number of leap years through the end of the given year
1574 ** where, to make the math easy, the answer for year zero is defined as zero.
1575 */
1576
1577 static int
1578 leaps_thru_end_of(y)
1579 register const int      y;
1580 {
1581         return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1582                 -(leaps_thru_end_of(-(y + 1)) + 1);
1583 }
1584
1585 static struct tm *
1586 timesub(timep, offset, sp, tmp)
1587 const time_t * const                    timep;
1588 const long                              offset;
1589 const struct state * const      sp;
1590 struct tm * const               tmp;
1591 {
1592         const struct lsinfo *   lp;
1593         time_t                  tdays;
1594         int                     idays;  /* unsigned would be so 2003 */
1595         long                    rem;
1596         int                     y;
1597         const int *             ip;
1598         long                    corr;
1599         int                     hit;
1600         int                     i;
1601
1602         corr = 0;
1603         hit = 0;
1604 #ifdef ALL_STATE
1605         i = (sp == NULL) ? 0 : sp->leapcnt;
1606 #endif /* defined ALL_STATE */
1607 #ifndef ALL_STATE
1608         i = sp->leapcnt;
1609 #endif /* State Farm */
1610         while (--i >= 0) {
1611                 lp = &sp->lsis[i];
1612                 if (*timep >= lp->ls_trans) {
1613                         if (*timep == lp->ls_trans) {
1614                                 hit = ((i == 0 && lp->ls_corr > 0) ||
1615                                         lp->ls_corr > sp->lsis[i - 1].ls_corr);
1616                                 if (hit)
1617                                         while (i > 0 &&
1618                                                 sp->lsis[i].ls_trans ==
1619                                                 sp->lsis[i - 1].ls_trans + 1 &&
1620                                                 sp->lsis[i].ls_corr ==
1621                                                 sp->lsis[i - 1].ls_corr + 1) {
1622                                                         ++hit;
1623                                                         --i;
1624                                         }
1625                         }
1626                         corr = lp->ls_corr;
1627                         break;
1628                 }
1629         }
1630         y = EPOCH_YEAR;
1631         tdays = *timep / SECSPERDAY;
1632         rem = *timep - tdays * SECSPERDAY;
1633         while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1634                 int             newy;
1635                 register time_t tdelta;
1636                 register int    idelta;
1637                 register int    leapdays;
1638
1639                 tdelta = tdays / DAYSPERLYEAR;
1640                 idelta = tdelta;
1641                 if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1642                         return NULL;
1643                 if (idelta == 0)
1644                         idelta = (tdays < 0) ? -1 : 1;
1645                 newy = y;
1646                 if (increment_overflow(&newy, idelta))
1647                         return NULL;
1648                 leapdays = leaps_thru_end_of(newy - 1) -
1649                         leaps_thru_end_of(y - 1);
1650                 tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1651                 tdays -= leapdays;
1652                 y = newy;
1653         }
1654         {
1655                 register long   seconds;
1656
1657                 seconds = tdays * SECSPERDAY + 0.5;
1658                 tdays = seconds / SECSPERDAY;
1659                 rem += seconds - tdays * SECSPERDAY;
1660         }
1661         /*
1662         ** Given the range, we can now fearlessly cast...
1663         */
1664         idays = tdays;
1665         rem += offset - corr;
1666         while (rem < 0) {
1667                 rem += SECSPERDAY;
1668                 --idays;
1669         }
1670         while (rem >= SECSPERDAY) {
1671                 rem -= SECSPERDAY;
1672                 ++idays;
1673         }
1674         while (idays < 0) {
1675                 if (increment_overflow(&y, -1))
1676                         return NULL;
1677                 idays += year_lengths[isleap(y)];
1678         }
1679         while (idays >= year_lengths[isleap(y)]) {
1680                 idays -= year_lengths[isleap(y)];
1681                 if (increment_overflow(&y, 1))
1682                         return NULL;
1683         }
1684         tmp->tm_year = y;
1685         if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1686                 return NULL;
1687         tmp->tm_yday = idays;
1688         /*
1689         ** The "extra" mods below avoid overflow problems.
1690         */
1691         tmp->tm_wday = EPOCH_WDAY +
1692                 ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1693                 (DAYSPERNYEAR % DAYSPERWEEK) +
1694                 leaps_thru_end_of(y - 1) -
1695                 leaps_thru_end_of(EPOCH_YEAR - 1) +
1696                 idays;
1697         tmp->tm_wday %= DAYSPERWEEK;
1698         if (tmp->tm_wday < 0)
1699                 tmp->tm_wday += DAYSPERWEEK;
1700         tmp->tm_hour = (int) (rem / SECSPERHOUR);
1701         rem %= SECSPERHOUR;
1702         tmp->tm_min = (int) (rem / SECSPERMIN);
1703         /*
1704         ** A positive leap second requires a special
1705         ** representation. This uses "... ??:59:60" et seq.
1706         */
1707         tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1708         ip = mon_lengths[isleap(y)];
1709         for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1710                 idays -= ip[tmp->tm_mon];
1711         tmp->tm_mday = (int) (idays + 1);
1712         tmp->tm_isdst = 0;
1713 #ifdef TM_GMTOFF
1714         tmp->TM_GMTOFF = offset;
1715 #endif /* defined TM_GMTOFF */
1716         return tmp;
1717 }
1718
1719 char *
1720 ctime(const time_t *const timep)
1721 {
1722 /*
1723 ** Section 4.12.3.2 of X3.159-1989 requires that
1724 **      The ctime function converts the calendar time pointed to by timer
1725 **      to local time in the form of a string. It is equivalent to
1726 **              asctime(localtime(timer))
1727 */
1728         return asctime(localtime(timep));
1729 }
1730
1731 char *
1732 ctime_r(const time_t *const timep, char *buf)
1733 {
1734         struct tm       mytm;
1735
1736         return asctime_r(localtime_r(timep, &mytm), buf);
1737 }
1738
1739 /*
1740 ** Adapted from code provided by Robert Elz, who writes:
1741 **      The "best" way to do mktime I think is based on an idea of Bob
1742 **      Kridle's (so its said...) from a long time ago.
1743 **      It does a binary search of the time_t space. Since time_t's are
1744 **      just 32 bits, its a max of 32 iterations (even at 64 bits it
1745 **      would still be very reasonable).
1746 */
1747
1748 #ifndef WRONG
1749 #define WRONG   (-1)
1750 #endif /* !defined WRONG */
1751
1752 /*
1753 ** Simplified normalize logic courtesy Paul Eggert.
1754 */
1755
1756 static int
1757 increment_overflow(number, delta)
1758 int *   number;
1759 int     delta;
1760 {
1761         int     number0;
1762
1763         number0 = *number;
1764         *number += delta;
1765         return (*number < number0) != (delta < 0);
1766 }
1767
1768 static int
1769 long_increment_overflow(number, delta)
1770 long *  number;
1771 int     delta;
1772 {
1773         long    number0;
1774
1775         number0 = *number;
1776         *number += delta;
1777         return (*number < number0) != (delta < 0);
1778 }
1779
1780 static int
1781 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
1782 {
1783         int     tensdelta;
1784
1785         tensdelta = (*unitsptr >= 0) ?
1786                 (*unitsptr / base) :
1787                 (-1 - (-1 - *unitsptr) / base);
1788         *unitsptr -= tensdelta * base;
1789         return increment_overflow(tensptr, tensdelta);
1790 }
1791
1792 static int
1793 long_normalize_overflow(long *const tensptr, int *const unitsptr, const int base)
1794 {
1795         register int    tensdelta;
1796
1797         tensdelta = (*unitsptr >= 0) ?
1798                 (*unitsptr / base) :
1799                 (-1 - (-1 - *unitsptr) / base);
1800         *unitsptr -= tensdelta * base;
1801         return long_increment_overflow(tensptr, tensdelta);
1802 }
1803
1804 static int
1805 tmcomp(atmp, btmp)
1806 const struct tm * const atmp;
1807 const struct tm * const btmp;
1808 {
1809         int     result;
1810
1811         if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1812                 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1813                 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1814                 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1815                 (result = (atmp->tm_min - btmp->tm_min)) == 0)
1816                         result = atmp->tm_sec - btmp->tm_sec;
1817         return result;
1818 }
1819
1820 static time_t
1821 time2sub(struct tm *const tmp,
1822          struct tm *(*const funcp)(const time_t *, long, struct tm *),
1823          const long offset,
1824          int *const okayp,
1825          const int do_norm_secs)
1826 {
1827         const struct state *    sp;
1828         int                     dir;
1829         int                     i, j;
1830         int                     saved_seconds;
1831         long                    li;
1832         time_t                  lo;
1833         time_t                  hi;
1834         long                    y;
1835         time_t                  newt;
1836         time_t                  t;
1837         struct tm               yourtm, mytm;
1838
1839         *okayp = FALSE;
1840         yourtm = *tmp;
1841         if (do_norm_secs) {
1842                 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1843                         SECSPERMIN))
1844                                 return WRONG;
1845         }
1846         if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1847                 return WRONG;
1848         if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1849                 return WRONG;
1850         y = yourtm.tm_year;
1851         if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1852                 return WRONG;
1853         /*
1854         ** Turn y into an actual year number for now.
1855         ** It is converted back to an offset from TM_YEAR_BASE later.
1856         */
1857         if (long_increment_overflow(&y, TM_YEAR_BASE))
1858                 return WRONG;
1859         while (yourtm.tm_mday <= 0) {
1860                 if (long_increment_overflow(&y, -1))
1861                         return WRONG;
1862                 li = y + (1 < yourtm.tm_mon);
1863                 yourtm.tm_mday += year_lengths[isleap(li)];
1864         }
1865         while (yourtm.tm_mday > DAYSPERLYEAR) {
1866                 li = y + (1 < yourtm.tm_mon);
1867                 yourtm.tm_mday -= year_lengths[isleap(li)];
1868                 if (long_increment_overflow(&y, 1))
1869                         return WRONG;
1870         }
1871         for ( ; ; ) {
1872                 i = mon_lengths[isleap(y)][yourtm.tm_mon];
1873                 if (yourtm.tm_mday <= i)
1874                         break;
1875                 yourtm.tm_mday -= i;
1876                 if (++yourtm.tm_mon >= MONSPERYEAR) {
1877                         yourtm.tm_mon = 0;
1878                         if (long_increment_overflow(&y, 1))
1879                                 return WRONG;
1880                 }
1881         }
1882         if (long_increment_overflow(&y, -TM_YEAR_BASE))
1883                 return WRONG;
1884         yourtm.tm_year = y;
1885         if (yourtm.tm_year != y)
1886                 return WRONG;
1887         /* Don't go below 1900 for POLA */
1888         if (yourtm.tm_year < 0)
1889                 return WRONG;
1890         if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1891                 saved_seconds = 0;
1892         else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1893                 /*
1894                 ** We can't set tm_sec to 0, because that might push the
1895                 ** time below the minimum representable time.
1896                 ** Set tm_sec to 59 instead.
1897                 ** This assumes that the minimum representable time is
1898                 ** not in the same minute that a leap second was deleted from,
1899                 ** which is a safer assumption than using 58 would be.
1900                 */
1901                 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1902                         return WRONG;
1903                 saved_seconds = yourtm.tm_sec;
1904                 yourtm.tm_sec = SECSPERMIN - 1;
1905         } else {
1906                 saved_seconds = yourtm.tm_sec;
1907                 yourtm.tm_sec = 0;
1908         }
1909         /*
1910         ** Do a binary search (this works whatever time_t's type is).
1911         */
1912         if (!TYPE_SIGNED(time_t)) {
1913                 lo = 0;
1914                 hi = lo - 1;
1915         } else if (!TYPE_INTEGRAL(time_t)) {
1916                 if (sizeof(time_t) > sizeof(float))
1917                         hi = (time_t) DBL_MAX;
1918                 else    hi = (time_t) FLT_MAX;
1919                 lo = -hi;
1920         } else {
1921                 lo = 1;
1922                 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1923                         lo *= 2;
1924                 hi = -(lo + 1);
1925         }
1926         for ( ; ; ) {
1927                 t = lo / 2 + hi / 2;
1928                 if (t < lo)
1929                         t = lo;
1930                 else if (t > hi)
1931                         t = hi;
1932                 if ((*funcp)(&t, offset, &mytm) == NULL) {
1933                         /*
1934                         ** Assume that t is too extreme to be represented in
1935                         ** a struct tm; arrange things so that it is less
1936                         ** extreme on the next pass.
1937                         */
1938                         dir = (t > 0) ? 1 : -1;
1939                 } else  dir = tmcomp(&mytm, &yourtm);
1940                 if (dir != 0) {
1941                         if (t == lo) {
1942                                 ++t;
1943                                 if (t <= lo)
1944                                         return WRONG;
1945                                 ++lo;
1946                         } else if (t == hi) {
1947                                 --t;
1948                                 if (t >= hi)
1949                                         return WRONG;
1950                                 --hi;
1951                         }
1952                         if (lo > hi)
1953                                 return WRONG;
1954                         if (dir > 0)
1955                                 hi = t;
1956                         else    lo = t;
1957                         continue;
1958                 }
1959                 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1960                         break;
1961                 /*
1962                 ** Right time, wrong type.
1963                 ** Hunt for right time, right type.
1964                 ** It's okay to guess wrong since the guess
1965                 ** gets checked.
1966                 */
1967                 sp = (const struct state *)
1968                         ((funcp == localsub) ? lclptr : gmtptr);
1969 #ifdef ALL_STATE
1970                 if (sp == NULL)
1971                         return WRONG;
1972 #endif /* defined ALL_STATE */
1973                 for (i = sp->typecnt - 1; i >= 0; --i) {
1974                         if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1975                                 continue;
1976                         for (j = sp->typecnt - 1; j >= 0; --j) {
1977                                 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1978                                         continue;
1979                                 newt = t + sp->ttis[j].tt_gmtoff -
1980                                         sp->ttis[i].tt_gmtoff;
1981                                 if ((*funcp)(&newt, offset, &mytm) == NULL)
1982                                         continue;
1983                                 if (tmcomp(&mytm, &yourtm) != 0)
1984                                         continue;
1985                                 if (mytm.tm_isdst != yourtm.tm_isdst)
1986                                         continue;
1987                                 /*
1988                                 ** We have a match.
1989                                 */
1990                                 t = newt;
1991                                 goto label;
1992                         }
1993                 }
1994                 return WRONG;
1995         }
1996 label:
1997         newt = t + saved_seconds;
1998         if ((newt < t) != (saved_seconds < 0))
1999                 return WRONG;
2000         t = newt;
2001         if ((*funcp)(&t, offset, tmp))
2002                 *okayp = TRUE;
2003         return t;
2004 }
2005
2006 static time_t
2007 time2(struct tm * const tmp,
2008       struct tm * (*const funcp)(const time_t *, long, struct tm *),
2009       const long offset,
2010       int *const okayp)
2011 {
2012         time_t  t;
2013
2014         /*
2015         ** First try without normalization of seconds
2016         ** (in case tm_sec contains a value associated with a leap second).
2017         ** If that fails, try with normalization of seconds.
2018         */
2019         t = time2sub(tmp, funcp, offset, okayp, FALSE);
2020         return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
2021 }
2022
2023 static time_t
2024 time1(tmp, funcp, offset)
2025 struct tm * const       tmp;
2026 struct tm * (* const  funcp)(const time_t *, long, struct tm *);
2027 const long              offset;
2028 {
2029         time_t                  t;
2030         const struct state *    sp;
2031         int                     samei, otheri;
2032         int                     sameind, otherind;
2033         int                     i;
2034         int                     nseen;
2035         int                             seen[TZ_MAX_TYPES];
2036         int                             types[TZ_MAX_TYPES];
2037         int                             okay;
2038
2039         if (tmp == NULL) {
2040                 errno = EINVAL;
2041                 return WRONG;
2042         }
2043
2044         if (tmp->tm_isdst > 1)
2045                 tmp->tm_isdst = 1;
2046         t = time2(tmp, funcp, offset, &okay);
2047 #ifdef PCTS
2048         /*
2049         ** PCTS code courtesy Grant Sullivan.
2050         */
2051         if (okay)
2052                 return t;
2053         if (tmp->tm_isdst < 0)
2054                 tmp->tm_isdst = 0;      /* reset to std and try again */
2055 #endif /* defined PCTS */
2056 #ifndef PCTS
2057         if (okay || tmp->tm_isdst < 0)
2058                 return t;
2059 #endif /* !defined PCTS */
2060         /*
2061         ** We're supposed to assume that somebody took a time of one type
2062         ** and did some math on it that yielded a "struct tm" that's bad.
2063         ** We try to divine the type they started from and adjust to the
2064         ** type they need.
2065         */
2066         sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr);
2067 #ifdef ALL_STATE
2068         if (sp == NULL)
2069                 return WRONG;
2070 #endif /* defined ALL_STATE */
2071         for (i = 0; i < sp->typecnt; ++i)
2072                 seen[i] = FALSE;
2073         nseen = 0;
2074         for (i = sp->timecnt - 1; i >= 0; --i)
2075                 if (!seen[sp->types[i]]) {
2076                         seen[sp->types[i]] = TRUE;
2077                         types[nseen++] = sp->types[i];
2078                 }
2079         for (sameind = 0; sameind < nseen; ++sameind) {
2080                 samei = types[sameind];
2081                 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2082                         continue;
2083                 for (otherind = 0; otherind < nseen; ++otherind) {
2084                         otheri = types[otherind];
2085                         if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2086                                 continue;
2087                         tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
2088                                         sp->ttis[samei].tt_gmtoff;
2089                         tmp->tm_isdst = !tmp->tm_isdst;
2090                         t = time2(tmp, funcp, offset, &okay);
2091                         if (okay)
2092                                 return t;
2093                         tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
2094                                         sp->ttis[samei].tt_gmtoff;
2095                         tmp->tm_isdst = !tmp->tm_isdst;
2096                 }
2097         }
2098         return WRONG;
2099 }
2100
2101 time_t
2102 mktime(struct tm *const tmp)
2103 {
2104         time_t mktime_return_value;
2105         _RWLOCK_RDLOCK(&lcl_rwlock);
2106         tzset_basic(1);
2107         mktime_return_value = time1(tmp, localsub, 0L);
2108         _RWLOCK_UNLOCK(&lcl_rwlock);
2109         return(mktime_return_value);
2110 }
2111
2112 #ifdef STD_INSPIRED
2113
2114 time_t
2115 timelocal(struct tm *const tmp)
2116 {
2117         if (tmp != NULL)
2118                 tmp->tm_isdst = -1;     /* in case it wasn't initialized */
2119         return mktime(tmp);
2120 }
2121
2122 time_t
2123 timegm(struct tm *const tmp)
2124 {
2125         if (tmp != NULL)
2126                 tmp->tm_isdst = 0;
2127         return time1(tmp, gmtsub, 0L);
2128 }
2129
2130 time_t
2131 timeoff(struct tm *const tmp, const long offset)
2132 {
2133         if (tmp != NULL)
2134                 tmp->tm_isdst = 0;
2135         return time1(tmp, gmtsub, offset);
2136 }
2137
2138 #endif /* defined STD_INSPIRED */
2139
2140 #ifdef CMUCS
2141
2142 /*
2143 ** The following is supplied for compatibility with
2144 ** previous versions of the CMUCS runtime library.
2145 */
2146
2147 long
2148 gtime(struct tm *const tmp)
2149 {
2150         const time_t    t = mktime(tmp);
2151
2152         if (t == WRONG)
2153                 return -1;
2154         return t;
2155 }
2156
2157 #endif /* defined CMUCS */
2158
2159 /*
2160 ** XXX--is the below the right way to conditionalize??
2161 */
2162
2163 #ifdef STD_INSPIRED
2164
2165 /*
2166 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2167 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2168 ** is not the case if we are accounting for leap seconds.
2169 ** So, we provide the following conversion routines for use
2170 ** when exchanging timestamps with POSIX conforming systems.
2171 */
2172
2173 static long
2174 leapcorr(time_t *timep)
2175 {
2176         struct state *          sp;
2177         struct lsinfo * lp;
2178         int                     i;
2179
2180         sp = lclptr;
2181         i = sp->leapcnt;
2182         while (--i >= 0) {
2183                 lp = &sp->lsis[i];
2184                 if (*timep >= lp->ls_trans)
2185                         return lp->ls_corr;
2186         }
2187         return 0;
2188 }
2189
2190 time_t
2191 time2posix(time_t t)
2192 {
2193         tzset();
2194         return t - leapcorr(&t);
2195 }
2196
2197 time_t
2198 posix2time(time_t t)
2199 {
2200         time_t  x;
2201         time_t  y;
2202
2203         tzset();
2204         /*
2205         ** For a positive leap second hit, the result
2206         ** is not unique. For a negative leap second
2207         ** hit, the corresponding time doesn't exist,
2208         ** so we return an adjacent second.
2209         */
2210         x = t + leapcorr(&t);
2211         y = x - leapcorr(&x);
2212         if (y < t) {
2213                 do {
2214                         x++;
2215                         y = x - leapcorr(&x);
2216                 } while (y < t);
2217                 if (t != y)
2218                         return x - 1;
2219         } else if (y > t) {
2220                 do {
2221                         --x;
2222                         y = x - leapcorr(&x);
2223                 } while (y > t);
2224                 if (t != y)
2225                         return x + 1;
2226         }
2227         return x;
2228 }
2229
2230 #endif /* defined STD_INSPIRED */