]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/wpa/src/common/sae.c
OpenZFS: MFV 2.0-rc3-gfc5966
[FreeBSD/FreeBSD.git] / contrib / wpa / src / common / sae.c
1 /*
2  * Simultaneous authentication of equals
3  * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8
9 #include "includes.h"
10
11 #include "common.h"
12 #include "utils/const_time.h"
13 #include "crypto/crypto.h"
14 #include "crypto/sha256.h"
15 #include "crypto/random.h"
16 #include "crypto/dh_groups.h"
17 #include "ieee802_11_defs.h"
18 #include "dragonfly.h"
19 #include "sae.h"
20
21
22 int sae_set_group(struct sae_data *sae, int group)
23 {
24         struct sae_temporary_data *tmp;
25
26 #ifdef CONFIG_TESTING_OPTIONS
27         /* Allow all groups for testing purposes in non-production builds. */
28 #else /* CONFIG_TESTING_OPTIONS */
29         if (!dragonfly_suitable_group(group, 0)) {
30                 wpa_printf(MSG_DEBUG, "SAE: Reject unsuitable group %d", group);
31                 return -1;
32         }
33 #endif /* CONFIG_TESTING_OPTIONS */
34
35         sae_clear_data(sae);
36         tmp = sae->tmp = os_zalloc(sizeof(*tmp));
37         if (tmp == NULL)
38                 return -1;
39
40         /* First, check if this is an ECC group */
41         tmp->ec = crypto_ec_init(group);
42         if (tmp->ec) {
43                 wpa_printf(MSG_DEBUG, "SAE: Selecting supported ECC group %d",
44                            group);
45                 sae->group = group;
46                 tmp->prime_len = crypto_ec_prime_len(tmp->ec);
47                 tmp->prime = crypto_ec_get_prime(tmp->ec);
48                 tmp->order_len = crypto_ec_order_len(tmp->ec);
49                 tmp->order = crypto_ec_get_order(tmp->ec);
50                 return 0;
51         }
52
53         /* Not an ECC group, check FFC */
54         tmp->dh = dh_groups_get(group);
55         if (tmp->dh) {
56                 wpa_printf(MSG_DEBUG, "SAE: Selecting supported FFC group %d",
57                            group);
58                 sae->group = group;
59                 tmp->prime_len = tmp->dh->prime_len;
60                 if (tmp->prime_len > SAE_MAX_PRIME_LEN) {
61                         sae_clear_data(sae);
62                         return -1;
63                 }
64
65                 tmp->prime_buf = crypto_bignum_init_set(tmp->dh->prime,
66                                                         tmp->prime_len);
67                 if (tmp->prime_buf == NULL) {
68                         sae_clear_data(sae);
69                         return -1;
70                 }
71                 tmp->prime = tmp->prime_buf;
72
73                 tmp->order_len = tmp->dh->order_len;
74                 tmp->order_buf = crypto_bignum_init_set(tmp->dh->order,
75                                                         tmp->dh->order_len);
76                 if (tmp->order_buf == NULL) {
77                         sae_clear_data(sae);
78                         return -1;
79                 }
80                 tmp->order = tmp->order_buf;
81
82                 return 0;
83         }
84
85         /* Unsupported group */
86         wpa_printf(MSG_DEBUG,
87                    "SAE: Group %d not supported by the crypto library", group);
88         return -1;
89 }
90
91
92 void sae_clear_temp_data(struct sae_data *sae)
93 {
94         struct sae_temporary_data *tmp;
95         if (sae == NULL || sae->tmp == NULL)
96                 return;
97         tmp = sae->tmp;
98         crypto_ec_deinit(tmp->ec);
99         crypto_bignum_deinit(tmp->prime_buf, 0);
100         crypto_bignum_deinit(tmp->order_buf, 0);
101         crypto_bignum_deinit(tmp->sae_rand, 1);
102         crypto_bignum_deinit(tmp->pwe_ffc, 1);
103         crypto_bignum_deinit(tmp->own_commit_scalar, 0);
104         crypto_bignum_deinit(tmp->own_commit_element_ffc, 0);
105         crypto_bignum_deinit(tmp->peer_commit_element_ffc, 0);
106         crypto_ec_point_deinit(tmp->pwe_ecc, 1);
107         crypto_ec_point_deinit(tmp->own_commit_element_ecc, 0);
108         crypto_ec_point_deinit(tmp->peer_commit_element_ecc, 0);
109         wpabuf_free(tmp->anti_clogging_token);
110         os_free(tmp->pw_id);
111         bin_clear_free(tmp, sizeof(*tmp));
112         sae->tmp = NULL;
113 }
114
115
116 void sae_clear_data(struct sae_data *sae)
117 {
118         if (sae == NULL)
119                 return;
120         sae_clear_temp_data(sae);
121         crypto_bignum_deinit(sae->peer_commit_scalar, 0);
122         os_memset(sae, 0, sizeof(*sae));
123 }
124
125
126 static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
127 {
128         wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
129                    " addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
130         if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
131                 os_memcpy(key, addr1, ETH_ALEN);
132                 os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
133         } else {
134                 os_memcpy(key, addr2, ETH_ALEN);
135                 os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
136         }
137 }
138
139
140 static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
141                                  const u8 *prime, const u8 *qr, const u8 *qnr,
142                                  u8 *pwd_value)
143 {
144         struct crypto_bignum *y_sqr, *x_cand;
145         int res;
146         size_t bits;
147         int cmp_prime;
148         unsigned int in_range;
149
150         wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
151
152         /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
153         bits = crypto_ec_prime_len_bits(sae->tmp->ec);
154         if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
155                             prime, sae->tmp->prime_len, pwd_value, bits) < 0)
156                 return -1;
157         if (bits % 8)
158                 buf_shift_right(pwd_value, sae->tmp->prime_len, 8 - bits % 8);
159         wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
160                         pwd_value, sae->tmp->prime_len);
161
162         cmp_prime = const_time_memcmp(pwd_value, prime, sae->tmp->prime_len);
163         /* Create a const_time mask for selection based on prf result
164          * being smaller than prime. */
165         in_range = const_time_fill_msb((unsigned int) cmp_prime);
166         /* The algorithm description would skip the next steps if
167          * cmp_prime >= 0 (reutnr 0 here), but go through them regardless to
168          * minimize externally observable differences in behavior. */
169
170         x_cand = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
171         if (!x_cand)
172                 return -1;
173         y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand);
174         crypto_bignum_deinit(x_cand, 1);
175         if (!y_sqr)
176                 return -1;
177
178         res = dragonfly_is_quadratic_residue_blind(sae->tmp->ec, qr, qnr,
179                                                    y_sqr);
180         crypto_bignum_deinit(y_sqr, 1);
181         if (res < 0)
182                 return res;
183         return const_time_select_int(in_range, res, 0);
184 }
185
186
187 /* Returns -1 on fatal failure, 0 if PWE cannot be derived from the provided
188  * pwd-seed, or 1 if a valid PWE was derived from pwd-seed. */
189 static int sae_test_pwd_seed_ffc(struct sae_data *sae, const u8 *pwd_seed,
190                                  struct crypto_bignum *pwe)
191 {
192         u8 pwd_value[SAE_MAX_PRIME_LEN];
193         size_t bits = sae->tmp->prime_len * 8;
194         u8 exp[1];
195         struct crypto_bignum *a, *b = NULL;
196         int res, is_val;
197         u8 pwd_value_valid;
198
199         wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
200
201         /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
202         if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
203                             sae->tmp->dh->prime, sae->tmp->prime_len, pwd_value,
204                             bits) < 0)
205                 return -1;
206         wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value,
207                         sae->tmp->prime_len);
208
209         /* Check whether pwd-value < p */
210         res = const_time_memcmp(pwd_value, sae->tmp->dh->prime,
211                                 sae->tmp->prime_len);
212         /* pwd-value >= p is invalid, so res is < 0 for the valid cases and
213          * the negative sign can be used to fill the mask for constant time
214          * selection */
215         pwd_value_valid = const_time_fill_msb(res);
216
217         /* If pwd-value >= p, force pwd-value to be < p and perform the
218          * calculations anyway to hide timing difference. The derived PWE will
219          * be ignored in that case. */
220         pwd_value[0] = const_time_select_u8(pwd_value_valid, pwd_value[0], 0);
221
222         /* PWE = pwd-value^((p-1)/r) modulo p */
223
224         res = -1;
225         a = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
226         if (!a)
227                 goto fail;
228
229         /* This is an optimization based on the used group that does not depend
230          * on the password in any way, so it is fine to use separate branches
231          * for this step without constant time operations. */
232         if (sae->tmp->dh->safe_prime) {
233                 /*
234                  * r = (p-1)/2 for the group used here, so this becomes:
235                  * PWE = pwd-value^2 modulo p
236                  */
237                 exp[0] = 2;
238                 b = crypto_bignum_init_set(exp, sizeof(exp));
239         } else {
240                 /* Calculate exponent: (p-1)/r */
241                 exp[0] = 1;
242                 b = crypto_bignum_init_set(exp, sizeof(exp));
243                 if (b == NULL ||
244                     crypto_bignum_sub(sae->tmp->prime, b, b) < 0 ||
245                     crypto_bignum_div(b, sae->tmp->order, b) < 0)
246                         goto fail;
247         }
248
249         if (!b)
250                 goto fail;
251
252         res = crypto_bignum_exptmod(a, b, sae->tmp->prime, pwe);
253         if (res < 0)
254                 goto fail;
255
256         /* There were no fatal errors in calculations, so determine the return
257          * value using constant time operations. We get here for number of
258          * invalid cases which are cleared here after having performed all the
259          * computation. PWE is valid if pwd-value was less than prime and
260          * PWE > 1. Start with pwd-value check first and then use constant time
261          * operations to clear res to 0 if PWE is 0 or 1.
262          */
263         res = const_time_select_u8(pwd_value_valid, 1, 0);
264         is_val = crypto_bignum_is_zero(pwe);
265         res = const_time_select_u8(const_time_is_zero(is_val), res, 0);
266         is_val = crypto_bignum_is_one(pwe);
267         res = const_time_select_u8(const_time_is_zero(is_val), res, 0);
268
269 fail:
270         crypto_bignum_deinit(a, 1);
271         crypto_bignum_deinit(b, 1);
272         return res;
273 }
274
275
276 static int sae_derive_pwe_ecc(struct sae_data *sae, const u8 *addr1,
277                               const u8 *addr2, const u8 *password,
278                               size_t password_len, const char *identifier)
279 {
280         u8 counter, k;
281         u8 addrs[2 * ETH_ALEN];
282         const u8 *addr[3];
283         size_t len[3];
284         size_t num_elem;
285         u8 *dummy_password, *tmp_password;
286         int pwd_seed_odd = 0;
287         u8 prime[SAE_MAX_ECC_PRIME_LEN];
288         size_t prime_len;
289         struct crypto_bignum *x = NULL, *qr = NULL, *qnr = NULL;
290         u8 x_bin[SAE_MAX_ECC_PRIME_LEN];
291         u8 x_cand_bin[SAE_MAX_ECC_PRIME_LEN];
292         u8 qr_bin[SAE_MAX_ECC_PRIME_LEN];
293         u8 qnr_bin[SAE_MAX_ECC_PRIME_LEN];
294         int res = -1;
295         u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
296                        * mask */
297
298         os_memset(x_bin, 0, sizeof(x_bin));
299
300         dummy_password = os_malloc(password_len);
301         tmp_password = os_malloc(password_len);
302         if (!dummy_password || !tmp_password ||
303             random_get_bytes(dummy_password, password_len) < 0)
304                 goto fail;
305
306         prime_len = sae->tmp->prime_len;
307         if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
308                                  prime_len) < 0)
309                 goto fail;
310
311         /*
312          * Create a random quadratic residue (qr) and quadratic non-residue
313          * (qnr) modulo p for blinding purposes during the loop.
314          */
315         if (dragonfly_get_random_qr_qnr(sae->tmp->prime, &qr, &qnr) < 0 ||
316             crypto_bignum_to_bin(qr, qr_bin, sizeof(qr_bin), prime_len) < 0 ||
317             crypto_bignum_to_bin(qnr, qnr_bin, sizeof(qnr_bin), prime_len) < 0)
318                 goto fail;
319
320         wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
321                               password, password_len);
322         if (identifier)
323                 wpa_printf(MSG_DEBUG, "SAE: password identifier: %s",
324                            identifier);
325
326         /*
327          * H(salt, ikm) = HMAC-SHA256(salt, ikm)
328          * base = password [|| identifier]
329          * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
330          *              base || counter)
331          */
332         sae_pwd_seed_key(addr1, addr2, addrs);
333
334         addr[0] = tmp_password;
335         len[0] = password_len;
336         num_elem = 1;
337         if (identifier) {
338                 addr[num_elem] = (const u8 *) identifier;
339                 len[num_elem] = os_strlen(identifier);
340                 num_elem++;
341         }
342         addr[num_elem] = &counter;
343         len[num_elem] = sizeof(counter);
344         num_elem++;
345
346         /*
347          * Continue for at least k iterations to protect against side-channel
348          * attacks that attempt to determine the number of iterations required
349          * in the loop.
350          */
351         k = dragonfly_min_pwe_loop_iter(sae->group);
352
353         for (counter = 1; counter <= k || !found; counter++) {
354                 u8 pwd_seed[SHA256_MAC_LEN];
355
356                 if (counter > 200) {
357                         /* This should not happen in practice */
358                         wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
359                         break;
360                 }
361
362                 wpa_printf(MSG_DEBUG, "SAE: counter = %03u", counter);
363                 const_time_select_bin(found, dummy_password, password,
364                                       password_len, tmp_password);
365                 if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
366                                        addr, len, pwd_seed) < 0)
367                         break;
368
369                 res = sae_test_pwd_seed_ecc(sae, pwd_seed,
370                                             prime, qr_bin, qnr_bin, x_cand_bin);
371                 const_time_select_bin(found, x_bin, x_cand_bin, prime_len,
372                                       x_bin);
373                 pwd_seed_odd = const_time_select_u8(
374                         found, pwd_seed_odd,
375                         pwd_seed[SHA256_MAC_LEN - 1] & 0x01);
376                 os_memset(pwd_seed, 0, sizeof(pwd_seed));
377                 if (res < 0)
378                         goto fail;
379                 /* Need to minimize differences in handling res == 0 and 1 here
380                  * to avoid differences in timing and instruction cache access,
381                  * so use const_time_select_*() to make local copies of the
382                  * values based on whether this loop iteration was the one that
383                  * found the pwd-seed/x. */
384
385                 /* found is 0 or 0xff here and res is 0 or 1. Bitwise OR of them
386                  * (with res converted to 0/0xff) handles this in constant time.
387                  */
388                 found |= res * 0xff;
389                 wpa_printf(MSG_DEBUG, "SAE: pwd-seed result %d found=0x%02x",
390                            res, found);
391         }
392
393         if (!found) {
394                 wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
395                 res = -1;
396                 goto fail;
397         }
398
399         x = crypto_bignum_init_set(x_bin, prime_len);
400         if (!x) {
401                 res = -1;
402                 goto fail;
403         }
404
405         if (!sae->tmp->pwe_ecc)
406                 sae->tmp->pwe_ecc = crypto_ec_point_init(sae->tmp->ec);
407         if (!sae->tmp->pwe_ecc)
408                 res = -1;
409         else
410                 res = crypto_ec_point_solve_y_coord(sae->tmp->ec,
411                                                     sae->tmp->pwe_ecc, x,
412                                                     pwd_seed_odd);
413         if (res < 0) {
414                 /*
415                  * This should not happen since we already checked that there
416                  * is a result.
417                  */
418                 wpa_printf(MSG_DEBUG, "SAE: Could not solve y");
419         }
420
421 fail:
422         crypto_bignum_deinit(qr, 0);
423         crypto_bignum_deinit(qnr, 0);
424         os_free(dummy_password);
425         bin_clear_free(tmp_password, password_len);
426         crypto_bignum_deinit(x, 1);
427         os_memset(x_bin, 0, sizeof(x_bin));
428         os_memset(x_cand_bin, 0, sizeof(x_cand_bin));
429
430         return res;
431 }
432
433
434 static int sae_derive_pwe_ffc(struct sae_data *sae, const u8 *addr1,
435                               const u8 *addr2, const u8 *password,
436                               size_t password_len, const char *identifier)
437 {
438         u8 counter, k, sel_counter = 0;
439         u8 addrs[2 * ETH_ALEN];
440         const u8 *addr[3];
441         size_t len[3];
442         size_t num_elem;
443         u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
444                        * mask */
445         u8 mask;
446         struct crypto_bignum *pwe;
447         size_t prime_len = sae->tmp->prime_len * 8;
448         u8 *pwe_buf;
449
450         crypto_bignum_deinit(sae->tmp->pwe_ffc, 1);
451         sae->tmp->pwe_ffc = NULL;
452
453         /* Allocate a buffer to maintain selected and candidate PWE for constant
454          * time selection. */
455         pwe_buf = os_zalloc(prime_len * 2);
456         pwe = crypto_bignum_init();
457         if (!pwe_buf || !pwe)
458                 goto fail;
459
460         wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
461                               password, password_len);
462
463         /*
464          * H(salt, ikm) = HMAC-SHA256(salt, ikm)
465          * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
466          *              password [|| identifier] || counter)
467          */
468         sae_pwd_seed_key(addr1, addr2, addrs);
469
470         addr[0] = password;
471         len[0] = password_len;
472         num_elem = 1;
473         if (identifier) {
474                 addr[num_elem] = (const u8 *) identifier;
475                 len[num_elem] = os_strlen(identifier);
476                 num_elem++;
477         }
478         addr[num_elem] = &counter;
479         len[num_elem] = sizeof(counter);
480         num_elem++;
481
482         k = dragonfly_min_pwe_loop_iter(sae->group);
483
484         for (counter = 1; counter <= k || !found; counter++) {
485                 u8 pwd_seed[SHA256_MAC_LEN];
486                 int res;
487
488                 if (counter > 200) {
489                         /* This should not happen in practice */
490                         wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
491                         break;
492                 }
493
494                 wpa_printf(MSG_DEBUG, "SAE: counter = %02u", counter);
495                 if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
496                                        addr, len, pwd_seed) < 0)
497                         break;
498                 res = sae_test_pwd_seed_ffc(sae, pwd_seed, pwe);
499                 /* res is -1 for fatal failure, 0 if a valid PWE was not found,
500                  * or 1 if a valid PWE was found. */
501                 if (res < 0)
502                         break;
503                 /* Store the candidate PWE into the second half of pwe_buf and
504                  * the selected PWE in the beginning of pwe_buf using constant
505                  * time selection. */
506                 if (crypto_bignum_to_bin(pwe, pwe_buf + prime_len, prime_len,
507                                          prime_len) < 0)
508                         break;
509                 const_time_select_bin(found, pwe_buf, pwe_buf + prime_len,
510                                       prime_len, pwe_buf);
511                 sel_counter = const_time_select_u8(found, sel_counter, counter);
512                 mask = const_time_eq_u8(res, 1);
513                 found = const_time_select_u8(found, found, mask);
514         }
515
516         if (!found)
517                 goto fail;
518
519         wpa_printf(MSG_DEBUG, "SAE: Use PWE from counter = %02u", sel_counter);
520         sae->tmp->pwe_ffc = crypto_bignum_init_set(pwe_buf, prime_len);
521 fail:
522         crypto_bignum_deinit(pwe, 1);
523         bin_clear_free(pwe_buf, prime_len * 2);
524         return sae->tmp->pwe_ffc ? 0 : -1;
525 }
526
527
528 static int sae_derive_commit_element_ecc(struct sae_data *sae,
529                                          struct crypto_bignum *mask)
530 {
531         /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
532         if (!sae->tmp->own_commit_element_ecc) {
533                 sae->tmp->own_commit_element_ecc =
534                         crypto_ec_point_init(sae->tmp->ec);
535                 if (!sae->tmp->own_commit_element_ecc)
536                         return -1;
537         }
538
539         if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, mask,
540                                 sae->tmp->own_commit_element_ecc) < 0 ||
541             crypto_ec_point_invert(sae->tmp->ec,
542                                    sae->tmp->own_commit_element_ecc) < 0) {
543                 wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
544                 return -1;
545         }
546
547         return 0;
548 }
549
550
551 static int sae_derive_commit_element_ffc(struct sae_data *sae,
552                                          struct crypto_bignum *mask)
553 {
554         /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
555         if (!sae->tmp->own_commit_element_ffc) {
556                 sae->tmp->own_commit_element_ffc = crypto_bignum_init();
557                 if (!sae->tmp->own_commit_element_ffc)
558                         return -1;
559         }
560
561         if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, mask, sae->tmp->prime,
562                                   sae->tmp->own_commit_element_ffc) < 0 ||
563             crypto_bignum_inverse(sae->tmp->own_commit_element_ffc,
564                                   sae->tmp->prime,
565                                   sae->tmp->own_commit_element_ffc) < 0) {
566                 wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
567                 return -1;
568         }
569
570         return 0;
571 }
572
573
574 static int sae_derive_commit(struct sae_data *sae)
575 {
576         struct crypto_bignum *mask;
577         int ret;
578
579         mask = crypto_bignum_init();
580         if (!sae->tmp->sae_rand)
581                 sae->tmp->sae_rand = crypto_bignum_init();
582         if (!sae->tmp->own_commit_scalar)
583                 sae->tmp->own_commit_scalar = crypto_bignum_init();
584         ret = !mask || !sae->tmp->sae_rand || !sae->tmp->own_commit_scalar ||
585                 dragonfly_generate_scalar(sae->tmp->order, sae->tmp->sae_rand,
586                                           mask,
587                                           sae->tmp->own_commit_scalar) < 0 ||
588                 (sae->tmp->ec &&
589                  sae_derive_commit_element_ecc(sae, mask) < 0) ||
590                 (sae->tmp->dh &&
591                  sae_derive_commit_element_ffc(sae, mask) < 0);
592         crypto_bignum_deinit(mask, 1);
593         return ret ? -1 : 0;
594 }
595
596
597 int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
598                        const u8 *password, size_t password_len,
599                        const char *identifier, struct sae_data *sae)
600 {
601         if (sae->tmp == NULL ||
602             (sae->tmp->ec && sae_derive_pwe_ecc(sae, addr1, addr2, password,
603                                                 password_len,
604                                                 identifier) < 0) ||
605             (sae->tmp->dh && sae_derive_pwe_ffc(sae, addr1, addr2, password,
606                                                 password_len,
607                                                 identifier) < 0) ||
608             sae_derive_commit(sae) < 0)
609                 return -1;
610         return 0;
611 }
612
613
614 static int sae_derive_k_ecc(struct sae_data *sae, u8 *k)
615 {
616         struct crypto_ec_point *K;
617         int ret = -1;
618
619         K = crypto_ec_point_init(sae->tmp->ec);
620         if (K == NULL)
621                 goto fail;
622
623         /*
624          * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
625          *                                        PEER-COMMIT-ELEMENT)))
626          * If K is identity element (point-at-infinity), reject
627          * k = F(K) (= x coordinate)
628          */
629
630         if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc,
631                                 sae->peer_commit_scalar, K) < 0 ||
632             crypto_ec_point_add(sae->tmp->ec, K,
633                                 sae->tmp->peer_commit_element_ecc, K) < 0 ||
634             crypto_ec_point_mul(sae->tmp->ec, K, sae->tmp->sae_rand, K) < 0 ||
635             crypto_ec_point_is_at_infinity(sae->tmp->ec, K) ||
636             crypto_ec_point_to_bin(sae->tmp->ec, K, k, NULL) < 0) {
637                 wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
638                 goto fail;
639         }
640
641         wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
642
643         ret = 0;
644 fail:
645         crypto_ec_point_deinit(K, 1);
646         return ret;
647 }
648
649
650 static int sae_derive_k_ffc(struct sae_data *sae, u8 *k)
651 {
652         struct crypto_bignum *K;
653         int ret = -1;
654
655         K = crypto_bignum_init();
656         if (K == NULL)
657                 goto fail;
658
659         /*
660          * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
661          *                                        PEER-COMMIT-ELEMENT)))
662          * If K is identity element (one), reject.
663          * k = F(K) (= x coordinate)
664          */
665
666         if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, sae->peer_commit_scalar,
667                                   sae->tmp->prime, K) < 0 ||
668             crypto_bignum_mulmod(K, sae->tmp->peer_commit_element_ffc,
669                                  sae->tmp->prime, K) < 0 ||
670             crypto_bignum_exptmod(K, sae->tmp->sae_rand, sae->tmp->prime, K) < 0
671             ||
672             crypto_bignum_is_one(K) ||
673             crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->tmp->prime_len) <
674             0) {
675                 wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
676                 goto fail;
677         }
678
679         wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
680
681         ret = 0;
682 fail:
683         crypto_bignum_deinit(K, 1);
684         return ret;
685 }
686
687
688 static int sae_derive_keys(struct sae_data *sae, const u8 *k)
689 {
690         u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN];
691         u8 keyseed[SHA256_MAC_LEN];
692         u8 keys[SAE_KCK_LEN + SAE_PMK_LEN];
693         struct crypto_bignum *tmp;
694         int ret = -1;
695
696         tmp = crypto_bignum_init();
697         if (tmp == NULL)
698                 goto fail;
699
700         /* keyseed = H(<0>32, k)
701          * KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
702          *                      (commit-scalar + peer-commit-scalar) modulo r)
703          * PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
704          */
705
706         os_memset(null_key, 0, sizeof(null_key));
707         hmac_sha256(null_key, sizeof(null_key), k, sae->tmp->prime_len,
708                     keyseed);
709         wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
710
711         crypto_bignum_add(sae->tmp->own_commit_scalar, sae->peer_commit_scalar,
712                           tmp);
713         crypto_bignum_mod(tmp, sae->tmp->order, tmp);
714         /* IEEE Std 802.11-2016 is not exactly clear on the encoding of the bit
715          * string that is needed for KCK, PMK, and PMKID derivation, but it
716          * seems to make most sense to encode the
717          * (commit-scalar + peer-commit-scalar) mod r part as a bit string by
718          * zero padding it from left to the length of the order (in full
719          * octets). */
720         crypto_bignum_to_bin(tmp, val, sizeof(val), sae->tmp->order_len);
721         wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN);
722         if (sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
723                        val, sae->tmp->order_len, keys, sizeof(keys)) < 0)
724                 goto fail;
725         os_memset(keyseed, 0, sizeof(keyseed));
726         os_memcpy(sae->tmp->kck, keys, SAE_KCK_LEN);
727         os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN);
728         os_memcpy(sae->pmkid, val, SAE_PMKID_LEN);
729         os_memset(keys, 0, sizeof(keys));
730         wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->tmp->kck, SAE_KCK_LEN);
731         wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN);
732
733         ret = 0;
734 fail:
735         crypto_bignum_deinit(tmp, 0);
736         return ret;
737 }
738
739
740 int sae_process_commit(struct sae_data *sae)
741 {
742         u8 k[SAE_MAX_PRIME_LEN];
743         if (sae->tmp == NULL ||
744             (sae->tmp->ec && sae_derive_k_ecc(sae, k) < 0) ||
745             (sae->tmp->dh && sae_derive_k_ffc(sae, k) < 0) ||
746             sae_derive_keys(sae, k) < 0)
747                 return -1;
748         return 0;
749 }
750
751
752 void sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
753                       const struct wpabuf *token, const char *identifier)
754 {
755         u8 *pos;
756
757         if (sae->tmp == NULL)
758                 return;
759
760         wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
761         if (token) {
762                 wpabuf_put_buf(buf, token);
763                 wpa_hexdump(MSG_DEBUG, "SAE: Anti-clogging token",
764                             wpabuf_head(token), wpabuf_len(token));
765         }
766         pos = wpabuf_put(buf, sae->tmp->prime_len);
767         crypto_bignum_to_bin(sae->tmp->own_commit_scalar, pos,
768                              sae->tmp->prime_len, sae->tmp->prime_len);
769         wpa_hexdump(MSG_DEBUG, "SAE: own commit-scalar",
770                     pos, sae->tmp->prime_len);
771         if (sae->tmp->ec) {
772                 pos = wpabuf_put(buf, 2 * sae->tmp->prime_len);
773                 crypto_ec_point_to_bin(sae->tmp->ec,
774                                        sae->tmp->own_commit_element_ecc,
775                                        pos, pos + sae->tmp->prime_len);
776                 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(x)",
777                             pos, sae->tmp->prime_len);
778                 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(y)",
779                             pos + sae->tmp->prime_len, sae->tmp->prime_len);
780         } else {
781                 pos = wpabuf_put(buf, sae->tmp->prime_len);
782                 crypto_bignum_to_bin(sae->tmp->own_commit_element_ffc, pos,
783                                      sae->tmp->prime_len, sae->tmp->prime_len);
784                 wpa_hexdump(MSG_DEBUG, "SAE: own commit-element",
785                             pos, sae->tmp->prime_len);
786         }
787
788         if (identifier) {
789                 /* Password Identifier element */
790                 wpabuf_put_u8(buf, WLAN_EID_EXTENSION);
791                 wpabuf_put_u8(buf, 1 + os_strlen(identifier));
792                 wpabuf_put_u8(buf, WLAN_EID_EXT_PASSWORD_IDENTIFIER);
793                 wpabuf_put_str(buf, identifier);
794                 wpa_printf(MSG_DEBUG, "SAE: own Password Identifier: %s",
795                            identifier);
796         }
797 }
798
799
800 u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups, u16 group)
801 {
802         if (allowed_groups) {
803                 int i;
804                 for (i = 0; allowed_groups[i] > 0; i++) {
805                         if (allowed_groups[i] == group)
806                                 break;
807                 }
808                 if (allowed_groups[i] != group) {
809                         wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not "
810                                    "enabled in the current configuration",
811                                    group);
812                         return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
813                 }
814         }
815
816         if (sae->state == SAE_COMMITTED && group != sae->group) {
817                 wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
818                 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
819         }
820
821         if (group != sae->group && sae_set_group(sae, group) < 0) {
822                 wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
823                            group);
824                 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
825         }
826
827         if (sae->tmp == NULL) {
828                 wpa_printf(MSG_DEBUG, "SAE: Group information not yet initialized");
829                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
830         }
831
832         if (sae->tmp->dh && !allowed_groups) {
833                 wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without "
834                            "explicit configuration enabling it", group);
835                 return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
836         }
837
838         return WLAN_STATUS_SUCCESS;
839 }
840
841
842 static int sae_is_password_id_elem(const u8 *pos, const u8 *end)
843 {
844         return end - pos >= 3 &&
845                 pos[0] == WLAN_EID_EXTENSION &&
846                 pos[1] >= 1 &&
847                 end - pos - 2 >= pos[1] &&
848                 pos[2] == WLAN_EID_EXT_PASSWORD_IDENTIFIER;
849 }
850
851
852 static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos,
853                                    const u8 *end, const u8 **token,
854                                    size_t *token_len)
855 {
856         size_t scalar_elem_len, tlen;
857         const u8 *elem;
858
859         if (token)
860                 *token = NULL;
861         if (token_len)
862                 *token_len = 0;
863
864         scalar_elem_len = (sae->tmp->ec ? 3 : 2) * sae->tmp->prime_len;
865         if (scalar_elem_len >= (size_t) (end - *pos))
866                 return; /* No extra data beyond peer scalar and element */
867
868         /* It is a bit difficult to parse this now that there is an
869          * optional variable length Anti-Clogging Token field and
870          * optional variable length Password Identifier element in the
871          * frame. We are sending out fixed length Anti-Clogging Token
872          * fields, so use that length as a requirement for the received
873          * token and check for the presence of possible Password
874          * Identifier element based on the element header information.
875          */
876         tlen = end - (*pos + scalar_elem_len);
877
878         if (tlen < SHA256_MAC_LEN) {
879                 wpa_printf(MSG_DEBUG,
880                            "SAE: Too short optional data (%u octets) to include our Anti-Clogging Token",
881                            (unsigned int) tlen);
882                 return;
883         }
884
885         elem = *pos + scalar_elem_len;
886         if (sae_is_password_id_elem(elem, end)) {
887                  /* Password Identifier element takes out all available
888                   * extra octets, so there can be no Anti-Clogging token in
889                   * this frame. */
890                 return;
891         }
892
893         elem += SHA256_MAC_LEN;
894         if (sae_is_password_id_elem(elem, end)) {
895                  /* Password Identifier element is included in the end, so
896                   * remove its length from the Anti-Clogging token field. */
897                 tlen -= 2 + elem[1];
898         }
899
900         wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen);
901         if (token)
902                 *token = *pos;
903         if (token_len)
904                 *token_len = tlen;
905         *pos += tlen;
906 }
907
908
909 static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos,
910                                    const u8 *end)
911 {
912         struct crypto_bignum *peer_scalar;
913
914         if (sae->tmp->prime_len > end - *pos) {
915                 wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
916                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
917         }
918
919         peer_scalar = crypto_bignum_init_set(*pos, sae->tmp->prime_len);
920         if (peer_scalar == NULL)
921                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
922
923         /*
924          * IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
925          * the peer and it is in Authenticated state, the new Commit Message
926          * shall be dropped if the peer-scalar is identical to the one used in
927          * the existing protocol instance.
928          */
929         if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar &&
930             crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) {
931                 wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
932                            "peer-commit-scalar");
933                 crypto_bignum_deinit(peer_scalar, 0);
934                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
935         }
936
937         /* 1 < scalar < r */
938         if (crypto_bignum_is_zero(peer_scalar) ||
939             crypto_bignum_is_one(peer_scalar) ||
940             crypto_bignum_cmp(peer_scalar, sae->tmp->order) >= 0) {
941                 wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
942                 crypto_bignum_deinit(peer_scalar, 0);
943                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
944         }
945
946
947         crypto_bignum_deinit(sae->peer_commit_scalar, 0);
948         sae->peer_commit_scalar = peer_scalar;
949         wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
950                     *pos, sae->tmp->prime_len);
951         *pos += sae->tmp->prime_len;
952
953         return WLAN_STATUS_SUCCESS;
954 }
955
956
957 static u16 sae_parse_commit_element_ecc(struct sae_data *sae, const u8 **pos,
958                                         const u8 *end)
959 {
960         u8 prime[SAE_MAX_ECC_PRIME_LEN];
961
962         if (2 * sae->tmp->prime_len > end - *pos) {
963                 wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
964                            "commit-element");
965                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
966         }
967
968         if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
969                                  sae->tmp->prime_len) < 0)
970                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
971
972         /* element x and y coordinates < p */
973         if (os_memcmp(*pos, prime, sae->tmp->prime_len) >= 0 ||
974             os_memcmp(*pos + sae->tmp->prime_len, prime,
975                       sae->tmp->prime_len) >= 0) {
976                 wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
977                            "element");
978                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
979         }
980
981         wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
982                     *pos, sae->tmp->prime_len);
983         wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
984                     *pos + sae->tmp->prime_len, sae->tmp->prime_len);
985
986         crypto_ec_point_deinit(sae->tmp->peer_commit_element_ecc, 0);
987         sae->tmp->peer_commit_element_ecc =
988                 crypto_ec_point_from_bin(sae->tmp->ec, *pos);
989         if (sae->tmp->peer_commit_element_ecc == NULL)
990                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
991
992         if (!crypto_ec_point_is_on_curve(sae->tmp->ec,
993                                          sae->tmp->peer_commit_element_ecc)) {
994                 wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
995                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
996         }
997
998         *pos += 2 * sae->tmp->prime_len;
999
1000         return WLAN_STATUS_SUCCESS;
1001 }
1002
1003
1004 static u16 sae_parse_commit_element_ffc(struct sae_data *sae, const u8 **pos,
1005                                         const u8 *end)
1006 {
1007         struct crypto_bignum *res, *one;
1008         const u8 one_bin[1] = { 0x01 };
1009
1010         if (sae->tmp->prime_len > end - *pos) {
1011                 wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
1012                            "commit-element");
1013                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1014         }
1015         wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element", *pos,
1016                     sae->tmp->prime_len);
1017
1018         crypto_bignum_deinit(sae->tmp->peer_commit_element_ffc, 0);
1019         sae->tmp->peer_commit_element_ffc =
1020                 crypto_bignum_init_set(*pos, sae->tmp->prime_len);
1021         if (sae->tmp->peer_commit_element_ffc == NULL)
1022                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1023         /* 1 < element < p - 1 */
1024         res = crypto_bignum_init();
1025         one = crypto_bignum_init_set(one_bin, sizeof(one_bin));
1026         if (!res || !one ||
1027             crypto_bignum_sub(sae->tmp->prime, one, res) ||
1028             crypto_bignum_is_zero(sae->tmp->peer_commit_element_ffc) ||
1029             crypto_bignum_is_one(sae->tmp->peer_commit_element_ffc) ||
1030             crypto_bignum_cmp(sae->tmp->peer_commit_element_ffc, res) >= 0) {
1031                 crypto_bignum_deinit(res, 0);
1032                 crypto_bignum_deinit(one, 0);
1033                 wpa_printf(MSG_DEBUG, "SAE: Invalid peer element");
1034                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1035         }
1036         crypto_bignum_deinit(one, 0);
1037
1038         /* scalar-op(r, ELEMENT) = 1 modulo p */
1039         if (crypto_bignum_exptmod(sae->tmp->peer_commit_element_ffc,
1040                                   sae->tmp->order, sae->tmp->prime, res) < 0 ||
1041             !crypto_bignum_is_one(res)) {
1042                 wpa_printf(MSG_DEBUG, "SAE: Invalid peer element (scalar-op)");
1043                 crypto_bignum_deinit(res, 0);
1044                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1045         }
1046         crypto_bignum_deinit(res, 0);
1047
1048         *pos += sae->tmp->prime_len;
1049
1050         return WLAN_STATUS_SUCCESS;
1051 }
1052
1053
1054 static u16 sae_parse_commit_element(struct sae_data *sae, const u8 **pos,
1055                                     const u8 *end)
1056 {
1057         if (sae->tmp->dh)
1058                 return sae_parse_commit_element_ffc(sae, pos, end);
1059         return sae_parse_commit_element_ecc(sae, pos, end);
1060 }
1061
1062
1063 static int sae_parse_password_identifier(struct sae_data *sae,
1064                                          const u8 *pos, const u8 *end)
1065 {
1066         wpa_hexdump(MSG_DEBUG, "SAE: Possible elements at the end of the frame",
1067                     pos, end - pos);
1068         if (!sae_is_password_id_elem(pos, end)) {
1069                 if (sae->tmp->pw_id) {
1070                         wpa_printf(MSG_DEBUG,
1071                                    "SAE: No Password Identifier included, but expected one (%s)",
1072                                    sae->tmp->pw_id);
1073                         return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER;
1074                 }
1075                 os_free(sae->tmp->pw_id);
1076                 sae->tmp->pw_id = NULL;
1077                 return WLAN_STATUS_SUCCESS; /* No Password Identifier */
1078         }
1079
1080         if (sae->tmp->pw_id &&
1081             (pos[1] - 1 != (int) os_strlen(sae->tmp->pw_id) ||
1082              os_memcmp(sae->tmp->pw_id, pos + 3, pos[1] - 1) != 0)) {
1083                 wpa_printf(MSG_DEBUG,
1084                            "SAE: The included Password Identifier does not match the expected one (%s)",
1085                            sae->tmp->pw_id);
1086                 return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER;
1087         }
1088
1089         os_free(sae->tmp->pw_id);
1090         sae->tmp->pw_id = os_malloc(pos[1]);
1091         if (!sae->tmp->pw_id)
1092                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1093         os_memcpy(sae->tmp->pw_id, pos + 3, pos[1] - 1);
1094         sae->tmp->pw_id[pos[1] - 1] = '\0';
1095         wpa_hexdump_ascii(MSG_DEBUG, "SAE: Received Password Identifier",
1096                           sae->tmp->pw_id, pos[1] -  1);
1097         return WLAN_STATUS_SUCCESS;
1098 }
1099
1100
1101 u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
1102                      const u8 **token, size_t *token_len, int *allowed_groups)
1103 {
1104         const u8 *pos = data, *end = data + len;
1105         u16 res;
1106
1107         /* Check Finite Cyclic Group */
1108         if (end - pos < 2)
1109                 return WLAN_STATUS_UNSPECIFIED_FAILURE;
1110         res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos));
1111         if (res != WLAN_STATUS_SUCCESS)
1112                 return res;
1113         pos += 2;
1114
1115         /* Optional Anti-Clogging Token */
1116         sae_parse_commit_token(sae, &pos, end, token, token_len);
1117
1118         /* commit-scalar */
1119         res = sae_parse_commit_scalar(sae, &pos, end);
1120         if (res != WLAN_STATUS_SUCCESS)
1121                 return res;
1122
1123         /* commit-element */
1124         res = sae_parse_commit_element(sae, &pos, end);
1125         if (res != WLAN_STATUS_SUCCESS)
1126                 return res;
1127
1128         /* Optional Password Identifier element */
1129         res = sae_parse_password_identifier(sae, pos, end);
1130         if (res != WLAN_STATUS_SUCCESS)
1131                 return res;
1132
1133         /*
1134          * Check whether peer-commit-scalar and PEER-COMMIT-ELEMENT are same as
1135          * the values we sent which would be evidence of a reflection attack.
1136          */
1137         if (!sae->tmp->own_commit_scalar ||
1138             crypto_bignum_cmp(sae->tmp->own_commit_scalar,
1139                               sae->peer_commit_scalar) != 0 ||
1140             (sae->tmp->dh &&
1141              (!sae->tmp->own_commit_element_ffc ||
1142               crypto_bignum_cmp(sae->tmp->own_commit_element_ffc,
1143                                 sae->tmp->peer_commit_element_ffc) != 0)) ||
1144             (sae->tmp->ec &&
1145              (!sae->tmp->own_commit_element_ecc ||
1146               crypto_ec_point_cmp(sae->tmp->ec,
1147                                   sae->tmp->own_commit_element_ecc,
1148                                   sae->tmp->peer_commit_element_ecc) != 0)))
1149                 return WLAN_STATUS_SUCCESS; /* scalars/elements are different */
1150
1151         /*
1152          * This is a reflection attack - return special value to trigger caller
1153          * to silently discard the frame instead of replying with a specific
1154          * status code.
1155          */
1156         return SAE_SILENTLY_DISCARD;
1157 }
1158
1159
1160 static void sae_cn_confirm(struct sae_data *sae, const u8 *sc,
1161                            const struct crypto_bignum *scalar1,
1162                            const u8 *element1, size_t element1_len,
1163                            const struct crypto_bignum *scalar2,
1164                            const u8 *element2, size_t element2_len,
1165                            u8 *confirm)
1166 {
1167         const u8 *addr[5];
1168         size_t len[5];
1169         u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN];
1170
1171         /* Confirm
1172          * CN(key, X, Y, Z, ...) =
1173          *    HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
1174          * confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
1175          *              peer-commit-scalar, PEER-COMMIT-ELEMENT)
1176          * verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
1177          *               PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
1178          */
1179         addr[0] = sc;
1180         len[0] = 2;
1181         crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1),
1182                              sae->tmp->prime_len);
1183         addr[1] = scalar_b1;
1184         len[1] = sae->tmp->prime_len;
1185         addr[2] = element1;
1186         len[2] = element1_len;
1187         crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2),
1188                              sae->tmp->prime_len);
1189         addr[3] = scalar_b2;
1190         len[3] = sae->tmp->prime_len;
1191         addr[4] = element2;
1192         len[4] = element2_len;
1193         hmac_sha256_vector(sae->tmp->kck, sizeof(sae->tmp->kck), 5, addr, len,
1194                            confirm);
1195 }
1196
1197
1198 static void sae_cn_confirm_ecc(struct sae_data *sae, const u8 *sc,
1199                                const struct crypto_bignum *scalar1,
1200                                const struct crypto_ec_point *element1,
1201                                const struct crypto_bignum *scalar2,
1202                                const struct crypto_ec_point *element2,
1203                                u8 *confirm)
1204 {
1205         u8 element_b1[2 * SAE_MAX_ECC_PRIME_LEN];
1206         u8 element_b2[2 * SAE_MAX_ECC_PRIME_LEN];
1207
1208         crypto_ec_point_to_bin(sae->tmp->ec, element1, element_b1,
1209                                element_b1 + sae->tmp->prime_len);
1210         crypto_ec_point_to_bin(sae->tmp->ec, element2, element_b2,
1211                                element_b2 + sae->tmp->prime_len);
1212
1213         sae_cn_confirm(sae, sc, scalar1, element_b1, 2 * sae->tmp->prime_len,
1214                        scalar2, element_b2, 2 * sae->tmp->prime_len, confirm);
1215 }
1216
1217
1218 static void sae_cn_confirm_ffc(struct sae_data *sae, const u8 *sc,
1219                                const struct crypto_bignum *scalar1,
1220                                const struct crypto_bignum *element1,
1221                                const struct crypto_bignum *scalar2,
1222                                const struct crypto_bignum *element2,
1223                                u8 *confirm)
1224 {
1225         u8 element_b1[SAE_MAX_PRIME_LEN];
1226         u8 element_b2[SAE_MAX_PRIME_LEN];
1227
1228         crypto_bignum_to_bin(element1, element_b1, sizeof(element_b1),
1229                              sae->tmp->prime_len);
1230         crypto_bignum_to_bin(element2, element_b2, sizeof(element_b2),
1231                              sae->tmp->prime_len);
1232
1233         sae_cn_confirm(sae, sc, scalar1, element_b1, sae->tmp->prime_len,
1234                        scalar2, element_b2, sae->tmp->prime_len, confirm);
1235 }
1236
1237
1238 void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
1239 {
1240         const u8 *sc;
1241
1242         if (sae->tmp == NULL)
1243                 return;
1244
1245         /* Send-Confirm */
1246         sc = wpabuf_put(buf, 0);
1247         wpabuf_put_le16(buf, sae->send_confirm);
1248         if (sae->send_confirm < 0xffff)
1249                 sae->send_confirm++;
1250
1251         if (sae->tmp->ec)
1252                 sae_cn_confirm_ecc(sae, sc, sae->tmp->own_commit_scalar,
1253                                    sae->tmp->own_commit_element_ecc,
1254                                    sae->peer_commit_scalar,
1255                                    sae->tmp->peer_commit_element_ecc,
1256                                    wpabuf_put(buf, SHA256_MAC_LEN));
1257         else
1258                 sae_cn_confirm_ffc(sae, sc, sae->tmp->own_commit_scalar,
1259                                    sae->tmp->own_commit_element_ffc,
1260                                    sae->peer_commit_scalar,
1261                                    sae->tmp->peer_commit_element_ffc,
1262                                    wpabuf_put(buf, SHA256_MAC_LEN));
1263 }
1264
1265
1266 int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
1267 {
1268         u8 verifier[SHA256_MAC_LEN];
1269
1270         if (len < 2 + SHA256_MAC_LEN) {
1271                 wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
1272                 return -1;
1273         }
1274
1275         wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data));
1276
1277         if (!sae->tmp || !sae->peer_commit_scalar ||
1278             !sae->tmp->own_commit_scalar) {
1279                 wpa_printf(MSG_DEBUG, "SAE: Temporary data not yet available");
1280                 return -1;
1281         }
1282
1283         if (sae->tmp->ec) {
1284                 if (!sae->tmp->peer_commit_element_ecc ||
1285                     !sae->tmp->own_commit_element_ecc)
1286                         return -1;
1287                 sae_cn_confirm_ecc(sae, data, sae->peer_commit_scalar,
1288                                    sae->tmp->peer_commit_element_ecc,
1289                                    sae->tmp->own_commit_scalar,
1290                                    sae->tmp->own_commit_element_ecc,
1291                                    verifier);
1292         } else {
1293                 if (!sae->tmp->peer_commit_element_ffc ||
1294                     !sae->tmp->own_commit_element_ffc)
1295                         return -1;
1296                 sae_cn_confirm_ffc(sae, data, sae->peer_commit_scalar,
1297                                    sae->tmp->peer_commit_element_ffc,
1298                                    sae->tmp->own_commit_scalar,
1299                                    sae->tmp->own_commit_element_ffc,
1300                                    verifier);
1301         }
1302
1303         if (os_memcmp_const(verifier, data + 2, SHA256_MAC_LEN) != 0) {
1304                 wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
1305                 wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
1306                             data + 2, SHA256_MAC_LEN);
1307                 wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
1308                             verifier, SHA256_MAC_LEN);
1309                 return -1;
1310         }
1311
1312         return 0;
1313 }
1314
1315
1316 const char * sae_state_txt(enum sae_state state)
1317 {
1318         switch (state) {
1319         case SAE_NOTHING:
1320                 return "Nothing";
1321         case SAE_COMMITTED:
1322                 return "Committed";
1323         case SAE_CONFIRMED:
1324                 return "Confirmed";
1325         case SAE_ACCEPTED:
1326                 return "Accepted";
1327         }
1328         return "?";
1329 }