]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/xz/src/liblzma/lzma/lzma_decoder.c
MFC r311504: MFV r311477: xz 5.2.3.
[FreeBSD/FreeBSD.git] / contrib / xz / src / liblzma / lzma / lzma_decoder.c
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       lzma_decoder.c
4 /// \brief      LZMA decoder
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13
14 #include "lz_decoder.h"
15 #include "lzma_common.h"
16 #include "lzma_decoder.h"
17 #include "range_decoder.h"
18
19
20 #ifdef HAVE_SMALL
21
22 // Macros for (somewhat) size-optimized code.
23 #define seq_4(seq) seq
24
25 #define seq_6(seq) seq
26
27 #define seq_8(seq) seq
28
29 #define seq_len(seq) \
30         seq ## _CHOICE, \
31         seq ## _CHOICE2, \
32         seq ## _BITTREE
33
34 #define len_decode(target, ld, pos_state, seq) \
35 do { \
36 case seq ## _CHOICE: \
37         rc_if_0(ld.choice, seq ## _CHOICE) { \
38                 rc_update_0(ld.choice); \
39                 probs = ld.low[pos_state];\
40                 limit = LEN_LOW_SYMBOLS; \
41                 target = MATCH_LEN_MIN; \
42         } else { \
43                 rc_update_1(ld.choice); \
44 case seq ## _CHOICE2: \
45                 rc_if_0(ld.choice2, seq ## _CHOICE2) { \
46                         rc_update_0(ld.choice2); \
47                         probs = ld.mid[pos_state]; \
48                         limit = LEN_MID_SYMBOLS; \
49                         target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
50                 } else { \
51                         rc_update_1(ld.choice2); \
52                         probs = ld.high; \
53                         limit = LEN_HIGH_SYMBOLS; \
54                         target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS \
55                                         + LEN_MID_SYMBOLS; \
56                 } \
57         } \
58         symbol = 1; \
59 case seq ## _BITTREE: \
60         do { \
61                 rc_bit(probs[symbol], , , seq ## _BITTREE); \
62         } while (symbol < limit); \
63         target += symbol - limit; \
64 } while (0)
65
66 #else // HAVE_SMALL
67
68 // Unrolled versions
69 #define seq_4(seq) \
70         seq ## 0, \
71         seq ## 1, \
72         seq ## 2, \
73         seq ## 3
74
75 #define seq_6(seq) \
76         seq ## 0, \
77         seq ## 1, \
78         seq ## 2, \
79         seq ## 3, \
80         seq ## 4, \
81         seq ## 5
82
83 #define seq_8(seq) \
84         seq ## 0, \
85         seq ## 1, \
86         seq ## 2, \
87         seq ## 3, \
88         seq ## 4, \
89         seq ## 5, \
90         seq ## 6, \
91         seq ## 7
92
93 #define seq_len(seq) \
94         seq ## _CHOICE, \
95         seq ## _LOW0, \
96         seq ## _LOW1, \
97         seq ## _LOW2, \
98         seq ## _CHOICE2, \
99         seq ## _MID0, \
100         seq ## _MID1, \
101         seq ## _MID2, \
102         seq ## _HIGH0, \
103         seq ## _HIGH1, \
104         seq ## _HIGH2, \
105         seq ## _HIGH3, \
106         seq ## _HIGH4, \
107         seq ## _HIGH5, \
108         seq ## _HIGH6, \
109         seq ## _HIGH7
110
111 #define len_decode(target, ld, pos_state, seq) \
112 do { \
113         symbol = 1; \
114 case seq ## _CHOICE: \
115         rc_if_0(ld.choice, seq ## _CHOICE) { \
116                 rc_update_0(ld.choice); \
117                 rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW0); \
118                 rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW1); \
119                 rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW2); \
120                 target = symbol - LEN_LOW_SYMBOLS + MATCH_LEN_MIN; \
121         } else { \
122                 rc_update_1(ld.choice); \
123 case seq ## _CHOICE2: \
124                 rc_if_0(ld.choice2, seq ## _CHOICE2) { \
125                         rc_update_0(ld.choice2); \
126                         rc_bit_case(ld.mid[pos_state][symbol], , , \
127                                         seq ## _MID0); \
128                         rc_bit_case(ld.mid[pos_state][symbol], , , \
129                                         seq ## _MID1); \
130                         rc_bit_case(ld.mid[pos_state][symbol], , , \
131                                         seq ## _MID2); \
132                         target = symbol - LEN_MID_SYMBOLS \
133                                         + MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
134                 } else { \
135                         rc_update_1(ld.choice2); \
136                         rc_bit_case(ld.high[symbol], , , seq ## _HIGH0); \
137                         rc_bit_case(ld.high[symbol], , , seq ## _HIGH1); \
138                         rc_bit_case(ld.high[symbol], , , seq ## _HIGH2); \
139                         rc_bit_case(ld.high[symbol], , , seq ## _HIGH3); \
140                         rc_bit_case(ld.high[symbol], , , seq ## _HIGH4); \
141                         rc_bit_case(ld.high[symbol], , , seq ## _HIGH5); \
142                         rc_bit_case(ld.high[symbol], , , seq ## _HIGH6); \
143                         rc_bit_case(ld.high[symbol], , , seq ## _HIGH7); \
144                         target = symbol - LEN_HIGH_SYMBOLS \
145                                         + MATCH_LEN_MIN \
146                                         + LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; \
147                 } \
148         } \
149 } while (0)
150
151 #endif // HAVE_SMALL
152
153
154 /// Length decoder probabilities; see comments in lzma_common.h.
155 typedef struct {
156         probability choice;
157         probability choice2;
158         probability low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
159         probability mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
160         probability high[LEN_HIGH_SYMBOLS];
161 } lzma_length_decoder;
162
163
164 typedef struct {
165         ///////////////////
166         // Probabilities //
167         ///////////////////
168
169         /// Literals; see comments in lzma_common.h.
170         probability literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
171
172         /// If 1, it's a match. Otherwise it's a single 8-bit literal.
173         probability is_match[STATES][POS_STATES_MAX];
174
175         /// If 1, it's a repeated match. The distance is one of rep0 .. rep3.
176         probability is_rep[STATES];
177
178         /// If 0, distance of a repeated match is rep0.
179         /// Otherwise check is_rep1.
180         probability is_rep0[STATES];
181
182         /// If 0, distance of a repeated match is rep1.
183         /// Otherwise check is_rep2.
184         probability is_rep1[STATES];
185
186         /// If 0, distance of a repeated match is rep2. Otherwise it is rep3.
187         probability is_rep2[STATES];
188
189         /// If 1, the repeated match has length of one byte. Otherwise
190         /// the length is decoded from rep_len_decoder.
191         probability is_rep0_long[STATES][POS_STATES_MAX];
192
193         /// Probability tree for the highest two bits of the match distance.
194         /// There is a separate probability tree for match lengths of
195         /// 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
196         probability dist_slot[DIST_STATES][DIST_SLOTS];
197
198         /// Probability trees for additional bits for match distance when the
199         /// distance is in the range [4, 127].
200         probability pos_special[FULL_DISTANCES - DIST_MODEL_END];
201
202         /// Probability tree for the lowest four bits of a match distance
203         /// that is equal to or greater than 128.
204         probability pos_align[ALIGN_SIZE];
205
206         /// Length of a normal match
207         lzma_length_decoder match_len_decoder;
208
209         /// Length of a repeated match
210         lzma_length_decoder rep_len_decoder;
211
212         ///////////////////
213         // Decoder state //
214         ///////////////////
215
216         // Range coder
217         lzma_range_decoder rc;
218
219         // Types of the most recently seen LZMA symbols
220         lzma_lzma_state state;
221
222         uint32_t rep0;      ///< Distance of the latest match
223         uint32_t rep1;      ///< Distance of second latest match
224         uint32_t rep2;      ///< Distance of third latest match
225         uint32_t rep3;      ///< Distance of fourth latest match
226
227         uint32_t pos_mask; // (1U << pb) - 1
228         uint32_t literal_context_bits;
229         uint32_t literal_pos_mask;
230
231         /// Uncompressed size as bytes, or LZMA_VLI_UNKNOWN if end of
232         /// payload marker is expected.
233         lzma_vli uncompressed_size;
234
235         ////////////////////////////////
236         // State of incomplete symbol //
237         ////////////////////////////////
238
239         /// Position where to continue the decoder loop
240         enum {
241                 SEQ_NORMALIZE,
242                 SEQ_IS_MATCH,
243                 seq_8(SEQ_LITERAL),
244                 seq_8(SEQ_LITERAL_MATCHED),
245                 SEQ_LITERAL_WRITE,
246                 SEQ_IS_REP,
247                 seq_len(SEQ_MATCH_LEN),
248                 seq_6(SEQ_DIST_SLOT),
249                 SEQ_DIST_MODEL,
250                 SEQ_DIRECT,
251                 seq_4(SEQ_ALIGN),
252                 SEQ_EOPM,
253                 SEQ_IS_REP0,
254                 SEQ_SHORTREP,
255                 SEQ_IS_REP0_LONG,
256                 SEQ_IS_REP1,
257                 SEQ_IS_REP2,
258                 seq_len(SEQ_REP_LEN),
259                 SEQ_COPY,
260         } sequence;
261
262         /// Base of the current probability tree
263         probability *probs;
264
265         /// Symbol being decoded. This is also used as an index variable in
266         /// bittree decoders: probs[symbol]
267         uint32_t symbol;
268
269         /// Used as a loop termination condition on bittree decoders and
270         /// direct bits decoder.
271         uint32_t limit;
272
273         /// Matched literal decoder: 0x100 or 0 to help avoiding branches.
274         /// Bittree reverse decoders: Offset of the next bit: 1 << offset
275         uint32_t offset;
276
277         /// If decoding a literal: match byte.
278         /// If decoding a match: length of the match.
279         uint32_t len;
280 } lzma_lzma1_decoder;
281
282
283 static lzma_ret
284 lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
285                 const uint8_t *restrict in,
286                 size_t *restrict in_pos, size_t in_size)
287 {
288         lzma_lzma1_decoder *restrict coder = coder_ptr;
289
290         ////////////////////
291         // Initialization //
292         ////////////////////
293
294         {
295                 const lzma_ret ret = rc_read_init(
296                                 &coder->rc, in, in_pos, in_size);
297                 if (ret != LZMA_STREAM_END)
298                         return ret;
299         }
300
301         ///////////////
302         // Variables //
303         ///////////////
304
305         // Making local copies of often-used variables improves both
306         // speed and readability.
307
308         lzma_dict dict = *dictptr;
309
310         const size_t dict_start = dict.pos;
311
312         // Range decoder
313         rc_to_local(coder->rc, *in_pos);
314
315         // State
316         uint32_t state = coder->state;
317         uint32_t rep0 = coder->rep0;
318         uint32_t rep1 = coder->rep1;
319         uint32_t rep2 = coder->rep2;
320         uint32_t rep3 = coder->rep3;
321
322         const uint32_t pos_mask = coder->pos_mask;
323
324         // These variables are actually needed only if we last time ran
325         // out of input in the middle of the decoder loop.
326         probability *probs = coder->probs;
327         uint32_t symbol = coder->symbol;
328         uint32_t limit = coder->limit;
329         uint32_t offset = coder->offset;
330         uint32_t len = coder->len;
331
332         const uint32_t literal_pos_mask = coder->literal_pos_mask;
333         const uint32_t literal_context_bits = coder->literal_context_bits;
334
335         // Temporary variables
336         uint32_t pos_state = dict.pos & pos_mask;
337
338         lzma_ret ret = LZMA_OK;
339
340         // If uncompressed size is known, there must be no end of payload
341         // marker.
342         const bool no_eopm = coder->uncompressed_size
343                         != LZMA_VLI_UNKNOWN;
344         if (no_eopm && coder->uncompressed_size < dict.limit - dict.pos)
345                 dict.limit = dict.pos + (size_t)(coder->uncompressed_size);
346
347         // The main decoder loop. The "switch" is used to restart the decoder at
348         // correct location. Once restarted, the "switch" is no longer used.
349         switch (coder->sequence)
350         while (true) {
351                 // Calculate new pos_state. This is skipped on the first loop
352                 // since we already calculated it when setting up the local
353                 // variables.
354                 pos_state = dict.pos & pos_mask;
355
356         case SEQ_NORMALIZE:
357         case SEQ_IS_MATCH:
358                 if (unlikely(no_eopm && dict.pos == dict.limit))
359                         break;
360
361                 rc_if_0(coder->is_match[state][pos_state], SEQ_IS_MATCH) {
362                         rc_update_0(coder->is_match[state][pos_state]);
363
364                         // It's a literal i.e. a single 8-bit byte.
365
366                         probs = literal_subcoder(coder->literal,
367                                         literal_context_bits, literal_pos_mask,
368                                         dict.pos, dict_get(&dict, 0));
369                         symbol = 1;
370
371                         if (is_literal_state(state)) {
372                                 // Decode literal without match byte.
373 #ifdef HAVE_SMALL
374         case SEQ_LITERAL:
375                                 do {
376                                         rc_bit(probs[symbol], , , SEQ_LITERAL);
377                                 } while (symbol < (1 << 8));
378 #else
379                                 rc_bit_case(probs[symbol], , , SEQ_LITERAL0);
380                                 rc_bit_case(probs[symbol], , , SEQ_LITERAL1);
381                                 rc_bit_case(probs[symbol], , , SEQ_LITERAL2);
382                                 rc_bit_case(probs[symbol], , , SEQ_LITERAL3);
383                                 rc_bit_case(probs[symbol], , , SEQ_LITERAL4);
384                                 rc_bit_case(probs[symbol], , , SEQ_LITERAL5);
385                                 rc_bit_case(probs[symbol], , , SEQ_LITERAL6);
386                                 rc_bit_case(probs[symbol], , , SEQ_LITERAL7);
387 #endif
388                         } else {
389                                 // Decode literal with match byte.
390                                 //
391                                 // We store the byte we compare against
392                                 // ("match byte") to "len" to minimize the
393                                 // number of variables we need to store
394                                 // between decoder calls.
395                                 len = dict_get(&dict, rep0) << 1;
396
397                                 // The usage of "offset" allows omitting some
398                                 // branches, which should give tiny speed
399                                 // improvement on some CPUs. "offset" gets
400                                 // set to zero if match_bit didn't match.
401                                 offset = 0x100;
402
403 #ifdef HAVE_SMALL
404         case SEQ_LITERAL_MATCHED:
405                                 do {
406                                         const uint32_t match_bit
407                                                         = len & offset;
408                                         const uint32_t subcoder_index
409                                                         = offset + match_bit
410                                                         + symbol;
411
412                                         rc_bit(probs[subcoder_index],
413                                                         offset &= ~match_bit,
414                                                         offset &= match_bit,
415                                                         SEQ_LITERAL_MATCHED);
416
417                                         // It seems to be faster to do this
418                                         // here instead of putting it to the
419                                         // beginning of the loop and then
420                                         // putting the "case" in the middle
421                                         // of the loop.
422                                         len <<= 1;
423
424                                 } while (symbol < (1 << 8));
425 #else
426                                 // Unroll the loop.
427                                 uint32_t match_bit;
428                                 uint32_t subcoder_index;
429
430 #       define d(seq) \
431                 case seq: \
432                         match_bit = len & offset; \
433                         subcoder_index = offset + match_bit + symbol; \
434                         rc_bit(probs[subcoder_index], \
435                                         offset &= ~match_bit, \
436                                         offset &= match_bit, \
437                                         seq)
438
439                                 d(SEQ_LITERAL_MATCHED0);
440                                 len <<= 1;
441                                 d(SEQ_LITERAL_MATCHED1);
442                                 len <<= 1;
443                                 d(SEQ_LITERAL_MATCHED2);
444                                 len <<= 1;
445                                 d(SEQ_LITERAL_MATCHED3);
446                                 len <<= 1;
447                                 d(SEQ_LITERAL_MATCHED4);
448                                 len <<= 1;
449                                 d(SEQ_LITERAL_MATCHED5);
450                                 len <<= 1;
451                                 d(SEQ_LITERAL_MATCHED6);
452                                 len <<= 1;
453                                 d(SEQ_LITERAL_MATCHED7);
454 #       undef d
455 #endif
456                         }
457
458                         //update_literal(state);
459                         // Use a lookup table to update to literal state,
460                         // since compared to other state updates, this would
461                         // need two branches.
462                         static const lzma_lzma_state next_state[] = {
463                                 STATE_LIT_LIT,
464                                 STATE_LIT_LIT,
465                                 STATE_LIT_LIT,
466                                 STATE_LIT_LIT,
467                                 STATE_MATCH_LIT_LIT,
468                                 STATE_REP_LIT_LIT,
469                                 STATE_SHORTREP_LIT_LIT,
470                                 STATE_MATCH_LIT,
471                                 STATE_REP_LIT,
472                                 STATE_SHORTREP_LIT,
473                                 STATE_MATCH_LIT,
474                                 STATE_REP_LIT
475                         };
476                         state = next_state[state];
477
478         case SEQ_LITERAL_WRITE:
479                         if (unlikely(dict_put(&dict, symbol))) {
480                                 coder->sequence = SEQ_LITERAL_WRITE;
481                                 goto out;
482                         }
483
484                         continue;
485                 }
486
487                 // Instead of a new byte we are going to get a byte range
488                 // (distance and length) which will be repeated from our
489                 // output history.
490
491                 rc_update_1(coder->is_match[state][pos_state]);
492
493         case SEQ_IS_REP:
494                 rc_if_0(coder->is_rep[state], SEQ_IS_REP) {
495                         // Not a repeated match
496                         rc_update_0(coder->is_rep[state]);
497                         update_match(state);
498
499                         // The latest three match distances are kept in
500                         // memory in case there are repeated matches.
501                         rep3 = rep2;
502                         rep2 = rep1;
503                         rep1 = rep0;
504
505                         // Decode the length of the match.
506                         len_decode(len, coder->match_len_decoder,
507                                         pos_state, SEQ_MATCH_LEN);
508
509                         // Prepare to decode the highest two bits of the
510                         // match distance.
511                         probs = coder->dist_slot[get_dist_state(len)];
512                         symbol = 1;
513
514 #ifdef HAVE_SMALL
515         case SEQ_DIST_SLOT:
516                         do {
517                                 rc_bit(probs[symbol], , , SEQ_DIST_SLOT);
518                         } while (symbol < DIST_SLOTS);
519 #else
520                         rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT0);
521                         rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT1);
522                         rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT2);
523                         rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT3);
524                         rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT4);
525                         rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT5);
526 #endif
527                         // Get rid of the highest bit that was needed for
528                         // indexing of the probability array.
529                         symbol -= DIST_SLOTS;
530                         assert(symbol <= 63);
531
532                         if (symbol < DIST_MODEL_START) {
533                                 // Match distances [0, 3] have only two bits.
534                                 rep0 = symbol;
535                         } else {
536                                 // Decode the lowest [1, 29] bits of
537                                 // the match distance.
538                                 limit = (symbol >> 1) - 1;
539                                 assert(limit >= 1 && limit <= 30);
540                                 rep0 = 2 + (symbol & 1);
541
542                                 if (symbol < DIST_MODEL_END) {
543                                         // Prepare to decode the low bits for
544                                         // a distance of [4, 127].
545                                         assert(limit <= 5);
546                                         rep0 <<= limit;
547                                         assert(rep0 <= 96);
548                                         // -1 is fine, because we start
549                                         // decoding at probs[1], not probs[0].
550                                         // NOTE: This violates the C standard,
551                                         // since we are doing pointer
552                                         // arithmetic past the beginning of
553                                         // the array.
554                                         assert((int32_t)(rep0 - symbol - 1)
555                                                         >= -1);
556                                         assert((int32_t)(rep0 - symbol - 1)
557                                                         <= 82);
558                                         probs = coder->pos_special + rep0
559                                                         - symbol - 1;
560                                         symbol = 1;
561                                         offset = 0;
562         case SEQ_DIST_MODEL:
563 #ifdef HAVE_SMALL
564                                         do {
565                                                 rc_bit(probs[symbol], ,
566                                                         rep0 += 1 << offset,
567                                                         SEQ_DIST_MODEL);
568                                         } while (++offset < limit);
569 #else
570                                         switch (limit) {
571                                         case 5:
572                                                 assert(offset == 0);
573                                                 rc_bit(probs[symbol], ,
574                                                         rep0 += 1,
575                                                         SEQ_DIST_MODEL);
576                                                 ++offset;
577                                                 --limit;
578                                         case 4:
579                                                 rc_bit(probs[symbol], ,
580                                                         rep0 += 1 << offset,
581                                                         SEQ_DIST_MODEL);
582                                                 ++offset;
583                                                 --limit;
584                                         case 3:
585                                                 rc_bit(probs[symbol], ,
586                                                         rep0 += 1 << offset,
587                                                         SEQ_DIST_MODEL);
588                                                 ++offset;
589                                                 --limit;
590                                         case 2:
591                                                 rc_bit(probs[symbol], ,
592                                                         rep0 += 1 << offset,
593                                                         SEQ_DIST_MODEL);
594                                                 ++offset;
595                                                 --limit;
596                                         case 1:
597                                                 // We need "symbol" only for
598                                                 // indexing the probability
599                                                 // array, thus we can use
600                                                 // rc_bit_last() here to omit
601                                                 // the unneeded updating of
602                                                 // "symbol".
603                                                 rc_bit_last(probs[symbol], ,
604                                                         rep0 += 1 << offset,
605                                                         SEQ_DIST_MODEL);
606                                         }
607 #endif
608                                 } else {
609                                         // The distance is >= 128. Decode the
610                                         // lower bits without probabilities
611                                         // except the lowest four bits.
612                                         assert(symbol >= 14);
613                                         assert(limit >= 6);
614                                         limit -= ALIGN_BITS;
615                                         assert(limit >= 2);
616         case SEQ_DIRECT:
617                                         // Not worth manual unrolling
618                                         do {
619                                                 rc_direct(rep0, SEQ_DIRECT);
620                                         } while (--limit > 0);
621
622                                         // Decode the lowest four bits using
623                                         // probabilities.
624                                         rep0 <<= ALIGN_BITS;
625                                         symbol = 1;
626 #ifdef HAVE_SMALL
627                                         offset = 0;
628         case SEQ_ALIGN:
629                                         do {
630                                                 rc_bit(coder->pos_align[
631                                                                 symbol], ,
632                                                         rep0 += 1 << offset,
633                                                         SEQ_ALIGN);
634                                         } while (++offset < ALIGN_BITS);
635 #else
636         case SEQ_ALIGN0:
637                                         rc_bit(coder->pos_align[symbol], ,
638                                                         rep0 += 1, SEQ_ALIGN0);
639         case SEQ_ALIGN1:
640                                         rc_bit(coder->pos_align[symbol], ,
641                                                         rep0 += 2, SEQ_ALIGN1);
642         case SEQ_ALIGN2:
643                                         rc_bit(coder->pos_align[symbol], ,
644                                                         rep0 += 4, SEQ_ALIGN2);
645         case SEQ_ALIGN3:
646                                         // Like in SEQ_DIST_MODEL, we don't
647                                         // need "symbol" for anything else
648                                         // than indexing the probability array.
649                                         rc_bit_last(coder->pos_align[symbol], ,
650                                                         rep0 += 8, SEQ_ALIGN3);
651 #endif
652
653                                         if (rep0 == UINT32_MAX) {
654                                                 // End of payload marker was
655                                                 // found. It must not be
656                                                 // present if uncompressed
657                                                 // size is known.
658                                                 if (coder->uncompressed_size
659                                                 != LZMA_VLI_UNKNOWN) {
660                                                         ret = LZMA_DATA_ERROR;
661                                                         goto out;
662                                                 }
663
664         case SEQ_EOPM:
665                                                 // LZMA1 stream with
666                                                 // end-of-payload marker.
667                                                 rc_normalize(SEQ_EOPM);
668                                                 ret = LZMA_STREAM_END;
669                                                 goto out;
670                                         }
671                                 }
672                         }
673
674                         // Validate the distance we just decoded.
675                         if (unlikely(!dict_is_distance_valid(&dict, rep0))) {
676                                 ret = LZMA_DATA_ERROR;
677                                 goto out;
678                         }
679
680                 } else {
681                         rc_update_1(coder->is_rep[state]);
682
683                         // Repeated match
684                         //
685                         // The match distance is a value that we have had
686                         // earlier. The latest four match distances are
687                         // available as rep0, rep1, rep2 and rep3. We will
688                         // now decode which of them is the new distance.
689                         //
690                         // There cannot be a match if we haven't produced
691                         // any output, so check that first.
692                         if (unlikely(!dict_is_distance_valid(&dict, 0))) {
693                                 ret = LZMA_DATA_ERROR;
694                                 goto out;
695                         }
696
697         case SEQ_IS_REP0:
698                         rc_if_0(coder->is_rep0[state], SEQ_IS_REP0) {
699                                 rc_update_0(coder->is_rep0[state]);
700                                 // The distance is rep0.
701
702         case SEQ_IS_REP0_LONG:
703                                 rc_if_0(coder->is_rep0_long[state][pos_state],
704                                                 SEQ_IS_REP0_LONG) {
705                                         rc_update_0(coder->is_rep0_long[
706                                                         state][pos_state]);
707
708                                         update_short_rep(state);
709
710         case SEQ_SHORTREP:
711                                         if (unlikely(dict_put(&dict, dict_get(
712                                                         &dict, rep0)))) {
713                                                 coder->sequence = SEQ_SHORTREP;
714                                                 goto out;
715                                         }
716
717                                         continue;
718                                 }
719
720                                 // Repeating more than one byte at
721                                 // distance of rep0.
722                                 rc_update_1(coder->is_rep0_long[
723                                                 state][pos_state]);
724
725                         } else {
726                                 rc_update_1(coder->is_rep0[state]);
727
728         case SEQ_IS_REP1:
729                                 // The distance is rep1, rep2 or rep3. Once
730                                 // we find out which one of these three, it
731                                 // is stored to rep0 and rep1, rep2 and rep3
732                                 // are updated accordingly.
733                                 rc_if_0(coder->is_rep1[state], SEQ_IS_REP1) {
734                                         rc_update_0(coder->is_rep1[state]);
735
736                                         const uint32_t distance = rep1;
737                                         rep1 = rep0;
738                                         rep0 = distance;
739
740                                 } else {
741                                         rc_update_1(coder->is_rep1[state]);
742         case SEQ_IS_REP2:
743                                         rc_if_0(coder->is_rep2[state],
744                                                         SEQ_IS_REP2) {
745                                                 rc_update_0(coder->is_rep2[
746                                                                 state]);
747
748                                                 const uint32_t distance = rep2;
749                                                 rep2 = rep1;
750                                                 rep1 = rep0;
751                                                 rep0 = distance;
752
753                                         } else {
754                                                 rc_update_1(coder->is_rep2[
755                                                                 state]);
756
757                                                 const uint32_t distance = rep3;
758                                                 rep3 = rep2;
759                                                 rep2 = rep1;
760                                                 rep1 = rep0;
761                                                 rep0 = distance;
762                                         }
763                                 }
764                         }
765
766                         update_long_rep(state);
767
768                         // Decode the length of the repeated match.
769                         len_decode(len, coder->rep_len_decoder,
770                                         pos_state, SEQ_REP_LEN);
771                 }
772
773                 /////////////////////////////////
774                 // Repeat from history buffer. //
775                 /////////////////////////////////
776
777                 // The length is always between these limits. There is no way
778                 // to trigger the algorithm to set len outside this range.
779                 assert(len >= MATCH_LEN_MIN);
780                 assert(len <= MATCH_LEN_MAX);
781
782         case SEQ_COPY:
783                 // Repeat len bytes from distance of rep0.
784                 if (unlikely(dict_repeat(&dict, rep0, &len))) {
785                         coder->sequence = SEQ_COPY;
786                         goto out;
787                 }
788         }
789
790         rc_normalize(SEQ_NORMALIZE);
791         coder->sequence = SEQ_IS_MATCH;
792
793 out:
794         // Save state
795
796         // NOTE: Must not copy dict.limit.
797         dictptr->pos = dict.pos;
798         dictptr->full = dict.full;
799
800         rc_from_local(coder->rc, *in_pos);
801
802         coder->state = state;
803         coder->rep0 = rep0;
804         coder->rep1 = rep1;
805         coder->rep2 = rep2;
806         coder->rep3 = rep3;
807
808         coder->probs = probs;
809         coder->symbol = symbol;
810         coder->limit = limit;
811         coder->offset = offset;
812         coder->len = len;
813
814         // Update the remaining amount of uncompressed data if uncompressed
815         // size was known.
816         if (coder->uncompressed_size != LZMA_VLI_UNKNOWN) {
817                 coder->uncompressed_size -= dict.pos - dict_start;
818
819                 // Since there cannot be end of payload marker if the
820                 // uncompressed size was known, we check here if we
821                 // finished decoding.
822                 if (coder->uncompressed_size == 0 && ret == LZMA_OK
823                                 && coder->sequence != SEQ_NORMALIZE)
824                         ret = coder->sequence == SEQ_IS_MATCH
825                                         ? LZMA_STREAM_END : LZMA_DATA_ERROR;
826         }
827
828         // We can do an additional check in the range decoder to catch some
829         // corrupted files.
830         if (ret == LZMA_STREAM_END) {
831                 if (!rc_is_finished(coder->rc))
832                         ret = LZMA_DATA_ERROR;
833
834                 // Reset the range decoder so that it is ready to reinitialize
835                 // for a new LZMA2 chunk.
836                 rc_reset(coder->rc);
837         }
838
839         return ret;
840 }
841
842
843
844 static void
845 lzma_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size)
846 {
847         lzma_lzma1_decoder *coder = coder_ptr;
848         coder->uncompressed_size = uncompressed_size;
849 }
850
851
852 static void
853 lzma_decoder_reset(void *coder_ptr, const void *opt)
854 {
855         lzma_lzma1_decoder *coder = coder_ptr;
856         const lzma_options_lzma *options = opt;
857
858         // NOTE: We assume that lc/lp/pb are valid since they were
859         // successfully decoded with lzma_lzma_decode_properties().
860
861         // Calculate pos_mask. We don't need pos_bits as is for anything.
862         coder->pos_mask = (1U << options->pb) - 1;
863
864         // Initialize the literal decoder.
865         literal_init(coder->literal, options->lc, options->lp);
866
867         coder->literal_context_bits = options->lc;
868         coder->literal_pos_mask = (1U << options->lp) - 1;
869
870         // State
871         coder->state = STATE_LIT_LIT;
872         coder->rep0 = 0;
873         coder->rep1 = 0;
874         coder->rep2 = 0;
875         coder->rep3 = 0;
876         coder->pos_mask = (1U << options->pb) - 1;
877
878         // Range decoder
879         rc_reset(coder->rc);
880
881         // Bit and bittree decoders
882         for (uint32_t i = 0; i < STATES; ++i) {
883                 for (uint32_t j = 0; j <= coder->pos_mask; ++j) {
884                         bit_reset(coder->is_match[i][j]);
885                         bit_reset(coder->is_rep0_long[i][j]);
886                 }
887
888                 bit_reset(coder->is_rep[i]);
889                 bit_reset(coder->is_rep0[i]);
890                 bit_reset(coder->is_rep1[i]);
891                 bit_reset(coder->is_rep2[i]);
892         }
893
894         for (uint32_t i = 0; i < DIST_STATES; ++i)
895                 bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
896
897         for (uint32_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
898                 bit_reset(coder->pos_special[i]);
899
900         bittree_reset(coder->pos_align, ALIGN_BITS);
901
902         // Len decoders (also bit/bittree)
903         const uint32_t num_pos_states = 1U << options->pb;
904         bit_reset(coder->match_len_decoder.choice);
905         bit_reset(coder->match_len_decoder.choice2);
906         bit_reset(coder->rep_len_decoder.choice);
907         bit_reset(coder->rep_len_decoder.choice2);
908
909         for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
910                 bittree_reset(coder->match_len_decoder.low[pos_state],
911                                 LEN_LOW_BITS);
912                 bittree_reset(coder->match_len_decoder.mid[pos_state],
913                                 LEN_MID_BITS);
914
915                 bittree_reset(coder->rep_len_decoder.low[pos_state],
916                                 LEN_LOW_BITS);
917                 bittree_reset(coder->rep_len_decoder.mid[pos_state],
918                                 LEN_MID_BITS);
919         }
920
921         bittree_reset(coder->match_len_decoder.high, LEN_HIGH_BITS);
922         bittree_reset(coder->rep_len_decoder.high, LEN_HIGH_BITS);
923
924         coder->sequence = SEQ_IS_MATCH;
925         coder->probs = NULL;
926         coder->symbol = 0;
927         coder->limit = 0;
928         coder->offset = 0;
929         coder->len = 0;
930
931         return;
932 }
933
934
935 extern lzma_ret
936 lzma_lzma_decoder_create(lzma_lz_decoder *lz, const lzma_allocator *allocator,
937                 const void *opt, lzma_lz_options *lz_options)
938 {
939         if (lz->coder == NULL) {
940                 lz->coder = lzma_alloc(sizeof(lzma_lzma1_decoder), allocator);
941                 if (lz->coder == NULL)
942                         return LZMA_MEM_ERROR;
943
944                 lz->code = &lzma_decode;
945                 lz->reset = &lzma_decoder_reset;
946                 lz->set_uncompressed = &lzma_decoder_uncompressed;
947         }
948
949         // All dictionary sizes are OK here. LZ decoder will take care of
950         // the special cases.
951         const lzma_options_lzma *options = opt;
952         lz_options->dict_size = options->dict_size;
953         lz_options->preset_dict = options->preset_dict;
954         lz_options->preset_dict_size = options->preset_dict_size;
955
956         return LZMA_OK;
957 }
958
959
960 /// Allocate and initialize LZMA decoder. This is used only via LZ
961 /// initialization (lzma_lzma_decoder_init() passes function pointer to
962 /// the LZ initialization).
963 static lzma_ret
964 lzma_decoder_init(lzma_lz_decoder *lz, const lzma_allocator *allocator,
965                 const void *options, lzma_lz_options *lz_options)
966 {
967         if (!is_lclppb_valid(options))
968                 return LZMA_PROG_ERROR;
969
970         return_if_error(lzma_lzma_decoder_create(
971                         lz, allocator, options, lz_options));
972
973         lzma_decoder_reset(lz->coder, options);
974         lzma_decoder_uncompressed(lz->coder, LZMA_VLI_UNKNOWN);
975
976         return LZMA_OK;
977 }
978
979
980 extern lzma_ret
981 lzma_lzma_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
982                 const lzma_filter_info *filters)
983 {
984         // LZMA can only be the last filter in the chain. This is enforced
985         // by the raw_decoder initialization.
986         assert(filters[1].init == NULL);
987
988         return lzma_lz_decoder_init(next, allocator, filters,
989                         &lzma_decoder_init);
990 }
991
992
993 extern bool
994 lzma_lzma_lclppb_decode(lzma_options_lzma *options, uint8_t byte)
995 {
996         if (byte > (4 * 5 + 4) * 9 + 8)
997                 return true;
998
999         // See the file format specification to understand this.
1000         options->pb = byte / (9 * 5);
1001         byte -= options->pb * 9 * 5;
1002         options->lp = byte / 9;
1003         options->lc = byte - options->lp * 9;
1004
1005         return options->lc + options->lp > LZMA_LCLP_MAX;
1006 }
1007
1008
1009 extern uint64_t
1010 lzma_lzma_decoder_memusage_nocheck(const void *options)
1011 {
1012         const lzma_options_lzma *const opt = options;
1013         return sizeof(lzma_lzma1_decoder)
1014                         + lzma_lz_decoder_memusage(opt->dict_size);
1015 }
1016
1017
1018 extern uint64_t
1019 lzma_lzma_decoder_memusage(const void *options)
1020 {
1021         if (!is_lclppb_valid(options))
1022                 return UINT64_MAX;
1023
1024         return lzma_lzma_decoder_memusage_nocheck(options);
1025 }
1026
1027
1028 extern lzma_ret
1029 lzma_lzma_props_decode(void **options, const lzma_allocator *allocator,
1030                 const uint8_t *props, size_t props_size)
1031 {
1032         if (props_size != 5)
1033                 return LZMA_OPTIONS_ERROR;
1034
1035         lzma_options_lzma *opt
1036                         = lzma_alloc(sizeof(lzma_options_lzma), allocator);
1037         if (opt == NULL)
1038                 return LZMA_MEM_ERROR;
1039
1040         if (lzma_lzma_lclppb_decode(opt, props[0]))
1041                 goto error;
1042
1043         // All dictionary sizes are accepted, including zero. LZ decoder
1044         // will automatically use a dictionary at least a few KiB even if
1045         // a smaller dictionary is requested.
1046         opt->dict_size = unaligned_read32le(props + 1);
1047
1048         opt->preset_dict = NULL;
1049         opt->preset_dict_size = 0;
1050
1051         *options = opt;
1052
1053         return LZMA_OK;
1054
1055 error:
1056         lzma_free(opt, allocator);
1057         return LZMA_OPTIONS_ERROR;
1058 }