]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/zstd/lib/common/xxhash.c
Import zstandard 1.3.1
[FreeBSD/FreeBSD.git] / contrib / zstd / lib / common / xxhash.c
1 /*
2 *  xxHash - Fast Hash algorithm
3 *  Copyright (C) 2012-2016, Yann Collet
4 *
5 *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6 *
7 *  Redistribution and use in source and binary forms, with or without
8 *  modification, are permitted provided that the following conditions are
9 *  met:
10 *
11 *  * Redistributions of source code must retain the above copyright
12 *  notice, this list of conditions and the following disclaimer.
13 *  * Redistributions in binary form must reproduce the above
14 *  copyright notice, this list of conditions and the following disclaimer
15 *  in the documentation and/or other materials provided with the
16 *  distribution.
17 *
18 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 *  You can contact the author at :
31 *  - xxHash homepage: http://www.xxhash.com
32 *  - xxHash source repository : https://github.com/Cyan4973/xxHash
33 */
34
35
36 /* *************************************
37 *  Tuning parameters
38 ***************************************/
39 /*!XXH_FORCE_MEMORY_ACCESS :
40  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42  * The below switch allow to select different access method for improved performance.
43  * Method 0 (default) : use `memcpy()`. Safe and portable.
44  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47  *            It can generate buggy code on targets which do not support unaligned memory accesses.
48  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49  * See http://stackoverflow.com/a/32095106/646947 for details.
50  * Prefer these methods in priority order (0 > 1 > 2)
51  */
52 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
53 #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
54 #    define XXH_FORCE_MEMORY_ACCESS 2
55 #  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
56   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
57 #    define XXH_FORCE_MEMORY_ACCESS 1
58 #  endif
59 #endif
60
61 /*!XXH_ACCEPT_NULL_INPUT_POINTER :
62  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
63  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
64  * By default, this option is disabled. To enable it, uncomment below define :
65  */
66 /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
67
68 /*!XXH_FORCE_NATIVE_FORMAT :
69  * By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
70  * Results are therefore identical for little-endian and big-endian CPU.
71  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
72  * Should endian-independance be of no importance for your application, you may set the #define below to 1,
73  * to improve speed for Big-endian CPU.
74  * This option has no impact on Little_Endian CPU.
75  */
76 #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
77 #  define XXH_FORCE_NATIVE_FORMAT 0
78 #endif
79
80 /*!XXH_FORCE_ALIGN_CHECK :
81  * This is a minor performance trick, only useful with lots of very small keys.
82  * It means : check for aligned/unaligned input.
83  * The check costs one initial branch per hash; set to 0 when the input data
84  * is guaranteed to be aligned.
85  */
86 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
87 #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
88 #    define XXH_FORCE_ALIGN_CHECK 0
89 #  else
90 #    define XXH_FORCE_ALIGN_CHECK 1
91 #  endif
92 #endif
93
94
95 /* *************************************
96 *  Includes & Memory related functions
97 ***************************************/
98 /* Modify the local functions below should you wish to use some other memory routines */
99 /* for malloc(), free() */
100 #include <stdlib.h>
101 static void* XXH_malloc(size_t s) { return malloc(s); }
102 static void  XXH_free  (void* p)  { free(p); }
103 /* for memcpy() */
104 #include <string.h>
105 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
106
107 #ifndef XXH_STATIC_LINKING_ONLY
108 #  define XXH_STATIC_LINKING_ONLY
109 #endif
110 #include "xxhash.h"
111
112
113 /* *************************************
114 *  Compiler Specific Options
115 ***************************************/
116 #if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
117 #  define INLINE_KEYWORD inline
118 #else
119 #  define INLINE_KEYWORD
120 #endif
121
122 #if defined(__GNUC__)
123 #  define FORCE_INLINE_ATTR __attribute__((always_inline))
124 #elif defined(_MSC_VER)
125 #  define FORCE_INLINE_ATTR __forceinline
126 #else
127 #  define FORCE_INLINE_ATTR
128 #endif
129
130 #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
131
132
133 #ifdef _MSC_VER
134 #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
135 #endif
136
137
138 /* *************************************
139 *  Basic Types
140 ***************************************/
141 #ifndef MEM_MODULE
142 # define MEM_MODULE
143 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
144 #   include <stdint.h>
145     typedef uint8_t  BYTE;
146     typedef uint16_t U16;
147     typedef uint32_t U32;
148     typedef  int32_t S32;
149     typedef uint64_t U64;
150 #  else
151     typedef unsigned char      BYTE;
152     typedef unsigned short     U16;
153     typedef unsigned int       U32;
154     typedef   signed int       S32;
155     typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
156 #  endif
157 #endif
158
159
160 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
161
162 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
163 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
164 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
165
166 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
167
168 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
169 /* currently only defined for gcc and icc */
170 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
171
172 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
173 static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
174
175 #else
176
177 /* portable and safe solution. Generally efficient.
178  * see : http://stackoverflow.com/a/32095106/646947
179  */
180
181 static U32 XXH_read32(const void* memPtr)
182 {
183     U32 val;
184     memcpy(&val, memPtr, sizeof(val));
185     return val;
186 }
187
188 static U64 XXH_read64(const void* memPtr)
189 {
190     U64 val;
191     memcpy(&val, memPtr, sizeof(val));
192     return val;
193 }
194
195 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
196
197
198 /* ****************************************
199 *  Compiler-specific Functions and Macros
200 ******************************************/
201 #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
202
203 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
204 #if defined(_MSC_VER)
205 #  define XXH_rotl32(x,r) _rotl(x,r)
206 #  define XXH_rotl64(x,r) _rotl64(x,r)
207 #else
208 #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
209 #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
210 #endif
211
212 #if defined(_MSC_VER)     /* Visual Studio */
213 #  define XXH_swap32 _byteswap_ulong
214 #  define XXH_swap64 _byteswap_uint64
215 #elif (GCC_VERSION >= 403 && !defined(__riscv))
216 #  define XXH_swap32 __builtin_bswap32
217 #  define XXH_swap64 __builtin_bswap64
218 #else
219 static U32 XXH_swap32 (U32 x)
220 {
221     return  ((x << 24) & 0xff000000 ) |
222             ((x <<  8) & 0x00ff0000 ) |
223             ((x >>  8) & 0x0000ff00 ) |
224             ((x >> 24) & 0x000000ff );
225 }
226 static U64 XXH_swap64 (U64 x)
227 {
228     return  ((x << 56) & 0xff00000000000000ULL) |
229             ((x << 40) & 0x00ff000000000000ULL) |
230             ((x << 24) & 0x0000ff0000000000ULL) |
231             ((x << 8)  & 0x000000ff00000000ULL) |
232             ((x >> 8)  & 0x00000000ff000000ULL) |
233             ((x >> 24) & 0x0000000000ff0000ULL) |
234             ((x >> 40) & 0x000000000000ff00ULL) |
235             ((x >> 56) & 0x00000000000000ffULL);
236 }
237 #endif
238
239
240 /* *************************************
241 *  Architecture Macros
242 ***************************************/
243 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
244
245 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
246 #ifndef XXH_CPU_LITTLE_ENDIAN
247     static const int g_one = 1;
248 #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
249 #endif
250
251
252 /* ***************************
253 *  Memory reads
254 *****************************/
255 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
256
257 FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
258 {
259     if (align==XXH_unaligned)
260         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
261     else
262         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
263 }
264
265 FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
266 {
267     return XXH_readLE32_align(ptr, endian, XXH_unaligned);
268 }
269
270 static U32 XXH_readBE32(const void* ptr)
271 {
272     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
273 }
274
275 FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
276 {
277     if (align==XXH_unaligned)
278         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
279     else
280         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
281 }
282
283 FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
284 {
285     return XXH_readLE64_align(ptr, endian, XXH_unaligned);
286 }
287
288 static U64 XXH_readBE64(const void* ptr)
289 {
290     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
291 }
292
293
294 /* *************************************
295 *  Macros
296 ***************************************/
297 #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
298
299
300 /* *************************************
301 *  Constants
302 ***************************************/
303 static const U32 PRIME32_1 = 2654435761U;
304 static const U32 PRIME32_2 = 2246822519U;
305 static const U32 PRIME32_3 = 3266489917U;
306 static const U32 PRIME32_4 =  668265263U;
307 static const U32 PRIME32_5 =  374761393U;
308
309 static const U64 PRIME64_1 = 11400714785074694791ULL;
310 static const U64 PRIME64_2 = 14029467366897019727ULL;
311 static const U64 PRIME64_3 =  1609587929392839161ULL;
312 static const U64 PRIME64_4 =  9650029242287828579ULL;
313 static const U64 PRIME64_5 =  2870177450012600261ULL;
314
315 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
316
317
318 /* **************************
319 *  Utils
320 ****************************/
321 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
322 {
323     memcpy(dstState, srcState, sizeof(*dstState));
324 }
325
326 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
327 {
328     memcpy(dstState, srcState, sizeof(*dstState));
329 }
330
331
332 /* ***************************
333 *  Simple Hash Functions
334 *****************************/
335
336 static U32 XXH32_round(U32 seed, U32 input)
337 {
338     seed += input * PRIME32_2;
339     seed  = XXH_rotl32(seed, 13);
340     seed *= PRIME32_1;
341     return seed;
342 }
343
344 FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
345 {
346     const BYTE* p = (const BYTE*)input;
347     const BYTE* bEnd = p + len;
348     U32 h32;
349 #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
350
351 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
352     if (p==NULL) {
353         len=0;
354         bEnd=p=(const BYTE*)(size_t)16;
355     }
356 #endif
357
358     if (len>=16) {
359         const BYTE* const limit = bEnd - 16;
360         U32 v1 = seed + PRIME32_1 + PRIME32_2;
361         U32 v2 = seed + PRIME32_2;
362         U32 v3 = seed + 0;
363         U32 v4 = seed - PRIME32_1;
364
365         do {
366             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
367             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
368             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
369             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
370         } while (p<=limit);
371
372         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
373     } else {
374         h32  = seed + PRIME32_5;
375     }
376
377     h32 += (U32) len;
378
379     while (p+4<=bEnd) {
380         h32 += XXH_get32bits(p) * PRIME32_3;
381         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
382         p+=4;
383     }
384
385     while (p<bEnd) {
386         h32 += (*p) * PRIME32_5;
387         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
388         p++;
389     }
390
391     h32 ^= h32 >> 15;
392     h32 *= PRIME32_2;
393     h32 ^= h32 >> 13;
394     h32 *= PRIME32_3;
395     h32 ^= h32 >> 16;
396
397     return h32;
398 }
399
400
401 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
402 {
403 #if 0
404     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
405     XXH32_CREATESTATE_STATIC(state);
406     XXH32_reset(state, seed);
407     XXH32_update(state, input, len);
408     return XXH32_digest(state);
409 #else
410     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
411
412     if (XXH_FORCE_ALIGN_CHECK) {
413         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
414             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
415                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
416             else
417                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
418     }   }
419
420     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
421         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
422     else
423         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
424 #endif
425 }
426
427
428 static U64 XXH64_round(U64 acc, U64 input)
429 {
430     acc += input * PRIME64_2;
431     acc  = XXH_rotl64(acc, 31);
432     acc *= PRIME64_1;
433     return acc;
434 }
435
436 static U64 XXH64_mergeRound(U64 acc, U64 val)
437 {
438     val  = XXH64_round(0, val);
439     acc ^= val;
440     acc  = acc * PRIME64_1 + PRIME64_4;
441     return acc;
442 }
443
444 FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
445 {
446     const BYTE* p = (const BYTE*)input;
447     const BYTE* const bEnd = p + len;
448     U64 h64;
449 #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
450
451 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
452     if (p==NULL) {
453         len=0;
454         bEnd=p=(const BYTE*)(size_t)32;
455     }
456 #endif
457
458     if (len>=32) {
459         const BYTE* const limit = bEnd - 32;
460         U64 v1 = seed + PRIME64_1 + PRIME64_2;
461         U64 v2 = seed + PRIME64_2;
462         U64 v3 = seed + 0;
463         U64 v4 = seed - PRIME64_1;
464
465         do {
466             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
467             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
468             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
469             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
470         } while (p<=limit);
471
472         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
473         h64 = XXH64_mergeRound(h64, v1);
474         h64 = XXH64_mergeRound(h64, v2);
475         h64 = XXH64_mergeRound(h64, v3);
476         h64 = XXH64_mergeRound(h64, v4);
477
478     } else {
479         h64  = seed + PRIME64_5;
480     }
481
482     h64 += (U64) len;
483
484     while (p+8<=bEnd) {
485         U64 const k1 = XXH64_round(0, XXH_get64bits(p));
486         h64 ^= k1;
487         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
488         p+=8;
489     }
490
491     if (p+4<=bEnd) {
492         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
493         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
494         p+=4;
495     }
496
497     while (p<bEnd) {
498         h64 ^= (*p) * PRIME64_5;
499         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
500         p++;
501     }
502
503     h64 ^= h64 >> 33;
504     h64 *= PRIME64_2;
505     h64 ^= h64 >> 29;
506     h64 *= PRIME64_3;
507     h64 ^= h64 >> 32;
508
509     return h64;
510 }
511
512
513 XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
514 {
515 #if 0
516     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
517     XXH64_CREATESTATE_STATIC(state);
518     XXH64_reset(state, seed);
519     XXH64_update(state, input, len);
520     return XXH64_digest(state);
521 #else
522     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
523
524     if (XXH_FORCE_ALIGN_CHECK) {
525         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
526             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
527                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
528             else
529                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
530     }   }
531
532     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
533         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
534     else
535         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
536 #endif
537 }
538
539
540 /* **************************************************
541 *  Advanced Hash Functions
542 ****************************************************/
543
544 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
545 {
546     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
547 }
548 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
549 {
550     XXH_free(statePtr);
551     return XXH_OK;
552 }
553
554 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
555 {
556     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
557 }
558 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
559 {
560     XXH_free(statePtr);
561     return XXH_OK;
562 }
563
564
565 /*** Hash feed ***/
566
567 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
568 {
569     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
570     memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
571     state.v1 = seed + PRIME32_1 + PRIME32_2;
572     state.v2 = seed + PRIME32_2;
573     state.v3 = seed + 0;
574     state.v4 = seed - PRIME32_1;
575     memcpy(statePtr, &state, sizeof(state));
576     return XXH_OK;
577 }
578
579
580 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
581 {
582     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
583     memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
584     state.v1 = seed + PRIME64_1 + PRIME64_2;
585     state.v2 = seed + PRIME64_2;
586     state.v3 = seed + 0;
587     state.v4 = seed - PRIME64_1;
588     memcpy(statePtr, &state, sizeof(state));
589     return XXH_OK;
590 }
591
592
593 FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
594 {
595     const BYTE* p = (const BYTE*)input;
596     const BYTE* const bEnd = p + len;
597
598 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
599     if (input==NULL) return XXH_ERROR;
600 #endif
601
602     state->total_len_32 += (unsigned)len;
603     state->large_len |= (len>=16) | (state->total_len_32>=16);
604
605     if (state->memsize + len < 16)  {   /* fill in tmp buffer */
606         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
607         state->memsize += (unsigned)len;
608         return XXH_OK;
609     }
610
611     if (state->memsize) {   /* some data left from previous update */
612         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
613         {   const U32* p32 = state->mem32;
614             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
615             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
616             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
617             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
618         }
619         p += 16-state->memsize;
620         state->memsize = 0;
621     }
622
623     if (p <= bEnd-16) {
624         const BYTE* const limit = bEnd - 16;
625         U32 v1 = state->v1;
626         U32 v2 = state->v2;
627         U32 v3 = state->v3;
628         U32 v4 = state->v4;
629
630         do {
631             v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
632             v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
633             v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
634             v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
635         } while (p<=limit);
636
637         state->v1 = v1;
638         state->v2 = v2;
639         state->v3 = v3;
640         state->v4 = v4;
641     }
642
643     if (p < bEnd) {
644         XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
645         state->memsize = (unsigned)(bEnd-p);
646     }
647
648     return XXH_OK;
649 }
650
651 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
652 {
653     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
654
655     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
656         return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
657     else
658         return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
659 }
660
661
662
663 FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
664 {
665     const BYTE * p = (const BYTE*)state->mem32;
666     const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
667     U32 h32;
668
669     if (state->large_len) {
670         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
671     } else {
672         h32 = state->v3 /* == seed */ + PRIME32_5;
673     }
674
675     h32 += state->total_len_32;
676
677     while (p+4<=bEnd) {
678         h32 += XXH_readLE32(p, endian) * PRIME32_3;
679         h32  = XXH_rotl32(h32, 17) * PRIME32_4;
680         p+=4;
681     }
682
683     while (p<bEnd) {
684         h32 += (*p) * PRIME32_5;
685         h32  = XXH_rotl32(h32, 11) * PRIME32_1;
686         p++;
687     }
688
689     h32 ^= h32 >> 15;
690     h32 *= PRIME32_2;
691     h32 ^= h32 >> 13;
692     h32 *= PRIME32_3;
693     h32 ^= h32 >> 16;
694
695     return h32;
696 }
697
698
699 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
700 {
701     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
702
703     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
704         return XXH32_digest_endian(state_in, XXH_littleEndian);
705     else
706         return XXH32_digest_endian(state_in, XXH_bigEndian);
707 }
708
709
710
711 /* **** XXH64 **** */
712
713 FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
714 {
715     const BYTE* p = (const BYTE*)input;
716     const BYTE* const bEnd = p + len;
717
718 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
719     if (input==NULL) return XXH_ERROR;
720 #endif
721
722     state->total_len += len;
723
724     if (state->memsize + len < 32) {  /* fill in tmp buffer */
725         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
726         state->memsize += (U32)len;
727         return XXH_OK;
728     }
729
730     if (state->memsize) {   /* tmp buffer is full */
731         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
732         state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
733         state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
734         state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
735         state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
736         p += 32-state->memsize;
737         state->memsize = 0;
738     }
739
740     if (p+32 <= bEnd) {
741         const BYTE* const limit = bEnd - 32;
742         U64 v1 = state->v1;
743         U64 v2 = state->v2;
744         U64 v3 = state->v3;
745         U64 v4 = state->v4;
746
747         do {
748             v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
749             v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
750             v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
751             v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
752         } while (p<=limit);
753
754         state->v1 = v1;
755         state->v2 = v2;
756         state->v3 = v3;
757         state->v4 = v4;
758     }
759
760     if (p < bEnd) {
761         XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
762         state->memsize = (unsigned)(bEnd-p);
763     }
764
765     return XXH_OK;
766 }
767
768 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
769 {
770     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
771
772     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
773         return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
774     else
775         return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
776 }
777
778
779
780 FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
781 {
782     const BYTE * p = (const BYTE*)state->mem64;
783     const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
784     U64 h64;
785
786     if (state->total_len >= 32) {
787         U64 const v1 = state->v1;
788         U64 const v2 = state->v2;
789         U64 const v3 = state->v3;
790         U64 const v4 = state->v4;
791
792         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
793         h64 = XXH64_mergeRound(h64, v1);
794         h64 = XXH64_mergeRound(h64, v2);
795         h64 = XXH64_mergeRound(h64, v3);
796         h64 = XXH64_mergeRound(h64, v4);
797     } else {
798         h64  = state->v3 + PRIME64_5;
799     }
800
801     h64 += (U64) state->total_len;
802
803     while (p+8<=bEnd) {
804         U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
805         h64 ^= k1;
806         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
807         p+=8;
808     }
809
810     if (p+4<=bEnd) {
811         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
812         h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
813         p+=4;
814     }
815
816     while (p<bEnd) {
817         h64 ^= (*p) * PRIME64_5;
818         h64  = XXH_rotl64(h64, 11) * PRIME64_1;
819         p++;
820     }
821
822     h64 ^= h64 >> 33;
823     h64 *= PRIME64_2;
824     h64 ^= h64 >> 29;
825     h64 *= PRIME64_3;
826     h64 ^= h64 >> 32;
827
828     return h64;
829 }
830
831
832 XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
833 {
834     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
835
836     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
837         return XXH64_digest_endian(state_in, XXH_littleEndian);
838     else
839         return XXH64_digest_endian(state_in, XXH_bigEndian);
840 }
841
842
843 /* **************************
844 *  Canonical representation
845 ****************************/
846
847 /*! Default XXH result types are basic unsigned 32 and 64 bits.
848 *   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
849 *   These functions allow transformation of hash result into and from its canonical format.
850 *   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
851 */
852
853 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
854 {
855     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
856     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
857     memcpy(dst, &hash, sizeof(*dst));
858 }
859
860 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
861 {
862     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
863     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
864     memcpy(dst, &hash, sizeof(*dst));
865 }
866
867 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
868 {
869     return XXH_readBE32(src);
870 }
871
872 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
873 {
874     return XXH_readBE64(src);
875 }