]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Bitcode/Writer/BitcodeWriter.cpp
Update LLVM to r86025.
[FreeBSD/FreeBSD.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Metadata.h"
24 #include "llvm/Module.h"
25 #include "llvm/Operator.h"
26 #include "llvm/TypeSymbolTable.h"
27 #include "llvm/ValueSymbolTable.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Program.h"
32 using namespace llvm;
33
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37   CurVersion = 0,
38
39   // VALUE_SYMTAB_BLOCK abbrev id's.
40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41   VST_ENTRY_7_ABBREV,
42   VST_ENTRY_6_ABBREV,
43   VST_BBENTRY_6_ABBREV,
44
45   // CONSTANTS_BLOCK abbrev id's.
46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47   CONSTANTS_INTEGER_ABBREV,
48   CONSTANTS_CE_CAST_Abbrev,
49   CONSTANTS_NULL_Abbrev,
50
51   // FUNCTION_BLOCK abbrev id's.
52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53   FUNCTION_INST_BINOP_ABBREV,
54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
55   FUNCTION_INST_CAST_ABBREV,
56   FUNCTION_INST_RET_VOID_ABBREV,
57   FUNCTION_INST_RET_VAL_ABBREV,
58   FUNCTION_INST_UNREACHABLE_ABBREV
59 };
60
61
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63   switch (Opcode) {
64   default: llvm_unreachable("Unknown cast instruction!");
65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
67   case Instruction::SExt    : return bitc::CAST_SEXT;
68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76   case Instruction::BitCast : return bitc::CAST_BITCAST;
77   }
78 }
79
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81   switch (Opcode) {
82   default: llvm_unreachable("Unknown binary instruction!");
83   case Instruction::Add:
84   case Instruction::FAdd: return bitc::BINOP_ADD;
85   case Instruction::Sub:
86   case Instruction::FSub: return bitc::BINOP_SUB;
87   case Instruction::Mul:
88   case Instruction::FMul: return bitc::BINOP_MUL;
89   case Instruction::UDiv: return bitc::BINOP_UDIV;
90   case Instruction::FDiv:
91   case Instruction::SDiv: return bitc::BINOP_SDIV;
92   case Instruction::URem: return bitc::BINOP_UREM;
93   case Instruction::FRem:
94   case Instruction::SRem: return bitc::BINOP_SREM;
95   case Instruction::Shl:  return bitc::BINOP_SHL;
96   case Instruction::LShr: return bitc::BINOP_LSHR;
97   case Instruction::AShr: return bitc::BINOP_ASHR;
98   case Instruction::And:  return bitc::BINOP_AND;
99   case Instruction::Or:   return bitc::BINOP_OR;
100   case Instruction::Xor:  return bitc::BINOP_XOR;
101   }
102 }
103
104
105
106 static void WriteStringRecord(unsigned Code, const std::string &Str,
107                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
108   SmallVector<unsigned, 64> Vals;
109
110   // Code: [strchar x N]
111   for (unsigned i = 0, e = Str.size(); i != e; ++i)
112     Vals.push_back(Str[i]);
113
114   // Emit the finished record.
115   Stream.EmitRecord(Code, Vals, AbbrevToUse);
116 }
117
118 // Emit information about parameter attributes.
119 static void WriteAttributeTable(const ValueEnumerator &VE,
120                                 BitstreamWriter &Stream) {
121   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
122   if (Attrs.empty()) return;
123
124   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125
126   SmallVector<uint64_t, 64> Record;
127   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
128     const AttrListPtr &A = Attrs[i];
129     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
130       const AttributeWithIndex &PAWI = A.getSlot(i);
131       Record.push_back(PAWI.Index);
132
133       // FIXME: remove in LLVM 3.0
134       // Store the alignment in the bitcode as a 16-bit raw value instead of a
135       // 5-bit log2 encoded value. Shift the bits above the alignment up by
136       // 11 bits.
137       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
138       if (PAWI.Attrs & Attribute::Alignment)
139         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
140       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141
142       Record.push_back(FauxAttr);
143     }
144
145     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
146     Record.clear();
147   }
148
149   Stream.ExitBlock();
150 }
151
152 /// WriteTypeTable - Write out the type table for a module.
153 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
154   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155
156   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
157   SmallVector<uint64_t, 64> TypeVals;
158
159   // Abbrev for TYPE_CODE_POINTER.
160   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
161   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                             Log2_32_Ceil(VE.getTypes().size()+1)));
164   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
165   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166
167   // Abbrev for TYPE_CODE_FUNCTION.
168   Abbv = new BitCodeAbbrev();
169   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
171   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
174                             Log2_32_Ceil(VE.getTypes().size()+1)));
175   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176
177   // Abbrev for TYPE_CODE_STRUCT.
178   Abbv = new BitCodeAbbrev();
179   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
180   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
181   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
182   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
183                             Log2_32_Ceil(VE.getTypes().size()+1)));
184   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185
186   // Abbrev for TYPE_CODE_ARRAY.
187   Abbv = new BitCodeAbbrev();
188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
190   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
191                             Log2_32_Ceil(VE.getTypes().size()+1)));
192   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193
194   // Emit an entry count so the reader can reserve space.
195   TypeVals.push_back(TypeList.size());
196   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
197   TypeVals.clear();
198
199   // Loop over all of the types, emitting each in turn.
200   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
201     const Type *T = TypeList[i].first;
202     int AbbrevToUse = 0;
203     unsigned Code = 0;
204
205     switch (T->getTypeID()) {
206     default: llvm_unreachable("Unknown type!");
207     case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
208     case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
209     case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
210     case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
211     case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
212     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
213     case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
214     case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
215     case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
216     case Type::IntegerTyID:
217       // INTEGER: [width]
218       Code = bitc::TYPE_CODE_INTEGER;
219       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220       break;
221     case Type::PointerTyID: {
222       const PointerType *PTy = cast<PointerType>(T);
223       // POINTER: [pointee type, address space]
224       Code = bitc::TYPE_CODE_POINTER;
225       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226       unsigned AddressSpace = PTy->getAddressSpace();
227       TypeVals.push_back(AddressSpace);
228       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229       break;
230     }
231     case Type::FunctionTyID: {
232       const FunctionType *FT = cast<FunctionType>(T);
233       // FUNCTION: [isvararg, attrid, retty, paramty x N]
234       Code = bitc::TYPE_CODE_FUNCTION;
235       TypeVals.push_back(FT->isVarArg());
236       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
237       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240       AbbrevToUse = FunctionAbbrev;
241       break;
242     }
243     case Type::StructTyID: {
244       const StructType *ST = cast<StructType>(T);
245       // STRUCT: [ispacked, eltty x N]
246       Code = bitc::TYPE_CODE_STRUCT;
247       TypeVals.push_back(ST->isPacked());
248       // Output all of the element types.
249       for (StructType::element_iterator I = ST->element_begin(),
250            E = ST->element_end(); I != E; ++I)
251         TypeVals.push_back(VE.getTypeID(*I));
252       AbbrevToUse = StructAbbrev;
253       break;
254     }
255     case Type::ArrayTyID: {
256       const ArrayType *AT = cast<ArrayType>(T);
257       // ARRAY: [numelts, eltty]
258       Code = bitc::TYPE_CODE_ARRAY;
259       TypeVals.push_back(AT->getNumElements());
260       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261       AbbrevToUse = ArrayAbbrev;
262       break;
263     }
264     case Type::VectorTyID: {
265       const VectorType *VT = cast<VectorType>(T);
266       // VECTOR [numelts, eltty]
267       Code = bitc::TYPE_CODE_VECTOR;
268       TypeVals.push_back(VT->getNumElements());
269       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270       break;
271     }
272     }
273
274     // Emit the finished record.
275     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276     TypeVals.clear();
277   }
278
279   Stream.ExitBlock();
280 }
281
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283   switch (GV->getLinkage()) {
284   default: llvm_unreachable("Invalid linkage!");
285   case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
286   case GlobalValue::ExternalLinkage:            return 0;
287   case GlobalValue::WeakAnyLinkage:             return 1;
288   case GlobalValue::AppendingLinkage:           return 2;
289   case GlobalValue::InternalLinkage:            return 3;
290   case GlobalValue::LinkOnceAnyLinkage:         return 4;
291   case GlobalValue::DLLImportLinkage:           return 5;
292   case GlobalValue::DLLExportLinkage:           return 6;
293   case GlobalValue::ExternalWeakLinkage:        return 7;
294   case GlobalValue::CommonLinkage:              return 8;
295   case GlobalValue::PrivateLinkage:             return 9;
296   case GlobalValue::WeakODRLinkage:             return 10;
297   case GlobalValue::LinkOnceODRLinkage:         return 11;
298   case GlobalValue::AvailableExternallyLinkage: return 12;
299   case GlobalValue::LinkerPrivateLinkage:       return 13;
300   }
301 }
302
303 static unsigned getEncodedVisibility(const GlobalValue *GV) {
304   switch (GV->getVisibility()) {
305   default: llvm_unreachable("Invalid visibility!");
306   case GlobalValue::DefaultVisibility:   return 0;
307   case GlobalValue::HiddenVisibility:    return 1;
308   case GlobalValue::ProtectedVisibility: return 2;
309   }
310 }
311
312 // Emit top-level description of module, including target triple, inline asm,
313 // descriptors for global variables, and function prototype info.
314 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
315                             BitstreamWriter &Stream) {
316   // Emit the list of dependent libraries for the Module.
317   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
318     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
319
320   // Emit various pieces of data attached to a module.
321   if (!M->getTargetTriple().empty())
322     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
323                       0/*TODO*/, Stream);
324   if (!M->getDataLayout().empty())
325     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
326                       0/*TODO*/, Stream);
327   if (!M->getModuleInlineAsm().empty())
328     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
329                       0/*TODO*/, Stream);
330
331   // Emit information about sections and GC, computing how many there are. Also
332   // compute the maximum alignment value.
333   std::map<std::string, unsigned> SectionMap;
334   std::map<std::string, unsigned> GCMap;
335   unsigned MaxAlignment = 0;
336   unsigned MaxGlobalType = 0;
337   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
338        GV != E; ++GV) {
339     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
340     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
341
342     if (!GV->hasSection()) continue;
343     // Give section names unique ID's.
344     unsigned &Entry = SectionMap[GV->getSection()];
345     if (Entry != 0) continue;
346     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
347                       0/*TODO*/, Stream);
348     Entry = SectionMap.size();
349   }
350   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
351     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
352     if (F->hasSection()) {
353       // Give section names unique ID's.
354       unsigned &Entry = SectionMap[F->getSection()];
355       if (!Entry) {
356         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
357                           0/*TODO*/, Stream);
358         Entry = SectionMap.size();
359       }
360     }
361     if (F->hasGC()) {
362       // Same for GC names.
363       unsigned &Entry = GCMap[F->getGC()];
364       if (!Entry) {
365         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
366                           0/*TODO*/, Stream);
367         Entry = GCMap.size();
368       }
369     }
370   }
371
372   // Emit abbrev for globals, now that we know # sections and max alignment.
373   unsigned SimpleGVarAbbrev = 0;
374   if (!M->global_empty()) {
375     // Add an abbrev for common globals with no visibility or thread localness.
376     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
377     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
379                               Log2_32_Ceil(MaxGlobalType+1)));
380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
383     if (MaxAlignment == 0)                                      // Alignment.
384       Abbv->Add(BitCodeAbbrevOp(0));
385     else {
386       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
387       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
388                                Log2_32_Ceil(MaxEncAlignment+1)));
389     }
390     if (SectionMap.empty())                                    // Section.
391       Abbv->Add(BitCodeAbbrevOp(0));
392     else
393       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
394                                Log2_32_Ceil(SectionMap.size()+1)));
395     // Don't bother emitting vis + thread local.
396     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
397   }
398
399   // Emit the global variable information.
400   SmallVector<unsigned, 64> Vals;
401   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
402        GV != E; ++GV) {
403     unsigned AbbrevToUse = 0;
404
405     // GLOBALVAR: [type, isconst, initid,
406     //             linkage, alignment, section, visibility, threadlocal]
407     Vals.push_back(VE.getTypeID(GV->getType()));
408     Vals.push_back(GV->isConstant());
409     Vals.push_back(GV->isDeclaration() ? 0 :
410                    (VE.getValueID(GV->getInitializer()) + 1));
411     Vals.push_back(getEncodedLinkage(GV));
412     Vals.push_back(Log2_32(GV->getAlignment())+1);
413     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
414     if (GV->isThreadLocal() ||
415         GV->getVisibility() != GlobalValue::DefaultVisibility) {
416       Vals.push_back(getEncodedVisibility(GV));
417       Vals.push_back(GV->isThreadLocal());
418     } else {
419       AbbrevToUse = SimpleGVarAbbrev;
420     }
421
422     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
423     Vals.clear();
424   }
425
426   // Emit the function proto information.
427   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
428     // FUNCTION:  [type, callingconv, isproto, paramattr,
429     //             linkage, alignment, section, visibility, gc]
430     Vals.push_back(VE.getTypeID(F->getType()));
431     Vals.push_back(F->getCallingConv());
432     Vals.push_back(F->isDeclaration());
433     Vals.push_back(getEncodedLinkage(F));
434     Vals.push_back(VE.getAttributeID(F->getAttributes()));
435     Vals.push_back(Log2_32(F->getAlignment())+1);
436     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
437     Vals.push_back(getEncodedVisibility(F));
438     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
439
440     unsigned AbbrevToUse = 0;
441     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
442     Vals.clear();
443   }
444
445
446   // Emit the alias information.
447   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
448        AI != E; ++AI) {
449     Vals.push_back(VE.getTypeID(AI->getType()));
450     Vals.push_back(VE.getValueID(AI->getAliasee()));
451     Vals.push_back(getEncodedLinkage(AI));
452     Vals.push_back(getEncodedVisibility(AI));
453     unsigned AbbrevToUse = 0;
454     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
455     Vals.clear();
456   }
457 }
458
459 static uint64_t GetOptimizationFlags(const Value *V) {
460   uint64_t Flags = 0;
461
462   if (const OverflowingBinaryOperator *OBO =
463         dyn_cast<OverflowingBinaryOperator>(V)) {
464     if (OBO->hasNoSignedWrap())
465       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
466     if (OBO->hasNoUnsignedWrap())
467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
468   } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
469     if (Div->isExact())
470       Flags |= 1 << bitc::SDIV_EXACT;
471   }
472
473   return Flags;
474 }
475
476 static void WriteMDNode(const MDNode *N,
477                         const ValueEnumerator &VE,
478                         BitstreamWriter &Stream,
479                         SmallVector<uint64_t, 64> &Record) {
480   for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
481     if (N->getElement(i)) {
482       Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
483       Record.push_back(VE.getValueID(N->getElement(i)));
484     } else {
485       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
486       Record.push_back(0);
487     }
488   }
489   Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
490   Record.clear();
491 }
492
493 static void WriteModuleMetadata(const ValueEnumerator &VE,
494                                 BitstreamWriter &Stream) {
495   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
496   bool StartedMetadataBlock = false;
497   unsigned MDSAbbrev = 0;
498   SmallVector<uint64_t, 64> Record;
499   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
500
501     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
502       if (!StartedMetadataBlock) {
503         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
504         StartedMetadataBlock = true;
505       }
506       WriteMDNode(N, VE, Stream, Record);
507     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
508       if (!StartedMetadataBlock)  {
509         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
510
511         // Abbrev for METADATA_STRING.
512         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
513         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
514         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
515         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
516         MDSAbbrev = Stream.EmitAbbrev(Abbv);
517         StartedMetadataBlock = true;
518       }
519
520       // Code: [strchar x N]
521       Record.append(MDS->begin(), MDS->end());
522
523       // Emit the finished record.
524       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
525       Record.clear();
526     } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
527       if (!StartedMetadataBlock)  {
528         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
529         StartedMetadataBlock = true;
530       }
531
532       // Write name.
533       std::string Str = NMD->getNameStr();
534       const char *StrBegin = Str.c_str();
535       for (unsigned i = 0, e = Str.length(); i != e; ++i)
536         Record.push_back(StrBegin[i]);
537       Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
538       Record.clear();
539
540       // Write named metadata elements.
541       for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
542         if (NMD->getElement(i))
543           Record.push_back(VE.getValueID(NMD->getElement(i)));
544         else
545           Record.push_back(0);
546       }
547       Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
548       Record.clear();
549     }
550   }
551
552   if (StartedMetadataBlock)
553     Stream.ExitBlock();
554 }
555
556 static void WriteMetadataAttachment(const Function &F,
557                                     const ValueEnumerator &VE,
558                                     BitstreamWriter &Stream) {
559   bool StartedMetadataBlock = false;
560   SmallVector<uint64_t, 64> Record;
561
562   // Write metadata attachments
563   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
564   MetadataContext &TheMetadata = F.getContext().getMetadata();
565   typedef SmallVector<std::pair<unsigned, TrackingVH<MDNode> >, 2> MDMapTy;
566   MDMapTy MDs;
567   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
568     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
569          I != E; ++I) {
570       MDs.clear();
571       TheMetadata.getMDs(I, MDs);
572       bool RecordedInstruction = false;
573       for (MDMapTy::const_iterator PI = MDs.begin(), PE = MDs.end();
574              PI != PE; ++PI) {
575         if (RecordedInstruction == false) {
576           Record.push_back(VE.getInstructionID(I));
577           RecordedInstruction = true;
578         }
579         Record.push_back(PI->first);
580         Record.push_back(VE.getValueID(PI->second));
581       }
582       if (!Record.empty()) {
583         if (!StartedMetadataBlock)  {
584           Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
585           StartedMetadataBlock = true;
586         }
587         Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
588         Record.clear();
589       }
590     }
591
592   if (StartedMetadataBlock)
593     Stream.ExitBlock();
594 }
595
596 static void WriteModuleMetadataStore(const Module *M,
597                                      const ValueEnumerator &VE,
598                                      BitstreamWriter &Stream) {
599
600   bool StartedMetadataBlock = false;
601   SmallVector<uint64_t, 64> Record;
602
603   // Write metadata kinds
604   // METADATA_KIND - [n x [id, name]]
605   MetadataContext &TheMetadata = M->getContext().getMetadata();
606   SmallVector<std::pair<unsigned, StringRef>, 4> Names;
607   TheMetadata.getHandlerNames(Names);
608   for (SmallVector<std::pair<unsigned, StringRef>, 4>::iterator 
609          I = Names.begin(),
610          E = Names.end(); I != E; ++I) {
611     Record.push_back(I->first);
612     StringRef KName = I->second;
613     for (unsigned i = 0, e = KName.size(); i != e; ++i)
614       Record.push_back(KName[i]);
615     if (!StartedMetadataBlock)  {
616       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
617       StartedMetadataBlock = true;
618     }
619     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
620     Record.clear();
621   }
622
623   if (StartedMetadataBlock)
624     Stream.ExitBlock();
625 }
626
627 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
628                            const ValueEnumerator &VE,
629                            BitstreamWriter &Stream, bool isGlobal) {
630   if (FirstVal == LastVal) return;
631
632   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
633
634   unsigned AggregateAbbrev = 0;
635   unsigned String8Abbrev = 0;
636   unsigned CString7Abbrev = 0;
637   unsigned CString6Abbrev = 0;
638   // If this is a constant pool for the module, emit module-specific abbrevs.
639   if (isGlobal) {
640     // Abbrev for CST_CODE_AGGREGATE.
641     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
642     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
643     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
644     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
645     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
646
647     // Abbrev for CST_CODE_STRING.
648     Abbv = new BitCodeAbbrev();
649     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
650     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
651     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
652     String8Abbrev = Stream.EmitAbbrev(Abbv);
653     // Abbrev for CST_CODE_CSTRING.
654     Abbv = new BitCodeAbbrev();
655     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
656     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
657     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
658     CString7Abbrev = Stream.EmitAbbrev(Abbv);
659     // Abbrev for CST_CODE_CSTRING.
660     Abbv = new BitCodeAbbrev();
661     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
662     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
663     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
664     CString6Abbrev = Stream.EmitAbbrev(Abbv);
665   }
666
667   SmallVector<uint64_t, 64> Record;
668
669   const ValueEnumerator::ValueList &Vals = VE.getValues();
670   const Type *LastTy = 0;
671   for (unsigned i = FirstVal; i != LastVal; ++i) {
672     const Value *V = Vals[i].first;
673     // If we need to switch types, do so now.
674     if (V->getType() != LastTy) {
675       LastTy = V->getType();
676       Record.push_back(VE.getTypeID(LastTy));
677       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
678                         CONSTANTS_SETTYPE_ABBREV);
679       Record.clear();
680     }
681
682     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
683       Record.push_back(unsigned(IA->hasSideEffects()) |
684                        unsigned(IA->isAlignStack()) << 1);
685
686       // Add the asm string.
687       const std::string &AsmStr = IA->getAsmString();
688       Record.push_back(AsmStr.size());
689       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
690         Record.push_back(AsmStr[i]);
691
692       // Add the constraint string.
693       const std::string &ConstraintStr = IA->getConstraintString();
694       Record.push_back(ConstraintStr.size());
695       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
696         Record.push_back(ConstraintStr[i]);
697       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
698       Record.clear();
699       continue;
700     }
701     const Constant *C = cast<Constant>(V);
702     unsigned Code = -1U;
703     unsigned AbbrevToUse = 0;
704     if (C->isNullValue()) {
705       Code = bitc::CST_CODE_NULL;
706     } else if (isa<UndefValue>(C)) {
707       Code = bitc::CST_CODE_UNDEF;
708     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
709       if (IV->getBitWidth() <= 64) {
710         int64_t V = IV->getSExtValue();
711         if (V >= 0)
712           Record.push_back(V << 1);
713         else
714           Record.push_back((-V << 1) | 1);
715         Code = bitc::CST_CODE_INTEGER;
716         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
717       } else {                             // Wide integers, > 64 bits in size.
718         // We have an arbitrary precision integer value to write whose
719         // bit width is > 64. However, in canonical unsigned integer
720         // format it is likely that the high bits are going to be zero.
721         // So, we only write the number of active words.
722         unsigned NWords = IV->getValue().getActiveWords();
723         const uint64_t *RawWords = IV->getValue().getRawData();
724         for (unsigned i = 0; i != NWords; ++i) {
725           int64_t V = RawWords[i];
726           if (V >= 0)
727             Record.push_back(V << 1);
728           else
729             Record.push_back((-V << 1) | 1);
730         }
731         Code = bitc::CST_CODE_WIDE_INTEGER;
732       }
733     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
734       Code = bitc::CST_CODE_FLOAT;
735       const Type *Ty = CFP->getType();
736       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
737         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
738       } else if (Ty->isX86_FP80Ty()) {
739         // api needed to prevent premature destruction
740         // bits are not in the same order as a normal i80 APInt, compensate.
741         APInt api = CFP->getValueAPF().bitcastToAPInt();
742         const uint64_t *p = api.getRawData();
743         Record.push_back((p[1] << 48) | (p[0] >> 16));
744         Record.push_back(p[0] & 0xffffLL);
745       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
746         APInt api = CFP->getValueAPF().bitcastToAPInt();
747         const uint64_t *p = api.getRawData();
748         Record.push_back(p[0]);
749         Record.push_back(p[1]);
750       } else {
751         assert (0 && "Unknown FP type!");
752       }
753     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
754       const ConstantArray *CA = cast<ConstantArray>(C);
755       // Emit constant strings specially.
756       unsigned NumOps = CA->getNumOperands();
757       // If this is a null-terminated string, use the denser CSTRING encoding.
758       if (CA->getOperand(NumOps-1)->isNullValue()) {
759         Code = bitc::CST_CODE_CSTRING;
760         --NumOps;  // Don't encode the null, which isn't allowed by char6.
761       } else {
762         Code = bitc::CST_CODE_STRING;
763         AbbrevToUse = String8Abbrev;
764       }
765       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
766       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
767       for (unsigned i = 0; i != NumOps; ++i) {
768         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
769         Record.push_back(V);
770         isCStr7 &= (V & 128) == 0;
771         if (isCStrChar6)
772           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
773       }
774
775       if (isCStrChar6)
776         AbbrevToUse = CString6Abbrev;
777       else if (isCStr7)
778         AbbrevToUse = CString7Abbrev;
779     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
780                isa<ConstantVector>(V)) {
781       Code = bitc::CST_CODE_AGGREGATE;
782       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
783         Record.push_back(VE.getValueID(C->getOperand(i)));
784       AbbrevToUse = AggregateAbbrev;
785     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
786       switch (CE->getOpcode()) {
787       default:
788         if (Instruction::isCast(CE->getOpcode())) {
789           Code = bitc::CST_CODE_CE_CAST;
790           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
791           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
792           Record.push_back(VE.getValueID(C->getOperand(0)));
793           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
794         } else {
795           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
796           Code = bitc::CST_CODE_CE_BINOP;
797           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
798           Record.push_back(VE.getValueID(C->getOperand(0)));
799           Record.push_back(VE.getValueID(C->getOperand(1)));
800           uint64_t Flags = GetOptimizationFlags(CE);
801           if (Flags != 0)
802             Record.push_back(Flags);
803         }
804         break;
805       case Instruction::GetElementPtr:
806         Code = bitc::CST_CODE_CE_GEP;
807         if (cast<GEPOperator>(C)->isInBounds())
808           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
809         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
810           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
811           Record.push_back(VE.getValueID(C->getOperand(i)));
812         }
813         break;
814       case Instruction::Select:
815         Code = bitc::CST_CODE_CE_SELECT;
816         Record.push_back(VE.getValueID(C->getOperand(0)));
817         Record.push_back(VE.getValueID(C->getOperand(1)));
818         Record.push_back(VE.getValueID(C->getOperand(2)));
819         break;
820       case Instruction::ExtractElement:
821         Code = bitc::CST_CODE_CE_EXTRACTELT;
822         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
823         Record.push_back(VE.getValueID(C->getOperand(0)));
824         Record.push_back(VE.getValueID(C->getOperand(1)));
825         break;
826       case Instruction::InsertElement:
827         Code = bitc::CST_CODE_CE_INSERTELT;
828         Record.push_back(VE.getValueID(C->getOperand(0)));
829         Record.push_back(VE.getValueID(C->getOperand(1)));
830         Record.push_back(VE.getValueID(C->getOperand(2)));
831         break;
832       case Instruction::ShuffleVector:
833         // If the return type and argument types are the same, this is a
834         // standard shufflevector instruction.  If the types are different,
835         // then the shuffle is widening or truncating the input vectors, and
836         // the argument type must also be encoded.
837         if (C->getType() == C->getOperand(0)->getType()) {
838           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
839         } else {
840           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
841           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
842         }
843         Record.push_back(VE.getValueID(C->getOperand(0)));
844         Record.push_back(VE.getValueID(C->getOperand(1)));
845         Record.push_back(VE.getValueID(C->getOperand(2)));
846         break;
847       case Instruction::ICmp:
848       case Instruction::FCmp:
849         Code = bitc::CST_CODE_CE_CMP;
850         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
851         Record.push_back(VE.getValueID(C->getOperand(0)));
852         Record.push_back(VE.getValueID(C->getOperand(1)));
853         Record.push_back(CE->getPredicate());
854         break;
855       }
856     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
857       assert(BA->getFunction() == BA->getBasicBlock()->getParent() &&
858              "Malformed blockaddress");
859       Code = bitc::CST_CODE_BLOCKADDRESS;
860       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
861       Record.push_back(VE.getValueID(BA->getFunction()));
862       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
863     } else {
864       llvm_unreachable("Unknown constant!");
865     }
866     Stream.EmitRecord(Code, Record, AbbrevToUse);
867     Record.clear();
868   }
869
870   Stream.ExitBlock();
871 }
872
873 static void WriteModuleConstants(const ValueEnumerator &VE,
874                                  BitstreamWriter &Stream) {
875   const ValueEnumerator::ValueList &Vals = VE.getValues();
876
877   // Find the first constant to emit, which is the first non-globalvalue value.
878   // We know globalvalues have been emitted by WriteModuleInfo.
879   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
880     if (!isa<GlobalValue>(Vals[i].first)) {
881       WriteConstants(i, Vals.size(), VE, Stream, true);
882       return;
883     }
884   }
885 }
886
887 /// PushValueAndType - The file has to encode both the value and type id for
888 /// many values, because we need to know what type to create for forward
889 /// references.  However, most operands are not forward references, so this type
890 /// field is not needed.
891 ///
892 /// This function adds V's value ID to Vals.  If the value ID is higher than the
893 /// instruction ID, then it is a forward reference, and it also includes the
894 /// type ID.
895 static bool PushValueAndType(const Value *V, unsigned InstID,
896                              SmallVector<unsigned, 64> &Vals,
897                              ValueEnumerator &VE) {
898   unsigned ValID = VE.getValueID(V);
899   Vals.push_back(ValID);
900   if (ValID >= InstID) {
901     Vals.push_back(VE.getTypeID(V->getType()));
902     return true;
903   }
904   return false;
905 }
906
907 /// WriteInstruction - Emit an instruction to the specified stream.
908 static void WriteInstruction(const Instruction &I, unsigned InstID,
909                              ValueEnumerator &VE, BitstreamWriter &Stream,
910                              SmallVector<unsigned, 64> &Vals) {
911   unsigned Code = 0;
912   unsigned AbbrevToUse = 0;
913   VE.setInstructionID(&I);
914   switch (I.getOpcode()) {
915   default:
916     if (Instruction::isCast(I.getOpcode())) {
917       Code = bitc::FUNC_CODE_INST_CAST;
918       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
919         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
920       Vals.push_back(VE.getTypeID(I.getType()));
921       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
922     } else {
923       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
924       Code = bitc::FUNC_CODE_INST_BINOP;
925       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
926         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
927       Vals.push_back(VE.getValueID(I.getOperand(1)));
928       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
929       uint64_t Flags = GetOptimizationFlags(&I);
930       if (Flags != 0) {
931         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
932           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
933         Vals.push_back(Flags);
934       }
935     }
936     break;
937
938   case Instruction::GetElementPtr:
939     Code = bitc::FUNC_CODE_INST_GEP;
940     if (cast<GEPOperator>(&I)->isInBounds())
941       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
942     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
943       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
944     break;
945   case Instruction::ExtractValue: {
946     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
947     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
948     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
949     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
950       Vals.push_back(*i);
951     break;
952   }
953   case Instruction::InsertValue: {
954     Code = bitc::FUNC_CODE_INST_INSERTVAL;
955     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
956     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
957     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
958     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
959       Vals.push_back(*i);
960     break;
961   }
962   case Instruction::Select:
963     Code = bitc::FUNC_CODE_INST_VSELECT;
964     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
965     Vals.push_back(VE.getValueID(I.getOperand(2)));
966     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
967     break;
968   case Instruction::ExtractElement:
969     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
970     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
971     Vals.push_back(VE.getValueID(I.getOperand(1)));
972     break;
973   case Instruction::InsertElement:
974     Code = bitc::FUNC_CODE_INST_INSERTELT;
975     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
976     Vals.push_back(VE.getValueID(I.getOperand(1)));
977     Vals.push_back(VE.getValueID(I.getOperand(2)));
978     break;
979   case Instruction::ShuffleVector:
980     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
981     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
982     Vals.push_back(VE.getValueID(I.getOperand(1)));
983     Vals.push_back(VE.getValueID(I.getOperand(2)));
984     break;
985   case Instruction::ICmp:
986   case Instruction::FCmp:
987     // compare returning Int1Ty or vector of Int1Ty
988     Code = bitc::FUNC_CODE_INST_CMP2;
989     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
990     Vals.push_back(VE.getValueID(I.getOperand(1)));
991     Vals.push_back(cast<CmpInst>(I).getPredicate());
992     break;
993
994   case Instruction::Ret:
995     {
996       Code = bitc::FUNC_CODE_INST_RET;
997       unsigned NumOperands = I.getNumOperands();
998       if (NumOperands == 0)
999         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1000       else if (NumOperands == 1) {
1001         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1002           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1003       } else {
1004         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1005           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1006       }
1007     }
1008     break;
1009   case Instruction::Br:
1010     {
1011       Code = bitc::FUNC_CODE_INST_BR;
1012       BranchInst &II = cast<BranchInst>(I);
1013       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1014       if (II.isConditional()) {
1015         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1016         Vals.push_back(VE.getValueID(II.getCondition()));
1017       }
1018     }
1019     break;
1020   case Instruction::Switch:
1021     Code = bitc::FUNC_CODE_INST_SWITCH;
1022     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1023     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1024       Vals.push_back(VE.getValueID(I.getOperand(i)));
1025     break;
1026   case Instruction::IndirectBr:
1027     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1028     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1029     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1030       Vals.push_back(VE.getValueID(I.getOperand(i)));
1031     break;
1032       
1033   case Instruction::Invoke: {
1034     const InvokeInst *II = cast<InvokeInst>(&I);
1035     const Value *Callee(II->getCalledValue());
1036     const PointerType *PTy = cast<PointerType>(Callee->getType());
1037     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1038     Code = bitc::FUNC_CODE_INST_INVOKE;
1039
1040     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1041     Vals.push_back(II->getCallingConv());
1042     Vals.push_back(VE.getValueID(II->getNormalDest()));
1043     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1044     PushValueAndType(Callee, InstID, Vals, VE);
1045
1046     // Emit value #'s for the fixed parameters.
1047     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1048       Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1049
1050     // Emit type/value pairs for varargs params.
1051     if (FTy->isVarArg()) {
1052       for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1053            i != e; ++i)
1054         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1055     }
1056     break;
1057   }
1058   case Instruction::Unwind:
1059     Code = bitc::FUNC_CODE_INST_UNWIND;
1060     break;
1061   case Instruction::Unreachable:
1062     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1063     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1064     break;
1065
1066   case Instruction::PHI:
1067     Code = bitc::FUNC_CODE_INST_PHI;
1068     Vals.push_back(VE.getTypeID(I.getType()));
1069     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1070       Vals.push_back(VE.getValueID(I.getOperand(i)));
1071     break;
1072
1073   case Instruction::Alloca:
1074     Code = bitc::FUNC_CODE_INST_ALLOCA;
1075     Vals.push_back(VE.getTypeID(I.getType()));
1076     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1077     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1078     break;
1079
1080   case Instruction::Load:
1081     Code = bitc::FUNC_CODE_INST_LOAD;
1082     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1083       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1084
1085     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1086     Vals.push_back(cast<LoadInst>(I).isVolatile());
1087     break;
1088   case Instruction::Store:
1089     Code = bitc::FUNC_CODE_INST_STORE2;
1090     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1091     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1092     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1093     Vals.push_back(cast<StoreInst>(I).isVolatile());
1094     break;
1095   case Instruction::Call: {
1096     const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1097     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1098
1099     Code = bitc::FUNC_CODE_INST_CALL;
1100
1101     const CallInst *CI = cast<CallInst>(&I);
1102     Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1103     Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1104     PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1105
1106     // Emit value #'s for the fixed parameters.
1107     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1108       Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1109
1110     // Emit type/value pairs for varargs params.
1111     if (FTy->isVarArg()) {
1112       unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1113       for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1114            i != e; ++i)
1115         PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1116     }
1117     break;
1118   }
1119   case Instruction::VAArg:
1120     Code = bitc::FUNC_CODE_INST_VAARG;
1121     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1122     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1123     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1124     break;
1125   }
1126
1127   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1128   Vals.clear();
1129 }
1130
1131 // Emit names for globals/functions etc.
1132 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1133                                   const ValueEnumerator &VE,
1134                                   BitstreamWriter &Stream) {
1135   if (VST.empty()) return;
1136   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1137
1138   // FIXME: Set up the abbrev, we know how many values there are!
1139   // FIXME: We know if the type names can use 7-bit ascii.
1140   SmallVector<unsigned, 64> NameVals;
1141
1142   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1143        SI != SE; ++SI) {
1144
1145     const ValueName &Name = *SI;
1146
1147     // Figure out the encoding to use for the name.
1148     bool is7Bit = true;
1149     bool isChar6 = true;
1150     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1151          C != E; ++C) {
1152       if (isChar6)
1153         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1154       if ((unsigned char)*C & 128) {
1155         is7Bit = false;
1156         break;  // don't bother scanning the rest.
1157       }
1158     }
1159
1160     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1161
1162     // VST_ENTRY:   [valueid, namechar x N]
1163     // VST_BBENTRY: [bbid, namechar x N]
1164     unsigned Code;
1165     if (isa<BasicBlock>(SI->getValue())) {
1166       Code = bitc::VST_CODE_BBENTRY;
1167       if (isChar6)
1168         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1169     } else {
1170       Code = bitc::VST_CODE_ENTRY;
1171       if (isChar6)
1172         AbbrevToUse = VST_ENTRY_6_ABBREV;
1173       else if (is7Bit)
1174         AbbrevToUse = VST_ENTRY_7_ABBREV;
1175     }
1176
1177     NameVals.push_back(VE.getValueID(SI->getValue()));
1178     for (const char *P = Name.getKeyData(),
1179          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1180       NameVals.push_back((unsigned char)*P);
1181
1182     // Emit the finished record.
1183     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1184     NameVals.clear();
1185   }
1186   Stream.ExitBlock();
1187 }
1188
1189 /// WriteFunction - Emit a function body to the module stream.
1190 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1191                           BitstreamWriter &Stream) {
1192   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1193   VE.incorporateFunction(F);
1194
1195   SmallVector<unsigned, 64> Vals;
1196
1197   // Emit the number of basic blocks, so the reader can create them ahead of
1198   // time.
1199   Vals.push_back(VE.getBasicBlocks().size());
1200   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1201   Vals.clear();
1202
1203   // If there are function-local constants, emit them now.
1204   unsigned CstStart, CstEnd;
1205   VE.getFunctionConstantRange(CstStart, CstEnd);
1206   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1207
1208   // Keep a running idea of what the instruction ID is.
1209   unsigned InstID = CstEnd;
1210
1211   // Finally, emit all the instructions, in order.
1212   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1213     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1214          I != E; ++I) {
1215       WriteInstruction(*I, InstID, VE, Stream, Vals);
1216       if (I->getType() != Type::getVoidTy(F.getContext()))
1217         ++InstID;
1218     }
1219
1220   // Emit names for all the instructions etc.
1221   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1222
1223   WriteMetadataAttachment(F, VE, Stream);
1224   VE.purgeFunction();
1225   Stream.ExitBlock();
1226 }
1227
1228 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1229 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1230                                  const ValueEnumerator &VE,
1231                                  BitstreamWriter &Stream) {
1232   if (TST.empty()) return;
1233
1234   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1235
1236   // 7-bit fixed width VST_CODE_ENTRY strings.
1237   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1238   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1239   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1240                             Log2_32_Ceil(VE.getTypes().size()+1)));
1241   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1242   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1243   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1244
1245   SmallVector<unsigned, 64> NameVals;
1246
1247   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1248        TI != TE; ++TI) {
1249     // TST_ENTRY: [typeid, namechar x N]
1250     NameVals.push_back(VE.getTypeID(TI->second));
1251
1252     const std::string &Str = TI->first;
1253     bool is7Bit = true;
1254     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1255       NameVals.push_back((unsigned char)Str[i]);
1256       if (Str[i] & 128)
1257         is7Bit = false;
1258     }
1259
1260     // Emit the finished record.
1261     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1262     NameVals.clear();
1263   }
1264
1265   Stream.ExitBlock();
1266 }
1267
1268 // Emit blockinfo, which defines the standard abbreviations etc.
1269 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1270   // We only want to emit block info records for blocks that have multiple
1271   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1272   // blocks can defined their abbrevs inline.
1273   Stream.EnterBlockInfoBlock(2);
1274
1275   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1276     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1278     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1281     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1282                                    Abbv) != VST_ENTRY_8_ABBREV)
1283       llvm_unreachable("Unexpected abbrev ordering!");
1284   }
1285
1286   { // 7-bit fixed width VST_ENTRY strings.
1287     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1288     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1289     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1290     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1291     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1292     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1293                                    Abbv) != VST_ENTRY_7_ABBREV)
1294       llvm_unreachable("Unexpected abbrev ordering!");
1295   }
1296   { // 6-bit char6 VST_ENTRY strings.
1297     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1298     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1299     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1300     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1302     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1303                                    Abbv) != VST_ENTRY_6_ABBREV)
1304       llvm_unreachable("Unexpected abbrev ordering!");
1305   }
1306   { // 6-bit char6 VST_BBENTRY strings.
1307     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1308     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1309     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1310     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1311     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1312     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1313                                    Abbv) != VST_BBENTRY_6_ABBREV)
1314       llvm_unreachable("Unexpected abbrev ordering!");
1315   }
1316
1317
1318
1319   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1320     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1321     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1322     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1323                               Log2_32_Ceil(VE.getTypes().size()+1)));
1324     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1325                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1326       llvm_unreachable("Unexpected abbrev ordering!");
1327   }
1328
1329   { // INTEGER abbrev for CONSTANTS_BLOCK.
1330     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1331     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1332     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1333     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1334                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1335       llvm_unreachable("Unexpected abbrev ordering!");
1336   }
1337
1338   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1339     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1340     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1341     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1342     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1343                               Log2_32_Ceil(VE.getTypes().size()+1)));
1344     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1345
1346     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1347                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1348       llvm_unreachable("Unexpected abbrev ordering!");
1349   }
1350   { // NULL abbrev for CONSTANTS_BLOCK.
1351     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1352     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1353     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1354                                    Abbv) != CONSTANTS_NULL_Abbrev)
1355       llvm_unreachable("Unexpected abbrev ordering!");
1356   }
1357
1358   // FIXME: This should only use space for first class types!
1359
1360   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1361     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1362     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1363     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1365     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1366     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1367                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1368       llvm_unreachable("Unexpected abbrev ordering!");
1369   }
1370   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1371     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1372     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1373     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1375     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1376     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1377                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1378       llvm_unreachable("Unexpected abbrev ordering!");
1379   }
1380   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1381     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1382     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1386     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1387     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1388                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1389       llvm_unreachable("Unexpected abbrev ordering!");
1390   }
1391   { // INST_CAST abbrev for FUNCTION_BLOCK.
1392     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1393     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1394     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1395     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1396                               Log2_32_Ceil(VE.getTypes().size()+1)));
1397     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1398     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1399                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1400       llvm_unreachable("Unexpected abbrev ordering!");
1401   }
1402
1403   { // INST_RET abbrev for FUNCTION_BLOCK.
1404     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1405     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1406     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1407                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1408       llvm_unreachable("Unexpected abbrev ordering!");
1409   }
1410   { // INST_RET abbrev for FUNCTION_BLOCK.
1411     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1412     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1413     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1414     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1415                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1416       llvm_unreachable("Unexpected abbrev ordering!");
1417   }
1418   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1419     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1420     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1421     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1422                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1423       llvm_unreachable("Unexpected abbrev ordering!");
1424   }
1425
1426   Stream.ExitBlock();
1427 }
1428
1429
1430 /// WriteModule - Emit the specified module to the bitstream.
1431 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1432   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1433
1434   // Emit the version number if it is non-zero.
1435   if (CurVersion) {
1436     SmallVector<unsigned, 1> Vals;
1437     Vals.push_back(CurVersion);
1438     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1439   }
1440
1441   // Analyze the module, enumerating globals, functions, etc.
1442   ValueEnumerator VE(M);
1443
1444   // Emit blockinfo, which defines the standard abbreviations etc.
1445   WriteBlockInfo(VE, Stream);
1446
1447   // Emit information about parameter attributes.
1448   WriteAttributeTable(VE, Stream);
1449
1450   // Emit information describing all of the types in the module.
1451   WriteTypeTable(VE, Stream);
1452
1453   // Emit top-level description of module, including target triple, inline asm,
1454   // descriptors for global variables, and function prototype info.
1455   WriteModuleInfo(M, VE, Stream);
1456
1457   // Emit constants.
1458   WriteModuleConstants(VE, Stream);
1459
1460   // Emit metadata.
1461   WriteModuleMetadata(VE, Stream);
1462
1463   // Emit function bodies.
1464   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1465     if (!I->isDeclaration())
1466       WriteFunction(*I, VE, Stream);
1467
1468   // Emit metadata.
1469   WriteModuleMetadataStore(M, VE, Stream);
1470
1471   // Emit the type symbol table information.
1472   WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1473
1474   // Emit names for globals/functions etc.
1475   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1476
1477   Stream.ExitBlock();
1478 }
1479
1480 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1481 /// header and trailer to make it compatible with the system archiver.  To do
1482 /// this we emit the following header, and then emit a trailer that pads the
1483 /// file out to be a multiple of 16 bytes.
1484 ///
1485 /// struct bc_header {
1486 ///   uint32_t Magic;         // 0x0B17C0DE
1487 ///   uint32_t Version;       // Version, currently always 0.
1488 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1489 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1490 ///   uint32_t CPUType;       // CPU specifier.
1491 ///   ... potentially more later ...
1492 /// };
1493 enum {
1494   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1495   DarwinBCHeaderSize = 5*4
1496 };
1497
1498 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1499                                const std::string &TT) {
1500   unsigned CPUType = ~0U;
1501
1502   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1503   // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1504   // specific constants here because they are implicitly part of the Darwin ABI.
1505   enum {
1506     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1507     DARWIN_CPU_TYPE_X86        = 7,
1508     DARWIN_CPU_TYPE_POWERPC    = 18
1509   };
1510
1511   if (TT.find("x86_64-") == 0)
1512     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1513   else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1514            TT[4] == '-' && TT[1] - '3' < 6)
1515     CPUType = DARWIN_CPU_TYPE_X86;
1516   else if (TT.find("powerpc-") == 0)
1517     CPUType = DARWIN_CPU_TYPE_POWERPC;
1518   else if (TT.find("powerpc64-") == 0)
1519     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1520
1521   // Traditional Bitcode starts after header.
1522   unsigned BCOffset = DarwinBCHeaderSize;
1523
1524   Stream.Emit(0x0B17C0DE, 32);
1525   Stream.Emit(0         , 32);  // Version.
1526   Stream.Emit(BCOffset  , 32);
1527   Stream.Emit(0         , 32);  // Filled in later.
1528   Stream.Emit(CPUType   , 32);
1529 }
1530
1531 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1532 /// finalize the header.
1533 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1534   // Update the size field in the header.
1535   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1536
1537   // If the file is not a multiple of 16 bytes, insert dummy padding.
1538   while (BufferSize & 15) {
1539     Stream.Emit(0, 8);
1540     ++BufferSize;
1541   }
1542 }
1543
1544
1545 /// WriteBitcodeToFile - Write the specified module to the specified output
1546 /// stream.
1547 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1548   std::vector<unsigned char> Buffer;
1549   BitstreamWriter Stream(Buffer);
1550
1551   Buffer.reserve(256*1024);
1552
1553   WriteBitcodeToStream( M, Stream );
1554
1555   // If writing to stdout, set binary mode.
1556   if (&llvm::outs() == &Out)
1557     sys::Program::ChangeStdoutToBinary();
1558
1559   // Write the generated bitstream to "Out".
1560   Out.write((char*)&Buffer.front(), Buffer.size());
1561
1562   // Make sure it hits disk now.
1563   Out.flush();
1564 }
1565
1566 /// WriteBitcodeToStream - Write the specified module to the specified output
1567 /// stream.
1568 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1569   // If this is darwin, emit a file header and trailer if needed.
1570   bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1571   if (isDarwin)
1572     EmitDarwinBCHeader(Stream, M->getTargetTriple());
1573
1574   // Emit the file header.
1575   Stream.Emit((unsigned)'B', 8);
1576   Stream.Emit((unsigned)'C', 8);
1577   Stream.Emit(0x0, 4);
1578   Stream.Emit(0xC, 4);
1579   Stream.Emit(0xE, 4);
1580   Stream.Emit(0xD, 4);
1581
1582   // Emit the module.
1583   WriteModule(M, Stream);
1584
1585   if (isDarwin)
1586     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1587 }