]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/CodeGen/CGBuiltin.cpp
Vendor import of clang trunk r242221:
[FreeBSD/FreeBSD.git] / lib / CodeGen / CGBuiltin.cpp
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/Basic/TargetBuiltins.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include <sstream>
30
31 using namespace clang;
32 using namespace CodeGen;
33 using namespace llvm;
34
35 /// getBuiltinLibFunction - Given a builtin id for a function like
36 /// "__builtin_fabsf", return a Function* for "fabsf".
37 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
38                                                   unsigned BuiltinID) {
39   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
40
41   // Get the name, skip over the __builtin_ prefix (if necessary).
42   StringRef Name;
43   GlobalDecl D(FD);
44
45   // If the builtin has been declared explicitly with an assembler label,
46   // use the mangled name. This differs from the plain label on platforms
47   // that prefix labels.
48   if (FD->hasAttr<AsmLabelAttr>())
49     Name = getMangledName(D);
50   else
51     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
52
53   llvm::FunctionType *Ty =
54     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
55
56   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
57 }
58
59 /// Emit the conversions required to turn the given value into an
60 /// integer of the given size.
61 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
62                         QualType T, llvm::IntegerType *IntType) {
63   V = CGF.EmitToMemory(V, T);
64
65   if (V->getType()->isPointerTy())
66     return CGF.Builder.CreatePtrToInt(V, IntType);
67
68   assert(V->getType() == IntType);
69   return V;
70 }
71
72 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
73                           QualType T, llvm::Type *ResultType) {
74   V = CGF.EmitFromMemory(V, T);
75
76   if (ResultType->isPointerTy())
77     return CGF.Builder.CreateIntToPtr(V, ResultType);
78
79   assert(V->getType() == ResultType);
80   return V;
81 }
82
83 /// Utility to insert an atomic instruction based on Instrinsic::ID
84 /// and the expression node.
85 static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF,
86                                     llvm::AtomicRMWInst::BinOp Kind,
87                                     const CallExpr *E) {
88   QualType T = E->getType();
89   assert(E->getArg(0)->getType()->isPointerType());
90   assert(CGF.getContext().hasSameUnqualifiedType(T,
91                                   E->getArg(0)->getType()->getPointeeType()));
92   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
93
94   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
95   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
96
97   llvm::IntegerType *IntType =
98     llvm::IntegerType::get(CGF.getLLVMContext(),
99                            CGF.getContext().getTypeSize(T));
100   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
101
102   llvm::Value *Args[2];
103   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
104   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
105   llvm::Type *ValueType = Args[1]->getType();
106   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
107
108   llvm::Value *Result =
109       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
110                                   llvm::SequentiallyConsistent);
111   return EmitFromInt(CGF, Result, T, ValueType);
112 }
113
114 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
115                                llvm::AtomicRMWInst::BinOp Kind,
116                                const CallExpr *E) {
117   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
118 }
119
120 /// Utility to insert an atomic instruction based Instrinsic::ID and
121 /// the expression node, where the return value is the result of the
122 /// operation.
123 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
124                                    llvm::AtomicRMWInst::BinOp Kind,
125                                    const CallExpr *E,
126                                    Instruction::BinaryOps Op,
127                                    bool Invert = false) {
128   QualType T = E->getType();
129   assert(E->getArg(0)->getType()->isPointerType());
130   assert(CGF.getContext().hasSameUnqualifiedType(T,
131                                   E->getArg(0)->getType()->getPointeeType()));
132   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
133
134   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
135   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
136
137   llvm::IntegerType *IntType =
138     llvm::IntegerType::get(CGF.getLLVMContext(),
139                            CGF.getContext().getTypeSize(T));
140   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
141
142   llvm::Value *Args[2];
143   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
144   llvm::Type *ValueType = Args[1]->getType();
145   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
146   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
147
148   llvm::Value *Result =
149       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
150                                   llvm::SequentiallyConsistent);
151   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
152   if (Invert)
153     Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
154                                      llvm::ConstantInt::get(IntType, -1));
155   Result = EmitFromInt(CGF, Result, T, ValueType);
156   return RValue::get(Result);
157 }
158
159 /// @brief Utility to insert an atomic cmpxchg instruction.
160 ///
161 /// @param CGF The current codegen function.
162 /// @param E   Builtin call expression to convert to cmpxchg.
163 ///            arg0 - address to operate on
164 ///            arg1 - value to compare with
165 ///            arg2 - new value
166 /// @param ReturnBool Specifies whether to return success flag of
167 ///                   cmpxchg result or the old value.
168 ///
169 /// @returns result of cmpxchg, according to ReturnBool
170 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
171                                      bool ReturnBool) {
172   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
173   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
174   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
175
176   llvm::IntegerType *IntType = llvm::IntegerType::get(
177       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
178   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
179
180   Value *Args[3];
181   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
182   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
183   llvm::Type *ValueType = Args[1]->getType();
184   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
185   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
186
187   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
188                                                 llvm::SequentiallyConsistent,
189                                                 llvm::SequentiallyConsistent);
190   if (ReturnBool)
191     // Extract boolean success flag and zext it to int.
192     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
193                                   CGF.ConvertType(E->getType()));
194   else
195     // Extract old value and emit it using the same type as compare value.
196     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
197                        ValueType);
198 }
199
200 /// EmitFAbs - Emit a call to @llvm.fabs().
201 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
202   Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
203   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
204   Call->setDoesNotAccessMemory();
205   return Call;
206 }
207
208 /// Emit the computation of the sign bit for a floating point value. Returns
209 /// the i1 sign bit value.
210 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
211   LLVMContext &C = CGF.CGM.getLLVMContext();
212
213   llvm::Type *Ty = V->getType();
214   int Width = Ty->getPrimitiveSizeInBits();
215   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
216   V = CGF.Builder.CreateBitCast(V, IntTy);
217   if (Ty->isPPC_FP128Ty()) {
218     // The higher-order double comes first, and so we need to truncate the
219     // pair to extract the overall sign. The order of the pair is the same
220     // in both little- and big-Endian modes.
221     Width >>= 1;
222     IntTy = llvm::IntegerType::get(C, Width);
223     V = CGF.Builder.CreateTrunc(V, IntTy);
224   }
225   Value *Zero = llvm::Constant::getNullValue(IntTy);
226   return CGF.Builder.CreateICmpSLT(V, Zero);
227 }
228
229 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
230                               const CallExpr *E, llvm::Value *calleeValue) {
231   return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E,
232                       ReturnValueSlot(), Fn);
233 }
234
235 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
236 /// depending on IntrinsicID.
237 ///
238 /// \arg CGF The current codegen function.
239 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
240 /// \arg X The first argument to the llvm.*.with.overflow.*.
241 /// \arg Y The second argument to the llvm.*.with.overflow.*.
242 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
243 /// \returns The result (i.e. sum/product) returned by the intrinsic.
244 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
245                                           const llvm::Intrinsic::ID IntrinsicID,
246                                           llvm::Value *X, llvm::Value *Y,
247                                           llvm::Value *&Carry) {
248   // Make sure we have integers of the same width.
249   assert(X->getType() == Y->getType() &&
250          "Arguments must be the same type. (Did you forget to make sure both "
251          "arguments have the same integer width?)");
252
253   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
254   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
255   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
256   return CGF.Builder.CreateExtractValue(Tmp, 0);
257 }
258
259 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
260                                         unsigned BuiltinID, const CallExpr *E,
261                                         ReturnValueSlot ReturnValue) {
262   // See if we can constant fold this builtin.  If so, don't emit it at all.
263   Expr::EvalResult Result;
264   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
265       !Result.hasSideEffects()) {
266     if (Result.Val.isInt())
267       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
268                                                 Result.Val.getInt()));
269     if (Result.Val.isFloat())
270       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
271                                                Result.Val.getFloat()));
272   }
273
274   switch (BuiltinID) {
275   default: break;  // Handle intrinsics and libm functions below.
276   case Builtin::BI__builtin___CFStringMakeConstantString:
277   case Builtin::BI__builtin___NSStringMakeConstantString:
278     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), nullptr));
279   case Builtin::BI__builtin_stdarg_start:
280   case Builtin::BI__builtin_va_start:
281   case Builtin::BI__va_start:
282   case Builtin::BI__builtin_va_end: {
283     Value *ArgValue = (BuiltinID == Builtin::BI__va_start)
284                           ? EmitScalarExpr(E->getArg(0))
285                           : EmitVAListRef(E->getArg(0));
286     llvm::Type *DestType = Int8PtrTy;
287     if (ArgValue->getType() != DestType)
288       ArgValue = Builder.CreateBitCast(ArgValue, DestType,
289                                        ArgValue->getName().data());
290
291     Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
292       Intrinsic::vaend : Intrinsic::vastart;
293     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
294   }
295   case Builtin::BI__builtin_va_copy: {
296     Value *DstPtr = EmitVAListRef(E->getArg(0));
297     Value *SrcPtr = EmitVAListRef(E->getArg(1));
298
299     llvm::Type *Type = Int8PtrTy;
300
301     DstPtr = Builder.CreateBitCast(DstPtr, Type);
302     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
303     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
304                                           {DstPtr, SrcPtr}));
305   }
306   case Builtin::BI__builtin_abs:
307   case Builtin::BI__builtin_labs:
308   case Builtin::BI__builtin_llabs: {
309     Value *ArgValue = EmitScalarExpr(E->getArg(0));
310
311     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
312     Value *CmpResult =
313     Builder.CreateICmpSGE(ArgValue,
314                           llvm::Constant::getNullValue(ArgValue->getType()),
315                                                             "abscond");
316     Value *Result =
317       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
318
319     return RValue::get(Result);
320   }
321   case Builtin::BI__builtin_fabs:
322   case Builtin::BI__builtin_fabsf:
323   case Builtin::BI__builtin_fabsl: {
324     Value *Arg1 = EmitScalarExpr(E->getArg(0));
325     Value *Result = EmitFAbs(*this, Arg1);
326     return RValue::get(Result);
327   }
328   case Builtin::BI__builtin_fmod:
329   case Builtin::BI__builtin_fmodf:
330   case Builtin::BI__builtin_fmodl: {
331     Value *Arg1 = EmitScalarExpr(E->getArg(0));
332     Value *Arg2 = EmitScalarExpr(E->getArg(1));
333     Value *Result = Builder.CreateFRem(Arg1, Arg2, "fmod");
334     return RValue::get(Result);
335   }
336
337   case Builtin::BI__builtin_conj:
338   case Builtin::BI__builtin_conjf:
339   case Builtin::BI__builtin_conjl: {
340     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
341     Value *Real = ComplexVal.first;
342     Value *Imag = ComplexVal.second;
343     Value *Zero =
344       Imag->getType()->isFPOrFPVectorTy()
345         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
346         : llvm::Constant::getNullValue(Imag->getType());
347
348     Imag = Builder.CreateFSub(Zero, Imag, "sub");
349     return RValue::getComplex(std::make_pair(Real, Imag));
350   }
351   case Builtin::BI__builtin_creal:
352   case Builtin::BI__builtin_crealf:
353   case Builtin::BI__builtin_creall:
354   case Builtin::BIcreal:
355   case Builtin::BIcrealf:
356   case Builtin::BIcreall: {
357     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
358     return RValue::get(ComplexVal.first);
359   }
360
361   case Builtin::BI__builtin_cimag:
362   case Builtin::BI__builtin_cimagf:
363   case Builtin::BI__builtin_cimagl:
364   case Builtin::BIcimag:
365   case Builtin::BIcimagf:
366   case Builtin::BIcimagl: {
367     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
368     return RValue::get(ComplexVal.second);
369   }
370
371   case Builtin::BI__builtin_ctzs:
372   case Builtin::BI__builtin_ctz:
373   case Builtin::BI__builtin_ctzl:
374   case Builtin::BI__builtin_ctzll: {
375     Value *ArgValue = EmitScalarExpr(E->getArg(0));
376
377     llvm::Type *ArgType = ArgValue->getType();
378     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
379
380     llvm::Type *ResultType = ConvertType(E->getType());
381     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
382     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
383     if (Result->getType() != ResultType)
384       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
385                                      "cast");
386     return RValue::get(Result);
387   }
388   case Builtin::BI__builtin_clzs:
389   case Builtin::BI__builtin_clz:
390   case Builtin::BI__builtin_clzl:
391   case Builtin::BI__builtin_clzll: {
392     Value *ArgValue = EmitScalarExpr(E->getArg(0));
393
394     llvm::Type *ArgType = ArgValue->getType();
395     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
396
397     llvm::Type *ResultType = ConvertType(E->getType());
398     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
399     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
400     if (Result->getType() != ResultType)
401       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
402                                      "cast");
403     return RValue::get(Result);
404   }
405   case Builtin::BI__builtin_ffs:
406   case Builtin::BI__builtin_ffsl:
407   case Builtin::BI__builtin_ffsll: {
408     // ffs(x) -> x ? cttz(x) + 1 : 0
409     Value *ArgValue = EmitScalarExpr(E->getArg(0));
410
411     llvm::Type *ArgType = ArgValue->getType();
412     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
413
414     llvm::Type *ResultType = ConvertType(E->getType());
415     Value *Tmp =
416         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
417                           llvm::ConstantInt::get(ArgType, 1));
418     Value *Zero = llvm::Constant::getNullValue(ArgType);
419     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
420     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
421     if (Result->getType() != ResultType)
422       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
423                                      "cast");
424     return RValue::get(Result);
425   }
426   case Builtin::BI__builtin_parity:
427   case Builtin::BI__builtin_parityl:
428   case Builtin::BI__builtin_parityll: {
429     // parity(x) -> ctpop(x) & 1
430     Value *ArgValue = EmitScalarExpr(E->getArg(0));
431
432     llvm::Type *ArgType = ArgValue->getType();
433     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
434
435     llvm::Type *ResultType = ConvertType(E->getType());
436     Value *Tmp = Builder.CreateCall(F, ArgValue);
437     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
438     if (Result->getType() != ResultType)
439       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
440                                      "cast");
441     return RValue::get(Result);
442   }
443   case Builtin::BI__builtin_popcount:
444   case Builtin::BI__builtin_popcountl:
445   case Builtin::BI__builtin_popcountll: {
446     Value *ArgValue = EmitScalarExpr(E->getArg(0));
447
448     llvm::Type *ArgType = ArgValue->getType();
449     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
450
451     llvm::Type *ResultType = ConvertType(E->getType());
452     Value *Result = Builder.CreateCall(F, ArgValue);
453     if (Result->getType() != ResultType)
454       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
455                                      "cast");
456     return RValue::get(Result);
457   }
458   case Builtin::BI__builtin_expect: {
459     Value *ArgValue = EmitScalarExpr(E->getArg(0));
460     llvm::Type *ArgType = ArgValue->getType();
461
462     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
463     // Don't generate llvm.expect on -O0 as the backend won't use it for
464     // anything.
465     // Note, we still IRGen ExpectedValue because it could have side-effects.
466     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
467       return RValue::get(ArgValue);
468
469     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
470     Value *Result =
471         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
472     return RValue::get(Result);
473   }
474   case Builtin::BI__builtin_assume_aligned: {
475     Value *PtrValue = EmitScalarExpr(E->getArg(0));
476     Value *OffsetValue =
477       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
478
479     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
480     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
481     unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
482
483     EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
484     return RValue::get(PtrValue);
485   }
486   case Builtin::BI__assume:
487   case Builtin::BI__builtin_assume: {
488     if (E->getArg(0)->HasSideEffects(getContext()))
489       return RValue::get(nullptr);
490
491     Value *ArgValue = EmitScalarExpr(E->getArg(0));
492     Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
493     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
494   }
495   case Builtin::BI__builtin_bswap16:
496   case Builtin::BI__builtin_bswap32:
497   case Builtin::BI__builtin_bswap64: {
498     Value *ArgValue = EmitScalarExpr(E->getArg(0));
499     llvm::Type *ArgType = ArgValue->getType();
500     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
501     return RValue::get(Builder.CreateCall(F, ArgValue));
502   }
503   case Builtin::BI__builtin_object_size: {
504     // We rely on constant folding to deal with expressions with side effects.
505     assert(!E->getArg(0)->HasSideEffects(getContext()) &&
506            "should have been constant folded");
507
508     // We pass this builtin onto the optimizer so that it can
509     // figure out the object size in more complex cases.
510     llvm::Type *ResType = ConvertType(E->getType());
511
512     // LLVM only supports 0 and 2, make sure that we pass along that
513     // as a boolean.
514     Value *Ty = EmitScalarExpr(E->getArg(1));
515     ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
516     assert(CI);
517     uint64_t val = CI->getZExtValue();
518     CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
519     // FIXME: Get right address space.
520     llvm::Type *Tys[] = { ResType, Builder.getInt8PtrTy(0) };
521     Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
522     return RValue::get(
523         Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0)), CI}));
524   }
525   case Builtin::BI__builtin_prefetch: {
526     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
527     // FIXME: Technically these constants should of type 'int', yes?
528     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
529       llvm::ConstantInt::get(Int32Ty, 0);
530     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
531       llvm::ConstantInt::get(Int32Ty, 3);
532     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
533     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
534     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
535   }
536   case Builtin::BI__builtin_readcyclecounter: {
537     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
538     return RValue::get(Builder.CreateCall(F));
539   }
540   case Builtin::BI__builtin___clear_cache: {
541     Value *Begin = EmitScalarExpr(E->getArg(0));
542     Value *End = EmitScalarExpr(E->getArg(1));
543     Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
544     return RValue::get(Builder.CreateCall(F, {Begin, End}));
545   }
546   case Builtin::BI__builtin_trap:
547     return RValue::get(EmitTrapCall(Intrinsic::trap));
548   case Builtin::BI__debugbreak:
549     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
550   case Builtin::BI__builtin_unreachable: {
551     if (SanOpts.has(SanitizerKind::Unreachable)) {
552       SanitizerScope SanScope(this);
553       EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
554                                SanitizerKind::Unreachable),
555                 "builtin_unreachable", EmitCheckSourceLocation(E->getExprLoc()),
556                 None);
557     } else
558       Builder.CreateUnreachable();
559
560     // We do need to preserve an insertion point.
561     EmitBlock(createBasicBlock("unreachable.cont"));
562
563     return RValue::get(nullptr);
564   }
565
566   case Builtin::BI__builtin_powi:
567   case Builtin::BI__builtin_powif:
568   case Builtin::BI__builtin_powil: {
569     Value *Base = EmitScalarExpr(E->getArg(0));
570     Value *Exponent = EmitScalarExpr(E->getArg(1));
571     llvm::Type *ArgType = Base->getType();
572     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
573     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
574   }
575
576   case Builtin::BI__builtin_isgreater:
577   case Builtin::BI__builtin_isgreaterequal:
578   case Builtin::BI__builtin_isless:
579   case Builtin::BI__builtin_islessequal:
580   case Builtin::BI__builtin_islessgreater:
581   case Builtin::BI__builtin_isunordered: {
582     // Ordered comparisons: we know the arguments to these are matching scalar
583     // floating point values.
584     Value *LHS = EmitScalarExpr(E->getArg(0));
585     Value *RHS = EmitScalarExpr(E->getArg(1));
586
587     switch (BuiltinID) {
588     default: llvm_unreachable("Unknown ordered comparison");
589     case Builtin::BI__builtin_isgreater:
590       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
591       break;
592     case Builtin::BI__builtin_isgreaterequal:
593       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
594       break;
595     case Builtin::BI__builtin_isless:
596       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
597       break;
598     case Builtin::BI__builtin_islessequal:
599       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
600       break;
601     case Builtin::BI__builtin_islessgreater:
602       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
603       break;
604     case Builtin::BI__builtin_isunordered:
605       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
606       break;
607     }
608     // ZExt bool to int type.
609     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
610   }
611   case Builtin::BI__builtin_isnan: {
612     Value *V = EmitScalarExpr(E->getArg(0));
613     V = Builder.CreateFCmpUNO(V, V, "cmp");
614     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
615   }
616
617   case Builtin::BI__builtin_isinf: {
618     // isinf(x) --> fabs(x) == infinity
619     Value *V = EmitScalarExpr(E->getArg(0));
620     V = EmitFAbs(*this, V);
621
622     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
623     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
624   }
625
626   case Builtin::BI__builtin_isinf_sign: {
627     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
628     Value *Arg = EmitScalarExpr(E->getArg(0));
629     Value *AbsArg = EmitFAbs(*this, Arg);
630     Value *IsInf = Builder.CreateFCmpOEQ(
631         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
632     Value *IsNeg = EmitSignBit(*this, Arg);
633
634     llvm::Type *IntTy = ConvertType(E->getType());
635     Value *Zero = Constant::getNullValue(IntTy);
636     Value *One = ConstantInt::get(IntTy, 1);
637     Value *NegativeOne = ConstantInt::get(IntTy, -1);
638     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
639     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
640     return RValue::get(Result);
641   }
642
643   case Builtin::BI__builtin_isnormal: {
644     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
645     Value *V = EmitScalarExpr(E->getArg(0));
646     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
647
648     Value *Abs = EmitFAbs(*this, V);
649     Value *IsLessThanInf =
650       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
651     APFloat Smallest = APFloat::getSmallestNormalized(
652                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
653     Value *IsNormal =
654       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
655                             "isnormal");
656     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
657     V = Builder.CreateAnd(V, IsNormal, "and");
658     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
659   }
660
661   case Builtin::BI__builtin_isfinite: {
662     // isfinite(x) --> x == x && fabs(x) != infinity;
663     Value *V = EmitScalarExpr(E->getArg(0));
664     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
665
666     Value *Abs = EmitFAbs(*this, V);
667     Value *IsNotInf =
668       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
669
670     V = Builder.CreateAnd(Eq, IsNotInf, "and");
671     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
672   }
673
674   case Builtin::BI__builtin_fpclassify: {
675     Value *V = EmitScalarExpr(E->getArg(5));
676     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
677
678     // Create Result
679     BasicBlock *Begin = Builder.GetInsertBlock();
680     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
681     Builder.SetInsertPoint(End);
682     PHINode *Result =
683       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
684                         "fpclassify_result");
685
686     // if (V==0) return FP_ZERO
687     Builder.SetInsertPoint(Begin);
688     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
689                                           "iszero");
690     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
691     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
692     Builder.CreateCondBr(IsZero, End, NotZero);
693     Result->addIncoming(ZeroLiteral, Begin);
694
695     // if (V != V) return FP_NAN
696     Builder.SetInsertPoint(NotZero);
697     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
698     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
699     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
700     Builder.CreateCondBr(IsNan, End, NotNan);
701     Result->addIncoming(NanLiteral, NotZero);
702
703     // if (fabs(V) == infinity) return FP_INFINITY
704     Builder.SetInsertPoint(NotNan);
705     Value *VAbs = EmitFAbs(*this, V);
706     Value *IsInf =
707       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
708                             "isinf");
709     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
710     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
711     Builder.CreateCondBr(IsInf, End, NotInf);
712     Result->addIncoming(InfLiteral, NotNan);
713
714     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
715     Builder.SetInsertPoint(NotInf);
716     APFloat Smallest = APFloat::getSmallestNormalized(
717         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
718     Value *IsNormal =
719       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
720                             "isnormal");
721     Value *NormalResult =
722       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
723                            EmitScalarExpr(E->getArg(3)));
724     Builder.CreateBr(End);
725     Result->addIncoming(NormalResult, NotInf);
726
727     // return Result
728     Builder.SetInsertPoint(End);
729     return RValue::get(Result);
730   }
731
732   case Builtin::BIalloca:
733   case Builtin::BI_alloca:
734   case Builtin::BI__builtin_alloca: {
735     Value *Size = EmitScalarExpr(E->getArg(0));
736     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
737   }
738   case Builtin::BIbzero:
739   case Builtin::BI__builtin_bzero: {
740     std::pair<llvm::Value*, unsigned> Dest =
741         EmitPointerWithAlignment(E->getArg(0));
742     Value *SizeVal = EmitScalarExpr(E->getArg(1));
743     EmitNonNullArgCheck(RValue::get(Dest.first), E->getArg(0)->getType(),
744                         E->getArg(0)->getExprLoc(), FD, 0);
745     Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
746                          Dest.second, false);
747     return RValue::get(Dest.first);
748   }
749   case Builtin::BImemcpy:
750   case Builtin::BI__builtin_memcpy: {
751     std::pair<llvm::Value*, unsigned> Dest =
752         EmitPointerWithAlignment(E->getArg(0));
753     std::pair<llvm::Value*, unsigned> Src =
754         EmitPointerWithAlignment(E->getArg(1));
755     Value *SizeVal = EmitScalarExpr(E->getArg(2));
756     unsigned Align = std::min(Dest.second, Src.second);
757     EmitNonNullArgCheck(RValue::get(Dest.first), E->getArg(0)->getType(),
758                         E->getArg(0)->getExprLoc(), FD, 0);
759     EmitNonNullArgCheck(RValue::get(Src.first), E->getArg(1)->getType(),
760                         E->getArg(1)->getExprLoc(), FD, 1);
761     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
762     return RValue::get(Dest.first);
763   }
764
765   case Builtin::BI__builtin___memcpy_chk: {
766     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
767     llvm::APSInt Size, DstSize;
768     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
769         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
770       break;
771     if (Size.ugt(DstSize))
772       break;
773     std::pair<llvm::Value*, unsigned> Dest =
774         EmitPointerWithAlignment(E->getArg(0));
775     std::pair<llvm::Value*, unsigned> Src =
776         EmitPointerWithAlignment(E->getArg(1));
777     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
778     unsigned Align = std::min(Dest.second, Src.second);
779     Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
780     return RValue::get(Dest.first);
781   }
782
783   case Builtin::BI__builtin_objc_memmove_collectable: {
784     Value *Address = EmitScalarExpr(E->getArg(0));
785     Value *SrcAddr = EmitScalarExpr(E->getArg(1));
786     Value *SizeVal = EmitScalarExpr(E->getArg(2));
787     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
788                                                   Address, SrcAddr, SizeVal);
789     return RValue::get(Address);
790   }
791
792   case Builtin::BI__builtin___memmove_chk: {
793     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
794     llvm::APSInt Size, DstSize;
795     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
796         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
797       break;
798     if (Size.ugt(DstSize))
799       break;
800     std::pair<llvm::Value*, unsigned> Dest =
801         EmitPointerWithAlignment(E->getArg(0));
802     std::pair<llvm::Value*, unsigned> Src =
803         EmitPointerWithAlignment(E->getArg(1));
804     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
805     unsigned Align = std::min(Dest.second, Src.second);
806     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
807     return RValue::get(Dest.first);
808   }
809
810   case Builtin::BImemmove:
811   case Builtin::BI__builtin_memmove: {
812     std::pair<llvm::Value*, unsigned> Dest =
813         EmitPointerWithAlignment(E->getArg(0));
814     std::pair<llvm::Value*, unsigned> Src =
815         EmitPointerWithAlignment(E->getArg(1));
816     Value *SizeVal = EmitScalarExpr(E->getArg(2));
817     unsigned Align = std::min(Dest.second, Src.second);
818     EmitNonNullArgCheck(RValue::get(Dest.first), E->getArg(0)->getType(),
819                         E->getArg(0)->getExprLoc(), FD, 0);
820     EmitNonNullArgCheck(RValue::get(Src.first), E->getArg(1)->getType(),
821                         E->getArg(1)->getExprLoc(), FD, 1);
822     Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
823     return RValue::get(Dest.first);
824   }
825   case Builtin::BImemset:
826   case Builtin::BI__builtin_memset: {
827     std::pair<llvm::Value*, unsigned> Dest =
828         EmitPointerWithAlignment(E->getArg(0));
829     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
830                                          Builder.getInt8Ty());
831     Value *SizeVal = EmitScalarExpr(E->getArg(2));
832     EmitNonNullArgCheck(RValue::get(Dest.first), E->getArg(0)->getType(),
833                         E->getArg(0)->getExprLoc(), FD, 0);
834     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
835     return RValue::get(Dest.first);
836   }
837   case Builtin::BI__builtin___memset_chk: {
838     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
839     llvm::APSInt Size, DstSize;
840     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
841         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
842       break;
843     if (Size.ugt(DstSize))
844       break;
845     std::pair<llvm::Value*, unsigned> Dest =
846         EmitPointerWithAlignment(E->getArg(0));
847     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
848                                          Builder.getInt8Ty());
849     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
850     Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
851     return RValue::get(Dest.first);
852   }
853   case Builtin::BI__builtin_dwarf_cfa: {
854     // The offset in bytes from the first argument to the CFA.
855     //
856     // Why on earth is this in the frontend?  Is there any reason at
857     // all that the backend can't reasonably determine this while
858     // lowering llvm.eh.dwarf.cfa()?
859     //
860     // TODO: If there's a satisfactory reason, add a target hook for
861     // this instead of hard-coding 0, which is correct for most targets.
862     int32_t Offset = 0;
863
864     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
865     return RValue::get(Builder.CreateCall(F,
866                                       llvm::ConstantInt::get(Int32Ty, Offset)));
867   }
868   case Builtin::BI__builtin_return_address: {
869     Value *Depth = EmitScalarExpr(E->getArg(0));
870     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
871     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
872     return RValue::get(Builder.CreateCall(F, Depth));
873   }
874   case Builtin::BI__builtin_frame_address: {
875     Value *Depth = EmitScalarExpr(E->getArg(0));
876     Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
877     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
878     return RValue::get(Builder.CreateCall(F, Depth));
879   }
880   case Builtin::BI__builtin_extract_return_addr: {
881     Value *Address = EmitScalarExpr(E->getArg(0));
882     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
883     return RValue::get(Result);
884   }
885   case Builtin::BI__builtin_frob_return_addr: {
886     Value *Address = EmitScalarExpr(E->getArg(0));
887     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
888     return RValue::get(Result);
889   }
890   case Builtin::BI__builtin_dwarf_sp_column: {
891     llvm::IntegerType *Ty
892       = cast<llvm::IntegerType>(ConvertType(E->getType()));
893     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
894     if (Column == -1) {
895       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
896       return RValue::get(llvm::UndefValue::get(Ty));
897     }
898     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
899   }
900   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
901     Value *Address = EmitScalarExpr(E->getArg(0));
902     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
903       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
904     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
905   }
906   case Builtin::BI__builtin_eh_return: {
907     Value *Int = EmitScalarExpr(E->getArg(0));
908     Value *Ptr = EmitScalarExpr(E->getArg(1));
909
910     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
911     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
912            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
913     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
914                                   ? Intrinsic::eh_return_i32
915                                   : Intrinsic::eh_return_i64);
916     Builder.CreateCall(F, {Int, Ptr});
917     Builder.CreateUnreachable();
918
919     // We do need to preserve an insertion point.
920     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
921
922     return RValue::get(nullptr);
923   }
924   case Builtin::BI__builtin_unwind_init: {
925     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
926     return RValue::get(Builder.CreateCall(F));
927   }
928   case Builtin::BI__builtin_extend_pointer: {
929     // Extends a pointer to the size of an _Unwind_Word, which is
930     // uint64_t on all platforms.  Generally this gets poked into a
931     // register and eventually used as an address, so if the
932     // addressing registers are wider than pointers and the platform
933     // doesn't implicitly ignore high-order bits when doing
934     // addressing, we need to make sure we zext / sext based on
935     // the platform's expectations.
936     //
937     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
938
939     // Cast the pointer to intptr_t.
940     Value *Ptr = EmitScalarExpr(E->getArg(0));
941     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
942
943     // If that's 64 bits, we're done.
944     if (IntPtrTy->getBitWidth() == 64)
945       return RValue::get(Result);
946
947     // Otherwise, ask the codegen data what to do.
948     if (getTargetHooks().extendPointerWithSExt())
949       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
950     else
951       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
952   }
953   case Builtin::BI__builtin_setjmp: {
954     // Buffer is a void**.
955     Value *Buf = EmitScalarExpr(E->getArg(0));
956
957     // Store the frame pointer to the setjmp buffer.
958     Value *FrameAddr =
959       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
960                          ConstantInt::get(Int32Ty, 0));
961     Builder.CreateStore(FrameAddr, Buf);
962
963     // Store the stack pointer to the setjmp buffer.
964     Value *StackAddr =
965         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
966     Value *StackSaveSlot =
967       Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
968     Builder.CreateStore(StackAddr, StackSaveSlot);
969
970     // Call LLVM's EH setjmp, which is lightweight.
971     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
972     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
973     return RValue::get(Builder.CreateCall(F, Buf));
974   }
975   case Builtin::BI__builtin_longjmp: {
976     Value *Buf = EmitScalarExpr(E->getArg(0));
977     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
978
979     // Call LLVM's EH longjmp, which is lightweight.
980     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
981
982     // longjmp doesn't return; mark this as unreachable.
983     Builder.CreateUnreachable();
984
985     // We do need to preserve an insertion point.
986     EmitBlock(createBasicBlock("longjmp.cont"));
987
988     return RValue::get(nullptr);
989   }
990   case Builtin::BI__sync_fetch_and_add:
991   case Builtin::BI__sync_fetch_and_sub:
992   case Builtin::BI__sync_fetch_and_or:
993   case Builtin::BI__sync_fetch_and_and:
994   case Builtin::BI__sync_fetch_and_xor:
995   case Builtin::BI__sync_fetch_and_nand:
996   case Builtin::BI__sync_add_and_fetch:
997   case Builtin::BI__sync_sub_and_fetch:
998   case Builtin::BI__sync_and_and_fetch:
999   case Builtin::BI__sync_or_and_fetch:
1000   case Builtin::BI__sync_xor_and_fetch:
1001   case Builtin::BI__sync_nand_and_fetch:
1002   case Builtin::BI__sync_val_compare_and_swap:
1003   case Builtin::BI__sync_bool_compare_and_swap:
1004   case Builtin::BI__sync_lock_test_and_set:
1005   case Builtin::BI__sync_lock_release:
1006   case Builtin::BI__sync_swap:
1007     llvm_unreachable("Shouldn't make it through sema");
1008   case Builtin::BI__sync_fetch_and_add_1:
1009   case Builtin::BI__sync_fetch_and_add_2:
1010   case Builtin::BI__sync_fetch_and_add_4:
1011   case Builtin::BI__sync_fetch_and_add_8:
1012   case Builtin::BI__sync_fetch_and_add_16:
1013     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
1014   case Builtin::BI__sync_fetch_and_sub_1:
1015   case Builtin::BI__sync_fetch_and_sub_2:
1016   case Builtin::BI__sync_fetch_and_sub_4:
1017   case Builtin::BI__sync_fetch_and_sub_8:
1018   case Builtin::BI__sync_fetch_and_sub_16:
1019     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
1020   case Builtin::BI__sync_fetch_and_or_1:
1021   case Builtin::BI__sync_fetch_and_or_2:
1022   case Builtin::BI__sync_fetch_and_or_4:
1023   case Builtin::BI__sync_fetch_and_or_8:
1024   case Builtin::BI__sync_fetch_and_or_16:
1025     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
1026   case Builtin::BI__sync_fetch_and_and_1:
1027   case Builtin::BI__sync_fetch_and_and_2:
1028   case Builtin::BI__sync_fetch_and_and_4:
1029   case Builtin::BI__sync_fetch_and_and_8:
1030   case Builtin::BI__sync_fetch_and_and_16:
1031     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
1032   case Builtin::BI__sync_fetch_and_xor_1:
1033   case Builtin::BI__sync_fetch_and_xor_2:
1034   case Builtin::BI__sync_fetch_and_xor_4:
1035   case Builtin::BI__sync_fetch_and_xor_8:
1036   case Builtin::BI__sync_fetch_and_xor_16:
1037     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
1038   case Builtin::BI__sync_fetch_and_nand_1:
1039   case Builtin::BI__sync_fetch_and_nand_2:
1040   case Builtin::BI__sync_fetch_and_nand_4:
1041   case Builtin::BI__sync_fetch_and_nand_8:
1042   case Builtin::BI__sync_fetch_and_nand_16:
1043     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
1044
1045   // Clang extensions: not overloaded yet.
1046   case Builtin::BI__sync_fetch_and_min:
1047     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
1048   case Builtin::BI__sync_fetch_and_max:
1049     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
1050   case Builtin::BI__sync_fetch_and_umin:
1051     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
1052   case Builtin::BI__sync_fetch_and_umax:
1053     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
1054
1055   case Builtin::BI__sync_add_and_fetch_1:
1056   case Builtin::BI__sync_add_and_fetch_2:
1057   case Builtin::BI__sync_add_and_fetch_4:
1058   case Builtin::BI__sync_add_and_fetch_8:
1059   case Builtin::BI__sync_add_and_fetch_16:
1060     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
1061                                 llvm::Instruction::Add);
1062   case Builtin::BI__sync_sub_and_fetch_1:
1063   case Builtin::BI__sync_sub_and_fetch_2:
1064   case Builtin::BI__sync_sub_and_fetch_4:
1065   case Builtin::BI__sync_sub_and_fetch_8:
1066   case Builtin::BI__sync_sub_and_fetch_16:
1067     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
1068                                 llvm::Instruction::Sub);
1069   case Builtin::BI__sync_and_and_fetch_1:
1070   case Builtin::BI__sync_and_and_fetch_2:
1071   case Builtin::BI__sync_and_and_fetch_4:
1072   case Builtin::BI__sync_and_and_fetch_8:
1073   case Builtin::BI__sync_and_and_fetch_16:
1074     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
1075                                 llvm::Instruction::And);
1076   case Builtin::BI__sync_or_and_fetch_1:
1077   case Builtin::BI__sync_or_and_fetch_2:
1078   case Builtin::BI__sync_or_and_fetch_4:
1079   case Builtin::BI__sync_or_and_fetch_8:
1080   case Builtin::BI__sync_or_and_fetch_16:
1081     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
1082                                 llvm::Instruction::Or);
1083   case Builtin::BI__sync_xor_and_fetch_1:
1084   case Builtin::BI__sync_xor_and_fetch_2:
1085   case Builtin::BI__sync_xor_and_fetch_4:
1086   case Builtin::BI__sync_xor_and_fetch_8:
1087   case Builtin::BI__sync_xor_and_fetch_16:
1088     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
1089                                 llvm::Instruction::Xor);
1090   case Builtin::BI__sync_nand_and_fetch_1:
1091   case Builtin::BI__sync_nand_and_fetch_2:
1092   case Builtin::BI__sync_nand_and_fetch_4:
1093   case Builtin::BI__sync_nand_and_fetch_8:
1094   case Builtin::BI__sync_nand_and_fetch_16:
1095     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
1096                                 llvm::Instruction::And, true);
1097
1098   case Builtin::BI__sync_val_compare_and_swap_1:
1099   case Builtin::BI__sync_val_compare_and_swap_2:
1100   case Builtin::BI__sync_val_compare_and_swap_4:
1101   case Builtin::BI__sync_val_compare_and_swap_8:
1102   case Builtin::BI__sync_val_compare_and_swap_16:
1103     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
1104
1105   case Builtin::BI__sync_bool_compare_and_swap_1:
1106   case Builtin::BI__sync_bool_compare_and_swap_2:
1107   case Builtin::BI__sync_bool_compare_and_swap_4:
1108   case Builtin::BI__sync_bool_compare_and_swap_8:
1109   case Builtin::BI__sync_bool_compare_and_swap_16:
1110     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
1111
1112   case Builtin::BI__sync_swap_1:
1113   case Builtin::BI__sync_swap_2:
1114   case Builtin::BI__sync_swap_4:
1115   case Builtin::BI__sync_swap_8:
1116   case Builtin::BI__sync_swap_16:
1117     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1118
1119   case Builtin::BI__sync_lock_test_and_set_1:
1120   case Builtin::BI__sync_lock_test_and_set_2:
1121   case Builtin::BI__sync_lock_test_and_set_4:
1122   case Builtin::BI__sync_lock_test_and_set_8:
1123   case Builtin::BI__sync_lock_test_and_set_16:
1124     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1125
1126   case Builtin::BI__sync_lock_release_1:
1127   case Builtin::BI__sync_lock_release_2:
1128   case Builtin::BI__sync_lock_release_4:
1129   case Builtin::BI__sync_lock_release_8:
1130   case Builtin::BI__sync_lock_release_16: {
1131     Value *Ptr = EmitScalarExpr(E->getArg(0));
1132     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1133     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1134     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1135                                              StoreSize.getQuantity() * 8);
1136     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1137     llvm::StoreInst *Store =
1138       Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
1139     Store->setAlignment(StoreSize.getQuantity());
1140     Store->setAtomic(llvm::Release);
1141     return RValue::get(nullptr);
1142   }
1143
1144   case Builtin::BI__sync_synchronize: {
1145     // We assume this is supposed to correspond to a C++0x-style
1146     // sequentially-consistent fence (i.e. this is only usable for
1147     // synchonization, not device I/O or anything like that). This intrinsic
1148     // is really badly designed in the sense that in theory, there isn't
1149     // any way to safely use it... but in practice, it mostly works
1150     // to use it with non-atomic loads and stores to get acquire/release
1151     // semantics.
1152     Builder.CreateFence(llvm::SequentiallyConsistent);
1153     return RValue::get(nullptr);
1154   }
1155
1156   case Builtin::BI__c11_atomic_is_lock_free:
1157   case Builtin::BI__atomic_is_lock_free: {
1158     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1159     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1160     // _Atomic(T) is always properly-aligned.
1161     const char *LibCallName = "__atomic_is_lock_free";
1162     CallArgList Args;
1163     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1164              getContext().getSizeType());
1165     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1166       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1167                getContext().VoidPtrTy);
1168     else
1169       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1170                getContext().VoidPtrTy);
1171     const CGFunctionInfo &FuncInfo =
1172         CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1173                                                FunctionType::ExtInfo(),
1174                                                RequiredArgs::All);
1175     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1176     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1177     return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1178   }
1179
1180   case Builtin::BI__atomic_test_and_set: {
1181     // Look at the argument type to determine whether this is a volatile
1182     // operation. The parameter type is always volatile.
1183     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1184     bool Volatile =
1185         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1186
1187     Value *Ptr = EmitScalarExpr(E->getArg(0));
1188     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1189     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1190     Value *NewVal = Builder.getInt8(1);
1191     Value *Order = EmitScalarExpr(E->getArg(1));
1192     if (isa<llvm::ConstantInt>(Order)) {
1193       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1194       AtomicRMWInst *Result = nullptr;
1195       switch (ord) {
1196       case 0:  // memory_order_relaxed
1197       default: // invalid order
1198         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1199                                          Ptr, NewVal,
1200                                          llvm::Monotonic);
1201         break;
1202       case 1:  // memory_order_consume
1203       case 2:  // memory_order_acquire
1204         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1205                                          Ptr, NewVal,
1206                                          llvm::Acquire);
1207         break;
1208       case 3:  // memory_order_release
1209         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1210                                          Ptr, NewVal,
1211                                          llvm::Release);
1212         break;
1213       case 4:  // memory_order_acq_rel
1214         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1215                                          Ptr, NewVal,
1216                                          llvm::AcquireRelease);
1217         break;
1218       case 5:  // memory_order_seq_cst
1219         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1220                                          Ptr, NewVal,
1221                                          llvm::SequentiallyConsistent);
1222         break;
1223       }
1224       Result->setVolatile(Volatile);
1225       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1226     }
1227
1228     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1229
1230     llvm::BasicBlock *BBs[5] = {
1231       createBasicBlock("monotonic", CurFn),
1232       createBasicBlock("acquire", CurFn),
1233       createBasicBlock("release", CurFn),
1234       createBasicBlock("acqrel", CurFn),
1235       createBasicBlock("seqcst", CurFn)
1236     };
1237     llvm::AtomicOrdering Orders[5] = {
1238       llvm::Monotonic, llvm::Acquire, llvm::Release,
1239       llvm::AcquireRelease, llvm::SequentiallyConsistent
1240     };
1241
1242     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1243     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1244
1245     Builder.SetInsertPoint(ContBB);
1246     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1247
1248     for (unsigned i = 0; i < 5; ++i) {
1249       Builder.SetInsertPoint(BBs[i]);
1250       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1251                                                    Ptr, NewVal, Orders[i]);
1252       RMW->setVolatile(Volatile);
1253       Result->addIncoming(RMW, BBs[i]);
1254       Builder.CreateBr(ContBB);
1255     }
1256
1257     SI->addCase(Builder.getInt32(0), BBs[0]);
1258     SI->addCase(Builder.getInt32(1), BBs[1]);
1259     SI->addCase(Builder.getInt32(2), BBs[1]);
1260     SI->addCase(Builder.getInt32(3), BBs[2]);
1261     SI->addCase(Builder.getInt32(4), BBs[3]);
1262     SI->addCase(Builder.getInt32(5), BBs[4]);
1263
1264     Builder.SetInsertPoint(ContBB);
1265     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1266   }
1267
1268   case Builtin::BI__atomic_clear: {
1269     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1270     bool Volatile =
1271         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1272
1273     Value *Ptr = EmitScalarExpr(E->getArg(0));
1274     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1275     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1276     Value *NewVal = Builder.getInt8(0);
1277     Value *Order = EmitScalarExpr(E->getArg(1));
1278     if (isa<llvm::ConstantInt>(Order)) {
1279       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1280       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1281       Store->setAlignment(1);
1282       switch (ord) {
1283       case 0:  // memory_order_relaxed
1284       default: // invalid order
1285         Store->setOrdering(llvm::Monotonic);
1286         break;
1287       case 3:  // memory_order_release
1288         Store->setOrdering(llvm::Release);
1289         break;
1290       case 5:  // memory_order_seq_cst
1291         Store->setOrdering(llvm::SequentiallyConsistent);
1292         break;
1293       }
1294       return RValue::get(nullptr);
1295     }
1296
1297     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1298
1299     llvm::BasicBlock *BBs[3] = {
1300       createBasicBlock("monotonic", CurFn),
1301       createBasicBlock("release", CurFn),
1302       createBasicBlock("seqcst", CurFn)
1303     };
1304     llvm::AtomicOrdering Orders[3] = {
1305       llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1306     };
1307
1308     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1309     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1310
1311     for (unsigned i = 0; i < 3; ++i) {
1312       Builder.SetInsertPoint(BBs[i]);
1313       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1314       Store->setAlignment(1);
1315       Store->setOrdering(Orders[i]);
1316       Builder.CreateBr(ContBB);
1317     }
1318
1319     SI->addCase(Builder.getInt32(0), BBs[0]);
1320     SI->addCase(Builder.getInt32(3), BBs[1]);
1321     SI->addCase(Builder.getInt32(5), BBs[2]);
1322
1323     Builder.SetInsertPoint(ContBB);
1324     return RValue::get(nullptr);
1325   }
1326
1327   case Builtin::BI__atomic_thread_fence:
1328   case Builtin::BI__atomic_signal_fence:
1329   case Builtin::BI__c11_atomic_thread_fence:
1330   case Builtin::BI__c11_atomic_signal_fence: {
1331     llvm::SynchronizationScope Scope;
1332     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1333         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1334       Scope = llvm::SingleThread;
1335     else
1336       Scope = llvm::CrossThread;
1337     Value *Order = EmitScalarExpr(E->getArg(0));
1338     if (isa<llvm::ConstantInt>(Order)) {
1339       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1340       switch (ord) {
1341       case 0:  // memory_order_relaxed
1342       default: // invalid order
1343         break;
1344       case 1:  // memory_order_consume
1345       case 2:  // memory_order_acquire
1346         Builder.CreateFence(llvm::Acquire, Scope);
1347         break;
1348       case 3:  // memory_order_release
1349         Builder.CreateFence(llvm::Release, Scope);
1350         break;
1351       case 4:  // memory_order_acq_rel
1352         Builder.CreateFence(llvm::AcquireRelease, Scope);
1353         break;
1354       case 5:  // memory_order_seq_cst
1355         Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1356         break;
1357       }
1358       return RValue::get(nullptr);
1359     }
1360
1361     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1362     AcquireBB = createBasicBlock("acquire", CurFn);
1363     ReleaseBB = createBasicBlock("release", CurFn);
1364     AcqRelBB = createBasicBlock("acqrel", CurFn);
1365     SeqCstBB = createBasicBlock("seqcst", CurFn);
1366     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1367
1368     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1369     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1370
1371     Builder.SetInsertPoint(AcquireBB);
1372     Builder.CreateFence(llvm::Acquire, Scope);
1373     Builder.CreateBr(ContBB);
1374     SI->addCase(Builder.getInt32(1), AcquireBB);
1375     SI->addCase(Builder.getInt32(2), AcquireBB);
1376
1377     Builder.SetInsertPoint(ReleaseBB);
1378     Builder.CreateFence(llvm::Release, Scope);
1379     Builder.CreateBr(ContBB);
1380     SI->addCase(Builder.getInt32(3), ReleaseBB);
1381
1382     Builder.SetInsertPoint(AcqRelBB);
1383     Builder.CreateFence(llvm::AcquireRelease, Scope);
1384     Builder.CreateBr(ContBB);
1385     SI->addCase(Builder.getInt32(4), AcqRelBB);
1386
1387     Builder.SetInsertPoint(SeqCstBB);
1388     Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1389     Builder.CreateBr(ContBB);
1390     SI->addCase(Builder.getInt32(5), SeqCstBB);
1391
1392     Builder.SetInsertPoint(ContBB);
1393     return RValue::get(nullptr);
1394   }
1395
1396     // Library functions with special handling.
1397   case Builtin::BIsqrt:
1398   case Builtin::BIsqrtf:
1399   case Builtin::BIsqrtl: {
1400     // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
1401     // in finite- or unsafe-math mode (the intrinsic has different semantics
1402     // for handling negative numbers compared to the library function, so
1403     // -fmath-errno=0 is not enough).
1404     if (!FD->hasAttr<ConstAttr>())
1405       break;
1406     if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
1407           CGM.getCodeGenOpts().NoNaNsFPMath))
1408       break;
1409     Value *Arg0 = EmitScalarExpr(E->getArg(0));
1410     llvm::Type *ArgType = Arg0->getType();
1411     Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
1412     return RValue::get(Builder.CreateCall(F, Arg0));
1413   }
1414
1415   case Builtin::BI__builtin_pow:
1416   case Builtin::BI__builtin_powf:
1417   case Builtin::BI__builtin_powl:
1418   case Builtin::BIpow:
1419   case Builtin::BIpowf:
1420   case Builtin::BIpowl: {
1421     // Transform a call to pow* into a @llvm.pow.* intrinsic call.
1422     if (!FD->hasAttr<ConstAttr>())
1423       break;
1424     Value *Base = EmitScalarExpr(E->getArg(0));
1425     Value *Exponent = EmitScalarExpr(E->getArg(1));
1426     llvm::Type *ArgType = Base->getType();
1427     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1428     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
1429   }
1430
1431   case Builtin::BIfma:
1432   case Builtin::BIfmaf:
1433   case Builtin::BIfmal:
1434   case Builtin::BI__builtin_fma:
1435   case Builtin::BI__builtin_fmaf:
1436   case Builtin::BI__builtin_fmal: {
1437     // Rewrite fma to intrinsic.
1438     Value *FirstArg = EmitScalarExpr(E->getArg(0));
1439     llvm::Type *ArgType = FirstArg->getType();
1440     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1441     return RValue::get(
1442         Builder.CreateCall(F, {FirstArg, EmitScalarExpr(E->getArg(1)),
1443                                EmitScalarExpr(E->getArg(2))}));
1444   }
1445
1446   case Builtin::BI__builtin_signbit:
1447   case Builtin::BI__builtin_signbitf:
1448   case Builtin::BI__builtin_signbitl: {
1449     return RValue::get(
1450         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
1451                            ConvertType(E->getType())));
1452   }
1453   case Builtin::BI__builtin_annotation: {
1454     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1455     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1456                                       AnnVal->getType());
1457
1458     // Get the annotation string, go through casts. Sema requires this to be a
1459     // non-wide string literal, potentially casted, so the cast<> is safe.
1460     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1461     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1462     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1463   }
1464   case Builtin::BI__builtin_addcb:
1465   case Builtin::BI__builtin_addcs:
1466   case Builtin::BI__builtin_addc:
1467   case Builtin::BI__builtin_addcl:
1468   case Builtin::BI__builtin_addcll:
1469   case Builtin::BI__builtin_subcb:
1470   case Builtin::BI__builtin_subcs:
1471   case Builtin::BI__builtin_subc:
1472   case Builtin::BI__builtin_subcl:
1473   case Builtin::BI__builtin_subcll: {
1474
1475     // We translate all of these builtins from expressions of the form:
1476     //   int x = ..., y = ..., carryin = ..., carryout, result;
1477     //   result = __builtin_addc(x, y, carryin, &carryout);
1478     //
1479     // to LLVM IR of the form:
1480     //
1481     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1482     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1483     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1484     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1485     //                                                       i32 %carryin)
1486     //   %result = extractvalue {i32, i1} %tmp2, 0
1487     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1488     //   %tmp3 = or i1 %carry1, %carry2
1489     //   %tmp4 = zext i1 %tmp3 to i32
1490     //   store i32 %tmp4, i32* %carryout
1491
1492     // Scalarize our inputs.
1493     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1494     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1495     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1496     std::pair<llvm::Value*, unsigned> CarryOutPtr =
1497       EmitPointerWithAlignment(E->getArg(3));
1498
1499     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1500     llvm::Intrinsic::ID IntrinsicId;
1501     switch (BuiltinID) {
1502     default: llvm_unreachable("Unknown multiprecision builtin id.");
1503     case Builtin::BI__builtin_addcb:
1504     case Builtin::BI__builtin_addcs:
1505     case Builtin::BI__builtin_addc:
1506     case Builtin::BI__builtin_addcl:
1507     case Builtin::BI__builtin_addcll:
1508       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1509       break;
1510     case Builtin::BI__builtin_subcb:
1511     case Builtin::BI__builtin_subcs:
1512     case Builtin::BI__builtin_subc:
1513     case Builtin::BI__builtin_subcl:
1514     case Builtin::BI__builtin_subcll:
1515       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1516       break;
1517     }
1518
1519     // Construct our resulting LLVM IR expression.
1520     llvm::Value *Carry1;
1521     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1522                                               X, Y, Carry1);
1523     llvm::Value *Carry2;
1524     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1525                                               Sum1, Carryin, Carry2);
1526     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1527                                                X->getType());
1528     llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
1529                                                          CarryOutPtr.first);
1530     CarryOutStore->setAlignment(CarryOutPtr.second);
1531     return RValue::get(Sum2);
1532   }
1533   case Builtin::BI__builtin_uadd_overflow:
1534   case Builtin::BI__builtin_uaddl_overflow:
1535   case Builtin::BI__builtin_uaddll_overflow:
1536   case Builtin::BI__builtin_usub_overflow:
1537   case Builtin::BI__builtin_usubl_overflow:
1538   case Builtin::BI__builtin_usubll_overflow:
1539   case Builtin::BI__builtin_umul_overflow:
1540   case Builtin::BI__builtin_umull_overflow:
1541   case Builtin::BI__builtin_umulll_overflow:
1542   case Builtin::BI__builtin_sadd_overflow:
1543   case Builtin::BI__builtin_saddl_overflow:
1544   case Builtin::BI__builtin_saddll_overflow:
1545   case Builtin::BI__builtin_ssub_overflow:
1546   case Builtin::BI__builtin_ssubl_overflow:
1547   case Builtin::BI__builtin_ssubll_overflow:
1548   case Builtin::BI__builtin_smul_overflow:
1549   case Builtin::BI__builtin_smull_overflow:
1550   case Builtin::BI__builtin_smulll_overflow: {
1551
1552     // We translate all of these builtins directly to the relevant llvm IR node.
1553
1554     // Scalarize our inputs.
1555     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1556     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1557     std::pair<llvm::Value *, unsigned> SumOutPtr =
1558       EmitPointerWithAlignment(E->getArg(2));
1559
1560     // Decide which of the overflow intrinsics we are lowering to:
1561     llvm::Intrinsic::ID IntrinsicId;
1562     switch (BuiltinID) {
1563     default: llvm_unreachable("Unknown security overflow builtin id.");
1564     case Builtin::BI__builtin_uadd_overflow:
1565     case Builtin::BI__builtin_uaddl_overflow:
1566     case Builtin::BI__builtin_uaddll_overflow:
1567       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1568       break;
1569     case Builtin::BI__builtin_usub_overflow:
1570     case Builtin::BI__builtin_usubl_overflow:
1571     case Builtin::BI__builtin_usubll_overflow:
1572       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1573       break;
1574     case Builtin::BI__builtin_umul_overflow:
1575     case Builtin::BI__builtin_umull_overflow:
1576     case Builtin::BI__builtin_umulll_overflow:
1577       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
1578       break;
1579     case Builtin::BI__builtin_sadd_overflow:
1580     case Builtin::BI__builtin_saddl_overflow:
1581     case Builtin::BI__builtin_saddll_overflow:
1582       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
1583       break;
1584     case Builtin::BI__builtin_ssub_overflow:
1585     case Builtin::BI__builtin_ssubl_overflow:
1586     case Builtin::BI__builtin_ssubll_overflow:
1587       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
1588       break;
1589     case Builtin::BI__builtin_smul_overflow:
1590     case Builtin::BI__builtin_smull_overflow:
1591     case Builtin::BI__builtin_smulll_overflow:
1592       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
1593       break;
1594     }
1595
1596     
1597     llvm::Value *Carry;
1598     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
1599     llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first);
1600     SumOutStore->setAlignment(SumOutPtr.second);
1601
1602     return RValue::get(Carry);
1603   }
1604   case Builtin::BI__builtin_addressof:
1605     return RValue::get(EmitLValue(E->getArg(0)).getAddress());
1606   case Builtin::BI__builtin_operator_new:
1607     return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
1608                                     E->getArg(0), false);
1609   case Builtin::BI__builtin_operator_delete:
1610     return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
1611                                     E->getArg(0), true);
1612   case Builtin::BI__noop:
1613     // __noop always evaluates to an integer literal zero.
1614     return RValue::get(ConstantInt::get(IntTy, 0));
1615   case Builtin::BI__builtin_call_with_static_chain: {
1616     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
1617     const Expr *Chain = E->getArg(1);
1618     return EmitCall(Call->getCallee()->getType(),
1619                     EmitScalarExpr(Call->getCallee()), Call, ReturnValue,
1620                     Call->getCalleeDecl(), EmitScalarExpr(Chain));
1621   }
1622   case Builtin::BI_InterlockedExchange:
1623   case Builtin::BI_InterlockedExchangePointer:
1624     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1625   case Builtin::BI_InterlockedCompareExchangePointer: {
1626     llvm::Type *RTy;
1627     llvm::IntegerType *IntType =
1628       IntegerType::get(getLLVMContext(),
1629                        getContext().getTypeSize(E->getType()));
1630     llvm::Type *IntPtrType = IntType->getPointerTo();
1631
1632     llvm::Value *Destination =
1633       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
1634
1635     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
1636     RTy = Exchange->getType();
1637     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
1638
1639     llvm::Value *Comparand =
1640       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
1641
1642     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
1643                                               SequentiallyConsistent,
1644                                               SequentiallyConsistent);
1645     Result->setVolatile(true);
1646
1647     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
1648                                                                          0),
1649                                               RTy));
1650   }
1651   case Builtin::BI_InterlockedCompareExchange: {
1652     AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
1653         EmitScalarExpr(E->getArg(0)),
1654         EmitScalarExpr(E->getArg(2)),
1655         EmitScalarExpr(E->getArg(1)),
1656         SequentiallyConsistent,
1657         SequentiallyConsistent);
1658       CXI->setVolatile(true);
1659       return RValue::get(Builder.CreateExtractValue(CXI, 0));
1660   }
1661   case Builtin::BI_InterlockedIncrement: {
1662     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1663       AtomicRMWInst::Add,
1664       EmitScalarExpr(E->getArg(0)),
1665       ConstantInt::get(Int32Ty, 1),
1666       llvm::SequentiallyConsistent);
1667     RMWI->setVolatile(true);
1668     return RValue::get(Builder.CreateAdd(RMWI, ConstantInt::get(Int32Ty, 1)));
1669   }
1670   case Builtin::BI_InterlockedDecrement: {
1671     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1672       AtomicRMWInst::Sub,
1673       EmitScalarExpr(E->getArg(0)),
1674       ConstantInt::get(Int32Ty, 1),
1675       llvm::SequentiallyConsistent);
1676     RMWI->setVolatile(true);
1677     return RValue::get(Builder.CreateSub(RMWI, ConstantInt::get(Int32Ty, 1)));
1678   }
1679   case Builtin::BI_InterlockedExchangeAdd: {
1680     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1681       AtomicRMWInst::Add,
1682       EmitScalarExpr(E->getArg(0)),
1683       EmitScalarExpr(E->getArg(1)),
1684       llvm::SequentiallyConsistent);
1685     RMWI->setVolatile(true);
1686     return RValue::get(RMWI);
1687   }
1688   case Builtin::BI__readfsdword: {
1689     Value *IntToPtr =
1690       Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
1691                              llvm::PointerType::get(CGM.Int32Ty, 257));
1692     LoadInst *Load =
1693         Builder.CreateAlignedLoad(IntToPtr, /*Align=*/4, /*isVolatile=*/true);
1694     return RValue::get(Load);
1695   }
1696
1697   case Builtin::BI__exception_code:
1698   case Builtin::BI_exception_code:
1699     return RValue::get(EmitSEHExceptionCode());
1700   case Builtin::BI__exception_info:
1701   case Builtin::BI_exception_info:
1702     return RValue::get(EmitSEHExceptionInfo());
1703   case Builtin::BI__abnormal_termination:
1704   case Builtin::BI_abnormal_termination:
1705     return RValue::get(EmitSEHAbnormalTermination());
1706   case Builtin::BI_setjmpex: {
1707     if (getTarget().getTriple().isOSMSVCRT()) {
1708       llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
1709       llvm::AttributeSet ReturnsTwiceAttr =
1710           AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
1711                             llvm::Attribute::ReturnsTwice);
1712       llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction(
1713           llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
1714           "_setjmpex", ReturnsTwiceAttr);
1715       llvm::Value *Buf = Builder.CreateBitOrPointerCast(
1716           EmitScalarExpr(E->getArg(0)), Int8PtrTy);
1717       llvm::Value *FrameAddr =
1718           Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
1719                              ConstantInt::get(Int32Ty, 0));
1720       llvm::Value *Args[] = {Buf, FrameAddr};
1721       llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args);
1722       CS.setAttributes(ReturnsTwiceAttr);
1723       return RValue::get(CS.getInstruction());
1724     }
1725     break;
1726   }
1727   case Builtin::BI_setjmp: {
1728     if (getTarget().getTriple().isOSMSVCRT()) {
1729       llvm::AttributeSet ReturnsTwiceAttr =
1730           AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
1731                             llvm::Attribute::ReturnsTwice);
1732       llvm::Value *Buf = Builder.CreateBitOrPointerCast(
1733           EmitScalarExpr(E->getArg(0)), Int8PtrTy);
1734       llvm::CallSite CS;
1735       if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
1736         llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy};
1737         llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction(
1738             llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true),
1739             "_setjmp3", ReturnsTwiceAttr);
1740         llvm::Value *Count = ConstantInt::get(IntTy, 0);
1741         llvm::Value *Args[] = {Buf, Count};
1742         CS = EmitRuntimeCallOrInvoke(SetJmp3, Args);
1743       } else {
1744         llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
1745         llvm::Constant *SetJmp = CGM.CreateRuntimeFunction(
1746             llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
1747             "_setjmp", ReturnsTwiceAttr);
1748         llvm::Value *FrameAddr =
1749             Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
1750                                ConstantInt::get(Int32Ty, 0));
1751         llvm::Value *Args[] = {Buf, FrameAddr};
1752         CS = EmitRuntimeCallOrInvoke(SetJmp, Args);
1753       }
1754       CS.setAttributes(ReturnsTwiceAttr);
1755       return RValue::get(CS.getInstruction());
1756     }
1757     break;
1758   }
1759
1760   case Builtin::BI__GetExceptionInfo: {
1761     if (llvm::GlobalVariable *GV =
1762             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
1763       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
1764     break;
1765   }
1766   }
1767
1768   // If this is an alias for a lib function (e.g. __builtin_sin), emit
1769   // the call using the normal call path, but using the unmangled
1770   // version of the function name.
1771   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1772     return emitLibraryCall(*this, FD, E,
1773                            CGM.getBuiltinLibFunction(FD, BuiltinID));
1774
1775   // If this is a predefined lib function (e.g. malloc), emit the call
1776   // using exactly the normal call path.
1777   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1778     return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1779
1780   // See if we have a target specific intrinsic.
1781   const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1782   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1783   if (const char *Prefix =
1784           llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch())) {
1785     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1786     // NOTE we dont need to perform a compatibility flag check here since the
1787     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
1788     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
1789     if (IntrinsicID == Intrinsic::not_intrinsic)
1790       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix, Name);
1791   }
1792
1793   if (IntrinsicID != Intrinsic::not_intrinsic) {
1794     SmallVector<Value*, 16> Args;
1795
1796     // Find out if any arguments are required to be integer constant
1797     // expressions.
1798     unsigned ICEArguments = 0;
1799     ASTContext::GetBuiltinTypeError Error;
1800     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1801     assert(Error == ASTContext::GE_None && "Should not codegen an error");
1802
1803     Function *F = CGM.getIntrinsic(IntrinsicID);
1804     llvm::FunctionType *FTy = F->getFunctionType();
1805
1806     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1807       Value *ArgValue;
1808       // If this is a normal argument, just emit it as a scalar.
1809       if ((ICEArguments & (1 << i)) == 0) {
1810         ArgValue = EmitScalarExpr(E->getArg(i));
1811       } else {
1812         // If this is required to be a constant, constant fold it so that we
1813         // know that the generated intrinsic gets a ConstantInt.
1814         llvm::APSInt Result;
1815         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1816         assert(IsConst && "Constant arg isn't actually constant?");
1817         (void)IsConst;
1818         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1819       }
1820
1821       // If the intrinsic arg type is different from the builtin arg type
1822       // we need to do a bit cast.
1823       llvm::Type *PTy = FTy->getParamType(i);
1824       if (PTy != ArgValue->getType()) {
1825         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1826                "Must be able to losslessly bit cast to param");
1827         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1828       }
1829
1830       Args.push_back(ArgValue);
1831     }
1832
1833     Value *V = Builder.CreateCall(F, Args);
1834     QualType BuiltinRetType = E->getType();
1835
1836     llvm::Type *RetTy = VoidTy;
1837     if (!BuiltinRetType->isVoidType())
1838       RetTy = ConvertType(BuiltinRetType);
1839
1840     if (RetTy != V->getType()) {
1841       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1842              "Must be able to losslessly bit cast result type");
1843       V = Builder.CreateBitCast(V, RetTy);
1844     }
1845
1846     return RValue::get(V);
1847   }
1848
1849   // See if we have a target specific builtin that needs to be lowered.
1850   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1851     return RValue::get(V);
1852
1853   ErrorUnsupported(E, "builtin function");
1854
1855   // Unknown builtin, for now just dump it out and return undef.
1856   return GetUndefRValue(E->getType());
1857 }
1858
1859 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1860                                               const CallExpr *E) {
1861   switch (getTarget().getTriple().getArch()) {
1862   case llvm::Triple::arm:
1863   case llvm::Triple::armeb:
1864   case llvm::Triple::thumb:
1865   case llvm::Triple::thumbeb:
1866     return EmitARMBuiltinExpr(BuiltinID, E);
1867   case llvm::Triple::aarch64:
1868   case llvm::Triple::aarch64_be:
1869     return EmitAArch64BuiltinExpr(BuiltinID, E);
1870   case llvm::Triple::x86:
1871   case llvm::Triple::x86_64:
1872     return EmitX86BuiltinExpr(BuiltinID, E);
1873   case llvm::Triple::ppc:
1874   case llvm::Triple::ppc64:
1875   case llvm::Triple::ppc64le:
1876     return EmitPPCBuiltinExpr(BuiltinID, E);
1877   case llvm::Triple::r600:
1878   case llvm::Triple::amdgcn:
1879     return EmitAMDGPUBuiltinExpr(BuiltinID, E);
1880   case llvm::Triple::systemz:
1881     return EmitSystemZBuiltinExpr(BuiltinID, E);
1882   case llvm::Triple::nvptx:
1883   case llvm::Triple::nvptx64:
1884     return EmitNVPTXBuiltinExpr(BuiltinID, E);
1885   default:
1886     return nullptr;
1887   }
1888 }
1889
1890 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
1891                                      NeonTypeFlags TypeFlags,
1892                                      bool V1Ty=false) {
1893   int IsQuad = TypeFlags.isQuad();
1894   switch (TypeFlags.getEltType()) {
1895   case NeonTypeFlags::Int8:
1896   case NeonTypeFlags::Poly8:
1897     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
1898   case NeonTypeFlags::Int16:
1899   case NeonTypeFlags::Poly16:
1900   case NeonTypeFlags::Float16:
1901     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
1902   case NeonTypeFlags::Int32:
1903     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
1904   case NeonTypeFlags::Int64:
1905   case NeonTypeFlags::Poly64:
1906     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
1907   case NeonTypeFlags::Poly128:
1908     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
1909     // There is a lot of i128 and f128 API missing.
1910     // so we use v16i8 to represent poly128 and get pattern matched.
1911     return llvm::VectorType::get(CGF->Int8Ty, 16);
1912   case NeonTypeFlags::Float32:
1913     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
1914   case NeonTypeFlags::Float64:
1915     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
1916   }
1917   llvm_unreachable("Unknown vector element type!");
1918 }
1919
1920 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1921   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1922   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
1923   return Builder.CreateShuffleVector(V, V, SV, "lane");
1924 }
1925
1926 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1927                                      const char *name,
1928                                      unsigned shift, bool rightshift) {
1929   unsigned j = 0;
1930   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1931        ai != ae; ++ai, ++j)
1932     if (shift > 0 && shift == j)
1933       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1934     else
1935       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1936
1937   return Builder.CreateCall(F, Ops, name);
1938 }
1939
1940 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1941                                             bool neg) {
1942   int SV = cast<ConstantInt>(V)->getSExtValue();
1943
1944   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1945   llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1946   return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
1947 }
1948
1949 // \brief Right-shift a vector by a constant.
1950 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
1951                                           llvm::Type *Ty, bool usgn,
1952                                           const char *name) {
1953   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1954
1955   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
1956   int EltSize = VTy->getScalarSizeInBits();
1957
1958   Vec = Builder.CreateBitCast(Vec, Ty);
1959
1960   // lshr/ashr are undefined when the shift amount is equal to the vector
1961   // element size.
1962   if (ShiftAmt == EltSize) {
1963     if (usgn) {
1964       // Right-shifting an unsigned value by its size yields 0.
1965       llvm::Constant *Zero = ConstantInt::get(VTy->getElementType(), 0);
1966       return llvm::ConstantVector::getSplat(VTy->getNumElements(), Zero);
1967     } else {
1968       // Right-shifting a signed value by its size is equivalent
1969       // to a shift of size-1.
1970       --ShiftAmt;
1971       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
1972     }
1973   }
1974
1975   Shift = EmitNeonShiftVector(Shift, Ty, false);
1976   if (usgn)
1977     return Builder.CreateLShr(Vec, Shift, name);
1978   else
1979     return Builder.CreateAShr(Vec, Shift, name);
1980 }
1981
1982 /// GetPointeeAlignment - Given an expression with a pointer type, find the
1983 /// alignment of the type referenced by the pointer.  Skip over implicit
1984 /// casts.
1985 std::pair<llvm::Value*, unsigned>
1986 CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
1987   assert(Addr->getType()->isPointerType());
1988   Addr = Addr->IgnoreParens();
1989   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
1990     if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
1991         ICE->getSubExpr()->getType()->isPointerType()) {
1992       std::pair<llvm::Value*, unsigned> Ptr =
1993           EmitPointerWithAlignment(ICE->getSubExpr());
1994       Ptr.first = Builder.CreateBitCast(Ptr.first,
1995                                         ConvertType(Addr->getType()));
1996       return Ptr;
1997     } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1998       LValue LV = EmitLValue(ICE->getSubExpr());
1999       unsigned Align = LV.getAlignment().getQuantity();
2000       if (!Align) {
2001         // FIXME: Once LValues are fixed to always set alignment,
2002         // zap this code.
2003         QualType PtTy = ICE->getSubExpr()->getType();
2004         if (!PtTy->isIncompleteType())
2005           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
2006         else
2007           Align = 1;
2008       }
2009       return std::make_pair(LV.getAddress(), Align);
2010     }
2011   }
2012   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
2013     if (UO->getOpcode() == UO_AddrOf) {
2014       LValue LV = EmitLValue(UO->getSubExpr());
2015       unsigned Align = LV.getAlignment().getQuantity();
2016       if (!Align) {
2017         // FIXME: Once LValues are fixed to always set alignment,
2018         // zap this code.
2019         QualType PtTy = UO->getSubExpr()->getType();
2020         if (!PtTy->isIncompleteType())
2021           Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
2022         else
2023           Align = 1;
2024       }
2025       return std::make_pair(LV.getAddress(), Align);
2026     }
2027   }
2028
2029   unsigned Align = 1;
2030   QualType PtTy = Addr->getType()->getPointeeType();
2031   if (!PtTy->isIncompleteType())
2032     Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
2033
2034   return std::make_pair(EmitScalarExpr(Addr), Align);
2035 }
2036
2037 enum {
2038   AddRetType = (1 << 0),
2039   Add1ArgType = (1 << 1),
2040   Add2ArgTypes = (1 << 2),
2041
2042   VectorizeRetType = (1 << 3),
2043   VectorizeArgTypes = (1 << 4),
2044
2045   InventFloatType = (1 << 5),
2046   UnsignedAlts = (1 << 6),
2047
2048   Use64BitVectors = (1 << 7),
2049   Use128BitVectors = (1 << 8),
2050
2051   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
2052   VectorRet = AddRetType | VectorizeRetType,
2053   VectorRetGetArgs01 =
2054       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
2055   FpCmpzModifiers =
2056       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
2057 };
2058
2059  struct NeonIntrinsicInfo {
2060   unsigned BuiltinID;
2061   unsigned LLVMIntrinsic;
2062   unsigned AltLLVMIntrinsic;
2063   const char *NameHint;
2064   unsigned TypeModifier;
2065
2066   bool operator<(unsigned RHSBuiltinID) const {
2067     return BuiltinID < RHSBuiltinID;
2068   }
2069 };
2070
2071 #define NEONMAP0(NameBase) \
2072   { NEON::BI__builtin_neon_ ## NameBase, 0, 0, #NameBase, 0 }
2073
2074 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
2075   { NEON:: BI__builtin_neon_ ## NameBase, \
2076       Intrinsic::LLVMIntrinsic, 0, #NameBase, TypeModifier }
2077
2078 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
2079   { NEON:: BI__builtin_neon_ ## NameBase, \
2080       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
2081       #NameBase, TypeModifier }
2082
2083 static NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
2084   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
2085   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
2086   NEONMAP1(vabs_v, arm_neon_vabs, 0),
2087   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
2088   NEONMAP0(vaddhn_v),
2089   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
2090   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
2091   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
2092   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
2093   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
2094   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
2095   NEONMAP1(vcage_v, arm_neon_vacge, 0),
2096   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
2097   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
2098   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
2099   NEONMAP1(vcale_v, arm_neon_vacge, 0),
2100   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
2101   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
2102   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
2103   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
2104   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
2105   NEONMAP1(vclz_v, ctlz, Add1ArgType),
2106   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
2107   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
2108   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
2109   NEONMAP1(vcvt_f16_v, arm_neon_vcvtfp2hf, 0),
2110   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
2111   NEONMAP0(vcvt_f32_v),
2112   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
2113   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
2114   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
2115   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
2116   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
2117   NEONMAP0(vcvt_s32_v),
2118   NEONMAP0(vcvt_s64_v),
2119   NEONMAP0(vcvt_u32_v),
2120   NEONMAP0(vcvt_u64_v),
2121   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
2122   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
2123   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
2124   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
2125   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
2126   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
2127   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
2128   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
2129   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
2130   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
2131   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
2132   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
2133   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
2134   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
2135   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
2136   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
2137   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
2138   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
2139   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
2140   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
2141   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
2142   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
2143   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
2144   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
2145   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
2146   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
2147   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
2148   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
2149   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
2150   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
2151   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
2152   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
2153   NEONMAP0(vcvtq_f32_v),
2154   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
2155   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
2156   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
2157   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
2158   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
2159   NEONMAP0(vcvtq_s32_v),
2160   NEONMAP0(vcvtq_s64_v),
2161   NEONMAP0(vcvtq_u32_v),
2162   NEONMAP0(vcvtq_u64_v),
2163   NEONMAP0(vext_v),
2164   NEONMAP0(vextq_v),
2165   NEONMAP0(vfma_v),
2166   NEONMAP0(vfmaq_v),
2167   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
2168   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
2169   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
2170   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
2171   NEONMAP0(vld1_dup_v),
2172   NEONMAP1(vld1_v, arm_neon_vld1, 0),
2173   NEONMAP0(vld1q_dup_v),
2174   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
2175   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
2176   NEONMAP1(vld2_v, arm_neon_vld2, 0),
2177   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
2178   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
2179   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
2180   NEONMAP1(vld3_v, arm_neon_vld3, 0),
2181   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
2182   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
2183   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
2184   NEONMAP1(vld4_v, arm_neon_vld4, 0),
2185   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
2186   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
2187   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
2188   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
2189   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
2190   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
2191   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
2192   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
2193   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
2194   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
2195   NEONMAP0(vmovl_v),
2196   NEONMAP0(vmovn_v),
2197   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
2198   NEONMAP0(vmull_v),
2199   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
2200   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
2201   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
2202   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
2203   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
2204   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
2205   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
2206   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
2207   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
2208   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
2209   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
2210   NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
2211   NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
2212   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
2213   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
2214   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
2215   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
2216   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
2217   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
2218   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
2219   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
2220   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
2221   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
2222   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
2223   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
2224   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
2225   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
2226   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
2227   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
2228   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
2229   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
2230   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
2231   NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
2232   NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
2233   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
2234   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
2235   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
2236   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
2237   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
2238   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
2239   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
2240   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
2241   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
2242   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
2243   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
2244   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
2245   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
2246   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
2247   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
2248   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
2249   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
2250   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
2251   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
2252   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
2253   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
2254   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
2255   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
2256   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
2257   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
2258   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
2259   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
2260   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
2261   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
2262   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
2263   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
2264   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
2265   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
2266   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
2267   NEONMAP0(vshl_n_v),
2268   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
2269   NEONMAP0(vshll_n_v),
2270   NEONMAP0(vshlq_n_v),
2271   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
2272   NEONMAP0(vshr_n_v),
2273   NEONMAP0(vshrn_n_v),
2274   NEONMAP0(vshrq_n_v),
2275   NEONMAP1(vst1_v, arm_neon_vst1, 0),
2276   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
2277   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
2278   NEONMAP1(vst2_v, arm_neon_vst2, 0),
2279   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
2280   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
2281   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
2282   NEONMAP1(vst3_v, arm_neon_vst3, 0),
2283   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
2284   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
2285   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
2286   NEONMAP1(vst4_v, arm_neon_vst4, 0),
2287   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
2288   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
2289   NEONMAP0(vsubhn_v),
2290   NEONMAP0(vtrn_v),
2291   NEONMAP0(vtrnq_v),
2292   NEONMAP0(vtst_v),
2293   NEONMAP0(vtstq_v),
2294   NEONMAP0(vuzp_v),
2295   NEONMAP0(vuzpq_v),
2296   NEONMAP0(vzip_v),
2297   NEONMAP0(vzipq_v)
2298 };
2299
2300 static NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
2301   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
2302   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
2303   NEONMAP0(vaddhn_v),
2304   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
2305   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
2306   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
2307   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
2308   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
2309   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
2310   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
2311   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
2312   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
2313   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
2314   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
2315   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
2316   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
2317   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
2318   NEONMAP1(vclz_v, ctlz, Add1ArgType),
2319   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
2320   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
2321   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
2322   NEONMAP1(vcvt_f16_v, aarch64_neon_vcvtfp2hf, 0),
2323   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
2324   NEONMAP0(vcvt_f32_v),
2325   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2326   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2327   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
2328   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
2329   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
2330   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
2331   NEONMAP0(vcvtq_f32_v),
2332   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2333   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2334   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
2335   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
2336   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
2337   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
2338   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
2339   NEONMAP0(vext_v),
2340   NEONMAP0(vextq_v),
2341   NEONMAP0(vfma_v),
2342   NEONMAP0(vfmaq_v),
2343   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
2344   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
2345   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
2346   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
2347   NEONMAP0(vmovl_v),
2348   NEONMAP0(vmovn_v),
2349   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
2350   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
2351   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
2352   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
2353   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
2354   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
2355   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
2356   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
2357   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
2358   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
2359   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
2360   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
2361   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
2362   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
2363   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
2364   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
2365   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
2366   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
2367   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
2368   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
2369   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
2370   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
2371   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
2372   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
2373   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
2374   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
2375   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
2376   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
2377   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
2378   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
2379   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
2380   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
2381   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
2382   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
2383   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
2384   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
2385   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
2386   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
2387   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
2388   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
2389   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
2390   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
2391   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
2392   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
2393   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
2394   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
2395   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
2396   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
2397   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
2398   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
2399   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
2400   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
2401   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
2402   NEONMAP0(vshl_n_v),
2403   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
2404   NEONMAP0(vshll_n_v),
2405   NEONMAP0(vshlq_n_v),
2406   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
2407   NEONMAP0(vshr_n_v),
2408   NEONMAP0(vshrn_n_v),
2409   NEONMAP0(vshrq_n_v),
2410   NEONMAP0(vsubhn_v),
2411   NEONMAP0(vtst_v),
2412   NEONMAP0(vtstq_v),
2413 };
2414
2415 static NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
2416   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
2417   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
2418   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
2419   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
2420   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
2421   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
2422   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
2423   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
2424   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
2425   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2426   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
2427   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
2428   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
2429   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
2430   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2431   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2432   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
2433   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
2434   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
2435   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
2436   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
2437   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
2438   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
2439   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
2440   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
2441   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
2442   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
2443   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
2444   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
2445   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
2446   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
2447   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
2448   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
2449   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
2450   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
2451   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
2452   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
2453   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
2454   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
2455   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
2456   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
2457   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
2458   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
2459   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
2460   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
2461   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
2462   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
2463   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
2464   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
2465   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2466   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2467   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2468   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2469   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
2470   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
2471   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2472   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2473   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
2474   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
2475   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2476   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2477   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2478   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2479   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
2480   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
2481   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2482   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
2483   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
2484   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
2485   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
2486   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
2487   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
2488   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2489   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2490   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2491   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2492   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2493   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2494   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2495   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2496   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
2497   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2498   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
2499   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
2500   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
2501   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
2502   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
2503   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
2504   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
2505   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
2506   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
2507   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
2508   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
2509   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
2510   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
2511   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
2512   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
2513   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
2514   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
2515   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
2516   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
2517   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
2518   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
2519   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
2520   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
2521   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
2522   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
2523   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
2524   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
2525   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
2526   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
2527   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
2528   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
2529   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
2530   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
2531   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
2532   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
2533   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
2534   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
2535   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
2536   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
2537   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
2538   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
2539   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
2540   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
2541   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
2542   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
2543   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
2544   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
2545   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
2546   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2547   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2548   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2549   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2550   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
2551   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
2552   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2553   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2554   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2555   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2556   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
2557   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
2558   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
2559   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
2560   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
2561   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
2562   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
2563   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
2564   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
2565   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
2566   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
2567   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
2568   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
2569   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
2570   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
2571   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
2572   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
2573   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
2574   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
2575   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
2576   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
2577   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
2578   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
2579   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
2580   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
2581   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
2582   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
2583   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
2584   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
2585   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
2586   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
2587   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
2588   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
2589   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
2590   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
2591   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
2592   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
2593   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
2594   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
2595   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
2596   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
2597   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
2598   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
2599   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
2600   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
2601   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
2602   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
2603   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
2604   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
2605   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
2606   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
2607   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
2608 };
2609
2610 #undef NEONMAP0
2611 #undef NEONMAP1
2612 #undef NEONMAP2
2613
2614 static bool NEONSIMDIntrinsicsProvenSorted = false;
2615
2616 static bool AArch64SIMDIntrinsicsProvenSorted = false;
2617 static bool AArch64SISDIntrinsicsProvenSorted = false;
2618
2619
2620 static const NeonIntrinsicInfo *
2621 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
2622                        unsigned BuiltinID, bool &MapProvenSorted) {
2623
2624 #ifndef NDEBUG
2625   if (!MapProvenSorted) {
2626     // FIXME: use std::is_sorted once C++11 is allowed
2627     for (unsigned i = 0; i < IntrinsicMap.size() - 1; ++i)
2628       assert(IntrinsicMap[i].BuiltinID <= IntrinsicMap[i + 1].BuiltinID);
2629     MapProvenSorted = true;
2630   }
2631 #endif
2632
2633   const NeonIntrinsicInfo *Builtin =
2634       std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
2635
2636   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
2637     return Builtin;
2638
2639   return nullptr;
2640 }
2641
2642 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2643                                                    unsigned Modifier,
2644                                                    llvm::Type *ArgType,
2645                                                    const CallExpr *E) {
2646   int VectorSize = 0;
2647   if (Modifier & Use64BitVectors)
2648     VectorSize = 64;
2649   else if (Modifier & Use128BitVectors)
2650     VectorSize = 128;
2651
2652   // Return type.
2653   SmallVector<llvm::Type *, 3> Tys;
2654   if (Modifier & AddRetType) {
2655     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
2656     if (Modifier & VectorizeRetType)
2657       Ty = llvm::VectorType::get(
2658           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
2659
2660     Tys.push_back(Ty);
2661   }
2662
2663   // Arguments.
2664   if (Modifier & VectorizeArgTypes) {
2665     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
2666     ArgType = llvm::VectorType::get(ArgType, Elts);
2667   }
2668
2669   if (Modifier & (Add1ArgType | Add2ArgTypes))
2670     Tys.push_back(ArgType);
2671
2672   if (Modifier & Add2ArgTypes)
2673     Tys.push_back(ArgType);
2674
2675   if (Modifier & InventFloatType)
2676     Tys.push_back(FloatTy);
2677
2678   return CGM.getIntrinsic(IntrinsicID, Tys);
2679 }
2680
2681 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
2682                                             const NeonIntrinsicInfo &SISDInfo,
2683                                             SmallVectorImpl<Value *> &Ops,
2684                                             const CallExpr *E) {
2685   unsigned BuiltinID = SISDInfo.BuiltinID;
2686   unsigned int Int = SISDInfo.LLVMIntrinsic;
2687   unsigned Modifier = SISDInfo.TypeModifier;
2688   const char *s = SISDInfo.NameHint;
2689
2690   switch (BuiltinID) {
2691   case NEON::BI__builtin_neon_vcled_s64:
2692   case NEON::BI__builtin_neon_vcled_u64:
2693   case NEON::BI__builtin_neon_vcles_f32:
2694   case NEON::BI__builtin_neon_vcled_f64:
2695   case NEON::BI__builtin_neon_vcltd_s64:
2696   case NEON::BI__builtin_neon_vcltd_u64:
2697   case NEON::BI__builtin_neon_vclts_f32:
2698   case NEON::BI__builtin_neon_vcltd_f64:
2699   case NEON::BI__builtin_neon_vcales_f32:
2700   case NEON::BI__builtin_neon_vcaled_f64:
2701   case NEON::BI__builtin_neon_vcalts_f32:
2702   case NEON::BI__builtin_neon_vcaltd_f64:
2703     // Only one direction of comparisons actually exist, cmle is actually a cmge
2704     // with swapped operands. The table gives us the right intrinsic but we
2705     // still need to do the swap.
2706     std::swap(Ops[0], Ops[1]);
2707     break;
2708   }
2709
2710   assert(Int && "Generic code assumes a valid intrinsic");
2711
2712   // Determine the type(s) of this overloaded AArch64 intrinsic.
2713   const Expr *Arg = E->getArg(0);
2714   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
2715   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
2716
2717   int j = 0;
2718   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
2719   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
2720        ai != ae; ++ai, ++j) {
2721     llvm::Type *ArgTy = ai->getType();
2722     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
2723              ArgTy->getPrimitiveSizeInBits())
2724       continue;
2725
2726     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
2727     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
2728     // it before inserting.
2729     Ops[j] =
2730         CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
2731     Ops[j] =
2732         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
2733   }
2734
2735   Value *Result = CGF.EmitNeonCall(F, Ops, s);
2736   llvm::Type *ResultType = CGF.ConvertType(E->getType());
2737   if (ResultType->getPrimitiveSizeInBits() <
2738       Result->getType()->getPrimitiveSizeInBits())
2739     return CGF.Builder.CreateExtractElement(Result, C0);
2740
2741   return CGF.Builder.CreateBitCast(Result, ResultType, s);
2742 }
2743
2744 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
2745     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
2746     const char *NameHint, unsigned Modifier, const CallExpr *E,
2747     SmallVectorImpl<llvm::Value *> &Ops, llvm::Value *Align) {
2748   // Get the last argument, which specifies the vector type.
2749   llvm::APSInt NeonTypeConst;
2750   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2751   if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
2752     return nullptr;
2753
2754   // Determine the type of this overloaded NEON intrinsic.
2755   NeonTypeFlags Type(NeonTypeConst.getZExtValue());
2756   bool Usgn = Type.isUnsigned();
2757   bool Quad = Type.isQuad();
2758
2759   llvm::VectorType *VTy = GetNeonType(this, Type);
2760   llvm::Type *Ty = VTy;
2761   if (!Ty)
2762     return nullptr;
2763
2764   unsigned Int = LLVMIntrinsic;
2765   if ((Modifier & UnsignedAlts) && !Usgn)
2766     Int = AltLLVMIntrinsic;
2767
2768   switch (BuiltinID) {
2769   default: break;
2770   case NEON::BI__builtin_neon_vabs_v:
2771   case NEON::BI__builtin_neon_vabsq_v:
2772     if (VTy->getElementType()->isFloatingPointTy())
2773       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
2774     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
2775   case NEON::BI__builtin_neon_vaddhn_v: {
2776     llvm::VectorType *SrcTy =
2777         llvm::VectorType::getExtendedElementVectorType(VTy);
2778
2779     // %sum = add <4 x i32> %lhs, %rhs
2780     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2781     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
2782     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
2783
2784     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
2785     Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
2786                                        SrcTy->getScalarSizeInBits() / 2);
2787     ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
2788     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
2789
2790     // %res = trunc <4 x i32> %high to <4 x i16>
2791     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
2792   }
2793   case NEON::BI__builtin_neon_vcale_v:
2794   case NEON::BI__builtin_neon_vcaleq_v:
2795   case NEON::BI__builtin_neon_vcalt_v:
2796   case NEON::BI__builtin_neon_vcaltq_v:
2797     std::swap(Ops[0], Ops[1]);
2798   case NEON::BI__builtin_neon_vcage_v:
2799   case NEON::BI__builtin_neon_vcageq_v:
2800   case NEON::BI__builtin_neon_vcagt_v:
2801   case NEON::BI__builtin_neon_vcagtq_v: {
2802     llvm::Type *VecFlt = llvm::VectorType::get(
2803         VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy,
2804         VTy->getNumElements());
2805     llvm::Type *Tys[] = { VTy, VecFlt };
2806     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
2807     return EmitNeonCall(F, Ops, NameHint);
2808   }
2809   case NEON::BI__builtin_neon_vclz_v:
2810   case NEON::BI__builtin_neon_vclzq_v:
2811     // We generate target-independent intrinsic, which needs a second argument
2812     // for whether or not clz of zero is undefined; on ARM it isn't.
2813     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
2814     break;
2815   case NEON::BI__builtin_neon_vcvt_f32_v:
2816   case NEON::BI__builtin_neon_vcvtq_f32_v:
2817     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2818     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad));
2819     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
2820                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
2821   case NEON::BI__builtin_neon_vcvt_n_f32_v:
2822   case NEON::BI__builtin_neon_vcvt_n_f64_v:
2823   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
2824   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
2825     bool Double =
2826       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
2827     llvm::Type *FloatTy =
2828         GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
2829                                                : NeonTypeFlags::Float32,
2830                                         false, Quad));
2831     llvm::Type *Tys[2] = { FloatTy, Ty };
2832     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
2833     Function *F = CGM.getIntrinsic(Int, Tys);
2834     return EmitNeonCall(F, Ops, "vcvt_n");
2835   }
2836   case NEON::BI__builtin_neon_vcvt_n_s32_v:
2837   case NEON::BI__builtin_neon_vcvt_n_u32_v:
2838   case NEON::BI__builtin_neon_vcvt_n_s64_v:
2839   case NEON::BI__builtin_neon_vcvt_n_u64_v:
2840   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
2841   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
2842   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
2843   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
2844     bool Double =
2845       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
2846     llvm::Type *FloatTy =
2847         GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
2848                                                : NeonTypeFlags::Float32,
2849                                         false, Quad));
2850     llvm::Type *Tys[2] = { Ty, FloatTy };
2851     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
2852     return EmitNeonCall(F, Ops, "vcvt_n");
2853   }
2854   case NEON::BI__builtin_neon_vcvt_s32_v:
2855   case NEON::BI__builtin_neon_vcvt_u32_v:
2856   case NEON::BI__builtin_neon_vcvt_s64_v:
2857   case NEON::BI__builtin_neon_vcvt_u64_v:
2858   case NEON::BI__builtin_neon_vcvtq_s32_v:
2859   case NEON::BI__builtin_neon_vcvtq_u32_v:
2860   case NEON::BI__builtin_neon_vcvtq_s64_v:
2861   case NEON::BI__builtin_neon_vcvtq_u64_v: {
2862     bool Double =
2863       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
2864     llvm::Type *FloatTy =
2865         GetNeonType(this, NeonTypeFlags(Double ? NeonTypeFlags::Float64
2866                                                : NeonTypeFlags::Float32,
2867                                         false, Quad));
2868     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
2869     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
2870                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
2871   }
2872   case NEON::BI__builtin_neon_vcvta_s32_v:
2873   case NEON::BI__builtin_neon_vcvta_s64_v:
2874   case NEON::BI__builtin_neon_vcvta_u32_v:
2875   case NEON::BI__builtin_neon_vcvta_u64_v:
2876   case NEON::BI__builtin_neon_vcvtaq_s32_v:
2877   case NEON::BI__builtin_neon_vcvtaq_s64_v:
2878   case NEON::BI__builtin_neon_vcvtaq_u32_v:
2879   case NEON::BI__builtin_neon_vcvtaq_u64_v:
2880   case NEON::BI__builtin_neon_vcvtn_s32_v:
2881   case NEON::BI__builtin_neon_vcvtn_s64_v:
2882   case NEON::BI__builtin_neon_vcvtn_u32_v:
2883   case NEON::BI__builtin_neon_vcvtn_u64_v:
2884   case NEON::BI__builtin_neon_vcvtnq_s32_v:
2885   case NEON::BI__builtin_neon_vcvtnq_s64_v:
2886   case NEON::BI__builtin_neon_vcvtnq_u32_v:
2887   case NEON::BI__builtin_neon_vcvtnq_u64_v:
2888   case NEON::BI__builtin_neon_vcvtp_s32_v:
2889   case NEON::BI__builtin_neon_vcvtp_s64_v:
2890   case NEON::BI__builtin_neon_vcvtp_u32_v:
2891   case NEON::BI__builtin_neon_vcvtp_u64_v:
2892   case NEON::BI__builtin_neon_vcvtpq_s32_v:
2893   case NEON::BI__builtin_neon_vcvtpq_s64_v:
2894   case NEON::BI__builtin_neon_vcvtpq_u32_v:
2895   case NEON::BI__builtin_neon_vcvtpq_u64_v:
2896   case NEON::BI__builtin_neon_vcvtm_s32_v:
2897   case NEON::BI__builtin_neon_vcvtm_s64_v:
2898   case NEON::BI__builtin_neon_vcvtm_u32_v:
2899   case NEON::BI__builtin_neon_vcvtm_u64_v:
2900   case NEON::BI__builtin_neon_vcvtmq_s32_v:
2901   case NEON::BI__builtin_neon_vcvtmq_s64_v:
2902   case NEON::BI__builtin_neon_vcvtmq_u32_v:
2903   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
2904     bool Double =
2905       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
2906     llvm::Type *InTy =
2907       GetNeonType(this,
2908                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
2909                                 : NeonTypeFlags::Float32, false, Quad));
2910     llvm::Type *Tys[2] = { Ty, InTy };
2911     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
2912   }
2913   case NEON::BI__builtin_neon_vext_v:
2914   case NEON::BI__builtin_neon_vextq_v: {
2915     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
2916     SmallVector<Constant*, 16> Indices;
2917     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
2918       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
2919
2920     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2921     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2922     Value *SV = llvm::ConstantVector::get(Indices);
2923     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
2924   }
2925   case NEON::BI__builtin_neon_vfma_v:
2926   case NEON::BI__builtin_neon_vfmaq_v: {
2927     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
2928     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2929     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2930     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2931
2932     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
2933     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
2934   }
2935   case NEON::BI__builtin_neon_vld1_v:
2936   case NEON::BI__builtin_neon_vld1q_v:
2937     Ops.push_back(Align);
2938     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vld1");
2939   case NEON::BI__builtin_neon_vld2_v:
2940   case NEON::BI__builtin_neon_vld2q_v:
2941   case NEON::BI__builtin_neon_vld3_v:
2942   case NEON::BI__builtin_neon_vld3q_v:
2943   case NEON::BI__builtin_neon_vld4_v:
2944   case NEON::BI__builtin_neon_vld4q_v: {
2945     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Ty);
2946     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
2947     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2948     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2949     return Builder.CreateStore(Ops[1], Ops[0]);
2950   }
2951   case NEON::BI__builtin_neon_vld1_dup_v:
2952   case NEON::BI__builtin_neon_vld1q_dup_v: {
2953     Value *V = UndefValue::get(Ty);
2954     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
2955     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2956     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
2957     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
2958     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
2959     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
2960     return EmitNeonSplat(Ops[0], CI);
2961   }
2962   case NEON::BI__builtin_neon_vld2_lane_v:
2963   case NEON::BI__builtin_neon_vld2q_lane_v:
2964   case NEON::BI__builtin_neon_vld3_lane_v:
2965   case NEON::BI__builtin_neon_vld3q_lane_v:
2966   case NEON::BI__builtin_neon_vld4_lane_v:
2967   case NEON::BI__builtin_neon_vld4q_lane_v: {
2968     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Ty);
2969     for (unsigned I = 2; I < Ops.size() - 1; ++I)
2970       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
2971     Ops.push_back(Align);
2972     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
2973     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2974     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2975     return Builder.CreateStore(Ops[1], Ops[0]);
2976   }
2977   case NEON::BI__builtin_neon_vmovl_v: {
2978     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
2979     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
2980     if (Usgn)
2981       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
2982     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
2983   }
2984   case NEON::BI__builtin_neon_vmovn_v: {
2985     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
2986     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
2987     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
2988   }
2989   case NEON::BI__builtin_neon_vmull_v:
2990     // FIXME: the integer vmull operations could be emitted in terms of pure
2991     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
2992     // hoisting the exts outside loops. Until global ISel comes along that can
2993     // see through such movement this leads to bad CodeGen. So we need an
2994     // intrinsic for now.
2995     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
2996     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
2997     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
2998   case NEON::BI__builtin_neon_vpadal_v:
2999   case NEON::BI__builtin_neon_vpadalq_v: {
3000     // The source operand type has twice as many elements of half the size.
3001     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
3002     llvm::Type *EltTy =
3003       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
3004     llvm::Type *NarrowTy =
3005       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
3006     llvm::Type *Tys[2] = { Ty, NarrowTy };
3007     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
3008   }
3009   case NEON::BI__builtin_neon_vpaddl_v:
3010   case NEON::BI__builtin_neon_vpaddlq_v: {
3011     // The source operand type has twice as many elements of half the size.
3012     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
3013     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
3014     llvm::Type *NarrowTy =
3015       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
3016     llvm::Type *Tys[2] = { Ty, NarrowTy };
3017     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
3018   }
3019   case NEON::BI__builtin_neon_vqdmlal_v:
3020   case NEON::BI__builtin_neon_vqdmlsl_v: {
3021     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
3022     Value *Mul = EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty),
3023                               MulOps, "vqdmlal");
3024
3025     SmallVector<Value *, 2> AccumOps;
3026     AccumOps.push_back(Ops[0]);
3027     AccumOps.push_back(Mul);
3028     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty),
3029                         AccumOps, NameHint);
3030   }
3031   case NEON::BI__builtin_neon_vqshl_n_v:
3032   case NEON::BI__builtin_neon_vqshlq_n_v:
3033     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
3034                         1, false);
3035   case NEON::BI__builtin_neon_vqshlu_n_v:
3036   case NEON::BI__builtin_neon_vqshluq_n_v:
3037     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
3038                         1, false);
3039   case NEON::BI__builtin_neon_vrecpe_v:
3040   case NEON::BI__builtin_neon_vrecpeq_v:
3041   case NEON::BI__builtin_neon_vrsqrte_v:
3042   case NEON::BI__builtin_neon_vrsqrteq_v:
3043     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
3044     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
3045
3046   case NEON::BI__builtin_neon_vrshr_n_v:
3047   case NEON::BI__builtin_neon_vrshrq_n_v:
3048     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
3049                         1, true);
3050   case NEON::BI__builtin_neon_vshl_n_v:
3051   case NEON::BI__builtin_neon_vshlq_n_v:
3052     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
3053     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
3054                              "vshl_n");
3055   case NEON::BI__builtin_neon_vshll_n_v: {
3056     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
3057     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3058     if (Usgn)
3059       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
3060     else
3061       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
3062     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
3063     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
3064   }
3065   case NEON::BI__builtin_neon_vshrn_n_v: {
3066     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
3067     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3068     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
3069     if (Usgn)
3070       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
3071     else
3072       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
3073     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
3074   }
3075   case NEON::BI__builtin_neon_vshr_n_v:
3076   case NEON::BI__builtin_neon_vshrq_n_v:
3077     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
3078   case NEON::BI__builtin_neon_vst1_v:
3079   case NEON::BI__builtin_neon_vst1q_v:
3080   case NEON::BI__builtin_neon_vst2_v:
3081   case NEON::BI__builtin_neon_vst2q_v:
3082   case NEON::BI__builtin_neon_vst3_v:
3083   case NEON::BI__builtin_neon_vst3q_v:
3084   case NEON::BI__builtin_neon_vst4_v:
3085   case NEON::BI__builtin_neon_vst4q_v:
3086   case NEON::BI__builtin_neon_vst2_lane_v:
3087   case NEON::BI__builtin_neon_vst2q_lane_v:
3088   case NEON::BI__builtin_neon_vst3_lane_v:
3089   case NEON::BI__builtin_neon_vst3q_lane_v:
3090   case NEON::BI__builtin_neon_vst4_lane_v:
3091   case NEON::BI__builtin_neon_vst4q_lane_v:
3092     Ops.push_back(Align);
3093     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "");
3094   case NEON::BI__builtin_neon_vsubhn_v: {
3095     llvm::VectorType *SrcTy =
3096         llvm::VectorType::getExtendedElementVectorType(VTy);
3097
3098     // %sum = add <4 x i32> %lhs, %rhs
3099     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3100     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
3101     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
3102
3103     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
3104     Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
3105                                        SrcTy->getScalarSizeInBits() / 2);
3106     ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
3107     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
3108
3109     // %res = trunc <4 x i32> %high to <4 x i16>
3110     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
3111   }
3112   case NEON::BI__builtin_neon_vtrn_v:
3113   case NEON::BI__builtin_neon_vtrnq_v: {
3114     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3115     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3116     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3117     Value *SV = nullptr;
3118
3119     for (unsigned vi = 0; vi != 2; ++vi) {
3120       SmallVector<Constant*, 16> Indices;
3121       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
3122         Indices.push_back(Builder.getInt32(i+vi));
3123         Indices.push_back(Builder.getInt32(i+e+vi));
3124       }
3125       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
3126       SV = llvm::ConstantVector::get(Indices);
3127       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
3128       SV = Builder.CreateStore(SV, Addr);
3129     }
3130     return SV;
3131   }
3132   case NEON::BI__builtin_neon_vtst_v:
3133   case NEON::BI__builtin_neon_vtstq_v: {
3134     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3135     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3136     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
3137     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
3138                                 ConstantAggregateZero::get(Ty));
3139     return Builder.CreateSExt(Ops[0], Ty, "vtst");
3140   }
3141   case NEON::BI__builtin_neon_vuzp_v:
3142   case NEON::BI__builtin_neon_vuzpq_v: {
3143     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3144     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3145     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3146     Value *SV = nullptr;
3147
3148     for (unsigned vi = 0; vi != 2; ++vi) {
3149       SmallVector<Constant*, 16> Indices;
3150       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
3151         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
3152
3153       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
3154       SV = llvm::ConstantVector::get(Indices);
3155       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
3156       SV = Builder.CreateStore(SV, Addr);
3157     }
3158     return SV;
3159   }
3160   case NEON::BI__builtin_neon_vzip_v:
3161   case NEON::BI__builtin_neon_vzipq_v: {
3162     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3163     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3164     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3165     Value *SV = nullptr;
3166
3167     for (unsigned vi = 0; vi != 2; ++vi) {
3168       SmallVector<Constant*, 16> Indices;
3169       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
3170         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
3171         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
3172       }
3173       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
3174       SV = llvm::ConstantVector::get(Indices);
3175       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
3176       SV = Builder.CreateStore(SV, Addr);
3177     }
3178     return SV;
3179   }
3180   }
3181
3182   assert(Int && "Expected valid intrinsic number");
3183
3184   // Determine the type(s) of this overloaded AArch64 intrinsic.
3185   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
3186
3187   Value *Result = EmitNeonCall(F, Ops, NameHint);
3188   llvm::Type *ResultType = ConvertType(E->getType());
3189   // AArch64 intrinsic one-element vector type cast to
3190   // scalar type expected by the builtin
3191   return Builder.CreateBitCast(Result, ResultType, NameHint);
3192 }
3193
3194 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
3195     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
3196     const CmpInst::Predicate Ip, const Twine &Name) {
3197   llvm::Type *OTy = Op->getType();
3198
3199   // FIXME: this is utterly horrific. We should not be looking at previous
3200   // codegen context to find out what needs doing. Unfortunately TableGen
3201   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
3202   // (etc).
3203   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
3204     OTy = BI->getOperand(0)->getType();
3205
3206   Op = Builder.CreateBitCast(Op, OTy);
3207   if (OTy->getScalarType()->isFloatingPointTy()) {
3208     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
3209   } else {
3210     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
3211   }
3212   return Builder.CreateSExt(Op, Ty, Name);
3213 }
3214
3215 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
3216                                  Value *ExtOp, Value *IndexOp,
3217                                  llvm::Type *ResTy, unsigned IntID,
3218                                  const char *Name) {
3219   SmallVector<Value *, 2> TblOps;
3220   if (ExtOp)
3221     TblOps.push_back(ExtOp);
3222
3223   // Build a vector containing sequential number like (0, 1, 2, ..., 15)  
3224   SmallVector<Constant*, 16> Indices;
3225   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
3226   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
3227     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
3228     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
3229   }
3230   Value *SV = llvm::ConstantVector::get(Indices);
3231
3232   int PairPos = 0, End = Ops.size() - 1;
3233   while (PairPos < End) {
3234     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
3235                                                      Ops[PairPos+1], SV, Name));
3236     PairPos += 2;
3237   }
3238
3239   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
3240   // of the 128-bit lookup table with zero.
3241   if (PairPos == End) {
3242     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
3243     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
3244                                                      ZeroTbl, SV, Name));
3245   }
3246
3247   Function *TblF;
3248   TblOps.push_back(IndexOp);
3249   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
3250   
3251   return CGF.EmitNeonCall(TblF, TblOps, Name);
3252 }
3253
3254 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
3255   switch (BuiltinID) {
3256   default:
3257     return nullptr;
3258   case ARM::BI__builtin_arm_nop:
3259     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3260                               llvm::ConstantInt::get(Int32Ty, 0));
3261   case ARM::BI__builtin_arm_yield:
3262   case ARM::BI__yield:
3263     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3264                               llvm::ConstantInt::get(Int32Ty, 1));
3265   case ARM::BI__builtin_arm_wfe:
3266   case ARM::BI__wfe:
3267     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3268                               llvm::ConstantInt::get(Int32Ty, 2));
3269   case ARM::BI__builtin_arm_wfi:
3270   case ARM::BI__wfi:
3271     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3272                               llvm::ConstantInt::get(Int32Ty, 3));
3273   case ARM::BI__builtin_arm_sev:
3274   case ARM::BI__sev:
3275     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3276                               llvm::ConstantInt::get(Int32Ty, 4));
3277   case ARM::BI__builtin_arm_sevl:
3278   case ARM::BI__sevl:
3279     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3280                               llvm::ConstantInt::get(Int32Ty, 5));
3281   }
3282 }
3283
3284 // Generates the IR for the read/write special register builtin,
3285 // ValueType is the type of the value that is to be written or read,
3286 // RegisterType is the type of the register being written to or read from.
3287 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
3288                                          const CallExpr *E,
3289                                          llvm::Type *RegisterType,
3290                                          llvm::Type *ValueType, bool IsRead) {
3291   // write and register intrinsics only support 32 and 64 bit operations.
3292   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
3293           && "Unsupported size for register.");
3294
3295   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3296   CodeGen::CodeGenModule &CGM = CGF.CGM;
3297   LLVMContext &Context = CGM.getLLVMContext();
3298
3299   const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
3300   StringRef SysReg = cast<StringLiteral>(SysRegStrExpr)->getString();
3301
3302   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
3303   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
3304   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
3305
3306   llvm::Type *Types[] = { RegisterType };
3307
3308   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
3309   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
3310             && "Can't fit 64-bit value in 32-bit register");
3311
3312   if (IsRead) {
3313     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
3314     llvm::Value *Call = Builder.CreateCall(F, Metadata);
3315
3316     if (MixedTypes)
3317       // Read into 64 bit register and then truncate result to 32 bit.
3318       return Builder.CreateTrunc(Call, ValueType);
3319
3320     if (ValueType->isPointerTy())
3321       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
3322       return Builder.CreateIntToPtr(Call, ValueType);
3323
3324     return Call;
3325   }
3326
3327   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
3328   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
3329   if (MixedTypes) {
3330     // Extend 32 bit write value to 64 bit to pass to write.
3331     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
3332     return Builder.CreateCall(F, { Metadata, ArgValue });
3333   }
3334
3335   if (ValueType->isPointerTy()) {
3336     // Have VoidPtrTy ArgValue but want to return an i32/i64.
3337     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
3338     return Builder.CreateCall(F, { Metadata, ArgValue });
3339   }
3340
3341   return Builder.CreateCall(F, { Metadata, ArgValue });
3342 }
3343
3344 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
3345 /// argument that specifies the vector type.
3346 static bool HasExtraNeonArgument(unsigned BuiltinID) {
3347   switch (BuiltinID) {
3348   default: break;
3349   case NEON::BI__builtin_neon_vget_lane_i8:
3350   case NEON::BI__builtin_neon_vget_lane_i16:
3351   case NEON::BI__builtin_neon_vget_lane_i32:
3352   case NEON::BI__builtin_neon_vget_lane_i64:
3353   case NEON::BI__builtin_neon_vget_lane_f32:
3354   case NEON::BI__builtin_neon_vgetq_lane_i8:
3355   case NEON::BI__builtin_neon_vgetq_lane_i16:
3356   case NEON::BI__builtin_neon_vgetq_lane_i32:
3357   case NEON::BI__builtin_neon_vgetq_lane_i64:
3358   case NEON::BI__builtin_neon_vgetq_lane_f32:
3359   case NEON::BI__builtin_neon_vset_lane_i8:
3360   case NEON::BI__builtin_neon_vset_lane_i16:
3361   case NEON::BI__builtin_neon_vset_lane_i32:
3362   case NEON::BI__builtin_neon_vset_lane_i64:
3363   case NEON::BI__builtin_neon_vset_lane_f32:
3364   case NEON::BI__builtin_neon_vsetq_lane_i8:
3365   case NEON::BI__builtin_neon_vsetq_lane_i16:
3366   case NEON::BI__builtin_neon_vsetq_lane_i32:
3367   case NEON::BI__builtin_neon_vsetq_lane_i64:
3368   case NEON::BI__builtin_neon_vsetq_lane_f32:
3369   case NEON::BI__builtin_neon_vsha1h_u32:
3370   case NEON::BI__builtin_neon_vsha1cq_u32:
3371   case NEON::BI__builtin_neon_vsha1pq_u32:
3372   case NEON::BI__builtin_neon_vsha1mq_u32:
3373   case ARM::BI_MoveToCoprocessor:
3374   case ARM::BI_MoveToCoprocessor2:
3375     return false;
3376   }
3377   return true;
3378 }
3379
3380 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
3381                                            const CallExpr *E) {
3382   if (auto Hint = GetValueForARMHint(BuiltinID))
3383     return Hint;
3384
3385   if (BuiltinID == ARM::BI__emit) {
3386     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
3387     llvm::FunctionType *FTy =
3388         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
3389
3390     APSInt Value;
3391     if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
3392       llvm_unreachable("Sema will ensure that the parameter is constant");
3393
3394     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
3395
3396     llvm::InlineAsm *Emit =
3397         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
3398                                  /*SideEffects=*/true)
3399                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
3400                                  /*SideEffects=*/true);
3401
3402     return Builder.CreateCall(Emit);
3403   }
3404
3405   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
3406     Value *Option = EmitScalarExpr(E->getArg(0));
3407     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
3408   }
3409
3410   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
3411     Value *Address = EmitScalarExpr(E->getArg(0));
3412     Value *RW      = EmitScalarExpr(E->getArg(1));
3413     Value *IsData  = EmitScalarExpr(E->getArg(2));
3414
3415     // Locality is not supported on ARM target
3416     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
3417
3418     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
3419     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
3420   }
3421
3422   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
3423     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_rbit),
3424                                                EmitScalarExpr(E->getArg(0)),
3425                               "rbit");
3426   }
3427
3428   if (BuiltinID == ARM::BI__clear_cache) {
3429     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
3430     const FunctionDecl *FD = E->getDirectCallee();
3431     SmallVector<Value*, 2> Ops;
3432     for (unsigned i = 0; i < 2; i++)
3433       Ops.push_back(EmitScalarExpr(E->getArg(i)));
3434     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
3435     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
3436     StringRef Name = FD->getName();
3437     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
3438   }
3439
3440   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
3441       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
3442         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
3443        getContext().getTypeSize(E->getType()) == 64) ||
3444       BuiltinID == ARM::BI__ldrexd) {
3445     Function *F;
3446
3447     switch (BuiltinID) {
3448     default: llvm_unreachable("unexpected builtin");
3449     case ARM::BI__builtin_arm_ldaex:
3450       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
3451       break;
3452     case ARM::BI__builtin_arm_ldrexd:
3453     case ARM::BI__builtin_arm_ldrex:
3454     case ARM::BI__ldrexd:
3455       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
3456       break;
3457     }
3458
3459     Value *LdPtr = EmitScalarExpr(E->getArg(0));
3460     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
3461                                     "ldrexd");
3462
3463     Value *Val0 = Builder.CreateExtractValue(Val, 1);
3464     Value *Val1 = Builder.CreateExtractValue(Val, 0);
3465     Val0 = Builder.CreateZExt(Val0, Int64Ty);
3466     Val1 = Builder.CreateZExt(Val1, Int64Ty);
3467
3468     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
3469     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
3470     Val = Builder.CreateOr(Val, Val1);
3471     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
3472   }
3473
3474   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
3475       BuiltinID == ARM::BI__builtin_arm_ldaex) {
3476     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
3477
3478     QualType Ty = E->getType();
3479     llvm::Type *RealResTy = ConvertType(Ty);
3480     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
3481                                                   getContext().getTypeSize(Ty));
3482     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
3483
3484     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
3485                                        ? Intrinsic::arm_ldaex
3486                                        : Intrinsic::arm_ldrex,
3487                                    LoadAddr->getType());
3488     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
3489
3490     if (RealResTy->isPointerTy())
3491       return Builder.CreateIntToPtr(Val, RealResTy);
3492     else {
3493       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
3494       return Builder.CreateBitCast(Val, RealResTy);
3495     }
3496   }
3497
3498   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
3499       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
3500         BuiltinID == ARM::BI__builtin_arm_strex) &&
3501        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
3502     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
3503                                        ? Intrinsic::arm_stlexd
3504                                        : Intrinsic::arm_strexd);
3505     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, nullptr);
3506
3507     Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
3508     Value *Val = EmitScalarExpr(E->getArg(0));
3509     Builder.CreateStore(Val, Tmp);
3510
3511     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
3512     Val = Builder.CreateLoad(LdPtr);
3513
3514     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
3515     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
3516     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
3517     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
3518   }
3519
3520   if (BuiltinID == ARM::BI__builtin_arm_strex ||
3521       BuiltinID == ARM::BI__builtin_arm_stlex) {
3522     Value *StoreVal = EmitScalarExpr(E->getArg(0));
3523     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
3524
3525     QualType Ty = E->getArg(0)->getType();
3526     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
3527                                                  getContext().getTypeSize(Ty));
3528     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
3529
3530     if (StoreVal->getType()->isPointerTy())
3531       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
3532     else {
3533       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
3534       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
3535     }
3536
3537     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
3538                                        ? Intrinsic::arm_stlex
3539                                        : Intrinsic::arm_strex,
3540                                    StoreAddr->getType());
3541     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
3542   }
3543
3544   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
3545     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
3546     return Builder.CreateCall(F);
3547   }
3548
3549   // CRC32
3550   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
3551   switch (BuiltinID) {
3552   case ARM::BI__builtin_arm_crc32b:
3553     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
3554   case ARM::BI__builtin_arm_crc32cb:
3555     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
3556   case ARM::BI__builtin_arm_crc32h:
3557     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
3558   case ARM::BI__builtin_arm_crc32ch:
3559     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
3560   case ARM::BI__builtin_arm_crc32w:
3561   case ARM::BI__builtin_arm_crc32d:
3562     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
3563   case ARM::BI__builtin_arm_crc32cw:
3564   case ARM::BI__builtin_arm_crc32cd:
3565     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
3566   }
3567
3568   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
3569     Value *Arg0 = EmitScalarExpr(E->getArg(0));
3570     Value *Arg1 = EmitScalarExpr(E->getArg(1));
3571
3572     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
3573     // intrinsics, hence we need different codegen for these cases.
3574     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
3575         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
3576       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
3577       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
3578       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
3579       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
3580
3581       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
3582       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
3583       return Builder.CreateCall(F, {Res, Arg1b});
3584     } else {
3585       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
3586
3587       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
3588       return Builder.CreateCall(F, {Arg0, Arg1});
3589     }
3590   }
3591
3592   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
3593       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3594       BuiltinID == ARM::BI__builtin_arm_rsrp ||
3595       BuiltinID == ARM::BI__builtin_arm_wsr ||
3596       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
3597       BuiltinID == ARM::BI__builtin_arm_wsrp) {
3598
3599     bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
3600                   BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3601                   BuiltinID == ARM::BI__builtin_arm_rsrp;
3602
3603     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
3604                             BuiltinID == ARM::BI__builtin_arm_wsrp;
3605
3606     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3607                    BuiltinID == ARM::BI__builtin_arm_wsr64;
3608
3609     llvm::Type *ValueType;
3610     llvm::Type *RegisterType;
3611     if (IsPointerBuiltin) {
3612       ValueType = VoidPtrTy;
3613       RegisterType = Int32Ty;
3614     } else if (Is64Bit) {
3615       ValueType = RegisterType = Int64Ty;
3616     } else {
3617       ValueType = RegisterType = Int32Ty;
3618     }
3619
3620     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
3621   }
3622
3623   // Find out if any arguments are required to be integer constant
3624   // expressions.
3625   unsigned ICEArguments = 0;
3626   ASTContext::GetBuiltinTypeError Error;
3627   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
3628   assert(Error == ASTContext::GE_None && "Should not codegen an error");
3629
3630   SmallVector<Value*, 4> Ops;
3631   llvm::Value *Align = nullptr;
3632   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
3633   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
3634   for (unsigned i = 0, e = NumArgs; i != e; i++) {
3635     if (i == 0) {
3636       switch (BuiltinID) {
3637       case NEON::BI__builtin_neon_vld1_v:
3638       case NEON::BI__builtin_neon_vld1q_v:
3639       case NEON::BI__builtin_neon_vld1q_lane_v:
3640       case NEON::BI__builtin_neon_vld1_lane_v:
3641       case NEON::BI__builtin_neon_vld1_dup_v:
3642       case NEON::BI__builtin_neon_vld1q_dup_v:
3643       case NEON::BI__builtin_neon_vst1_v:
3644       case NEON::BI__builtin_neon_vst1q_v:
3645       case NEON::BI__builtin_neon_vst1q_lane_v:
3646       case NEON::BI__builtin_neon_vst1_lane_v:
3647       case NEON::BI__builtin_neon_vst2_v:
3648       case NEON::BI__builtin_neon_vst2q_v:
3649       case NEON::BI__builtin_neon_vst2_lane_v:
3650       case NEON::BI__builtin_neon_vst2q_lane_v:
3651       case NEON::BI__builtin_neon_vst3_v:
3652       case NEON::BI__builtin_neon_vst3q_v:
3653       case NEON::BI__builtin_neon_vst3_lane_v:
3654       case NEON::BI__builtin_neon_vst3q_lane_v:
3655       case NEON::BI__builtin_neon_vst4_v:
3656       case NEON::BI__builtin_neon_vst4q_v:
3657       case NEON::BI__builtin_neon_vst4_lane_v:
3658       case NEON::BI__builtin_neon_vst4q_lane_v:
3659         // Get the alignment for the argument in addition to the value;
3660         // we'll use it later.
3661         std::pair<llvm::Value*, unsigned> Src =
3662             EmitPointerWithAlignment(E->getArg(0));
3663         Ops.push_back(Src.first);
3664         Align = Builder.getInt32(Src.second);
3665         continue;
3666       }
3667     }
3668     if (i == 1) {
3669       switch (BuiltinID) {
3670       case NEON::BI__builtin_neon_vld2_v:
3671       case NEON::BI__builtin_neon_vld2q_v:
3672       case NEON::BI__builtin_neon_vld3_v:
3673       case NEON::BI__builtin_neon_vld3q_v:
3674       case NEON::BI__builtin_neon_vld4_v:
3675       case NEON::BI__builtin_neon_vld4q_v:
3676       case NEON::BI__builtin_neon_vld2_lane_v:
3677       case NEON::BI__builtin_neon_vld2q_lane_v:
3678       case NEON::BI__builtin_neon_vld3_lane_v:
3679       case NEON::BI__builtin_neon_vld3q_lane_v:
3680       case NEON::BI__builtin_neon_vld4_lane_v:
3681       case NEON::BI__builtin_neon_vld4q_lane_v:
3682       case NEON::BI__builtin_neon_vld2_dup_v:
3683       case NEON::BI__builtin_neon_vld3_dup_v:
3684       case NEON::BI__builtin_neon_vld4_dup_v:
3685         // Get the alignment for the argument in addition to the value;
3686         // we'll use it later.
3687         std::pair<llvm::Value*, unsigned> Src =
3688             EmitPointerWithAlignment(E->getArg(1));
3689         Ops.push_back(Src.first);
3690         Align = Builder.getInt32(Src.second);
3691         continue;
3692       }
3693     }
3694
3695     if ((ICEArguments & (1 << i)) == 0) {
3696       Ops.push_back(EmitScalarExpr(E->getArg(i)));
3697     } else {
3698       // If this is required to be a constant, constant fold it so that we know
3699       // that the generated intrinsic gets a ConstantInt.
3700       llvm::APSInt Result;
3701       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
3702       assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
3703       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
3704     }
3705   }
3706
3707   switch (BuiltinID) {
3708   default: break;
3709
3710   case NEON::BI__builtin_neon_vget_lane_i8:
3711   case NEON::BI__builtin_neon_vget_lane_i16:
3712   case NEON::BI__builtin_neon_vget_lane_i32:
3713   case NEON::BI__builtin_neon_vget_lane_i64:
3714   case NEON::BI__builtin_neon_vget_lane_f32:
3715   case NEON::BI__builtin_neon_vgetq_lane_i8:
3716   case NEON::BI__builtin_neon_vgetq_lane_i16:
3717   case NEON::BI__builtin_neon_vgetq_lane_i32:
3718   case NEON::BI__builtin_neon_vgetq_lane_i64:
3719   case NEON::BI__builtin_neon_vgetq_lane_f32:
3720     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
3721
3722   case NEON::BI__builtin_neon_vset_lane_i8:
3723   case NEON::BI__builtin_neon_vset_lane_i16:
3724   case NEON::BI__builtin_neon_vset_lane_i32:
3725   case NEON::BI__builtin_neon_vset_lane_i64:
3726   case NEON::BI__builtin_neon_vset_lane_f32:
3727   case NEON::BI__builtin_neon_vsetq_lane_i8:
3728   case NEON::BI__builtin_neon_vsetq_lane_i16:
3729   case NEON::BI__builtin_neon_vsetq_lane_i32:
3730   case NEON::BI__builtin_neon_vsetq_lane_i64:
3731   case NEON::BI__builtin_neon_vsetq_lane_f32:
3732     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
3733
3734   case NEON::BI__builtin_neon_vsha1h_u32:
3735     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
3736                         "vsha1h");
3737   case NEON::BI__builtin_neon_vsha1cq_u32:
3738     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
3739                         "vsha1h");
3740   case NEON::BI__builtin_neon_vsha1pq_u32:
3741     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
3742                         "vsha1h");
3743   case NEON::BI__builtin_neon_vsha1mq_u32:
3744     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
3745                         "vsha1h");
3746
3747   // The ARM _MoveToCoprocessor builtins put the input register value as
3748   // the first argument, but the LLVM intrinsic expects it as the third one.
3749   case ARM::BI_MoveToCoprocessor:
3750   case ARM::BI_MoveToCoprocessor2: {
3751     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? 
3752                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
3753     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
3754                                   Ops[3], Ops[4], Ops[5]});
3755   }
3756   }
3757
3758   // Get the last argument, which specifies the vector type.
3759   assert(HasExtraArg);
3760   llvm::APSInt Result;
3761   const Expr *Arg = E->getArg(E->getNumArgs()-1);
3762   if (!Arg->isIntegerConstantExpr(Result, getContext()))
3763     return nullptr;
3764
3765   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
3766       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
3767     // Determine the overloaded type of this builtin.
3768     llvm::Type *Ty;
3769     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
3770       Ty = FloatTy;
3771     else
3772       Ty = DoubleTy;
3773
3774     // Determine whether this is an unsigned conversion or not.
3775     bool usgn = Result.getZExtValue() == 1;
3776     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
3777
3778     // Call the appropriate intrinsic.
3779     Function *F = CGM.getIntrinsic(Int, Ty);
3780     return Builder.CreateCall(F, Ops, "vcvtr");
3781   }
3782
3783   // Determine the type of this overloaded NEON intrinsic.
3784   NeonTypeFlags Type(Result.getZExtValue());
3785   bool usgn = Type.isUnsigned();
3786   bool rightShift = false;
3787
3788   llvm::VectorType *VTy = GetNeonType(this, Type);
3789   llvm::Type *Ty = VTy;
3790   if (!Ty)
3791     return nullptr;
3792
3793   // Many NEON builtins have identical semantics and uses in ARM and
3794   // AArch64. Emit these in a single function.
3795   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
3796   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
3797       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
3798   if (Builtin)
3799     return EmitCommonNeonBuiltinExpr(
3800         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
3801         Builtin->NameHint, Builtin->TypeModifier, E, Ops, Align);
3802
3803   unsigned Int;
3804   switch (BuiltinID) {
3805   default: return nullptr;
3806   case NEON::BI__builtin_neon_vld1q_lane_v:
3807     // Handle 64-bit integer elements as a special case.  Use shuffles of
3808     // one-element vectors to avoid poor code for i64 in the backend.
3809     if (VTy->getElementType()->isIntegerTy(64)) {
3810       // Extract the other lane.
3811       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3812       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
3813       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
3814       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
3815       // Load the value as a one-element vector.
3816       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
3817       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
3818       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
3819       // Combine them.
3820       SmallVector<Constant*, 2> Indices;
3821       Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
3822       Indices.push_back(ConstantInt::get(Int32Ty, Lane));
3823       SV = llvm::ConstantVector::get(Indices);
3824       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
3825     }
3826     // fall through
3827   case NEON::BI__builtin_neon_vld1_lane_v: {
3828     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3829     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
3830     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3831     LoadInst *Ld = Builder.CreateLoad(Ops[0]);
3832     Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3833     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
3834   }
3835   case NEON::BI__builtin_neon_vld2_dup_v:
3836   case NEON::BI__builtin_neon_vld3_dup_v:
3837   case NEON::BI__builtin_neon_vld4_dup_v: {
3838     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
3839     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
3840       switch (BuiltinID) {
3841       case NEON::BI__builtin_neon_vld2_dup_v:
3842         Int = Intrinsic::arm_neon_vld2;
3843         break;
3844       case NEON::BI__builtin_neon_vld3_dup_v:
3845         Int = Intrinsic::arm_neon_vld3;
3846         break;
3847       case NEON::BI__builtin_neon_vld4_dup_v:
3848         Int = Intrinsic::arm_neon_vld4;
3849         break;
3850       default: llvm_unreachable("unknown vld_dup intrinsic?");
3851       }
3852       Function *F = CGM.getIntrinsic(Int, Ty);
3853       Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup");
3854       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3855       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3856       return Builder.CreateStore(Ops[1], Ops[0]);
3857     }
3858     switch (BuiltinID) {
3859     case NEON::BI__builtin_neon_vld2_dup_v:
3860       Int = Intrinsic::arm_neon_vld2lane;
3861       break;
3862     case NEON::BI__builtin_neon_vld3_dup_v:
3863       Int = Intrinsic::arm_neon_vld3lane;
3864       break;
3865     case NEON::BI__builtin_neon_vld4_dup_v:
3866       Int = Intrinsic::arm_neon_vld4lane;
3867       break;
3868     default: llvm_unreachable("unknown vld_dup intrinsic?");
3869     }
3870     Function *F = CGM.getIntrinsic(Int, Ty);
3871     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
3872
3873     SmallVector<Value*, 6> Args;
3874     Args.push_back(Ops[1]);
3875     Args.append(STy->getNumElements(), UndefValue::get(Ty));
3876
3877     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
3878     Args.push_back(CI);
3879     Args.push_back(Align);
3880
3881     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
3882     // splat lane 0 to all elts in each vector of the result.
3883     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3884       Value *Val = Builder.CreateExtractValue(Ops[1], i);
3885       Value *Elt = Builder.CreateBitCast(Val, Ty);
3886       Elt = EmitNeonSplat(Elt, CI);
3887       Elt = Builder.CreateBitCast(Elt, Val->getType());
3888       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
3889     }
3890     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3891     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3892     return Builder.CreateStore(Ops[1], Ops[0]);
3893   }
3894   case NEON::BI__builtin_neon_vqrshrn_n_v:
3895     Int =
3896       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
3897     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
3898                         1, true);
3899   case NEON::BI__builtin_neon_vqrshrun_n_v:
3900     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
3901                         Ops, "vqrshrun_n", 1, true);
3902   case NEON::BI__builtin_neon_vqshrn_n_v:
3903     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
3904     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
3905                         1, true);
3906   case NEON::BI__builtin_neon_vqshrun_n_v:
3907     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
3908                         Ops, "vqshrun_n", 1, true);
3909   case NEON::BI__builtin_neon_vrecpe_v:
3910   case NEON::BI__builtin_neon_vrecpeq_v:
3911     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
3912                         Ops, "vrecpe");
3913   case NEON::BI__builtin_neon_vrshrn_n_v:
3914     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
3915                         Ops, "vrshrn_n", 1, true);
3916   case NEON::BI__builtin_neon_vrsra_n_v:
3917   case NEON::BI__builtin_neon_vrsraq_n_v:
3918     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3919     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3920     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
3921     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
3922     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
3923     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
3924   case NEON::BI__builtin_neon_vsri_n_v:
3925   case NEON::BI__builtin_neon_vsriq_n_v:
3926     rightShift = true;
3927   case NEON::BI__builtin_neon_vsli_n_v:
3928   case NEON::BI__builtin_neon_vsliq_n_v:
3929     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
3930     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
3931                         Ops, "vsli_n");
3932   case NEON::BI__builtin_neon_vsra_n_v:
3933   case NEON::BI__builtin_neon_vsraq_n_v:
3934     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3935     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
3936     return Builder.CreateAdd(Ops[0], Ops[1]);
3937   case NEON::BI__builtin_neon_vst1q_lane_v:
3938     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
3939     // a one-element vector and avoid poor code for i64 in the backend.
3940     if (VTy->getElementType()->isIntegerTy(64)) {
3941       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3942       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
3943       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
3944       Ops[2] = Align;
3945       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
3946                                                  Ops[1]->getType()), Ops);
3947     }
3948     // fall through
3949   case NEON::BI__builtin_neon_vst1_lane_v: {
3950     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3951     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
3952     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3953     StoreInst *St = Builder.CreateStore(Ops[1],
3954                                         Builder.CreateBitCast(Ops[0], Ty));
3955     St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3956     return St;
3957   }
3958   case NEON::BI__builtin_neon_vtbl1_v:
3959     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
3960                         Ops, "vtbl1");
3961   case NEON::BI__builtin_neon_vtbl2_v:
3962     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
3963                         Ops, "vtbl2");
3964   case NEON::BI__builtin_neon_vtbl3_v:
3965     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
3966                         Ops, "vtbl3");
3967   case NEON::BI__builtin_neon_vtbl4_v:
3968     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
3969                         Ops, "vtbl4");
3970   case NEON::BI__builtin_neon_vtbx1_v:
3971     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
3972                         Ops, "vtbx1");
3973   case NEON::BI__builtin_neon_vtbx2_v:
3974     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
3975                         Ops, "vtbx2");
3976   case NEON::BI__builtin_neon_vtbx3_v:
3977     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
3978                         Ops, "vtbx3");
3979   case NEON::BI__builtin_neon_vtbx4_v:
3980     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
3981                         Ops, "vtbx4");
3982   }
3983 }
3984
3985 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
3986                                       const CallExpr *E,
3987                                       SmallVectorImpl<Value *> &Ops) {
3988   unsigned int Int = 0;
3989   const char *s = nullptr;
3990
3991   switch (BuiltinID) {
3992   default:
3993     return nullptr;
3994   case NEON::BI__builtin_neon_vtbl1_v:
3995   case NEON::BI__builtin_neon_vqtbl1_v:
3996   case NEON::BI__builtin_neon_vqtbl1q_v:
3997   case NEON::BI__builtin_neon_vtbl2_v:
3998   case NEON::BI__builtin_neon_vqtbl2_v:
3999   case NEON::BI__builtin_neon_vqtbl2q_v:
4000   case NEON::BI__builtin_neon_vtbl3_v:
4001   case NEON::BI__builtin_neon_vqtbl3_v:
4002   case NEON::BI__builtin_neon_vqtbl3q_v:
4003   case NEON::BI__builtin_neon_vtbl4_v:
4004   case NEON::BI__builtin_neon_vqtbl4_v:
4005   case NEON::BI__builtin_neon_vqtbl4q_v:
4006     break;
4007   case NEON::BI__builtin_neon_vtbx1_v:
4008   case NEON::BI__builtin_neon_vqtbx1_v:
4009   case NEON::BI__builtin_neon_vqtbx1q_v:
4010   case NEON::BI__builtin_neon_vtbx2_v:
4011   case NEON::BI__builtin_neon_vqtbx2_v:
4012   case NEON::BI__builtin_neon_vqtbx2q_v:
4013   case NEON::BI__builtin_neon_vtbx3_v:
4014   case NEON::BI__builtin_neon_vqtbx3_v:
4015   case NEON::BI__builtin_neon_vqtbx3q_v:
4016   case NEON::BI__builtin_neon_vtbx4_v:
4017   case NEON::BI__builtin_neon_vqtbx4_v:
4018   case NEON::BI__builtin_neon_vqtbx4q_v:
4019     break;
4020   }
4021
4022   assert(E->getNumArgs() >= 3);
4023
4024   // Get the last argument, which specifies the vector type.
4025   llvm::APSInt Result;
4026   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
4027   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
4028     return nullptr;
4029
4030   // Determine the type of this overloaded NEON intrinsic.
4031   NeonTypeFlags Type(Result.getZExtValue());
4032   llvm::VectorType *VTy = GetNeonType(&CGF, Type);
4033   llvm::Type *Ty = VTy;
4034   if (!Ty)
4035     return nullptr;
4036
4037   unsigned nElts = VTy->getNumElements();
4038
4039   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4040
4041   // AArch64 scalar builtins are not overloaded, they do not have an extra
4042   // argument that specifies the vector type, need to handle each case.
4043   SmallVector<Value *, 2> TblOps;
4044   switch (BuiltinID) {
4045   case NEON::BI__builtin_neon_vtbl1_v: {
4046     TblOps.push_back(Ops[0]);
4047     return packTBLDVectorList(CGF, TblOps, nullptr, Ops[1], Ty,
4048                               Intrinsic::aarch64_neon_tbl1, "vtbl1");
4049   }
4050   case NEON::BI__builtin_neon_vtbl2_v: {
4051     TblOps.push_back(Ops[0]);
4052     TblOps.push_back(Ops[1]);
4053     return packTBLDVectorList(CGF, TblOps, nullptr, Ops[2], Ty,
4054                               Intrinsic::aarch64_neon_tbl1, "vtbl1");
4055   }
4056   case NEON::BI__builtin_neon_vtbl3_v: {
4057     TblOps.push_back(Ops[0]);
4058     TblOps.push_back(Ops[1]);
4059     TblOps.push_back(Ops[2]);
4060     return packTBLDVectorList(CGF, TblOps, nullptr, Ops[3], Ty,
4061                               Intrinsic::aarch64_neon_tbl2, "vtbl2");
4062   }
4063   case NEON::BI__builtin_neon_vtbl4_v: {
4064     TblOps.push_back(Ops[0]);
4065     TblOps.push_back(Ops[1]);
4066     TblOps.push_back(Ops[2]);
4067     TblOps.push_back(Ops[3]);
4068     return packTBLDVectorList(CGF, TblOps, nullptr, Ops[4], Ty,
4069                               Intrinsic::aarch64_neon_tbl2, "vtbl2");
4070   }
4071   case NEON::BI__builtin_neon_vtbx1_v: {
4072     TblOps.push_back(Ops[1]);
4073     Value *TblRes = packTBLDVectorList(CGF, TblOps, nullptr, Ops[2], Ty,
4074                                        Intrinsic::aarch64_neon_tbl1, "vtbl1");
4075
4076     llvm::Constant *Eight = ConstantInt::get(VTy->getElementType(), 8);
4077     Value* EightV = llvm::ConstantVector::getSplat(nElts, Eight);
4078     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
4079     CmpRes = Builder.CreateSExt(CmpRes, Ty);
4080
4081     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
4082     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
4083     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
4084   }
4085   case NEON::BI__builtin_neon_vtbx2_v: {
4086     TblOps.push_back(Ops[1]);
4087     TblOps.push_back(Ops[2]);
4088     return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[3], Ty,
4089                               Intrinsic::aarch64_neon_tbx1, "vtbx1");
4090   }
4091   case NEON::BI__builtin_neon_vtbx3_v: {
4092     TblOps.push_back(Ops[1]);
4093     TblOps.push_back(Ops[2]);
4094     TblOps.push_back(Ops[3]);
4095     Value *TblRes = packTBLDVectorList(CGF, TblOps, nullptr, Ops[4], Ty,
4096                                        Intrinsic::aarch64_neon_tbl2, "vtbl2");
4097
4098     llvm::Constant *TwentyFour = ConstantInt::get(VTy->getElementType(), 24);
4099     Value* TwentyFourV = llvm::ConstantVector::getSplat(nElts, TwentyFour);
4100     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
4101                                            TwentyFourV);
4102     CmpRes = Builder.CreateSExt(CmpRes, Ty);
4103
4104     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
4105     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
4106     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
4107   }
4108   case NEON::BI__builtin_neon_vtbx4_v: {
4109     TblOps.push_back(Ops[1]);
4110     TblOps.push_back(Ops[2]);
4111     TblOps.push_back(Ops[3]);
4112     TblOps.push_back(Ops[4]);
4113     return packTBLDVectorList(CGF, TblOps, Ops[0], Ops[5], Ty,
4114                               Intrinsic::aarch64_neon_tbx2, "vtbx2");
4115   }
4116   case NEON::BI__builtin_neon_vqtbl1_v:
4117   case NEON::BI__builtin_neon_vqtbl1q_v:
4118     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
4119   case NEON::BI__builtin_neon_vqtbl2_v:
4120   case NEON::BI__builtin_neon_vqtbl2q_v: {
4121     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
4122   case NEON::BI__builtin_neon_vqtbl3_v:
4123   case NEON::BI__builtin_neon_vqtbl3q_v:
4124     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
4125   case NEON::BI__builtin_neon_vqtbl4_v:
4126   case NEON::BI__builtin_neon_vqtbl4q_v:
4127     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
4128   case NEON::BI__builtin_neon_vqtbx1_v:
4129   case NEON::BI__builtin_neon_vqtbx1q_v:
4130     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
4131   case NEON::BI__builtin_neon_vqtbx2_v:
4132   case NEON::BI__builtin_neon_vqtbx2q_v:
4133     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
4134   case NEON::BI__builtin_neon_vqtbx3_v:
4135   case NEON::BI__builtin_neon_vqtbx3q_v:
4136     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
4137   case NEON::BI__builtin_neon_vqtbx4_v:
4138   case NEON::BI__builtin_neon_vqtbx4q_v:
4139     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
4140   }
4141   }
4142
4143   if (!Int)
4144     return nullptr;
4145
4146   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
4147   return CGF.EmitNeonCall(F, Ops, s);
4148 }
4149
4150 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
4151   llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
4152   Op = Builder.CreateBitCast(Op, Int16Ty);
4153   Value *V = UndefValue::get(VTy);
4154   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
4155   Op = Builder.CreateInsertElement(V, Op, CI);
4156   return Op;
4157 }
4158
4159 Value *CodeGenFunction::vectorWrapScalar8(Value *Op) {
4160   llvm::Type *VTy = llvm::VectorType::get(Int8Ty, 8);
4161   Op = Builder.CreateBitCast(Op, Int8Ty);
4162   Value *V = UndefValue::get(VTy);
4163   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
4164   Op = Builder.CreateInsertElement(V, Op, CI);
4165   return Op;
4166 }
4167
4168 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
4169                                                const CallExpr *E) {
4170   unsigned HintID = static_cast<unsigned>(-1);
4171   switch (BuiltinID) {
4172   default: break;
4173   case AArch64::BI__builtin_arm_nop:
4174     HintID = 0;
4175     break;
4176   case AArch64::BI__builtin_arm_yield:
4177     HintID = 1;
4178     break;
4179   case AArch64::BI__builtin_arm_wfe:
4180     HintID = 2;
4181     break;
4182   case AArch64::BI__builtin_arm_wfi:
4183     HintID = 3;
4184     break;
4185   case AArch64::BI__builtin_arm_sev:
4186     HintID = 4;
4187     break;
4188   case AArch64::BI__builtin_arm_sevl:
4189     HintID = 5;
4190     break;
4191   }
4192
4193   if (HintID != static_cast<unsigned>(-1)) {
4194     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
4195     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
4196   }
4197
4198   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
4199     Value *Address         = EmitScalarExpr(E->getArg(0));
4200     Value *RW              = EmitScalarExpr(E->getArg(1));
4201     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
4202     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
4203     Value *IsData          = EmitScalarExpr(E->getArg(4));
4204
4205     Value *Locality = nullptr;
4206     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
4207       // Temporal fetch, needs to convert cache level to locality.
4208       Locality = llvm::ConstantInt::get(Int32Ty,
4209         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
4210     } else {
4211       // Streaming fetch.
4212       Locality = llvm::ConstantInt::get(Int32Ty, 0);
4213     }
4214
4215     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
4216     // PLDL3STRM or PLDL2STRM.
4217     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
4218     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
4219   }
4220
4221   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
4222     assert((getContext().getTypeSize(E->getType()) == 32) &&
4223            "rbit of unusual size!");
4224     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
4225     return Builder.CreateCall(
4226         CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
4227   }
4228   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
4229     assert((getContext().getTypeSize(E->getType()) == 64) &&
4230            "rbit of unusual size!");
4231     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
4232     return Builder.CreateCall(
4233         CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
4234   }
4235
4236   if (BuiltinID == AArch64::BI__clear_cache) {
4237     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
4238     const FunctionDecl *FD = E->getDirectCallee();
4239     SmallVector<Value*, 2> Ops;
4240     for (unsigned i = 0; i < 2; i++)
4241       Ops.push_back(EmitScalarExpr(E->getArg(i)));
4242     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
4243     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
4244     StringRef Name = FD->getName();
4245     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
4246   }
4247
4248   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
4249       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
4250       getContext().getTypeSize(E->getType()) == 128) {
4251     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
4252                                        ? Intrinsic::aarch64_ldaxp
4253                                        : Intrinsic::aarch64_ldxp);
4254
4255     Value *LdPtr = EmitScalarExpr(E->getArg(0));
4256     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
4257                                     "ldxp");
4258
4259     Value *Val0 = Builder.CreateExtractValue(Val, 1);
4260     Value *Val1 = Builder.CreateExtractValue(Val, 0);
4261     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
4262     Val0 = Builder.CreateZExt(Val0, Int128Ty);
4263     Val1 = Builder.CreateZExt(Val1, Int128Ty);
4264
4265     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
4266     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
4267     Val = Builder.CreateOr(Val, Val1);
4268     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
4269   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
4270              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
4271     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
4272
4273     QualType Ty = E->getType();
4274     llvm::Type *RealResTy = ConvertType(Ty);
4275     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
4276                                                   getContext().getTypeSize(Ty));
4277     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
4278
4279     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
4280                                        ? Intrinsic::aarch64_ldaxr
4281                                        : Intrinsic::aarch64_ldxr,
4282                                    LoadAddr->getType());
4283     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
4284
4285     if (RealResTy->isPointerTy())
4286       return Builder.CreateIntToPtr(Val, RealResTy);
4287
4288     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
4289     return Builder.CreateBitCast(Val, RealResTy);
4290   }
4291
4292   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
4293        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
4294       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
4295     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
4296                                        ? Intrinsic::aarch64_stlxp
4297                                        : Intrinsic::aarch64_stxp);
4298     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty, nullptr);
4299
4300     Value *One = llvm::ConstantInt::get(Int32Ty, 1);
4301     Value *Tmp = Builder.CreateAlloca(ConvertType(E->getArg(0)->getType()),
4302                                       One);
4303     Value *Val = EmitScalarExpr(E->getArg(0));
4304     Builder.CreateStore(Val, Tmp);
4305
4306     Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
4307     Val = Builder.CreateLoad(LdPtr);
4308
4309     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
4310     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
4311     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
4312                                          Int8PtrTy);
4313     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
4314   }
4315
4316   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
4317       BuiltinID == AArch64::BI__builtin_arm_stlex) {
4318     Value *StoreVal = EmitScalarExpr(E->getArg(0));
4319     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
4320
4321     QualType Ty = E->getArg(0)->getType();
4322     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
4323                                                  getContext().getTypeSize(Ty));
4324     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
4325
4326     if (StoreVal->getType()->isPointerTy())
4327       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
4328     else {
4329       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
4330       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
4331     }
4332
4333     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
4334                                        ? Intrinsic::aarch64_stlxr
4335                                        : Intrinsic::aarch64_stxr,
4336                                    StoreAddr->getType());
4337     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
4338   }
4339
4340   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
4341     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
4342     return Builder.CreateCall(F);
4343   }
4344
4345   // CRC32
4346   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
4347   switch (BuiltinID) {
4348   case AArch64::BI__builtin_arm_crc32b:
4349     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
4350   case AArch64::BI__builtin_arm_crc32cb:
4351     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
4352   case AArch64::BI__builtin_arm_crc32h:
4353     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
4354   case AArch64::BI__builtin_arm_crc32ch:
4355     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
4356   case AArch64::BI__builtin_arm_crc32w:
4357     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
4358   case AArch64::BI__builtin_arm_crc32cw:
4359     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
4360   case AArch64::BI__builtin_arm_crc32d:
4361     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
4362   case AArch64::BI__builtin_arm_crc32cd:
4363     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
4364   }
4365
4366   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
4367     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4368     Value *Arg1 = EmitScalarExpr(E->getArg(1));
4369     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
4370
4371     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
4372     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
4373
4374     return Builder.CreateCall(F, {Arg0, Arg1});
4375   }
4376
4377   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
4378       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
4379       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
4380       BuiltinID == AArch64::BI__builtin_arm_wsr ||
4381       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
4382       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
4383
4384     bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
4385                   BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
4386                   BuiltinID == AArch64::BI__builtin_arm_rsrp;
4387
4388     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
4389                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
4390
4391     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
4392                    BuiltinID != AArch64::BI__builtin_arm_wsr;
4393
4394     llvm::Type *ValueType;
4395     llvm::Type *RegisterType = Int64Ty;
4396     if (IsPointerBuiltin) {
4397       ValueType = VoidPtrTy;
4398     } else if (Is64Bit) {
4399       ValueType = Int64Ty;
4400     } else {
4401       ValueType = Int32Ty;
4402     }
4403
4404     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
4405   }
4406
4407   // Find out if any arguments are required to be integer constant
4408   // expressions.
4409   unsigned ICEArguments = 0;
4410   ASTContext::GetBuiltinTypeError Error;
4411   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4412   assert(Error == ASTContext::GE_None && "Should not codegen an error");
4413
4414   llvm::SmallVector<Value*, 4> Ops;
4415   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
4416     if ((ICEArguments & (1 << i)) == 0) {
4417       Ops.push_back(EmitScalarExpr(E->getArg(i)));
4418     } else {
4419       // If this is required to be a constant, constant fold it so that we know
4420       // that the generated intrinsic gets a ConstantInt.
4421       llvm::APSInt Result;
4422       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
4423       assert(IsConst && "Constant arg isn't actually constant?");
4424       (void)IsConst;
4425       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
4426     }
4427   }
4428
4429   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
4430   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
4431       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
4432
4433   if (Builtin) {
4434     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
4435     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
4436     assert(Result && "SISD intrinsic should have been handled");
4437     return Result;
4438   }
4439
4440   llvm::APSInt Result;
4441   const Expr *Arg = E->getArg(E->getNumArgs()-1);
4442   NeonTypeFlags Type(0);
4443   if (Arg->isIntegerConstantExpr(Result, getContext()))
4444     // Determine the type of this overloaded NEON intrinsic.
4445     Type = NeonTypeFlags(Result.getZExtValue());
4446
4447   bool usgn = Type.isUnsigned();
4448   bool quad = Type.isQuad();
4449
4450   // Handle non-overloaded intrinsics first.
4451   switch (BuiltinID) {
4452   default: break;
4453   case NEON::BI__builtin_neon_vldrq_p128: {
4454     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
4455     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
4456     return Builder.CreateLoad(Ptr);
4457   }
4458   case NEON::BI__builtin_neon_vstrq_p128: {
4459     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
4460     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
4461     return Builder.CreateStore(EmitScalarExpr(E->getArg(1)), Ptr);
4462   }
4463   case NEON::BI__builtin_neon_vcvts_u32_f32:
4464   case NEON::BI__builtin_neon_vcvtd_u64_f64:
4465     usgn = true;
4466     // FALL THROUGH
4467   case NEON::BI__builtin_neon_vcvts_s32_f32:
4468   case NEON::BI__builtin_neon_vcvtd_s64_f64: {
4469     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4470     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
4471     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
4472     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
4473     Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
4474     if (usgn)
4475       return Builder.CreateFPToUI(Ops[0], InTy);
4476     return Builder.CreateFPToSI(Ops[0], InTy);
4477   }
4478   case NEON::BI__builtin_neon_vcvts_f32_u32:
4479   case NEON::BI__builtin_neon_vcvtd_f64_u64:
4480     usgn = true;
4481     // FALL THROUGH
4482   case NEON::BI__builtin_neon_vcvts_f32_s32:
4483   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
4484     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4485     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
4486     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
4487     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
4488     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
4489     if (usgn)
4490       return Builder.CreateUIToFP(Ops[0], FTy);
4491     return Builder.CreateSIToFP(Ops[0], FTy);
4492   }
4493   case NEON::BI__builtin_neon_vpaddd_s64: {
4494     llvm::Type *Ty =
4495       llvm::VectorType::get(llvm::Type::getInt64Ty(getLLVMContext()), 2);
4496     Value *Vec = EmitScalarExpr(E->getArg(0));
4497     // The vector is v2f64, so make sure it's bitcast to that.
4498     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
4499     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4500     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4501     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4502     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4503     // Pairwise addition of a v2f64 into a scalar f64.
4504     return Builder.CreateAdd(Op0, Op1, "vpaddd");
4505   }
4506   case NEON::BI__builtin_neon_vpaddd_f64: {
4507     llvm::Type *Ty =
4508       llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2);
4509     Value *Vec = EmitScalarExpr(E->getArg(0));
4510     // The vector is v2f64, so make sure it's bitcast to that.
4511     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
4512     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4513     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4514     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4515     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4516     // Pairwise addition of a v2f64 into a scalar f64.
4517     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
4518   }
4519   case NEON::BI__builtin_neon_vpadds_f32: {
4520     llvm::Type *Ty =
4521       llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2);
4522     Value *Vec = EmitScalarExpr(E->getArg(0));
4523     // The vector is v2f32, so make sure it's bitcast to that.
4524     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
4525     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4526     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4527     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4528     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4529     // Pairwise addition of a v2f32 into a scalar f32.
4530     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
4531   }
4532   case NEON::BI__builtin_neon_vceqzd_s64:
4533   case NEON::BI__builtin_neon_vceqzd_f64:
4534   case NEON::BI__builtin_neon_vceqzs_f32:
4535     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4536     return EmitAArch64CompareBuiltinExpr(
4537         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4538         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
4539   case NEON::BI__builtin_neon_vcgezd_s64:
4540   case NEON::BI__builtin_neon_vcgezd_f64:
4541   case NEON::BI__builtin_neon_vcgezs_f32:
4542     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4543     return EmitAArch64CompareBuiltinExpr(
4544         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4545         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
4546   case NEON::BI__builtin_neon_vclezd_s64:
4547   case NEON::BI__builtin_neon_vclezd_f64:
4548   case NEON::BI__builtin_neon_vclezs_f32:
4549     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4550     return EmitAArch64CompareBuiltinExpr(
4551         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4552         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
4553   case NEON::BI__builtin_neon_vcgtzd_s64:
4554   case NEON::BI__builtin_neon_vcgtzd_f64:
4555   case NEON::BI__builtin_neon_vcgtzs_f32:
4556     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4557     return EmitAArch64CompareBuiltinExpr(
4558         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4559         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
4560   case NEON::BI__builtin_neon_vcltzd_s64:
4561   case NEON::BI__builtin_neon_vcltzd_f64:
4562   case NEON::BI__builtin_neon_vcltzs_f32:
4563     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4564     return EmitAArch64CompareBuiltinExpr(
4565         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4566         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
4567
4568   case NEON::BI__builtin_neon_vceqzd_u64: {
4569     llvm::Type *Ty = llvm::Type::getInt64Ty(getLLVMContext());
4570     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4571     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4572     Ops[0] = Builder.CreateICmp(llvm::ICmpInst::ICMP_EQ, Ops[0],
4573                                 llvm::Constant::getNullValue(Ty));
4574     return Builder.CreateSExt(Ops[0], Ty, "vceqzd");
4575   }
4576   case NEON::BI__builtin_neon_vceqd_f64:
4577   case NEON::BI__builtin_neon_vcled_f64:
4578   case NEON::BI__builtin_neon_vcltd_f64:
4579   case NEON::BI__builtin_neon_vcged_f64:
4580   case NEON::BI__builtin_neon_vcgtd_f64: {
4581     llvm::CmpInst::Predicate P;
4582     switch (BuiltinID) {
4583     default: llvm_unreachable("missing builtin ID in switch!");
4584     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
4585     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
4586     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
4587     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
4588     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
4589     }
4590     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4591     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
4592     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
4593     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
4594     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
4595   }
4596   case NEON::BI__builtin_neon_vceqs_f32:
4597   case NEON::BI__builtin_neon_vcles_f32:
4598   case NEON::BI__builtin_neon_vclts_f32:
4599   case NEON::BI__builtin_neon_vcges_f32:
4600   case NEON::BI__builtin_neon_vcgts_f32: {
4601     llvm::CmpInst::Predicate P;
4602     switch (BuiltinID) {
4603     default: llvm_unreachable("missing builtin ID in switch!");
4604     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
4605     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
4606     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
4607     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
4608     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
4609     }
4610     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4611     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
4612     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
4613     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
4614     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
4615   }
4616   case NEON::BI__builtin_neon_vceqd_s64:
4617   case NEON::BI__builtin_neon_vceqd_u64:
4618   case NEON::BI__builtin_neon_vcgtd_s64:
4619   case NEON::BI__builtin_neon_vcgtd_u64:
4620   case NEON::BI__builtin_neon_vcltd_s64:
4621   case NEON::BI__builtin_neon_vcltd_u64:
4622   case NEON::BI__builtin_neon_vcged_u64:
4623   case NEON::BI__builtin_neon_vcged_s64:
4624   case NEON::BI__builtin_neon_vcled_u64:
4625   case NEON::BI__builtin_neon_vcled_s64: {
4626     llvm::CmpInst::Predicate P;
4627     switch (BuiltinID) {
4628     default: llvm_unreachable("missing builtin ID in switch!");
4629     case NEON::BI__builtin_neon_vceqd_s64:
4630     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
4631     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
4632     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
4633     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
4634     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
4635     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
4636     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
4637     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
4638     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
4639     }
4640     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4641     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
4642     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
4643     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
4644     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
4645   }
4646   case NEON::BI__builtin_neon_vtstd_s64:
4647   case NEON::BI__builtin_neon_vtstd_u64: {
4648     llvm::Type *Ty = llvm::Type::getInt64Ty(getLLVMContext());
4649     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4650     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4651     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4652     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
4653     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
4654                                 llvm::Constant::getNullValue(Ty));
4655     return Builder.CreateSExt(Ops[0], Ty, "vtstd");
4656   }
4657   case NEON::BI__builtin_neon_vset_lane_i8:
4658   case NEON::BI__builtin_neon_vset_lane_i16:
4659   case NEON::BI__builtin_neon_vset_lane_i32:
4660   case NEON::BI__builtin_neon_vset_lane_i64:
4661   case NEON::BI__builtin_neon_vset_lane_f32:
4662   case NEON::BI__builtin_neon_vsetq_lane_i8:
4663   case NEON::BI__builtin_neon_vsetq_lane_i16:
4664   case NEON::BI__builtin_neon_vsetq_lane_i32:
4665   case NEON::BI__builtin_neon_vsetq_lane_i64:
4666   case NEON::BI__builtin_neon_vsetq_lane_f32:
4667     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4668     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4669   case NEON::BI__builtin_neon_vset_lane_f64:
4670     // The vector type needs a cast for the v1f64 variant.
4671     Ops[1] = Builder.CreateBitCast(Ops[1],
4672                                    llvm::VectorType::get(DoubleTy, 1));
4673     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4674     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4675   case NEON::BI__builtin_neon_vsetq_lane_f64:
4676     // The vector type needs a cast for the v2f64 variant.
4677     Ops[1] = Builder.CreateBitCast(Ops[1],
4678         llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2));
4679     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4680     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4681
4682   case NEON::BI__builtin_neon_vget_lane_i8:
4683   case NEON::BI__builtin_neon_vdupb_lane_i8:
4684     Ops[0] = Builder.CreateBitCast(Ops[0],
4685         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8));
4686     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4687                                         "vget_lane");
4688   case NEON::BI__builtin_neon_vgetq_lane_i8:
4689   case NEON::BI__builtin_neon_vdupb_laneq_i8:
4690     Ops[0] = Builder.CreateBitCast(Ops[0],
4691         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16));
4692     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4693                                         "vgetq_lane");
4694   case NEON::BI__builtin_neon_vget_lane_i16:
4695   case NEON::BI__builtin_neon_vduph_lane_i16:
4696     Ops[0] = Builder.CreateBitCast(Ops[0],
4697         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4));
4698     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4699                                         "vget_lane");
4700   case NEON::BI__builtin_neon_vgetq_lane_i16:
4701   case NEON::BI__builtin_neon_vduph_laneq_i16:
4702     Ops[0] = Builder.CreateBitCast(Ops[0],
4703         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8));
4704     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4705                                         "vgetq_lane");
4706   case NEON::BI__builtin_neon_vget_lane_i32:
4707   case NEON::BI__builtin_neon_vdups_lane_i32:
4708     Ops[0] = Builder.CreateBitCast(
4709         Ops[0],
4710         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 2));
4711     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4712                                         "vget_lane");
4713   case NEON::BI__builtin_neon_vdups_lane_f32:
4714     Ops[0] = Builder.CreateBitCast(Ops[0],
4715         llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2));
4716     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4717                                         "vdups_lane");
4718   case NEON::BI__builtin_neon_vgetq_lane_i32:
4719   case NEON::BI__builtin_neon_vdups_laneq_i32:
4720     Ops[0] = Builder.CreateBitCast(Ops[0],
4721         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 4));
4722     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4723                                         "vgetq_lane");
4724   case NEON::BI__builtin_neon_vget_lane_i64:
4725   case NEON::BI__builtin_neon_vdupd_lane_i64:
4726     Ops[0] = Builder.CreateBitCast(Ops[0],
4727         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 1));
4728     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4729                                         "vget_lane");
4730   case NEON::BI__builtin_neon_vdupd_lane_f64:
4731     Ops[0] = Builder.CreateBitCast(Ops[0],
4732         llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 1));
4733     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4734                                         "vdupd_lane");
4735   case NEON::BI__builtin_neon_vgetq_lane_i64:
4736   case NEON::BI__builtin_neon_vdupd_laneq_i64:
4737     Ops[0] = Builder.CreateBitCast(Ops[0],
4738         llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 2));
4739     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4740                                         "vgetq_lane");
4741   case NEON::BI__builtin_neon_vget_lane_f32:
4742     Ops[0] = Builder.CreateBitCast(Ops[0],
4743         llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 2));
4744     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4745                                         "vget_lane");
4746   case NEON::BI__builtin_neon_vget_lane_f64:
4747     Ops[0] = Builder.CreateBitCast(Ops[0],
4748         llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 1));
4749     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4750                                         "vget_lane");
4751   case NEON::BI__builtin_neon_vgetq_lane_f32:
4752   case NEON::BI__builtin_neon_vdups_laneq_f32:
4753     Ops[0] = Builder.CreateBitCast(Ops[0],
4754         llvm::VectorType::get(llvm::Type::getFloatTy(getLLVMContext()), 4));
4755     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4756                                         "vgetq_lane");
4757   case NEON::BI__builtin_neon_vgetq_lane_f64:
4758   case NEON::BI__builtin_neon_vdupd_laneq_f64:
4759     Ops[0] = Builder.CreateBitCast(Ops[0],
4760         llvm::VectorType::get(llvm::Type::getDoubleTy(getLLVMContext()), 2));
4761     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4762                                         "vgetq_lane");
4763   case NEON::BI__builtin_neon_vaddd_s64:
4764   case NEON::BI__builtin_neon_vaddd_u64:
4765     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
4766   case NEON::BI__builtin_neon_vsubd_s64:
4767   case NEON::BI__builtin_neon_vsubd_u64:
4768     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
4769   case NEON::BI__builtin_neon_vqdmlalh_s16:
4770   case NEON::BI__builtin_neon_vqdmlslh_s16: {
4771     SmallVector<Value *, 2> ProductOps;
4772     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
4773     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
4774     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
4775     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
4776                           ProductOps, "vqdmlXl");
4777     Constant *CI = ConstantInt::get(SizeTy, 0);
4778     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
4779
4780     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
4781                                         ? Intrinsic::aarch64_neon_sqadd
4782                                         : Intrinsic::aarch64_neon_sqsub;
4783     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
4784   }
4785   case NEON::BI__builtin_neon_vqshlud_n_s64: {
4786     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4787     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
4788     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
4789                         Ops, "vqshlu_n");
4790   }
4791   case NEON::BI__builtin_neon_vqshld_n_u64:
4792   case NEON::BI__builtin_neon_vqshld_n_s64: {
4793     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
4794                                    ? Intrinsic::aarch64_neon_uqshl
4795                                    : Intrinsic::aarch64_neon_sqshl;
4796     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4797     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
4798     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
4799   }
4800   case NEON::BI__builtin_neon_vrshrd_n_u64:
4801   case NEON::BI__builtin_neon_vrshrd_n_s64: {
4802     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
4803                                    ? Intrinsic::aarch64_neon_urshl
4804                                    : Intrinsic::aarch64_neon_srshl;
4805     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4806     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
4807     Ops[1] = ConstantInt::get(Int64Ty, -SV);
4808     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
4809   }
4810   case NEON::BI__builtin_neon_vrsrad_n_u64:
4811   case NEON::BI__builtin_neon_vrsrad_n_s64: {
4812     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
4813                                    ? Intrinsic::aarch64_neon_urshl
4814                                    : Intrinsic::aarch64_neon_srshl;
4815     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
4816     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
4817     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
4818                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
4819     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
4820   }
4821   case NEON::BI__builtin_neon_vshld_n_s64:
4822   case NEON::BI__builtin_neon_vshld_n_u64: {
4823     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4824     return Builder.CreateShl(
4825         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
4826   }
4827   case NEON::BI__builtin_neon_vshrd_n_s64: {
4828     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4829     return Builder.CreateAShr(
4830         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
4831                                                    Amt->getZExtValue())),
4832         "shrd_n");
4833   }
4834   case NEON::BI__builtin_neon_vshrd_n_u64: {
4835     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4836     uint64_t ShiftAmt = Amt->getZExtValue();
4837     // Right-shifting an unsigned value by its size yields 0.
4838     if (ShiftAmt == 64)
4839       return ConstantInt::get(Int64Ty, 0);
4840     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
4841                               "shrd_n");
4842   }
4843   case NEON::BI__builtin_neon_vsrad_n_s64: {
4844     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
4845     Ops[1] = Builder.CreateAShr(
4846         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
4847                                                    Amt->getZExtValue())),
4848         "shrd_n");
4849     return Builder.CreateAdd(Ops[0], Ops[1]);
4850   }
4851   case NEON::BI__builtin_neon_vsrad_n_u64: {
4852     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
4853     uint64_t ShiftAmt = Amt->getZExtValue();
4854     // Right-shifting an unsigned value by its size yields 0.
4855     // As Op + 0 = Op, return Ops[0] directly.
4856     if (ShiftAmt == 64)
4857       return Ops[0];
4858     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
4859                                 "shrd_n");
4860     return Builder.CreateAdd(Ops[0], Ops[1]);
4861   }
4862   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
4863   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
4864   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
4865   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
4866     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
4867                                           "lane");
4868     SmallVector<Value *, 2> ProductOps;
4869     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
4870     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
4871     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
4872     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
4873                           ProductOps, "vqdmlXl");
4874     Constant *CI = ConstantInt::get(SizeTy, 0);
4875     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
4876     Ops.pop_back();
4877
4878     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
4879                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
4880                           ? Intrinsic::aarch64_neon_sqadd
4881                           : Intrinsic::aarch64_neon_sqsub;
4882     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
4883   }
4884   case NEON::BI__builtin_neon_vqdmlals_s32:
4885   case NEON::BI__builtin_neon_vqdmlsls_s32: {
4886     SmallVector<Value *, 2> ProductOps;
4887     ProductOps.push_back(Ops[1]);
4888     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
4889     Ops[1] =
4890         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
4891                      ProductOps, "vqdmlXl");
4892
4893     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
4894                                         ? Intrinsic::aarch64_neon_sqadd
4895                                         : Intrinsic::aarch64_neon_sqsub;
4896     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
4897   }
4898   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
4899   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
4900   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
4901   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
4902     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
4903                                           "lane");
4904     SmallVector<Value *, 2> ProductOps;
4905     ProductOps.push_back(Ops[1]);
4906     ProductOps.push_back(Ops[2]);
4907     Ops[1] =
4908         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
4909                      ProductOps, "vqdmlXl");
4910     Ops.pop_back();
4911
4912     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
4913                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
4914                           ? Intrinsic::aarch64_neon_sqadd
4915                           : Intrinsic::aarch64_neon_sqsub;
4916     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
4917   }
4918   }
4919
4920   llvm::VectorType *VTy = GetNeonType(this, Type);
4921   llvm::Type *Ty = VTy;
4922   if (!Ty)
4923     return nullptr;
4924
4925   // Not all intrinsics handled by the common case work for AArch64 yet, so only
4926   // defer to common code if it's been added to our special map.
4927   Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
4928                                    AArch64SIMDIntrinsicsProvenSorted);
4929
4930   if (Builtin)
4931     return EmitCommonNeonBuiltinExpr(
4932         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
4933         Builtin->NameHint, Builtin->TypeModifier, E, Ops, nullptr);
4934
4935   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops))
4936     return V;
4937
4938   unsigned Int;
4939   switch (BuiltinID) {
4940   default: return nullptr;
4941   case NEON::BI__builtin_neon_vbsl_v:
4942   case NEON::BI__builtin_neon_vbslq_v: {
4943     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
4944     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
4945     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
4946     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
4947
4948     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
4949     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
4950     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
4951     return Builder.CreateBitCast(Ops[0], Ty);
4952   }
4953   case NEON::BI__builtin_neon_vfma_lane_v:
4954   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
4955     // The ARM builtins (and instructions) have the addend as the first
4956     // operand, but the 'fma' intrinsics have it last. Swap it around here.
4957     Value *Addend = Ops[0];
4958     Value *Multiplicand = Ops[1];
4959     Value *LaneSource = Ops[2];
4960     Ops[0] = Multiplicand;
4961     Ops[1] = LaneSource;
4962     Ops[2] = Addend;
4963
4964     // Now adjust things to handle the lane access.
4965     llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
4966       llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
4967       VTy;
4968     llvm::Constant *cst = cast<Constant>(Ops[3]);
4969     Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
4970     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
4971     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
4972
4973     Ops.pop_back();
4974     Int = Intrinsic::fma;
4975     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
4976   }
4977   case NEON::BI__builtin_neon_vfma_laneq_v: {
4978     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4979     // v1f64 fma should be mapped to Neon scalar f64 fma
4980     if (VTy && VTy->getElementType() == DoubleTy) {
4981       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
4982       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
4983       llvm::Type *VTy = GetNeonType(this,
4984         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
4985       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
4986       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
4987       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
4988       Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
4989       return Builder.CreateBitCast(Result, Ty);
4990     }
4991     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
4992     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4993     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4994
4995     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
4996                                             VTy->getNumElements() * 2);
4997     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
4998     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
4999                                                cast<ConstantInt>(Ops[3]));
5000     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
5001
5002     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
5003   }
5004   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
5005     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5006     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5007     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5008
5009     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5010     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
5011     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
5012   }
5013   case NEON::BI__builtin_neon_vfmas_lane_f32:
5014   case NEON::BI__builtin_neon_vfmas_laneq_f32:
5015   case NEON::BI__builtin_neon_vfmad_lane_f64:
5016   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
5017     Ops.push_back(EmitScalarExpr(E->getArg(3)));
5018     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5019     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5020     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
5021     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5022   }
5023   case NEON::BI__builtin_neon_vfms_v:
5024   case NEON::BI__builtin_neon_vfmsq_v: {  // Only used for FP types
5025     // FIXME: probably remove when we no longer support aarch64_simd.h
5026     // (arm_neon.h delegates to vfma).
5027
5028     // The ARM builtins (and instructions) have the addend as the first
5029     // operand, but the 'fma' intrinsics have it last. Swap it around here.
5030     Value *Subtrahend = Ops[0];
5031     Value *Multiplicand = Ops[2];
5032     Ops[0] = Multiplicand;
5033     Ops[2] = Subtrahend;
5034     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
5035     Ops[1] = Builder.CreateFNeg(Ops[1]);
5036     Int = Intrinsic::fma;
5037     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmls");
5038   }
5039   case NEON::BI__builtin_neon_vmull_v:
5040     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5041     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
5042     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
5043     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5044   case NEON::BI__builtin_neon_vmax_v:
5045   case NEON::BI__builtin_neon_vmaxq_v:
5046     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5047     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
5048     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
5049     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
5050   case NEON::BI__builtin_neon_vmin_v:
5051   case NEON::BI__builtin_neon_vminq_v:
5052     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5053     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
5054     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
5055     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
5056   case NEON::BI__builtin_neon_vabd_v:
5057   case NEON::BI__builtin_neon_vabdq_v:
5058     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5059     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
5060     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
5061     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
5062   case NEON::BI__builtin_neon_vpadal_v:
5063   case NEON::BI__builtin_neon_vpadalq_v: {
5064     unsigned ArgElts = VTy->getNumElements();
5065     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
5066     unsigned BitWidth = EltTy->getBitWidth();
5067     llvm::Type *ArgTy = llvm::VectorType::get(
5068         llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
5069     llvm::Type* Tys[2] = { VTy, ArgTy };
5070     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
5071     SmallVector<llvm::Value*, 1> TmpOps;
5072     TmpOps.push_back(Ops[1]);
5073     Function *F = CGM.getIntrinsic(Int, Tys);
5074     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
5075     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
5076     return Builder.CreateAdd(tmp, addend);
5077   }
5078   case NEON::BI__builtin_neon_vpmin_v:
5079   case NEON::BI__builtin_neon_vpminq_v:
5080     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5081     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
5082     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
5083     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
5084   case NEON::BI__builtin_neon_vpmax_v:
5085   case NEON::BI__builtin_neon_vpmaxq_v:
5086     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5087     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
5088     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
5089     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
5090   case NEON::BI__builtin_neon_vminnm_v:
5091   case NEON::BI__builtin_neon_vminnmq_v:
5092     Int = Intrinsic::aarch64_neon_fminnm;
5093     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
5094   case NEON::BI__builtin_neon_vmaxnm_v:
5095   case NEON::BI__builtin_neon_vmaxnmq_v:
5096     Int = Intrinsic::aarch64_neon_fmaxnm;
5097     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
5098   case NEON::BI__builtin_neon_vrecpss_f32: {
5099     llvm::Type *f32Type = llvm::Type::getFloatTy(getLLVMContext());
5100     Ops.push_back(EmitScalarExpr(E->getArg(1)));
5101     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, f32Type),
5102                         Ops, "vrecps");
5103   }
5104   case NEON::BI__builtin_neon_vrecpsd_f64: {
5105     llvm::Type *f64Type = llvm::Type::getDoubleTy(getLLVMContext());
5106     Ops.push_back(EmitScalarExpr(E->getArg(1)));
5107     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, f64Type),
5108                         Ops, "vrecps");
5109   }
5110   case NEON::BI__builtin_neon_vqshrun_n_v:
5111     Int = Intrinsic::aarch64_neon_sqshrun;
5112     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
5113   case NEON::BI__builtin_neon_vqrshrun_n_v:
5114     Int = Intrinsic::aarch64_neon_sqrshrun;
5115     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
5116   case NEON::BI__builtin_neon_vqshrn_n_v:
5117     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
5118     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
5119   case NEON::BI__builtin_neon_vrshrn_n_v:
5120     Int = Intrinsic::aarch64_neon_rshrn;
5121     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
5122   case NEON::BI__builtin_neon_vqrshrn_n_v:
5123     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
5124     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
5125   case NEON::BI__builtin_neon_vrnda_v:
5126   case NEON::BI__builtin_neon_vrndaq_v: {
5127     Int = Intrinsic::round;
5128     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
5129   }
5130   case NEON::BI__builtin_neon_vrndi_v:
5131   case NEON::BI__builtin_neon_vrndiq_v: {
5132     Int = Intrinsic::nearbyint;
5133     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
5134   }
5135   case NEON::BI__builtin_neon_vrndm_v:
5136   case NEON::BI__builtin_neon_vrndmq_v: {
5137     Int = Intrinsic::floor;
5138     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
5139   }
5140   case NEON::BI__builtin_neon_vrndn_v:
5141   case NEON::BI__builtin_neon_vrndnq_v: {
5142     Int = Intrinsic::aarch64_neon_frintn;
5143     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
5144   }
5145   case NEON::BI__builtin_neon_vrndp_v:
5146   case NEON::BI__builtin_neon_vrndpq_v: {
5147     Int = Intrinsic::ceil;
5148     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
5149   }
5150   case NEON::BI__builtin_neon_vrndx_v:
5151   case NEON::BI__builtin_neon_vrndxq_v: {
5152     Int = Intrinsic::rint;
5153     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
5154   }
5155   case NEON::BI__builtin_neon_vrnd_v:
5156   case NEON::BI__builtin_neon_vrndq_v: {
5157     Int = Intrinsic::trunc;
5158     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
5159   }
5160   case NEON::BI__builtin_neon_vceqz_v:
5161   case NEON::BI__builtin_neon_vceqzq_v:
5162     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5163                                          ICmpInst::ICMP_EQ, "vceqz");
5164   case NEON::BI__builtin_neon_vcgez_v:
5165   case NEON::BI__builtin_neon_vcgezq_v:
5166     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5167                                          ICmpInst::ICMP_SGE, "vcgez");
5168   case NEON::BI__builtin_neon_vclez_v:
5169   case NEON::BI__builtin_neon_vclezq_v:
5170     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5171                                          ICmpInst::ICMP_SLE, "vclez");
5172   case NEON::BI__builtin_neon_vcgtz_v:
5173   case NEON::BI__builtin_neon_vcgtzq_v:
5174     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5175                                          ICmpInst::ICMP_SGT, "vcgtz");
5176   case NEON::BI__builtin_neon_vcltz_v:
5177   case NEON::BI__builtin_neon_vcltzq_v:
5178     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5179                                          ICmpInst::ICMP_SLT, "vcltz");
5180   case NEON::BI__builtin_neon_vcvt_f64_v:
5181   case NEON::BI__builtin_neon_vcvtq_f64_v:
5182     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5183     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
5184     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5185                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5186   case NEON::BI__builtin_neon_vcvt_f64_f32: {
5187     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
5188            "unexpected vcvt_f64_f32 builtin");
5189     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
5190     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
5191
5192     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
5193   }
5194   case NEON::BI__builtin_neon_vcvt_f32_f64: {
5195     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
5196            "unexpected vcvt_f32_f64 builtin");
5197     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
5198     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
5199
5200     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
5201   }
5202   case NEON::BI__builtin_neon_vcvt_s32_v:
5203   case NEON::BI__builtin_neon_vcvt_u32_v:
5204   case NEON::BI__builtin_neon_vcvt_s64_v:
5205   case NEON::BI__builtin_neon_vcvt_u64_v:
5206   case NEON::BI__builtin_neon_vcvtq_s32_v:
5207   case NEON::BI__builtin_neon_vcvtq_u32_v:
5208   case NEON::BI__builtin_neon_vcvtq_s64_v:
5209   case NEON::BI__builtin_neon_vcvtq_u64_v: {
5210     bool Double =
5211       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
5212     llvm::Type *InTy =
5213       GetNeonType(this,
5214                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
5215                                 : NeonTypeFlags::Float32, false, quad));
5216     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
5217     if (usgn)
5218       return Builder.CreateFPToUI(Ops[0], Ty);
5219     return Builder.CreateFPToSI(Ops[0], Ty);
5220   }
5221   case NEON::BI__builtin_neon_vcvta_s32_v:
5222   case NEON::BI__builtin_neon_vcvtaq_s32_v:
5223   case NEON::BI__builtin_neon_vcvta_u32_v:
5224   case NEON::BI__builtin_neon_vcvtaq_u32_v:
5225   case NEON::BI__builtin_neon_vcvta_s64_v:
5226   case NEON::BI__builtin_neon_vcvtaq_s64_v:
5227   case NEON::BI__builtin_neon_vcvta_u64_v:
5228   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
5229     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
5230     bool Double =
5231       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
5232     llvm::Type *InTy =
5233       GetNeonType(this,
5234                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
5235                                 : NeonTypeFlags::Float32, false, quad));
5236     llvm::Type *Tys[2] = { Ty, InTy };
5237     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
5238   }
5239   case NEON::BI__builtin_neon_vcvtm_s32_v:
5240   case NEON::BI__builtin_neon_vcvtmq_s32_v:
5241   case NEON::BI__builtin_neon_vcvtm_u32_v:
5242   case NEON::BI__builtin_neon_vcvtmq_u32_v:
5243   case NEON::BI__builtin_neon_vcvtm_s64_v:
5244   case NEON::BI__builtin_neon_vcvtmq_s64_v:
5245   case NEON::BI__builtin_neon_vcvtm_u64_v:
5246   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5247     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
5248     bool Double =
5249       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
5250     llvm::Type *InTy =
5251       GetNeonType(this,
5252                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
5253                                 : NeonTypeFlags::Float32, false, quad));
5254     llvm::Type *Tys[2] = { Ty, InTy };
5255     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
5256   }
5257   case NEON::BI__builtin_neon_vcvtn_s32_v:
5258   case NEON::BI__builtin_neon_vcvtnq_s32_v:
5259   case NEON::BI__builtin_neon_vcvtn_u32_v:
5260   case NEON::BI__builtin_neon_vcvtnq_u32_v:
5261   case NEON::BI__builtin_neon_vcvtn_s64_v:
5262   case NEON::BI__builtin_neon_vcvtnq_s64_v:
5263   case NEON::BI__builtin_neon_vcvtn_u64_v:
5264   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
5265     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
5266     bool Double =
5267       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
5268     llvm::Type *InTy =
5269       GetNeonType(this,
5270                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
5271                                 : NeonTypeFlags::Float32, false, quad));
5272     llvm::Type *Tys[2] = { Ty, InTy };
5273     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
5274   }
5275   case NEON::BI__builtin_neon_vcvtp_s32_v:
5276   case NEON::BI__builtin_neon_vcvtpq_s32_v:
5277   case NEON::BI__builtin_neon_vcvtp_u32_v:
5278   case NEON::BI__builtin_neon_vcvtpq_u32_v:
5279   case NEON::BI__builtin_neon_vcvtp_s64_v:
5280   case NEON::BI__builtin_neon_vcvtpq_s64_v:
5281   case NEON::BI__builtin_neon_vcvtp_u64_v:
5282   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
5283     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
5284     bool Double =
5285       (cast<llvm::IntegerType>(VTy->getElementType())->getBitWidth() == 64);
5286     llvm::Type *InTy =
5287       GetNeonType(this,
5288                   NeonTypeFlags(Double ? NeonTypeFlags::Float64
5289                                 : NeonTypeFlags::Float32, false, quad));
5290     llvm::Type *Tys[2] = { Ty, InTy };
5291     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
5292   }
5293   case NEON::BI__builtin_neon_vmulx_v:
5294   case NEON::BI__builtin_neon_vmulxq_v: {
5295     Int = Intrinsic::aarch64_neon_fmulx;
5296     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
5297   }
5298   case NEON::BI__builtin_neon_vmul_lane_v:
5299   case NEON::BI__builtin_neon_vmul_laneq_v: {
5300     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
5301     bool Quad = false;
5302     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
5303       Quad = true;
5304     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
5305     llvm::Type *VTy = GetNeonType(this,
5306       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
5307     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
5308     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
5309     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
5310     return Builder.CreateBitCast(Result, Ty);
5311   }
5312   case NEON::BI__builtin_neon_vnegd_s64:
5313     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
5314   case NEON::BI__builtin_neon_vpmaxnm_v:
5315   case NEON::BI__builtin_neon_vpmaxnmq_v: {
5316     Int = Intrinsic::aarch64_neon_fmaxnmp;
5317     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
5318   }
5319   case NEON::BI__builtin_neon_vpminnm_v:
5320   case NEON::BI__builtin_neon_vpminnmq_v: {
5321     Int = Intrinsic::aarch64_neon_fminnmp;
5322     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
5323   }
5324   case NEON::BI__builtin_neon_vsqrt_v:
5325   case NEON::BI__builtin_neon_vsqrtq_v: {
5326     Int = Intrinsic::sqrt;
5327     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5328     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
5329   }
5330   case NEON::BI__builtin_neon_vrbit_v:
5331   case NEON::BI__builtin_neon_vrbitq_v: {
5332     Int = Intrinsic::aarch64_neon_rbit;
5333     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
5334   }
5335   case NEON::BI__builtin_neon_vaddv_u8:
5336     // FIXME: These are handled by the AArch64 scalar code.
5337     usgn = true;
5338     // FALLTHROUGH
5339   case NEON::BI__builtin_neon_vaddv_s8: {
5340     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5341     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5342     VTy =
5343       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5344     llvm::Type *Tys[2] = { Ty, VTy };
5345     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5346     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5347     return Builder.CreateTrunc(Ops[0],
5348              llvm::IntegerType::get(getLLVMContext(), 8));
5349   }
5350   case NEON::BI__builtin_neon_vaddv_u16:
5351     usgn = true;
5352     // FALLTHROUGH
5353   case NEON::BI__builtin_neon_vaddv_s16: {
5354     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5355     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5356     VTy =
5357       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5358     llvm::Type *Tys[2] = { Ty, VTy };
5359     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5360     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5361     return Builder.CreateTrunc(Ops[0],
5362              llvm::IntegerType::get(getLLVMContext(), 16));
5363   }
5364   case NEON::BI__builtin_neon_vaddvq_u8:
5365     usgn = true;
5366     // FALLTHROUGH
5367   case NEON::BI__builtin_neon_vaddvq_s8: {
5368     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5369     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5370     VTy =
5371       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5372     llvm::Type *Tys[2] = { Ty, VTy };
5373     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5374     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5375     return Builder.CreateTrunc(Ops[0],
5376              llvm::IntegerType::get(getLLVMContext(), 8));
5377   }
5378   case NEON::BI__builtin_neon_vaddvq_u16:
5379     usgn = true;
5380     // FALLTHROUGH
5381   case NEON::BI__builtin_neon_vaddvq_s16: {
5382     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5383     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5384     VTy =
5385       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5386     llvm::Type *Tys[2] = { Ty, VTy };
5387     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5388     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5389     return Builder.CreateTrunc(Ops[0],
5390              llvm::IntegerType::get(getLLVMContext(), 16));
5391   }
5392   case NEON::BI__builtin_neon_vmaxv_u8: {
5393     Int = Intrinsic::aarch64_neon_umaxv;
5394     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5395     VTy =
5396       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5397     llvm::Type *Tys[2] = { Ty, VTy };
5398     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5399     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5400     return Builder.CreateTrunc(Ops[0],
5401              llvm::IntegerType::get(getLLVMContext(), 8));
5402   }
5403   case NEON::BI__builtin_neon_vmaxv_u16: {
5404     Int = Intrinsic::aarch64_neon_umaxv;
5405     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5406     VTy =
5407       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5408     llvm::Type *Tys[2] = { Ty, VTy };
5409     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5410     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5411     return Builder.CreateTrunc(Ops[0],
5412              llvm::IntegerType::get(getLLVMContext(), 16));
5413   }
5414   case NEON::BI__builtin_neon_vmaxvq_u8: {
5415     Int = Intrinsic::aarch64_neon_umaxv;
5416     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5417     VTy =
5418       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5419     llvm::Type *Tys[2] = { Ty, VTy };
5420     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5421     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5422     return Builder.CreateTrunc(Ops[0],
5423              llvm::IntegerType::get(getLLVMContext(), 8));
5424   }
5425   case NEON::BI__builtin_neon_vmaxvq_u16: {
5426     Int = Intrinsic::aarch64_neon_umaxv;
5427     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5428     VTy =
5429       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5430     llvm::Type *Tys[2] = { Ty, VTy };
5431     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5432     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5433     return Builder.CreateTrunc(Ops[0],
5434              llvm::IntegerType::get(getLLVMContext(), 16));
5435   }
5436   case NEON::BI__builtin_neon_vmaxv_s8: {
5437     Int = Intrinsic::aarch64_neon_smaxv;
5438     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5439     VTy =
5440       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5441     llvm::Type *Tys[2] = { Ty, VTy };
5442     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5443     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5444     return Builder.CreateTrunc(Ops[0],
5445              llvm::IntegerType::get(getLLVMContext(), 8));
5446   }
5447   case NEON::BI__builtin_neon_vmaxv_s16: {
5448     Int = Intrinsic::aarch64_neon_smaxv;
5449     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5450     VTy =
5451       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5452     llvm::Type *Tys[2] = { Ty, VTy };
5453     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5454     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5455     return Builder.CreateTrunc(Ops[0],
5456              llvm::IntegerType::get(getLLVMContext(), 16));
5457   }
5458   case NEON::BI__builtin_neon_vmaxvq_s8: {
5459     Int = Intrinsic::aarch64_neon_smaxv;
5460     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5461     VTy =
5462       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5463     llvm::Type *Tys[2] = { Ty, VTy };
5464     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5465     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5466     return Builder.CreateTrunc(Ops[0],
5467              llvm::IntegerType::get(getLLVMContext(), 8));
5468   }
5469   case NEON::BI__builtin_neon_vmaxvq_s16: {
5470     Int = Intrinsic::aarch64_neon_smaxv;
5471     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5472     VTy =
5473       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5474     llvm::Type *Tys[2] = { Ty, VTy };
5475     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5476     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5477     return Builder.CreateTrunc(Ops[0],
5478              llvm::IntegerType::get(getLLVMContext(), 16));
5479   }
5480   case NEON::BI__builtin_neon_vminv_u8: {
5481     Int = Intrinsic::aarch64_neon_uminv;
5482     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5483     VTy =
5484       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5485     llvm::Type *Tys[2] = { Ty, VTy };
5486     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5487     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5488     return Builder.CreateTrunc(Ops[0],
5489              llvm::IntegerType::get(getLLVMContext(), 8));
5490   }
5491   case NEON::BI__builtin_neon_vminv_u16: {
5492     Int = Intrinsic::aarch64_neon_uminv;
5493     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5494     VTy =
5495       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5496     llvm::Type *Tys[2] = { Ty, VTy };
5497     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5498     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5499     return Builder.CreateTrunc(Ops[0],
5500              llvm::IntegerType::get(getLLVMContext(), 16));
5501   }
5502   case NEON::BI__builtin_neon_vminvq_u8: {
5503     Int = Intrinsic::aarch64_neon_uminv;
5504     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5505     VTy =
5506       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5507     llvm::Type *Tys[2] = { Ty, VTy };
5508     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5509     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5510     return Builder.CreateTrunc(Ops[0],
5511              llvm::IntegerType::get(getLLVMContext(), 8));
5512   }
5513   case NEON::BI__builtin_neon_vminvq_u16: {
5514     Int = Intrinsic::aarch64_neon_uminv;
5515     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5516     VTy =
5517       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5518     llvm::Type *Tys[2] = { Ty, VTy };
5519     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5520     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5521     return Builder.CreateTrunc(Ops[0],
5522              llvm::IntegerType::get(getLLVMContext(), 16));
5523   }
5524   case NEON::BI__builtin_neon_vminv_s8: {
5525     Int = Intrinsic::aarch64_neon_sminv;
5526     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5527     VTy =
5528       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5529     llvm::Type *Tys[2] = { Ty, VTy };
5530     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5531     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5532     return Builder.CreateTrunc(Ops[0],
5533              llvm::IntegerType::get(getLLVMContext(), 8));
5534   }
5535   case NEON::BI__builtin_neon_vminv_s16: {
5536     Int = Intrinsic::aarch64_neon_sminv;
5537     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5538     VTy =
5539       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5540     llvm::Type *Tys[2] = { Ty, VTy };
5541     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5542     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5543     return Builder.CreateTrunc(Ops[0],
5544              llvm::IntegerType::get(getLLVMContext(), 16));
5545   }
5546   case NEON::BI__builtin_neon_vminvq_s8: {
5547     Int = Intrinsic::aarch64_neon_sminv;
5548     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5549     VTy =
5550       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5551     llvm::Type *Tys[2] = { Ty, VTy };
5552     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5553     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5554     return Builder.CreateTrunc(Ops[0],
5555              llvm::IntegerType::get(getLLVMContext(), 8));
5556   }
5557   case NEON::BI__builtin_neon_vminvq_s16: {
5558     Int = Intrinsic::aarch64_neon_sminv;
5559     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5560     VTy =
5561       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5562     llvm::Type *Tys[2] = { Ty, VTy };
5563     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5564     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5565     return Builder.CreateTrunc(Ops[0],
5566              llvm::IntegerType::get(getLLVMContext(), 16));
5567   }
5568   case NEON::BI__builtin_neon_vmul_n_f64: {
5569     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
5570     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
5571     return Builder.CreateFMul(Ops[0], RHS);
5572   }
5573   case NEON::BI__builtin_neon_vaddlv_u8: {
5574     Int = Intrinsic::aarch64_neon_uaddlv;
5575     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5576     VTy =
5577       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5578     llvm::Type *Tys[2] = { Ty, VTy };
5579     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5580     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5581     return Builder.CreateTrunc(Ops[0],
5582              llvm::IntegerType::get(getLLVMContext(), 16));
5583   }
5584   case NEON::BI__builtin_neon_vaddlv_u16: {
5585     Int = Intrinsic::aarch64_neon_uaddlv;
5586     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5587     VTy =
5588       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5589     llvm::Type *Tys[2] = { Ty, VTy };
5590     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5591     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5592   }
5593   case NEON::BI__builtin_neon_vaddlvq_u8: {
5594     Int = Intrinsic::aarch64_neon_uaddlv;
5595     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5596     VTy =
5597       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5598     llvm::Type *Tys[2] = { Ty, VTy };
5599     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5600     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5601     return Builder.CreateTrunc(Ops[0],
5602              llvm::IntegerType::get(getLLVMContext(), 16));
5603   }
5604   case NEON::BI__builtin_neon_vaddlvq_u16: {
5605     Int = Intrinsic::aarch64_neon_uaddlv;
5606     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5607     VTy =
5608       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5609     llvm::Type *Tys[2] = { Ty, VTy };
5610     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5611     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5612   }
5613   case NEON::BI__builtin_neon_vaddlv_s8: {
5614     Int = Intrinsic::aarch64_neon_saddlv;
5615     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5616     VTy =
5617       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 8);
5618     llvm::Type *Tys[2] = { Ty, VTy };
5619     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5620     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5621     return Builder.CreateTrunc(Ops[0],
5622              llvm::IntegerType::get(getLLVMContext(), 16));
5623   }
5624   case NEON::BI__builtin_neon_vaddlv_s16: {
5625     Int = Intrinsic::aarch64_neon_saddlv;
5626     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5627     VTy =
5628       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 4);
5629     llvm::Type *Tys[2] = { Ty, VTy };
5630     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5631     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5632   }
5633   case NEON::BI__builtin_neon_vaddlvq_s8: {
5634     Int = Intrinsic::aarch64_neon_saddlv;
5635     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5636     VTy =
5637       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 16);
5638     llvm::Type *Tys[2] = { Ty, VTy };
5639     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5640     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5641     return Builder.CreateTrunc(Ops[0],
5642              llvm::IntegerType::get(getLLVMContext(), 16));
5643   }
5644   case NEON::BI__builtin_neon_vaddlvq_s16: {
5645     Int = Intrinsic::aarch64_neon_saddlv;
5646     Ty = llvm::IntegerType::get(getLLVMContext(), 32);
5647     VTy =
5648       llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 8);
5649     llvm::Type *Tys[2] = { Ty, VTy };
5650     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5651     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5652   }
5653   case NEON::BI__builtin_neon_vsri_n_v:
5654   case NEON::BI__builtin_neon_vsriq_n_v: {
5655     Int = Intrinsic::aarch64_neon_vsri;
5656     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
5657     return EmitNeonCall(Intrin, Ops, "vsri_n");
5658   }
5659   case NEON::BI__builtin_neon_vsli_n_v:
5660   case NEON::BI__builtin_neon_vsliq_n_v: {
5661     Int = Intrinsic::aarch64_neon_vsli;
5662     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
5663     return EmitNeonCall(Intrin, Ops, "vsli_n");
5664   }
5665   case NEON::BI__builtin_neon_vsra_n_v:
5666   case NEON::BI__builtin_neon_vsraq_n_v:
5667     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5668     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
5669     return Builder.CreateAdd(Ops[0], Ops[1]);
5670   case NEON::BI__builtin_neon_vrsra_n_v:
5671   case NEON::BI__builtin_neon_vrsraq_n_v: {
5672     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
5673     SmallVector<llvm::Value*,2> TmpOps;
5674     TmpOps.push_back(Ops[1]);
5675     TmpOps.push_back(Ops[2]);
5676     Function* F = CGM.getIntrinsic(Int, Ty);
5677     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
5678     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
5679     return Builder.CreateAdd(Ops[0], tmp);
5680   }
5681     // FIXME: Sharing loads & stores with 32-bit is complicated by the absence
5682     // of an Align parameter here.
5683   case NEON::BI__builtin_neon_vld1_x2_v:
5684   case NEON::BI__builtin_neon_vld1q_x2_v:
5685   case NEON::BI__builtin_neon_vld1_x3_v:
5686   case NEON::BI__builtin_neon_vld1q_x3_v:
5687   case NEON::BI__builtin_neon_vld1_x4_v:
5688   case NEON::BI__builtin_neon_vld1q_x4_v: {
5689     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5690     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5691     llvm::Type *Tys[2] = { VTy, PTy };
5692     unsigned Int;
5693     switch (BuiltinID) {
5694     case NEON::BI__builtin_neon_vld1_x2_v:
5695     case NEON::BI__builtin_neon_vld1q_x2_v:
5696       Int = Intrinsic::aarch64_neon_ld1x2;
5697       break;
5698     case NEON::BI__builtin_neon_vld1_x3_v:
5699     case NEON::BI__builtin_neon_vld1q_x3_v:
5700       Int = Intrinsic::aarch64_neon_ld1x3;
5701       break;
5702     case NEON::BI__builtin_neon_vld1_x4_v:
5703     case NEON::BI__builtin_neon_vld1q_x4_v:
5704       Int = Intrinsic::aarch64_neon_ld1x4;
5705       break;
5706     }
5707     Function *F = CGM.getIntrinsic(Int, Tys);
5708     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5709     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5710     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5711     return Builder.CreateStore(Ops[1], Ops[0]);
5712   }
5713   case NEON::BI__builtin_neon_vst1_x2_v:
5714   case NEON::BI__builtin_neon_vst1q_x2_v:
5715   case NEON::BI__builtin_neon_vst1_x3_v:
5716   case NEON::BI__builtin_neon_vst1q_x3_v:
5717   case NEON::BI__builtin_neon_vst1_x4_v:
5718   case NEON::BI__builtin_neon_vst1q_x4_v: {
5719     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5720     llvm::Type *Tys[2] = { VTy, PTy };
5721     unsigned Int;
5722     switch (BuiltinID) {
5723     case NEON::BI__builtin_neon_vst1_x2_v:
5724     case NEON::BI__builtin_neon_vst1q_x2_v:
5725       Int = Intrinsic::aarch64_neon_st1x2;
5726       break;
5727     case NEON::BI__builtin_neon_vst1_x3_v:
5728     case NEON::BI__builtin_neon_vst1q_x3_v:
5729       Int = Intrinsic::aarch64_neon_st1x3;
5730       break;
5731     case NEON::BI__builtin_neon_vst1_x4_v:
5732     case NEON::BI__builtin_neon_vst1q_x4_v:
5733       Int = Intrinsic::aarch64_neon_st1x4;
5734       break;
5735     }
5736     SmallVector<Value *, 4> IntOps(Ops.begin()+1, Ops.end());
5737     IntOps.push_back(Ops[0]);
5738     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), IntOps, "");
5739   }
5740   case NEON::BI__builtin_neon_vld1_v:
5741   case NEON::BI__builtin_neon_vld1q_v:
5742     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
5743     return Builder.CreateLoad(Ops[0]);
5744   case NEON::BI__builtin_neon_vst1_v:
5745   case NEON::BI__builtin_neon_vst1q_v:
5746     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
5747     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
5748     return Builder.CreateStore(Ops[1], Ops[0]);
5749   case NEON::BI__builtin_neon_vld1_lane_v:
5750   case NEON::BI__builtin_neon_vld1q_lane_v:
5751     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5752     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5753     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5754     Ops[0] = Builder.CreateLoad(Ops[0]);
5755     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
5756   case NEON::BI__builtin_neon_vld1_dup_v:
5757   case NEON::BI__builtin_neon_vld1q_dup_v: {
5758     Value *V = UndefValue::get(Ty);
5759     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5760     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5761     Ops[0] = Builder.CreateLoad(Ops[0]);
5762     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
5763     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
5764     return EmitNeonSplat(Ops[0], CI);
5765   }
5766   case NEON::BI__builtin_neon_vst1_lane_v:
5767   case NEON::BI__builtin_neon_vst1q_lane_v:
5768     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5769     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
5770     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5771     return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
5772   case NEON::BI__builtin_neon_vld2_v:
5773   case NEON::BI__builtin_neon_vld2q_v: {
5774     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5775     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5776     llvm::Type *Tys[2] = { VTy, PTy };
5777     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
5778     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
5779     Ops[0] = Builder.CreateBitCast(Ops[0],
5780                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5781     return Builder.CreateStore(Ops[1], Ops[0]);
5782   }
5783   case NEON::BI__builtin_neon_vld3_v:
5784   case NEON::BI__builtin_neon_vld3q_v: {
5785     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5786     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5787     llvm::Type *Tys[2] = { VTy, PTy };
5788     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
5789     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
5790     Ops[0] = Builder.CreateBitCast(Ops[0],
5791                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5792     return Builder.CreateStore(Ops[1], Ops[0]);
5793   }
5794   case NEON::BI__builtin_neon_vld4_v:
5795   case NEON::BI__builtin_neon_vld4q_v: {
5796     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5797     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5798     llvm::Type *Tys[2] = { VTy, PTy };
5799     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
5800     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
5801     Ops[0] = Builder.CreateBitCast(Ops[0],
5802                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5803     return Builder.CreateStore(Ops[1], Ops[0]);
5804   }
5805   case NEON::BI__builtin_neon_vld2_dup_v:
5806   case NEON::BI__builtin_neon_vld2q_dup_v: {
5807     llvm::Type *PTy =
5808       llvm::PointerType::getUnqual(VTy->getElementType());
5809     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5810     llvm::Type *Tys[2] = { VTy, PTy };
5811     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
5812     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
5813     Ops[0] = Builder.CreateBitCast(Ops[0],
5814                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5815     return Builder.CreateStore(Ops[1], Ops[0]);
5816   }
5817   case NEON::BI__builtin_neon_vld3_dup_v:
5818   case NEON::BI__builtin_neon_vld3q_dup_v: {
5819     llvm::Type *PTy =
5820       llvm::PointerType::getUnqual(VTy->getElementType());
5821     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5822     llvm::Type *Tys[2] = { VTy, PTy };
5823     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
5824     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
5825     Ops[0] = Builder.CreateBitCast(Ops[0],
5826                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5827     return Builder.CreateStore(Ops[1], Ops[0]);
5828   }
5829   case NEON::BI__builtin_neon_vld4_dup_v:
5830   case NEON::BI__builtin_neon_vld4q_dup_v: {
5831     llvm::Type *PTy =
5832       llvm::PointerType::getUnqual(VTy->getElementType());
5833     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5834     llvm::Type *Tys[2] = { VTy, PTy };
5835     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
5836     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
5837     Ops[0] = Builder.CreateBitCast(Ops[0],
5838                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5839     return Builder.CreateStore(Ops[1], Ops[0]);
5840   }
5841   case NEON::BI__builtin_neon_vld2_lane_v:
5842   case NEON::BI__builtin_neon_vld2q_lane_v: {
5843     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5844     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
5845     Ops.push_back(Ops[1]);
5846     Ops.erase(Ops.begin()+1);
5847     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5848     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5849     Ops[3] = Builder.CreateZExt(Ops[3],
5850                 llvm::IntegerType::get(getLLVMContext(), 64));
5851     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
5852     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5853     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5854     return Builder.CreateStore(Ops[1], Ops[0]);
5855   }
5856   case NEON::BI__builtin_neon_vld3_lane_v:
5857   case NEON::BI__builtin_neon_vld3q_lane_v: {
5858     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5859     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
5860     Ops.push_back(Ops[1]);
5861     Ops.erase(Ops.begin()+1);
5862     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5863     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5864     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
5865     Ops[4] = Builder.CreateZExt(Ops[4],
5866                 llvm::IntegerType::get(getLLVMContext(), 64));
5867     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
5868     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5869     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5870     return Builder.CreateStore(Ops[1], Ops[0]);
5871   }
5872   case NEON::BI__builtin_neon_vld4_lane_v:
5873   case NEON::BI__builtin_neon_vld4q_lane_v: {
5874     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5875     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
5876     Ops.push_back(Ops[1]);
5877     Ops.erase(Ops.begin()+1);
5878     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5879     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5880     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
5881     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
5882     Ops[5] = Builder.CreateZExt(Ops[5],
5883                 llvm::IntegerType::get(getLLVMContext(), 64));
5884     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
5885     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5886     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5887     return Builder.CreateStore(Ops[1], Ops[0]);
5888   }
5889   case NEON::BI__builtin_neon_vst2_v:
5890   case NEON::BI__builtin_neon_vst2q_v: {
5891     Ops.push_back(Ops[0]);
5892     Ops.erase(Ops.begin());
5893     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
5894     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
5895                         Ops, "");
5896   }
5897   case NEON::BI__builtin_neon_vst2_lane_v:
5898   case NEON::BI__builtin_neon_vst2q_lane_v: {
5899     Ops.push_back(Ops[0]);
5900     Ops.erase(Ops.begin());
5901     Ops[2] = Builder.CreateZExt(Ops[2],
5902                 llvm::IntegerType::get(getLLVMContext(), 64));
5903     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
5904     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
5905                         Ops, "");
5906   }
5907   case NEON::BI__builtin_neon_vst3_v:
5908   case NEON::BI__builtin_neon_vst3q_v: {
5909     Ops.push_back(Ops[0]);
5910     Ops.erase(Ops.begin());
5911     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
5912     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
5913                         Ops, "");
5914   }
5915   case NEON::BI__builtin_neon_vst3_lane_v:
5916   case NEON::BI__builtin_neon_vst3q_lane_v: {
5917     Ops.push_back(Ops[0]);
5918     Ops.erase(Ops.begin());
5919     Ops[3] = Builder.CreateZExt(Ops[3],
5920                 llvm::IntegerType::get(getLLVMContext(), 64));
5921     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
5922     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
5923                         Ops, "");
5924   }
5925   case NEON::BI__builtin_neon_vst4_v:
5926   case NEON::BI__builtin_neon_vst4q_v: {
5927     Ops.push_back(Ops[0]);
5928     Ops.erase(Ops.begin());
5929     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
5930     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
5931                         Ops, "");
5932   }
5933   case NEON::BI__builtin_neon_vst4_lane_v:
5934   case NEON::BI__builtin_neon_vst4q_lane_v: {
5935     Ops.push_back(Ops[0]);
5936     Ops.erase(Ops.begin());
5937     Ops[4] = Builder.CreateZExt(Ops[4],
5938                 llvm::IntegerType::get(getLLVMContext(), 64));
5939     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
5940     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
5941                         Ops, "");
5942   }
5943   case NEON::BI__builtin_neon_vtrn_v:
5944   case NEON::BI__builtin_neon_vtrnq_v: {
5945     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5946     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5947     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5948     Value *SV = nullptr;
5949
5950     for (unsigned vi = 0; vi != 2; ++vi) {
5951       SmallVector<Constant*, 16> Indices;
5952       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5953         Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
5954         Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
5955       }
5956       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5957       SV = llvm::ConstantVector::get(Indices);
5958       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
5959       SV = Builder.CreateStore(SV, Addr);
5960     }
5961     return SV;
5962   }
5963   case NEON::BI__builtin_neon_vuzp_v:
5964   case NEON::BI__builtin_neon_vuzpq_v: {
5965     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5966     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5967     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5968     Value *SV = nullptr;
5969
5970     for (unsigned vi = 0; vi != 2; ++vi) {
5971       SmallVector<Constant*, 16> Indices;
5972       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5973         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
5974
5975       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5976       SV = llvm::ConstantVector::get(Indices);
5977       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
5978       SV = Builder.CreateStore(SV, Addr);
5979     }
5980     return SV;
5981   }
5982   case NEON::BI__builtin_neon_vzip_v:
5983   case NEON::BI__builtin_neon_vzipq_v: {
5984     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5985     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5986     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5987     Value *SV = nullptr;
5988
5989     for (unsigned vi = 0; vi != 2; ++vi) {
5990       SmallVector<Constant*, 16> Indices;
5991       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5992         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
5993         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
5994       }
5995       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5996       SV = llvm::ConstantVector::get(Indices);
5997       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
5998       SV = Builder.CreateStore(SV, Addr);
5999     }
6000     return SV;
6001   }
6002   case NEON::BI__builtin_neon_vqtbl1q_v: {
6003     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
6004                         Ops, "vtbl1");
6005   }
6006   case NEON::BI__builtin_neon_vqtbl2q_v: {
6007     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
6008                         Ops, "vtbl2");
6009   }
6010   case NEON::BI__builtin_neon_vqtbl3q_v: {
6011     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
6012                         Ops, "vtbl3");
6013   }
6014   case NEON::BI__builtin_neon_vqtbl4q_v: {
6015     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
6016                         Ops, "vtbl4");
6017   }
6018   case NEON::BI__builtin_neon_vqtbx1q_v: {
6019     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
6020                         Ops, "vtbx1");
6021   }
6022   case NEON::BI__builtin_neon_vqtbx2q_v: {
6023     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
6024                         Ops, "vtbx2");
6025   }
6026   case NEON::BI__builtin_neon_vqtbx3q_v: {
6027     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
6028                         Ops, "vtbx3");
6029   }
6030   case NEON::BI__builtin_neon_vqtbx4q_v: {
6031     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
6032                         Ops, "vtbx4");
6033   }
6034   case NEON::BI__builtin_neon_vsqadd_v:
6035   case NEON::BI__builtin_neon_vsqaddq_v: {
6036     Int = Intrinsic::aarch64_neon_usqadd;
6037     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
6038   }
6039   case NEON::BI__builtin_neon_vuqadd_v:
6040   case NEON::BI__builtin_neon_vuqaddq_v: {
6041     Int = Intrinsic::aarch64_neon_suqadd;
6042     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
6043   }
6044   }
6045 }
6046
6047 llvm::Value *CodeGenFunction::
6048 BuildVector(ArrayRef<llvm::Value*> Ops) {
6049   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
6050          "Not a power-of-two sized vector!");
6051   bool AllConstants = true;
6052   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
6053     AllConstants &= isa<Constant>(Ops[i]);
6054
6055   // If this is a constant vector, create a ConstantVector.
6056   if (AllConstants) {
6057     SmallVector<llvm::Constant*, 16> CstOps;
6058     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
6059       CstOps.push_back(cast<Constant>(Ops[i]));
6060     return llvm::ConstantVector::get(CstOps);
6061   }
6062
6063   // Otherwise, insertelement the values to build the vector.
6064   Value *Result =
6065     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
6066
6067   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
6068     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
6069
6070   return Result;
6071 }
6072
6073 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
6074                                            const CallExpr *E) {
6075   SmallVector<Value*, 4> Ops;
6076
6077   // Find out if any arguments are required to be integer constant expressions.
6078   unsigned ICEArguments = 0;
6079   ASTContext::GetBuiltinTypeError Error;
6080   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6081   assert(Error == ASTContext::GE_None && "Should not codegen an error");
6082
6083   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
6084     // If this is a normal argument, just emit it as a scalar.
6085     if ((ICEArguments & (1 << i)) == 0) {
6086       Ops.push_back(EmitScalarExpr(E->getArg(i)));
6087       continue;
6088     }
6089
6090     // If this is required to be a constant, constant fold it so that we know
6091     // that the generated intrinsic gets a ConstantInt.
6092     llvm::APSInt Result;
6093     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6094     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
6095     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6096   }
6097
6098   switch (BuiltinID) {
6099   default: return nullptr;
6100   case X86::BI__builtin_cpu_supports: {
6101     const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
6102     StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
6103
6104     // TODO: When/if this becomes more than x86 specific then use a TargetInfo
6105     // based mapping.
6106     // Processor features and mapping to processor feature value.
6107     enum X86Features {
6108       CMOV = 0,
6109       MMX,
6110       POPCNT,
6111       SSE,
6112       SSE2,
6113       SSE3,
6114       SSSE3,
6115       SSE4_1,
6116       SSE4_2,
6117       AVX,
6118       AVX2,
6119       SSE4_A,
6120       FMA4,
6121       XOP,
6122       FMA,
6123       AVX512F,
6124       BMI,
6125       BMI2,
6126       MAX
6127     };
6128
6129     X86Features Feature = StringSwitch<X86Features>(FeatureStr)
6130                               .Case("cmov", X86Features::CMOV)
6131                               .Case("mmx", X86Features::MMX)
6132                               .Case("popcnt", X86Features::POPCNT)
6133                               .Case("sse", X86Features::SSE)
6134                               .Case("sse2", X86Features::SSE2)
6135                               .Case("sse3", X86Features::SSE3)
6136                               .Case("sse4.1", X86Features::SSE4_1)
6137                               .Case("sse4.2", X86Features::SSE4_2)
6138                               .Case("avx", X86Features::AVX)
6139                               .Case("avx2", X86Features::AVX2)
6140                               .Case("sse4a", X86Features::SSE4_A)
6141                               .Case("fma4", X86Features::FMA4)
6142                               .Case("xop", X86Features::XOP)
6143                               .Case("fma", X86Features::FMA)
6144                               .Case("avx512f", X86Features::AVX512F)
6145                               .Case("bmi", X86Features::BMI)
6146                               .Case("bmi2", X86Features::BMI2)
6147                               .Default(X86Features::MAX);
6148     assert(Feature != X86Features::MAX && "Invalid feature!");
6149
6150     // Matching the struct layout from the compiler-rt/libgcc structure that is
6151     // filled in:
6152     // unsigned int __cpu_vendor;
6153     // unsigned int __cpu_type;
6154     // unsigned int __cpu_subtype;
6155     // unsigned int __cpu_features[1];
6156     llvm::Type *STy = llvm::StructType::get(
6157         Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1), nullptr);
6158
6159     // Grab the global __cpu_model.
6160     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
6161
6162     // Grab the first (0th) element from the field __cpu_features off of the
6163     // global in the struct STy.
6164     Value *Idxs[] = {
6165       ConstantInt::get(Int32Ty, 0),
6166       ConstantInt::get(Int32Ty, 3),
6167       ConstantInt::get(Int32Ty, 0)
6168     };
6169     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
6170     Value *Features = Builder.CreateLoad(CpuFeatures);
6171
6172     // Check the value of the bit corresponding to the feature requested.
6173     Value *Bitset = Builder.CreateAnd(
6174         Features, llvm::ConstantInt::get(Int32Ty, 1 << Feature));
6175     return Builder.CreateICmpNE(Bitset, llvm::ConstantInt::get(Int32Ty, 0));
6176   }
6177   case X86::BI_mm_prefetch: {
6178     Value *Address = EmitScalarExpr(E->getArg(0));
6179     Value *RW = ConstantInt::get(Int32Ty, 0);
6180     Value *Locality = EmitScalarExpr(E->getArg(1));
6181     Value *Data = ConstantInt::get(Int32Ty, 1);
6182     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
6183     return Builder.CreateCall(F, {Address, RW, Locality, Data});
6184   }
6185   case X86::BI__builtin_ia32_vec_init_v8qi:
6186   case X86::BI__builtin_ia32_vec_init_v4hi:
6187   case X86::BI__builtin_ia32_vec_init_v2si:
6188     return Builder.CreateBitCast(BuildVector(Ops),
6189                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
6190   case X86::BI__builtin_ia32_vec_ext_v2si:
6191     return Builder.CreateExtractElement(Ops[0],
6192                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
6193   case X86::BI__builtin_ia32_ldmxcsr: {
6194     Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
6195     Builder.CreateStore(Ops[0], Tmp);
6196     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
6197                               Builder.CreateBitCast(Tmp, Int8PtrTy));
6198   }
6199   case X86::BI__builtin_ia32_stmxcsr: {
6200     Value *Tmp = CreateMemTemp(E->getType());
6201     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
6202                        Builder.CreateBitCast(Tmp, Int8PtrTy));
6203     return Builder.CreateLoad(Tmp, "stmxcsr");
6204   }
6205   case X86::BI__builtin_ia32_storehps:
6206   case X86::BI__builtin_ia32_storelps: {
6207     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
6208     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
6209
6210     // cast val v2i64
6211     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
6212
6213     // extract (0, 1)
6214     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
6215     llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
6216     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
6217
6218     // cast pointer to i64 & store
6219     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
6220     return Builder.CreateStore(Ops[1], Ops[0]);
6221   }
6222   case X86::BI__builtin_ia32_palignr128:
6223   case X86::BI__builtin_ia32_palignr256: {
6224     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
6225
6226     unsigned NumElts =
6227       cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
6228     assert(NumElts % 16 == 0);
6229     unsigned NumLanes = NumElts / 16;
6230     unsigned NumLaneElts = NumElts / NumLanes;
6231
6232     // If palignr is shifting the pair of vectors more than the size of two
6233     // lanes, emit zero.
6234     if (ShiftVal >= (2 * NumLaneElts))
6235       return llvm::Constant::getNullValue(ConvertType(E->getType()));
6236
6237     // If palignr is shifting the pair of input vectors more than one lane,
6238     // but less than two lanes, convert to shifting in zeroes.
6239     if (ShiftVal > NumLaneElts) {
6240       ShiftVal -= NumLaneElts;
6241       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
6242     }
6243
6244     SmallVector<llvm::Constant*, 32> Indices;
6245     // 256-bit palignr operates on 128-bit lanes so we need to handle that
6246     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
6247       for (unsigned i = 0; i != NumLaneElts; ++i) {
6248         unsigned Idx = ShiftVal + i;
6249         if (Idx >= NumLaneElts)
6250           Idx += NumElts - NumLaneElts; // End of lane, switch operand.
6251         Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx + l));
6252       }
6253     }
6254
6255     Value* SV = llvm::ConstantVector::get(Indices);
6256     return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
6257   }
6258   case X86::BI__builtin_ia32_pslldqi256: {
6259     // Shift value is in bits so divide by 8.
6260     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
6261
6262     // If pslldq is shifting the vector more than 15 bytes, emit zero.
6263     if (shiftVal >= 16)
6264       return llvm::Constant::getNullValue(ConvertType(E->getType()));
6265
6266     SmallVector<llvm::Constant*, 32> Indices;
6267     // 256-bit pslldq operates on 128-bit lanes so we need to handle that
6268     for (unsigned l = 0; l != 32; l += 16) {
6269       for (unsigned i = 0; i != 16; ++i) {
6270         unsigned Idx = 32 + i - shiftVal;
6271         if (Idx < 32) Idx -= 16; // end of lane, switch operand.
6272         Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx + l));
6273       }
6274     }
6275
6276     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
6277     Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
6278     Value *Zero = llvm::Constant::getNullValue(VecTy);
6279
6280     Value *SV = llvm::ConstantVector::get(Indices);
6281     SV = Builder.CreateShuffleVector(Zero, Ops[0], SV, "pslldq");
6282     llvm::Type *ResultType = ConvertType(E->getType());
6283     return Builder.CreateBitCast(SV, ResultType, "cast");
6284   }
6285   case X86::BI__builtin_ia32_psrldqi256: {
6286     // Shift value is in bits so divide by 8.
6287     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
6288
6289     // If psrldq is shifting the vector more than 15 bytes, emit zero.
6290     if (shiftVal >= 16)
6291       return llvm::Constant::getNullValue(ConvertType(E->getType()));
6292
6293     SmallVector<llvm::Constant*, 32> Indices;
6294     // 256-bit psrldq operates on 128-bit lanes so we need to handle that
6295     for (unsigned l = 0; l != 32; l += 16) {
6296       for (unsigned i = 0; i != 16; ++i) {
6297         unsigned Idx = i + shiftVal;
6298         if (Idx >= 16) Idx += 16; // end of lane, switch operand.
6299         Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx + l));
6300       }
6301     }
6302
6303     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
6304     Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
6305     Value *Zero = llvm::Constant::getNullValue(VecTy);
6306
6307     Value *SV = llvm::ConstantVector::get(Indices);
6308     SV = Builder.CreateShuffleVector(Ops[0], Zero, SV, "psrldq");
6309     llvm::Type *ResultType = ConvertType(E->getType());
6310     return Builder.CreateBitCast(SV, ResultType, "cast");
6311   }
6312   case X86::BI__builtin_ia32_movntps:
6313   case X86::BI__builtin_ia32_movntps256:
6314   case X86::BI__builtin_ia32_movntpd:
6315   case X86::BI__builtin_ia32_movntpd256:
6316   case X86::BI__builtin_ia32_movntdq:
6317   case X86::BI__builtin_ia32_movntdq256:
6318   case X86::BI__builtin_ia32_movnti:
6319   case X86::BI__builtin_ia32_movnti64: {
6320     llvm::MDNode *Node = llvm::MDNode::get(
6321         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
6322
6323     // Convert the type of the pointer to a pointer to the stored type.
6324     Value *BC = Builder.CreateBitCast(Ops[0],
6325                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
6326                                       "cast");
6327     StoreInst *SI = Builder.CreateStore(Ops[1], BC);
6328     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
6329
6330     // If the operand is an integer, we can't assume alignment. Otherwise,
6331     // assume natural alignment.
6332     QualType ArgTy = E->getArg(1)->getType();
6333     unsigned Align;
6334     if (ArgTy->isIntegerType())
6335       Align = 1;
6336     else
6337       Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
6338     SI->setAlignment(Align);
6339     return SI;
6340   }
6341   // 3DNow!
6342   case X86::BI__builtin_ia32_pswapdsf:
6343   case X86::BI__builtin_ia32_pswapdsi: {
6344     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
6345     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
6346     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
6347     return Builder.CreateCall(F, Ops, "pswapd");
6348   }
6349   case X86::BI__builtin_ia32_rdrand16_step:
6350   case X86::BI__builtin_ia32_rdrand32_step:
6351   case X86::BI__builtin_ia32_rdrand64_step:
6352   case X86::BI__builtin_ia32_rdseed16_step:
6353   case X86::BI__builtin_ia32_rdseed32_step:
6354   case X86::BI__builtin_ia32_rdseed64_step: {
6355     Intrinsic::ID ID;
6356     switch (BuiltinID) {
6357     default: llvm_unreachable("Unsupported intrinsic!");
6358     case X86::BI__builtin_ia32_rdrand16_step:
6359       ID = Intrinsic::x86_rdrand_16;
6360       break;
6361     case X86::BI__builtin_ia32_rdrand32_step:
6362       ID = Intrinsic::x86_rdrand_32;
6363       break;
6364     case X86::BI__builtin_ia32_rdrand64_step:
6365       ID = Intrinsic::x86_rdrand_64;
6366       break;
6367     case X86::BI__builtin_ia32_rdseed16_step:
6368       ID = Intrinsic::x86_rdseed_16;
6369       break;
6370     case X86::BI__builtin_ia32_rdseed32_step:
6371       ID = Intrinsic::x86_rdseed_32;
6372       break;
6373     case X86::BI__builtin_ia32_rdseed64_step:
6374       ID = Intrinsic::x86_rdseed_64;
6375       break;
6376     }
6377
6378     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
6379     Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
6380     return Builder.CreateExtractValue(Call, 1);
6381   }
6382   // SSE comparison intrisics
6383   case X86::BI__builtin_ia32_cmpeqps:
6384   case X86::BI__builtin_ia32_cmpltps:
6385   case X86::BI__builtin_ia32_cmpleps:
6386   case X86::BI__builtin_ia32_cmpunordps:
6387   case X86::BI__builtin_ia32_cmpneqps:
6388   case X86::BI__builtin_ia32_cmpnltps:
6389   case X86::BI__builtin_ia32_cmpnleps:
6390   case X86::BI__builtin_ia32_cmpordps:
6391   case X86::BI__builtin_ia32_cmpeqss:
6392   case X86::BI__builtin_ia32_cmpltss:
6393   case X86::BI__builtin_ia32_cmpless:
6394   case X86::BI__builtin_ia32_cmpunordss:
6395   case X86::BI__builtin_ia32_cmpneqss:
6396   case X86::BI__builtin_ia32_cmpnltss:
6397   case X86::BI__builtin_ia32_cmpnless:
6398   case X86::BI__builtin_ia32_cmpordss:
6399   case X86::BI__builtin_ia32_cmpeqpd:
6400   case X86::BI__builtin_ia32_cmpltpd:
6401   case X86::BI__builtin_ia32_cmplepd:
6402   case X86::BI__builtin_ia32_cmpunordpd:
6403   case X86::BI__builtin_ia32_cmpneqpd:
6404   case X86::BI__builtin_ia32_cmpnltpd:
6405   case X86::BI__builtin_ia32_cmpnlepd:
6406   case X86::BI__builtin_ia32_cmpordpd:
6407   case X86::BI__builtin_ia32_cmpeqsd:
6408   case X86::BI__builtin_ia32_cmpltsd:
6409   case X86::BI__builtin_ia32_cmplesd:
6410   case X86::BI__builtin_ia32_cmpunordsd:
6411   case X86::BI__builtin_ia32_cmpneqsd:
6412   case X86::BI__builtin_ia32_cmpnltsd:
6413   case X86::BI__builtin_ia32_cmpnlesd:
6414   case X86::BI__builtin_ia32_cmpordsd:
6415     // These exist so that the builtin that takes an immediate can be bounds
6416     // checked by clang to avoid passing bad immediates to the backend. Since
6417     // AVX has a larger immediate than SSE we would need separate builtins to
6418     // do the different bounds checking. Rather than create a clang specific
6419     // SSE only builtin, this implements eight separate builtins to match gcc
6420     // implementation.
6421
6422     // Choose the immediate.
6423     unsigned Imm;
6424     switch (BuiltinID) {
6425     default: llvm_unreachable("Unsupported intrinsic!");
6426     case X86::BI__builtin_ia32_cmpeqps:
6427     case X86::BI__builtin_ia32_cmpeqss:
6428     case X86::BI__builtin_ia32_cmpeqpd:
6429     case X86::BI__builtin_ia32_cmpeqsd:
6430       Imm = 0;
6431       break;
6432     case X86::BI__builtin_ia32_cmpltps:
6433     case X86::BI__builtin_ia32_cmpltss:
6434     case X86::BI__builtin_ia32_cmpltpd:
6435     case X86::BI__builtin_ia32_cmpltsd:
6436       Imm = 1;
6437       break;
6438     case X86::BI__builtin_ia32_cmpleps:
6439     case X86::BI__builtin_ia32_cmpless:
6440     case X86::BI__builtin_ia32_cmplepd:
6441     case X86::BI__builtin_ia32_cmplesd:
6442       Imm = 2;
6443       break;
6444     case X86::BI__builtin_ia32_cmpunordps:
6445     case X86::BI__builtin_ia32_cmpunordss:
6446     case X86::BI__builtin_ia32_cmpunordpd:
6447     case X86::BI__builtin_ia32_cmpunordsd:
6448       Imm = 3;
6449       break;
6450     case X86::BI__builtin_ia32_cmpneqps:
6451     case X86::BI__builtin_ia32_cmpneqss:
6452     case X86::BI__builtin_ia32_cmpneqpd:
6453     case X86::BI__builtin_ia32_cmpneqsd:
6454       Imm = 4;
6455       break;
6456     case X86::BI__builtin_ia32_cmpnltps:
6457     case X86::BI__builtin_ia32_cmpnltss:
6458     case X86::BI__builtin_ia32_cmpnltpd:
6459     case X86::BI__builtin_ia32_cmpnltsd:
6460       Imm = 5;
6461       break;
6462     case X86::BI__builtin_ia32_cmpnleps:
6463     case X86::BI__builtin_ia32_cmpnless:
6464     case X86::BI__builtin_ia32_cmpnlepd:
6465     case X86::BI__builtin_ia32_cmpnlesd:
6466       Imm = 6;
6467       break;
6468     case X86::BI__builtin_ia32_cmpordps:
6469     case X86::BI__builtin_ia32_cmpordss:
6470     case X86::BI__builtin_ia32_cmpordpd:
6471     case X86::BI__builtin_ia32_cmpordsd:
6472       Imm = 7;
6473       break;
6474     }
6475
6476     // Choose the intrinsic ID.
6477     const char *name;
6478     Intrinsic::ID ID;
6479     switch (BuiltinID) {
6480     default: llvm_unreachable("Unsupported intrinsic!");
6481     case X86::BI__builtin_ia32_cmpeqps:
6482     case X86::BI__builtin_ia32_cmpltps:
6483     case X86::BI__builtin_ia32_cmpleps:
6484     case X86::BI__builtin_ia32_cmpunordps:
6485     case X86::BI__builtin_ia32_cmpneqps:
6486     case X86::BI__builtin_ia32_cmpnltps:
6487     case X86::BI__builtin_ia32_cmpnleps:
6488     case X86::BI__builtin_ia32_cmpordps:
6489       name = "cmpps";
6490       ID = Intrinsic::x86_sse_cmp_ps;
6491       break;
6492     case X86::BI__builtin_ia32_cmpeqss:
6493     case X86::BI__builtin_ia32_cmpltss:
6494     case X86::BI__builtin_ia32_cmpless:
6495     case X86::BI__builtin_ia32_cmpunordss:
6496     case X86::BI__builtin_ia32_cmpneqss:
6497     case X86::BI__builtin_ia32_cmpnltss:
6498     case X86::BI__builtin_ia32_cmpnless:
6499     case X86::BI__builtin_ia32_cmpordss:
6500       name = "cmpss";
6501       ID = Intrinsic::x86_sse_cmp_ss;
6502       break;
6503     case X86::BI__builtin_ia32_cmpeqpd:
6504     case X86::BI__builtin_ia32_cmpltpd:
6505     case X86::BI__builtin_ia32_cmplepd:
6506     case X86::BI__builtin_ia32_cmpunordpd:
6507     case X86::BI__builtin_ia32_cmpneqpd:
6508     case X86::BI__builtin_ia32_cmpnltpd:
6509     case X86::BI__builtin_ia32_cmpnlepd:
6510     case X86::BI__builtin_ia32_cmpordpd:
6511       name = "cmppd";
6512       ID = Intrinsic::x86_sse2_cmp_pd;
6513       break;
6514     case X86::BI__builtin_ia32_cmpeqsd:
6515     case X86::BI__builtin_ia32_cmpltsd:
6516     case X86::BI__builtin_ia32_cmplesd:
6517     case X86::BI__builtin_ia32_cmpunordsd:
6518     case X86::BI__builtin_ia32_cmpneqsd:
6519     case X86::BI__builtin_ia32_cmpnltsd:
6520     case X86::BI__builtin_ia32_cmpnlesd:
6521     case X86::BI__builtin_ia32_cmpordsd:
6522       name = "cmpsd";
6523       ID = Intrinsic::x86_sse2_cmp_sd;
6524       break;
6525     }
6526
6527     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
6528     llvm::Function *F = CGM.getIntrinsic(ID);
6529     return Builder.CreateCall(F, Ops, name);
6530   }
6531 }
6532
6533
6534 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
6535                                            const CallExpr *E) {
6536   SmallVector<Value*, 4> Ops;
6537
6538   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
6539     Ops.push_back(EmitScalarExpr(E->getArg(i)));
6540
6541   Intrinsic::ID ID = Intrinsic::not_intrinsic;
6542
6543   switch (BuiltinID) {
6544   default: return nullptr;
6545
6546   // vec_ld, vec_lvsl, vec_lvsr
6547   case PPC::BI__builtin_altivec_lvx:
6548   case PPC::BI__builtin_altivec_lvxl:
6549   case PPC::BI__builtin_altivec_lvebx:
6550   case PPC::BI__builtin_altivec_lvehx:
6551   case PPC::BI__builtin_altivec_lvewx:
6552   case PPC::BI__builtin_altivec_lvsl:
6553   case PPC::BI__builtin_altivec_lvsr:
6554   case PPC::BI__builtin_vsx_lxvd2x:
6555   case PPC::BI__builtin_vsx_lxvw4x:
6556   {
6557     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
6558
6559     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
6560     Ops.pop_back();
6561
6562     switch (BuiltinID) {
6563     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
6564     case PPC::BI__builtin_altivec_lvx:
6565       ID = Intrinsic::ppc_altivec_lvx;
6566       break;
6567     case PPC::BI__builtin_altivec_lvxl:
6568       ID = Intrinsic::ppc_altivec_lvxl;
6569       break;
6570     case PPC::BI__builtin_altivec_lvebx:
6571       ID = Intrinsic::ppc_altivec_lvebx;
6572       break;
6573     case PPC::BI__builtin_altivec_lvehx:
6574       ID = Intrinsic::ppc_altivec_lvehx;
6575       break;
6576     case PPC::BI__builtin_altivec_lvewx:
6577       ID = Intrinsic::ppc_altivec_lvewx;
6578       break;
6579     case PPC::BI__builtin_altivec_lvsl:
6580       ID = Intrinsic::ppc_altivec_lvsl;
6581       break;
6582     case PPC::BI__builtin_altivec_lvsr:
6583       ID = Intrinsic::ppc_altivec_lvsr;
6584       break;
6585     case PPC::BI__builtin_vsx_lxvd2x:
6586       ID = Intrinsic::ppc_vsx_lxvd2x;
6587       break;
6588     case PPC::BI__builtin_vsx_lxvw4x:
6589       ID = Intrinsic::ppc_vsx_lxvw4x;
6590       break;
6591     }
6592     llvm::Function *F = CGM.getIntrinsic(ID);
6593     return Builder.CreateCall(F, Ops, "");
6594   }
6595
6596   // vec_st
6597   case PPC::BI__builtin_altivec_stvx:
6598   case PPC::BI__builtin_altivec_stvxl:
6599   case PPC::BI__builtin_altivec_stvebx:
6600   case PPC::BI__builtin_altivec_stvehx:
6601   case PPC::BI__builtin_altivec_stvewx:
6602   case PPC::BI__builtin_vsx_stxvd2x:
6603   case PPC::BI__builtin_vsx_stxvw4x:
6604   {
6605     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
6606     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
6607     Ops.pop_back();
6608
6609     switch (BuiltinID) {
6610     default: llvm_unreachable("Unsupported st intrinsic!");
6611     case PPC::BI__builtin_altivec_stvx:
6612       ID = Intrinsic::ppc_altivec_stvx;
6613       break;
6614     case PPC::BI__builtin_altivec_stvxl:
6615       ID = Intrinsic::ppc_altivec_stvxl;
6616       break;
6617     case PPC::BI__builtin_altivec_stvebx:
6618       ID = Intrinsic::ppc_altivec_stvebx;
6619       break;
6620     case PPC::BI__builtin_altivec_stvehx:
6621       ID = Intrinsic::ppc_altivec_stvehx;
6622       break;
6623     case PPC::BI__builtin_altivec_stvewx:
6624       ID = Intrinsic::ppc_altivec_stvewx;
6625       break;
6626     case PPC::BI__builtin_vsx_stxvd2x:
6627       ID = Intrinsic::ppc_vsx_stxvd2x;
6628       break;
6629     case PPC::BI__builtin_vsx_stxvw4x:
6630       ID = Intrinsic::ppc_vsx_stxvw4x;
6631       break;
6632     }
6633     llvm::Function *F = CGM.getIntrinsic(ID);
6634     return Builder.CreateCall(F, Ops, "");
6635   }
6636   // Square root
6637   case PPC::BI__builtin_vsx_xvsqrtsp:
6638   case PPC::BI__builtin_vsx_xvsqrtdp: {
6639     llvm::Type *ResultType = ConvertType(E->getType());
6640     Value *X = EmitScalarExpr(E->getArg(0));
6641     ID = Intrinsic::sqrt;
6642     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
6643     return Builder.CreateCall(F, X);
6644   }
6645   // Count leading zeros
6646   case PPC::BI__builtin_altivec_vclzb:
6647   case PPC::BI__builtin_altivec_vclzh:
6648   case PPC::BI__builtin_altivec_vclzw:
6649   case PPC::BI__builtin_altivec_vclzd: {
6650     llvm::Type *ResultType = ConvertType(E->getType());
6651     Value *X = EmitScalarExpr(E->getArg(0));
6652     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
6653     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
6654     return Builder.CreateCall(F, {X, Undef});
6655   }
6656   // Copy sign
6657   case PPC::BI__builtin_vsx_xvcpsgnsp:
6658   case PPC::BI__builtin_vsx_xvcpsgndp: {
6659     llvm::Type *ResultType = ConvertType(E->getType());
6660     Value *X = EmitScalarExpr(E->getArg(0));
6661     Value *Y = EmitScalarExpr(E->getArg(1));
6662     ID = Intrinsic::copysign;
6663     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
6664     return Builder.CreateCall(F, {X, Y});
6665   }
6666   // Rounding/truncation
6667   case PPC::BI__builtin_vsx_xvrspip:
6668   case PPC::BI__builtin_vsx_xvrdpip:
6669   case PPC::BI__builtin_vsx_xvrdpim:
6670   case PPC::BI__builtin_vsx_xvrspim:
6671   case PPC::BI__builtin_vsx_xvrdpi:
6672   case PPC::BI__builtin_vsx_xvrspi:
6673   case PPC::BI__builtin_vsx_xvrdpic:
6674   case PPC::BI__builtin_vsx_xvrspic:
6675   case PPC::BI__builtin_vsx_xvrdpiz:
6676   case PPC::BI__builtin_vsx_xvrspiz: {
6677     llvm::Type *ResultType = ConvertType(E->getType());
6678     Value *X = EmitScalarExpr(E->getArg(0));
6679     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
6680         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
6681       ID = Intrinsic::floor;
6682     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
6683              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
6684       ID = Intrinsic::round;
6685     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
6686              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
6687       ID = Intrinsic::nearbyint;
6688     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
6689              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
6690       ID = Intrinsic::ceil;
6691     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
6692              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
6693       ID = Intrinsic::trunc;
6694     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
6695     return Builder.CreateCall(F, X);
6696   }
6697   // FMA variations
6698   case PPC::BI__builtin_vsx_xvmaddadp:
6699   case PPC::BI__builtin_vsx_xvmaddasp:
6700   case PPC::BI__builtin_vsx_xvnmaddadp:
6701   case PPC::BI__builtin_vsx_xvnmaddasp:
6702   case PPC::BI__builtin_vsx_xvmsubadp:
6703   case PPC::BI__builtin_vsx_xvmsubasp:
6704   case PPC::BI__builtin_vsx_xvnmsubadp:
6705   case PPC::BI__builtin_vsx_xvnmsubasp: {
6706     llvm::Type *ResultType = ConvertType(E->getType());
6707     Value *X = EmitScalarExpr(E->getArg(0));
6708     Value *Y = EmitScalarExpr(E->getArg(1));
6709     Value *Z = EmitScalarExpr(E->getArg(2));
6710     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
6711     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
6712     switch (BuiltinID) {
6713       case PPC::BI__builtin_vsx_xvmaddadp:
6714       case PPC::BI__builtin_vsx_xvmaddasp:
6715         return Builder.CreateCall(F, {X, Y, Z});
6716       case PPC::BI__builtin_vsx_xvnmaddadp:
6717       case PPC::BI__builtin_vsx_xvnmaddasp:
6718         return Builder.CreateFSub(Zero,
6719                                   Builder.CreateCall(F, {X, Y, Z}), "sub");
6720       case PPC::BI__builtin_vsx_xvmsubadp:
6721       case PPC::BI__builtin_vsx_xvmsubasp:
6722         return Builder.CreateCall(F,
6723                                   {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
6724       case PPC::BI__builtin_vsx_xvnmsubadp:
6725       case PPC::BI__builtin_vsx_xvnmsubasp:
6726         Value *FsubRes =
6727           Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
6728         return Builder.CreateFSub(Zero, FsubRes, "sub");
6729     }
6730     llvm_unreachable("Unknown FMA operation");
6731     return nullptr; // Suppress no-return warning
6732   }
6733   }
6734 }
6735
6736 // Emit an intrinsic that has 1 float or double.
6737 static Value *emitUnaryFPBuiltin(CodeGenFunction &CGF,
6738                                  const CallExpr *E,
6739                                  unsigned IntrinsicID) {
6740   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6741
6742   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6743   return CGF.Builder.CreateCall(F, Src0);
6744 }
6745
6746 // Emit an intrinsic that has 3 float or double operands.
6747 static Value *emitTernaryFPBuiltin(CodeGenFunction &CGF,
6748                                    const CallExpr *E,
6749                                    unsigned IntrinsicID) {
6750   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6751   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
6752   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
6753
6754   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6755   return CGF.Builder.CreateCall(F, {Src0, Src1, Src2});
6756 }
6757
6758 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
6759 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
6760                                const CallExpr *E,
6761                                unsigned IntrinsicID) {
6762   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6763   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
6764
6765   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6766   return CGF.Builder.CreateCall(F, {Src0, Src1});
6767 }
6768
6769 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
6770                                               const CallExpr *E) {
6771   switch (BuiltinID) {
6772   case AMDGPU::BI__builtin_amdgpu_div_scale:
6773   case AMDGPU::BI__builtin_amdgpu_div_scalef: {
6774     // Translate from the intrinsics's struct return to the builtin's out
6775     // argument.
6776
6777     std::pair<llvm::Value *, unsigned> FlagOutPtr
6778       = EmitPointerWithAlignment(E->getArg(3));
6779
6780     llvm::Value *X = EmitScalarExpr(E->getArg(0));
6781     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
6782     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
6783
6784     llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::AMDGPU_div_scale,
6785                                            X->getType());
6786
6787     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
6788
6789     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
6790     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
6791
6792     llvm::Type *RealFlagType
6793       = FlagOutPtr.first->getType()->getPointerElementType();
6794
6795     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
6796     llvm::StoreInst *FlagStore = Builder.CreateStore(FlagExt, FlagOutPtr.first);
6797     FlagStore->setAlignment(FlagOutPtr.second);
6798     return Result;
6799   }
6800   case AMDGPU::BI__builtin_amdgpu_div_fmas:
6801   case AMDGPU::BI__builtin_amdgpu_div_fmasf: {
6802     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
6803     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
6804     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
6805     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
6806
6807     llvm::Value *F = CGM.getIntrinsic(Intrinsic::AMDGPU_div_fmas,
6808                                       Src0->getType());
6809     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
6810     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
6811   }
6812   case AMDGPU::BI__builtin_amdgpu_div_fixup:
6813   case AMDGPU::BI__builtin_amdgpu_div_fixupf:
6814     return emitTernaryFPBuiltin(*this, E, Intrinsic::AMDGPU_div_fixup);
6815   case AMDGPU::BI__builtin_amdgpu_trig_preop:
6816   case AMDGPU::BI__builtin_amdgpu_trig_preopf:
6817     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_trig_preop);
6818   case AMDGPU::BI__builtin_amdgpu_rcp:
6819   case AMDGPU::BI__builtin_amdgpu_rcpf:
6820     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rcp);
6821   case AMDGPU::BI__builtin_amdgpu_rsq:
6822   case AMDGPU::BI__builtin_amdgpu_rsqf:
6823     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq);
6824   case AMDGPU::BI__builtin_amdgpu_rsq_clamped:
6825   case AMDGPU::BI__builtin_amdgpu_rsq_clampedf:
6826     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq_clamped);
6827   case AMDGPU::BI__builtin_amdgpu_ldexp:
6828   case AMDGPU::BI__builtin_amdgpu_ldexpf:
6829     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_ldexp);
6830   case AMDGPU::BI__builtin_amdgpu_class:
6831   case AMDGPU::BI__builtin_amdgpu_classf:
6832     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_class);
6833    default:
6834     return nullptr;
6835   }
6836 }
6837
6838 /// Handle a SystemZ function in which the final argument is a pointer
6839 /// to an int that receives the post-instruction CC value.  At the LLVM level
6840 /// this is represented as a function that returns a {result, cc} pair.
6841 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
6842                                          unsigned IntrinsicID,
6843                                          const CallExpr *E) {
6844   unsigned NumArgs = E->getNumArgs() - 1;
6845   SmallVector<Value *, 8> Args(NumArgs);
6846   for (unsigned I = 0; I < NumArgs; ++I)
6847     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
6848   Value *CCPtr = CGF.EmitScalarExpr(E->getArg(NumArgs));
6849   Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
6850   Value *Call = CGF.Builder.CreateCall(F, Args);
6851   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
6852   CGF.Builder.CreateStore(CC, CCPtr);
6853   return CGF.Builder.CreateExtractValue(Call, 0);
6854 }
6855
6856 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
6857                                                const CallExpr *E) {
6858   switch (BuiltinID) {
6859   case SystemZ::BI__builtin_tbegin: {
6860     Value *TDB = EmitScalarExpr(E->getArg(0));
6861     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
6862     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
6863     return Builder.CreateCall(F, {TDB, Control});
6864   }
6865   case SystemZ::BI__builtin_tbegin_nofloat: {
6866     Value *TDB = EmitScalarExpr(E->getArg(0));
6867     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
6868     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
6869     return Builder.CreateCall(F, {TDB, Control});
6870   }
6871   case SystemZ::BI__builtin_tbeginc: {
6872     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
6873     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
6874     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
6875     return Builder.CreateCall(F, {TDB, Control});
6876   }
6877   case SystemZ::BI__builtin_tabort: {
6878     Value *Data = EmitScalarExpr(E->getArg(0));
6879     Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
6880     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
6881   }
6882   case SystemZ::BI__builtin_non_tx_store: {
6883     Value *Address = EmitScalarExpr(E->getArg(0));
6884     Value *Data = EmitScalarExpr(E->getArg(1));
6885     Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
6886     return Builder.CreateCall(F, {Data, Address});
6887   }
6888
6889   // Vector builtins.  Note that most vector builtins are mapped automatically
6890   // to target-specific LLVM intrinsics.  The ones handled specially here can
6891   // be represented via standard LLVM IR, which is preferable to enable common
6892   // LLVM optimizations.
6893
6894   case SystemZ::BI__builtin_s390_vpopctb:
6895   case SystemZ::BI__builtin_s390_vpopcth:
6896   case SystemZ::BI__builtin_s390_vpopctf:
6897   case SystemZ::BI__builtin_s390_vpopctg: {
6898     llvm::Type *ResultType = ConvertType(E->getType());
6899     Value *X = EmitScalarExpr(E->getArg(0));
6900     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
6901     return Builder.CreateCall(F, X);
6902   }
6903
6904   case SystemZ::BI__builtin_s390_vclzb:
6905   case SystemZ::BI__builtin_s390_vclzh:
6906   case SystemZ::BI__builtin_s390_vclzf:
6907   case SystemZ::BI__builtin_s390_vclzg: {
6908     llvm::Type *ResultType = ConvertType(E->getType());
6909     Value *X = EmitScalarExpr(E->getArg(0));
6910     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
6911     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
6912     return Builder.CreateCall(F, {X, Undef});
6913   }
6914
6915   case SystemZ::BI__builtin_s390_vctzb:
6916   case SystemZ::BI__builtin_s390_vctzh:
6917   case SystemZ::BI__builtin_s390_vctzf:
6918   case SystemZ::BI__builtin_s390_vctzg: {
6919     llvm::Type *ResultType = ConvertType(E->getType());
6920     Value *X = EmitScalarExpr(E->getArg(0));
6921     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
6922     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
6923     return Builder.CreateCall(F, {X, Undef});
6924   }
6925
6926   case SystemZ::BI__builtin_s390_vfsqdb: {
6927     llvm::Type *ResultType = ConvertType(E->getType());
6928     Value *X = EmitScalarExpr(E->getArg(0));
6929     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
6930     return Builder.CreateCall(F, X);
6931   }
6932   case SystemZ::BI__builtin_s390_vfmadb: {
6933     llvm::Type *ResultType = ConvertType(E->getType());
6934     Value *X = EmitScalarExpr(E->getArg(0));
6935     Value *Y = EmitScalarExpr(E->getArg(1));
6936     Value *Z = EmitScalarExpr(E->getArg(2));
6937     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
6938     return Builder.CreateCall(F, {X, Y, Z});
6939   }
6940   case SystemZ::BI__builtin_s390_vfmsdb: {
6941     llvm::Type *ResultType = ConvertType(E->getType());
6942     Value *X = EmitScalarExpr(E->getArg(0));
6943     Value *Y = EmitScalarExpr(E->getArg(1));
6944     Value *Z = EmitScalarExpr(E->getArg(2));
6945     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
6946     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
6947     return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
6948   }
6949   case SystemZ::BI__builtin_s390_vflpdb: {
6950     llvm::Type *ResultType = ConvertType(E->getType());
6951     Value *X = EmitScalarExpr(E->getArg(0));
6952     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
6953     return Builder.CreateCall(F, X);
6954   }
6955   case SystemZ::BI__builtin_s390_vflndb: {
6956     llvm::Type *ResultType = ConvertType(E->getType());
6957     Value *X = EmitScalarExpr(E->getArg(0));
6958     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
6959     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
6960     return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
6961   }
6962   case SystemZ::BI__builtin_s390_vfidb: {
6963     llvm::Type *ResultType = ConvertType(E->getType());
6964     Value *X = EmitScalarExpr(E->getArg(0));
6965     // Constant-fold the M4 and M5 mask arguments.
6966     llvm::APSInt M4, M5;
6967     bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
6968     bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
6969     assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
6970     (void)IsConstM4; (void)IsConstM5;
6971     // Check whether this instance of vfidb can be represented via a LLVM
6972     // standard intrinsic.  We only support some combinations of M4 and M5.
6973     Intrinsic::ID ID = Intrinsic::not_intrinsic;
6974     switch (M4.getZExtValue()) {
6975     default: break;
6976     case 0:  // IEEE-inexact exception allowed
6977       switch (M5.getZExtValue()) {
6978       default: break;
6979       case 0: ID = Intrinsic::rint; break;
6980       }
6981       break;
6982     case 4:  // IEEE-inexact exception suppressed
6983       switch (M5.getZExtValue()) {
6984       default: break;
6985       case 0: ID = Intrinsic::nearbyint; break;
6986       case 1: ID = Intrinsic::round; break;
6987       case 5: ID = Intrinsic::trunc; break;
6988       case 6: ID = Intrinsic::ceil; break;
6989       case 7: ID = Intrinsic::floor; break;
6990       }
6991       break;
6992     }
6993     if (ID != Intrinsic::not_intrinsic) {
6994       Function *F = CGM.getIntrinsic(ID, ResultType);
6995       return Builder.CreateCall(F, X);
6996     }
6997     Function *F = CGM.getIntrinsic(Intrinsic::s390_vfidb);
6998     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
6999     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
7000     return Builder.CreateCall(F, {X, M4Value, M5Value});
7001   }
7002
7003   // Vector intrisincs that output the post-instruction CC value.
7004
7005 #define INTRINSIC_WITH_CC(NAME) \
7006     case SystemZ::BI__builtin_##NAME: \
7007       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
7008
7009   INTRINSIC_WITH_CC(s390_vpkshs);
7010   INTRINSIC_WITH_CC(s390_vpksfs);
7011   INTRINSIC_WITH_CC(s390_vpksgs);
7012
7013   INTRINSIC_WITH_CC(s390_vpklshs);
7014   INTRINSIC_WITH_CC(s390_vpklsfs);
7015   INTRINSIC_WITH_CC(s390_vpklsgs);
7016
7017   INTRINSIC_WITH_CC(s390_vceqbs);
7018   INTRINSIC_WITH_CC(s390_vceqhs);
7019   INTRINSIC_WITH_CC(s390_vceqfs);
7020   INTRINSIC_WITH_CC(s390_vceqgs);
7021
7022   INTRINSIC_WITH_CC(s390_vchbs);
7023   INTRINSIC_WITH_CC(s390_vchhs);
7024   INTRINSIC_WITH_CC(s390_vchfs);
7025   INTRINSIC_WITH_CC(s390_vchgs);
7026
7027   INTRINSIC_WITH_CC(s390_vchlbs);
7028   INTRINSIC_WITH_CC(s390_vchlhs);
7029   INTRINSIC_WITH_CC(s390_vchlfs);
7030   INTRINSIC_WITH_CC(s390_vchlgs);
7031
7032   INTRINSIC_WITH_CC(s390_vfaebs);
7033   INTRINSIC_WITH_CC(s390_vfaehs);
7034   INTRINSIC_WITH_CC(s390_vfaefs);
7035
7036   INTRINSIC_WITH_CC(s390_vfaezbs);
7037   INTRINSIC_WITH_CC(s390_vfaezhs);
7038   INTRINSIC_WITH_CC(s390_vfaezfs);
7039
7040   INTRINSIC_WITH_CC(s390_vfeebs);
7041   INTRINSIC_WITH_CC(s390_vfeehs);
7042   INTRINSIC_WITH_CC(s390_vfeefs);
7043
7044   INTRINSIC_WITH_CC(s390_vfeezbs);
7045   INTRINSIC_WITH_CC(s390_vfeezhs);
7046   INTRINSIC_WITH_CC(s390_vfeezfs);
7047
7048   INTRINSIC_WITH_CC(s390_vfenebs);
7049   INTRINSIC_WITH_CC(s390_vfenehs);
7050   INTRINSIC_WITH_CC(s390_vfenefs);
7051
7052   INTRINSIC_WITH_CC(s390_vfenezbs);
7053   INTRINSIC_WITH_CC(s390_vfenezhs);
7054   INTRINSIC_WITH_CC(s390_vfenezfs);
7055
7056   INTRINSIC_WITH_CC(s390_vistrbs);
7057   INTRINSIC_WITH_CC(s390_vistrhs);
7058   INTRINSIC_WITH_CC(s390_vistrfs);
7059
7060   INTRINSIC_WITH_CC(s390_vstrcbs);
7061   INTRINSIC_WITH_CC(s390_vstrchs);
7062   INTRINSIC_WITH_CC(s390_vstrcfs);
7063
7064   INTRINSIC_WITH_CC(s390_vstrczbs);
7065   INTRINSIC_WITH_CC(s390_vstrczhs);
7066   INTRINSIC_WITH_CC(s390_vstrczfs);
7067
7068   INTRINSIC_WITH_CC(s390_vfcedbs);
7069   INTRINSIC_WITH_CC(s390_vfchdbs);
7070   INTRINSIC_WITH_CC(s390_vfchedbs);
7071
7072   INTRINSIC_WITH_CC(s390_vftcidb);
7073
7074 #undef INTRINSIC_WITH_CC
7075
7076   default:
7077     return nullptr;
7078   }
7079 }
7080
7081 Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
7082                                              const CallExpr *E) {
7083   switch (BuiltinID) {
7084   case NVPTX::BI__nvvm_atom_add_gen_i:
7085   case NVPTX::BI__nvvm_atom_add_gen_l:
7086   case NVPTX::BI__nvvm_atom_add_gen_ll:
7087     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
7088
7089   case NVPTX::BI__nvvm_atom_sub_gen_i:
7090   case NVPTX::BI__nvvm_atom_sub_gen_l:
7091   case NVPTX::BI__nvvm_atom_sub_gen_ll:
7092     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
7093
7094   case NVPTX::BI__nvvm_atom_and_gen_i:
7095   case NVPTX::BI__nvvm_atom_and_gen_l:
7096   case NVPTX::BI__nvvm_atom_and_gen_ll:
7097     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
7098
7099   case NVPTX::BI__nvvm_atom_or_gen_i:
7100   case NVPTX::BI__nvvm_atom_or_gen_l:
7101   case NVPTX::BI__nvvm_atom_or_gen_ll:
7102     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
7103
7104   case NVPTX::BI__nvvm_atom_xor_gen_i:
7105   case NVPTX::BI__nvvm_atom_xor_gen_l:
7106   case NVPTX::BI__nvvm_atom_xor_gen_ll:
7107     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
7108
7109   case NVPTX::BI__nvvm_atom_xchg_gen_i:
7110   case NVPTX::BI__nvvm_atom_xchg_gen_l:
7111   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
7112     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
7113
7114   case NVPTX::BI__nvvm_atom_max_gen_i:
7115   case NVPTX::BI__nvvm_atom_max_gen_l:
7116   case NVPTX::BI__nvvm_atom_max_gen_ll:
7117   case NVPTX::BI__nvvm_atom_max_gen_ui:
7118   case NVPTX::BI__nvvm_atom_max_gen_ul:
7119   case NVPTX::BI__nvvm_atom_max_gen_ull:
7120     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
7121
7122   case NVPTX::BI__nvvm_atom_min_gen_i:
7123   case NVPTX::BI__nvvm_atom_min_gen_l:
7124   case NVPTX::BI__nvvm_atom_min_gen_ll:
7125   case NVPTX::BI__nvvm_atom_min_gen_ui:
7126   case NVPTX::BI__nvvm_atom_min_gen_ul:
7127   case NVPTX::BI__nvvm_atom_min_gen_ull:
7128     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
7129
7130   case NVPTX::BI__nvvm_atom_cas_gen_i:
7131   case NVPTX::BI__nvvm_atom_cas_gen_l:
7132   case NVPTX::BI__nvvm_atom_cas_gen_ll:
7133     return MakeAtomicCmpXchgValue(*this, E, true);
7134
7135   case NVPTX::BI__nvvm_atom_add_gen_f: {
7136     Value *Ptr = EmitScalarExpr(E->getArg(0));
7137     Value *Val = EmitScalarExpr(E->getArg(1));
7138     // atomicrmw only deals with integer arguments so we need to use
7139     // LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
7140     Value *FnALAF32 =
7141         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
7142     return Builder.CreateCall(FnALAF32, {Ptr, Val});
7143   }
7144
7145   default:
7146     return nullptr;
7147   }
7148 }