]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/CodeGen/CGClass.cpp
Vendor import of clang trunk r242221:
[FreeBSD/FreeBSD.git] / lib / CodeGen / CGClass.cpp
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28
29 using namespace clang;
30 using namespace CodeGen;
31
32 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
33     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
34     CastExpr::path_const_iterator End) {
35   CharUnits Offset = CharUnits::Zero();
36
37   const ASTContext &Context = getContext();
38   const CXXRecordDecl *RD = DerivedClass;
39
40   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
41     const CXXBaseSpecifier *Base = *I;
42     assert(!Base->isVirtual() && "Should not see virtual bases here!");
43
44     // Get the layout.
45     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
46
47     const CXXRecordDecl *BaseDecl =
48       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
49
50     // Add the offset.
51     Offset += Layout.getBaseClassOffset(BaseDecl);
52
53     RD = BaseDecl;
54   }
55
56   return Offset;
57 }
58
59 llvm::Constant *
60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
61                                    CastExpr::path_const_iterator PathBegin,
62                                    CastExpr::path_const_iterator PathEnd) {
63   assert(PathBegin != PathEnd && "Base path should not be empty!");
64
65   CharUnits Offset =
66       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
67   if (Offset.isZero())
68     return nullptr;
69
70   llvm::Type *PtrDiffTy =
71   Types.ConvertType(getContext().getPointerDiffType());
72
73   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
74 }
75
76 /// Gets the address of a direct base class within a complete object.
77 /// This should only be used for (1) non-virtual bases or (2) virtual bases
78 /// when the type is known to be complete (e.g. in complete destructors).
79 ///
80 /// The object pointed to by 'This' is assumed to be non-null.
81 llvm::Value *
82 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
83                                                    const CXXRecordDecl *Derived,
84                                                    const CXXRecordDecl *Base,
85                                                    bool BaseIsVirtual) {
86   // 'this' must be a pointer (in some address space) to Derived.
87   assert(This->getType()->isPointerTy() &&
88          cast<llvm::PointerType>(This->getType())->getElementType()
89            == ConvertType(Derived));
90
91   // Compute the offset of the virtual base.
92   CharUnits Offset;
93   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
94   if (BaseIsVirtual)
95     Offset = Layout.getVBaseClassOffset(Base);
96   else
97     Offset = Layout.getBaseClassOffset(Base);
98
99   // Shift and cast down to the base type.
100   // TODO: for complete types, this should be possible with a GEP.
101   llvm::Value *V = This;
102   if (Offset.isPositive()) {
103     V = Builder.CreateBitCast(V, Int8PtrTy);
104     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
105   }
106   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
107
108   return V;
109 }
110
111 static llvm::Value *
112 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
113                                 CharUnits nonVirtualOffset,
114                                 llvm::Value *virtualOffset) {
115   // Assert that we have something to do.
116   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
117
118   // Compute the offset from the static and dynamic components.
119   llvm::Value *baseOffset;
120   if (!nonVirtualOffset.isZero()) {
121     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
122                                         nonVirtualOffset.getQuantity());
123     if (virtualOffset) {
124       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
125     }
126   } else {
127     baseOffset = virtualOffset;
128   }
129
130   // Apply the base offset.
131   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
132   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
133   return ptr;
134 }
135
136 llvm::Value *CodeGenFunction::GetAddressOfBaseClass(
137     llvm::Value *Value, const CXXRecordDecl *Derived,
138     CastExpr::path_const_iterator PathBegin,
139     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
140     SourceLocation Loc) {
141   assert(PathBegin != PathEnd && "Base path should not be empty!");
142
143   CastExpr::path_const_iterator Start = PathBegin;
144   const CXXRecordDecl *VBase = nullptr;
145
146   // Sema has done some convenient canonicalization here: if the
147   // access path involved any virtual steps, the conversion path will
148   // *start* with a step down to the correct virtual base subobject,
149   // and hence will not require any further steps.
150   if ((*Start)->isVirtual()) {
151     VBase =
152       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
153     ++Start;
154   }
155
156   // Compute the static offset of the ultimate destination within its
157   // allocating subobject (the virtual base, if there is one, or else
158   // the "complete" object that we see).
159   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
160       VBase ? VBase : Derived, Start, PathEnd);
161
162   // If there's a virtual step, we can sometimes "devirtualize" it.
163   // For now, that's limited to when the derived type is final.
164   // TODO: "devirtualize" this for accesses to known-complete objects.
165   if (VBase && Derived->hasAttr<FinalAttr>()) {
166     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
167     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
168     NonVirtualOffset += vBaseOffset;
169     VBase = nullptr; // we no longer have a virtual step
170   }
171
172   // Get the base pointer type.
173   llvm::Type *BasePtrTy =
174     ConvertType((PathEnd[-1])->getType())->getPointerTo();
175
176   QualType DerivedTy = getContext().getRecordType(Derived);
177   CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy);
178
179   // If the static offset is zero and we don't have a virtual step,
180   // just do a bitcast; null checks are unnecessary.
181   if (NonVirtualOffset.isZero() && !VBase) {
182     if (sanitizePerformTypeCheck()) {
183       EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign,
184                     !NullCheckValue);
185     }
186     return Builder.CreateBitCast(Value, BasePtrTy);
187   }
188
189   llvm::BasicBlock *origBB = nullptr;
190   llvm::BasicBlock *endBB = nullptr;
191
192   // Skip over the offset (and the vtable load) if we're supposed to
193   // null-check the pointer.
194   if (NullCheckValue) {
195     origBB = Builder.GetInsertBlock();
196     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
197     endBB = createBasicBlock("cast.end");
198
199     llvm::Value *isNull = Builder.CreateIsNull(Value);
200     Builder.CreateCondBr(isNull, endBB, notNullBB);
201     EmitBlock(notNullBB);
202   }
203
204   if (sanitizePerformTypeCheck()) {
205     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value,
206                   DerivedTy, DerivedAlign, true);
207   }
208
209   // Compute the virtual offset.
210   llvm::Value *VirtualOffset = nullptr;
211   if (VBase) {
212     VirtualOffset =
213       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
214   }
215
216   // Apply both offsets.
217   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
218                                           NonVirtualOffset,
219                                           VirtualOffset);
220
221   // Cast to the destination type.
222   Value = Builder.CreateBitCast(Value, BasePtrTy);
223
224   // Build a phi if we needed a null check.
225   if (NullCheckValue) {
226     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
227     Builder.CreateBr(endBB);
228     EmitBlock(endBB);
229
230     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
231     PHI->addIncoming(Value, notNullBB);
232     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
233     Value = PHI;
234   }
235
236   return Value;
237 }
238
239 llvm::Value *
240 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
241                                           const CXXRecordDecl *Derived,
242                                         CastExpr::path_const_iterator PathBegin,
243                                           CastExpr::path_const_iterator PathEnd,
244                                           bool NullCheckValue) {
245   assert(PathBegin != PathEnd && "Base path should not be empty!");
246
247   QualType DerivedTy =
248     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
249   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
250
251   llvm::Value *NonVirtualOffset =
252     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
253
254   if (!NonVirtualOffset) {
255     // No offset, we can just cast back.
256     return Builder.CreateBitCast(Value, DerivedPtrTy);
257   }
258
259   llvm::BasicBlock *CastNull = nullptr;
260   llvm::BasicBlock *CastNotNull = nullptr;
261   llvm::BasicBlock *CastEnd = nullptr;
262
263   if (NullCheckValue) {
264     CastNull = createBasicBlock("cast.null");
265     CastNotNull = createBasicBlock("cast.notnull");
266     CastEnd = createBasicBlock("cast.end");
267
268     llvm::Value *IsNull = Builder.CreateIsNull(Value);
269     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
270     EmitBlock(CastNotNull);
271   }
272
273   // Apply the offset.
274   Value = Builder.CreateBitCast(Value, Int8PtrTy);
275   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
276                             "sub.ptr");
277
278   // Just cast.
279   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
280
281   if (NullCheckValue) {
282     Builder.CreateBr(CastEnd);
283     EmitBlock(CastNull);
284     Builder.CreateBr(CastEnd);
285     EmitBlock(CastEnd);
286
287     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
288     PHI->addIncoming(Value, CastNotNull);
289     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
290                      CastNull);
291     Value = PHI;
292   }
293
294   return Value;
295 }
296
297 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
298                                               bool ForVirtualBase,
299                                               bool Delegating) {
300   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
301     // This constructor/destructor does not need a VTT parameter.
302     return nullptr;
303   }
304
305   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
306   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
307
308   llvm::Value *VTT;
309
310   uint64_t SubVTTIndex;
311
312   if (Delegating) {
313     // If this is a delegating constructor call, just load the VTT.
314     return LoadCXXVTT();
315   } else if (RD == Base) {
316     // If the record matches the base, this is the complete ctor/dtor
317     // variant calling the base variant in a class with virtual bases.
318     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
319            "doing no-op VTT offset in base dtor/ctor?");
320     assert(!ForVirtualBase && "Can't have same class as virtual base!");
321     SubVTTIndex = 0;
322   } else {
323     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
324     CharUnits BaseOffset = ForVirtualBase ?
325       Layout.getVBaseClassOffset(Base) :
326       Layout.getBaseClassOffset(Base);
327
328     SubVTTIndex =
329       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
330     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
331   }
332
333   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
334     // A VTT parameter was passed to the constructor, use it.
335     VTT = LoadCXXVTT();
336     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
337   } else {
338     // We're the complete constructor, so get the VTT by name.
339     VTT = CGM.getVTables().GetAddrOfVTT(RD);
340     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
341   }
342
343   return VTT;
344 }
345
346 namespace {
347   /// Call the destructor for a direct base class.
348   struct CallBaseDtor : EHScopeStack::Cleanup {
349     const CXXRecordDecl *BaseClass;
350     bool BaseIsVirtual;
351     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
352       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
353
354     void Emit(CodeGenFunction &CGF, Flags flags) override {
355       const CXXRecordDecl *DerivedClass =
356         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
357
358       const CXXDestructorDecl *D = BaseClass->getDestructor();
359       llvm::Value *Addr =
360         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
361                                                   DerivedClass, BaseClass,
362                                                   BaseIsVirtual);
363       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
364                                 /*Delegating=*/false, Addr);
365     }
366   };
367
368   /// A visitor which checks whether an initializer uses 'this' in a
369   /// way which requires the vtable to be properly set.
370   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
371     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
372
373     bool UsesThis;
374
375     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
376
377     // Black-list all explicit and implicit references to 'this'.
378     //
379     // Do we need to worry about external references to 'this' derived
380     // from arbitrary code?  If so, then anything which runs arbitrary
381     // external code might potentially access the vtable.
382     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
383   };
384 }
385
386 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
387   DynamicThisUseChecker Checker(C);
388   Checker.Visit(Init);
389   return Checker.UsesThis;
390 }
391
392 static void EmitBaseInitializer(CodeGenFunction &CGF,
393                                 const CXXRecordDecl *ClassDecl,
394                                 CXXCtorInitializer *BaseInit,
395                                 CXXCtorType CtorType) {
396   assert(BaseInit->isBaseInitializer() &&
397          "Must have base initializer!");
398
399   llvm::Value *ThisPtr = CGF.LoadCXXThis();
400
401   const Type *BaseType = BaseInit->getBaseClass();
402   CXXRecordDecl *BaseClassDecl =
403     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
404
405   bool isBaseVirtual = BaseInit->isBaseVirtual();
406
407   // The base constructor doesn't construct virtual bases.
408   if (CtorType == Ctor_Base && isBaseVirtual)
409     return;
410
411   // If the initializer for the base (other than the constructor
412   // itself) accesses 'this' in any way, we need to initialize the
413   // vtables.
414   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
415     CGF.InitializeVTablePointers(ClassDecl);
416
417   // We can pretend to be a complete class because it only matters for
418   // virtual bases, and we only do virtual bases for complete ctors.
419   llvm::Value *V =
420     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
421                                               BaseClassDecl,
422                                               isBaseVirtual);
423   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
424   AggValueSlot AggSlot =
425     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
426                           AggValueSlot::IsDestructed,
427                           AggValueSlot::DoesNotNeedGCBarriers,
428                           AggValueSlot::IsNotAliased);
429
430   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
431
432   if (CGF.CGM.getLangOpts().Exceptions &&
433       !BaseClassDecl->hasTrivialDestructor())
434     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
435                                           isBaseVirtual);
436 }
437
438 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
439                                      LValue LHS,
440                                      Expr *Init,
441                                      llvm::Value *ArrayIndexVar,
442                                      QualType T,
443                                      ArrayRef<VarDecl *> ArrayIndexes,
444                                      unsigned Index) {
445   if (Index == ArrayIndexes.size()) {
446     LValue LV = LHS;
447
448     if (ArrayIndexVar) {
449       // If we have an array index variable, load it and use it as an offset.
450       // Then, increment the value.
451       llvm::Value *Dest = LHS.getAddress();
452       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
453       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
454       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
455       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
456       CGF.Builder.CreateStore(Next, ArrayIndexVar);
457
458       // Update the LValue.
459       LV.setAddress(Dest);
460       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
461       LV.setAlignment(std::min(Align, LV.getAlignment()));
462     }
463
464     switch (CGF.getEvaluationKind(T)) {
465     case TEK_Scalar:
466       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
467       break;
468     case TEK_Complex:
469       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
470       break;
471     case TEK_Aggregate: {
472       AggValueSlot Slot =
473         AggValueSlot::forLValue(LV,
474                                 AggValueSlot::IsDestructed,
475                                 AggValueSlot::DoesNotNeedGCBarriers,
476                                 AggValueSlot::IsNotAliased);
477
478       CGF.EmitAggExpr(Init, Slot);
479       break;
480     }
481     }
482
483     return;
484   }
485
486   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
487   assert(Array && "Array initialization without the array type?");
488   llvm::Value *IndexVar
489     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
490   assert(IndexVar && "Array index variable not loaded");
491
492   // Initialize this index variable to zero.
493   llvm::Value* Zero
494     = llvm::Constant::getNullValue(
495                               CGF.ConvertType(CGF.getContext().getSizeType()));
496   CGF.Builder.CreateStore(Zero, IndexVar);
497
498   // Start the loop with a block that tests the condition.
499   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
500   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
501
502   CGF.EmitBlock(CondBlock);
503
504   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
505   // Generate: if (loop-index < number-of-elements) fall to the loop body,
506   // otherwise, go to the block after the for-loop.
507   uint64_t NumElements = Array->getSize().getZExtValue();
508   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
509   llvm::Value *NumElementsPtr =
510     llvm::ConstantInt::get(Counter->getType(), NumElements);
511   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
512                                                   "isless");
513
514   // If the condition is true, execute the body.
515   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
516
517   CGF.EmitBlock(ForBody);
518   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
519
520   // Inside the loop body recurse to emit the inner loop or, eventually, the
521   // constructor call.
522   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
523                            Array->getElementType(), ArrayIndexes, Index + 1);
524
525   CGF.EmitBlock(ContinueBlock);
526
527   // Emit the increment of the loop counter.
528   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
529   Counter = CGF.Builder.CreateLoad(IndexVar);
530   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
531   CGF.Builder.CreateStore(NextVal, IndexVar);
532
533   // Finally, branch back up to the condition for the next iteration.
534   CGF.EmitBranch(CondBlock);
535
536   // Emit the fall-through block.
537   CGF.EmitBlock(AfterFor, true);
538 }
539
540 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
541   auto *CD = dyn_cast<CXXConstructorDecl>(D);
542   if (!(CD && CD->isCopyOrMoveConstructor()) &&
543       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
544     return false;
545
546   // We can emit a memcpy for a trivial copy or move constructor/assignment.
547   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
548     return true;
549
550   // We *must* emit a memcpy for a defaulted union copy or move op.
551   if (D->getParent()->isUnion() && D->isDefaulted())
552     return true;
553
554   return false;
555 }
556
557 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
558                                                 CXXCtorInitializer *MemberInit,
559                                                 LValue &LHS) {
560   FieldDecl *Field = MemberInit->getAnyMember();
561   if (MemberInit->isIndirectMemberInitializer()) {
562     // If we are initializing an anonymous union field, drill down to the field.
563     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
564     for (const auto *I : IndirectField->chain())
565       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
566   } else {
567     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
568   }
569 }
570
571 static void EmitMemberInitializer(CodeGenFunction &CGF,
572                                   const CXXRecordDecl *ClassDecl,
573                                   CXXCtorInitializer *MemberInit,
574                                   const CXXConstructorDecl *Constructor,
575                                   FunctionArgList &Args) {
576   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
577   assert(MemberInit->isAnyMemberInitializer() &&
578          "Must have member initializer!");
579   assert(MemberInit->getInit() && "Must have initializer!");
580
581   // non-static data member initializers.
582   FieldDecl *Field = MemberInit->getAnyMember();
583   QualType FieldType = Field->getType();
584
585   llvm::Value *ThisPtr = CGF.LoadCXXThis();
586   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
587   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
588
589   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
590
591   // Special case: if we are in a copy or move constructor, and we are copying
592   // an array of PODs or classes with trivial copy constructors, ignore the
593   // AST and perform the copy we know is equivalent.
594   // FIXME: This is hacky at best... if we had a bit more explicit information
595   // in the AST, we could generalize it more easily.
596   const ConstantArrayType *Array
597     = CGF.getContext().getAsConstantArrayType(FieldType);
598   if (Array && Constructor->isDefaulted() &&
599       Constructor->isCopyOrMoveConstructor()) {
600     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
601     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
602     if (BaseElementTy.isPODType(CGF.getContext()) ||
603         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
604       unsigned SrcArgIndex =
605           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
606       llvm::Value *SrcPtr
607         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
608       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
609       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
610
611       // Copy the aggregate.
612       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
613                             LHS.isVolatileQualified());
614       // Ensure that we destroy the objects if an exception is thrown later in
615       // the constructor.
616       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
617       if (CGF.needsEHCleanup(dtorKind))
618         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 
619       return;
620     }
621   }
622
623   ArrayRef<VarDecl *> ArrayIndexes;
624   if (MemberInit->getNumArrayIndices())
625     ArrayIndexes = MemberInit->getArrayIndexes();
626   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
627 }
628
629 void CodeGenFunction::EmitInitializerForField(
630     FieldDecl *Field, LValue LHS, Expr *Init,
631     ArrayRef<VarDecl *> ArrayIndexes) {
632   QualType FieldType = Field->getType();
633   switch (getEvaluationKind(FieldType)) {
634   case TEK_Scalar:
635     if (LHS.isSimple()) {
636       EmitExprAsInit(Init, Field, LHS, false);
637     } else {
638       RValue RHS = RValue::get(EmitScalarExpr(Init));
639       EmitStoreThroughLValue(RHS, LHS);
640     }
641     break;
642   case TEK_Complex:
643     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
644     break;
645   case TEK_Aggregate: {
646     llvm::Value *ArrayIndexVar = nullptr;
647     if (ArrayIndexes.size()) {
648       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
649
650       // The LHS is a pointer to the first object we'll be constructing, as
651       // a flat array.
652       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
653       llvm::Type *BasePtr = ConvertType(BaseElementTy);
654       BasePtr = llvm::PointerType::getUnqual(BasePtr);
655       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
656                                                        BasePtr);
657       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
658
659       // Create an array index that will be used to walk over all of the
660       // objects we're constructing.
661       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
662       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
663       Builder.CreateStore(Zero, ArrayIndexVar);
664
665
666       // Emit the block variables for the array indices, if any.
667       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
668         EmitAutoVarDecl(*ArrayIndexes[I]);
669     }
670
671     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
672                              ArrayIndexes, 0);
673   }
674   }
675
676   // Ensure that we destroy this object if an exception is thrown
677   // later in the constructor.
678   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
679   if (needsEHCleanup(dtorKind))
680     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
681 }
682
683 /// Checks whether the given constructor is a valid subject for the
684 /// complete-to-base constructor delegation optimization, i.e.
685 /// emitting the complete constructor as a simple call to the base
686 /// constructor.
687 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
688
689   // Currently we disable the optimization for classes with virtual
690   // bases because (1) the addresses of parameter variables need to be
691   // consistent across all initializers but (2) the delegate function
692   // call necessarily creates a second copy of the parameter variable.
693   //
694   // The limiting example (purely theoretical AFAIK):
695   //   struct A { A(int &c) { c++; } };
696   //   struct B : virtual A {
697   //     B(int count) : A(count) { printf("%d\n", count); }
698   //   };
699   // ...although even this example could in principle be emitted as a
700   // delegation since the address of the parameter doesn't escape.
701   if (Ctor->getParent()->getNumVBases()) {
702     // TODO: white-list trivial vbase initializers.  This case wouldn't
703     // be subject to the restrictions below.
704
705     // TODO: white-list cases where:
706     //  - there are no non-reference parameters to the constructor
707     //  - the initializers don't access any non-reference parameters
708     //  - the initializers don't take the address of non-reference
709     //    parameters
710     //  - etc.
711     // If we ever add any of the above cases, remember that:
712     //  - function-try-blocks will always blacklist this optimization
713     //  - we need to perform the constructor prologue and cleanup in
714     //    EmitConstructorBody.
715
716     return false;
717   }
718
719   // We also disable the optimization for variadic functions because
720   // it's impossible to "re-pass" varargs.
721   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
722     return false;
723
724   // FIXME: Decide if we can do a delegation of a delegating constructor.
725   if (Ctor->isDelegatingConstructor())
726     return false;
727
728   return true;
729 }
730
731 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
732 // to poison the extra field paddings inserted under
733 // -fsanitize-address-field-padding=1|2.
734 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
735   ASTContext &Context = getContext();
736   const CXXRecordDecl *ClassDecl =
737       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
738                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
739   if (!ClassDecl->mayInsertExtraPadding()) return;
740
741   struct SizeAndOffset {
742     uint64_t Size;
743     uint64_t Offset;
744   };
745
746   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
747   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
748
749   // Populate sizes and offsets of fields.
750   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
751   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
752     SSV[i].Offset =
753         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
754
755   size_t NumFields = 0;
756   for (const auto *Field : ClassDecl->fields()) {
757     const FieldDecl *D = Field;
758     std::pair<CharUnits, CharUnits> FieldInfo =
759         Context.getTypeInfoInChars(D->getType());
760     CharUnits FieldSize = FieldInfo.first;
761     assert(NumFields < SSV.size());
762     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
763     NumFields++;
764   }
765   assert(NumFields == SSV.size());
766   if (SSV.size() <= 1) return;
767
768   // We will insert calls to __asan_* run-time functions.
769   // LLVM AddressSanitizer pass may decide to inline them later.
770   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
771   llvm::FunctionType *FTy =
772       llvm::FunctionType::get(CGM.VoidTy, Args, false);
773   llvm::Constant *F = CGM.CreateRuntimeFunction(
774       FTy, Prologue ? "__asan_poison_intra_object_redzone"
775                     : "__asan_unpoison_intra_object_redzone");
776
777   llvm::Value *ThisPtr = LoadCXXThis();
778   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
779   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
780   // For each field check if it has sufficient padding,
781   // if so (un)poison it with a call.
782   for (size_t i = 0; i < SSV.size(); i++) {
783     uint64_t AsanAlignment = 8;
784     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
785     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
786     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
787     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
788         (NextField % AsanAlignment) != 0)
789       continue;
790     Builder.CreateCall(
791         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
792             Builder.getIntN(PtrSize, PoisonSize)});
793   }
794 }
795
796 /// EmitConstructorBody - Emits the body of the current constructor.
797 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
798   EmitAsanPrologueOrEpilogue(true);
799   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
800   CXXCtorType CtorType = CurGD.getCtorType();
801
802   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
803           CtorType == Ctor_Complete) &&
804          "can only generate complete ctor for this ABI");
805
806   // Before we go any further, try the complete->base constructor
807   // delegation optimization.
808   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
809       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
810     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
811     return;
812   }
813
814   const FunctionDecl *Definition = 0;
815   Stmt *Body = Ctor->getBody(Definition);
816   assert(Definition == Ctor && "emitting wrong constructor body");
817
818   // Enter the function-try-block before the constructor prologue if
819   // applicable.
820   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
821   if (IsTryBody)
822     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
823
824   incrementProfileCounter(Body);
825
826   RunCleanupsScope RunCleanups(*this);
827
828   // TODO: in restricted cases, we can emit the vbase initializers of
829   // a complete ctor and then delegate to the base ctor.
830
831   // Emit the constructor prologue, i.e. the base and member
832   // initializers.
833   EmitCtorPrologue(Ctor, CtorType, Args);
834
835   // Emit the body of the statement.
836   if (IsTryBody)
837     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
838   else if (Body)
839     EmitStmt(Body);
840
841   // Emit any cleanup blocks associated with the member or base
842   // initializers, which includes (along the exceptional path) the
843   // destructors for those members and bases that were fully
844   // constructed.
845   RunCleanups.ForceCleanup();
846
847   if (IsTryBody)
848     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
849 }
850
851 namespace {
852   /// RAII object to indicate that codegen is copying the value representation
853   /// instead of the object representation. Useful when copying a struct or
854   /// class which has uninitialized members and we're only performing
855   /// lvalue-to-rvalue conversion on the object but not its members.
856   class CopyingValueRepresentation {
857   public:
858     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
859         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
860       CGF.SanOpts.set(SanitizerKind::Bool, false);
861       CGF.SanOpts.set(SanitizerKind::Enum, false);
862     }
863     ~CopyingValueRepresentation() {
864       CGF.SanOpts = OldSanOpts;
865     }
866   private:
867     CodeGenFunction &CGF;
868     SanitizerSet OldSanOpts;
869   };
870 }
871
872 namespace {
873   class FieldMemcpyizer {
874   public:
875     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
876                     const VarDecl *SrcRec)
877       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
878         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
879         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
880         LastFieldOffset(0), LastAddedFieldIndex(0) {}
881
882     bool isMemcpyableField(FieldDecl *F) const {
883       // Never memcpy fields when we are adding poisoned paddings.
884       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
885         return false;
886       Qualifiers Qual = F->getType().getQualifiers();
887       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
888         return false;
889       return true;
890     }
891
892     void addMemcpyableField(FieldDecl *F) {
893       if (!FirstField)
894         addInitialField(F);
895       else
896         addNextField(F);
897     }
898
899     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
900       unsigned LastFieldSize =
901         LastField->isBitField() ?
902           LastField->getBitWidthValue(CGF.getContext()) :
903           CGF.getContext().getTypeSize(LastField->getType());
904       uint64_t MemcpySizeBits =
905         LastFieldOffset + LastFieldSize - FirstByteOffset +
906         CGF.getContext().getCharWidth() - 1;
907       CharUnits MemcpySize =
908         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
909       return MemcpySize;
910     }
911
912     void emitMemcpy() {
913       // Give the subclass a chance to bail out if it feels the memcpy isn't
914       // worth it (e.g. Hasn't aggregated enough data).
915       if (!FirstField) {
916         return;
917       }
918
919       uint64_t FirstByteOffset;
920       if (FirstField->isBitField()) {
921         const CGRecordLayout &RL =
922           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
923         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
924         // FirstFieldOffset is not appropriate for bitfields,
925         // we need to use the storage offset instead.
926         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
927       } else {
928         FirstByteOffset = FirstFieldOffset;
929       }
930
931       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
932       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
933       llvm::Value *ThisPtr = CGF.LoadCXXThis();
934       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
935       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
936       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
937       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
938       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
939
940       CharUnits Offset = CGF.getContext().toCharUnitsFromBits(FirstByteOffset);
941       CharUnits Alignment = DestLV.getAlignment().alignmentAtOffset(Offset);
942
943       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
944                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
945                    MemcpySize, Alignment);
946       reset();
947     }
948
949     void reset() {
950       FirstField = nullptr;
951     }
952
953   protected:
954     CodeGenFunction &CGF;
955     const CXXRecordDecl *ClassDecl;
956
957   private:
958
959     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
960                       CharUnits Size, CharUnits Alignment) {
961       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
962       llvm::Type *DBP =
963         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
964       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
965
966       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
967       llvm::Type *SBP =
968         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
969       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
970
971       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
972                                Alignment.getQuantity());
973     }
974
975     void addInitialField(FieldDecl *F) {
976         FirstField = F;
977         LastField = F;
978         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
979         LastFieldOffset = FirstFieldOffset;
980         LastAddedFieldIndex = F->getFieldIndex();
981         return;
982       }
983
984     void addNextField(FieldDecl *F) {
985       // For the most part, the following invariant will hold:
986       //   F->getFieldIndex() == LastAddedFieldIndex + 1
987       // The one exception is that Sema won't add a copy-initializer for an
988       // unnamed bitfield, which will show up here as a gap in the sequence.
989       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
990              "Cannot aggregate fields out of order.");
991       LastAddedFieldIndex = F->getFieldIndex();
992
993       // The 'first' and 'last' fields are chosen by offset, rather than field
994       // index. This allows the code to support bitfields, as well as regular
995       // fields.
996       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
997       if (FOffset < FirstFieldOffset) {
998         FirstField = F;
999         FirstFieldOffset = FOffset;
1000       } else if (FOffset > LastFieldOffset) {
1001         LastField = F;
1002         LastFieldOffset = FOffset;
1003       }
1004     }
1005
1006     const VarDecl *SrcRec;
1007     const ASTRecordLayout &RecLayout;
1008     FieldDecl *FirstField;
1009     FieldDecl *LastField;
1010     uint64_t FirstFieldOffset, LastFieldOffset;
1011     unsigned LastAddedFieldIndex;
1012   };
1013
1014   class ConstructorMemcpyizer : public FieldMemcpyizer {
1015   private:
1016
1017     /// Get source argument for copy constructor. Returns null if not a copy
1018     /// constructor.
1019     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1020                                                const CXXConstructorDecl *CD,
1021                                                FunctionArgList &Args) {
1022       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1023         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1024       return nullptr;
1025     }
1026
1027     // Returns true if a CXXCtorInitializer represents a member initialization
1028     // that can be rolled into a memcpy.
1029     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1030       if (!MemcpyableCtor)
1031         return false;
1032       FieldDecl *Field = MemberInit->getMember();
1033       assert(Field && "No field for member init.");
1034       QualType FieldType = Field->getType();
1035       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1036
1037       // Bail out on non-memcpyable, not-trivially-copyable members.
1038       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1039           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1040             FieldType->isReferenceType()))
1041         return false;
1042
1043       // Bail out on volatile fields.
1044       if (!isMemcpyableField(Field))
1045         return false;
1046
1047       // Otherwise we're good.
1048       return true;
1049     }
1050
1051   public:
1052     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1053                           FunctionArgList &Args)
1054       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1055         ConstructorDecl(CD),
1056         MemcpyableCtor(CD->isDefaulted() &&
1057                        CD->isCopyOrMoveConstructor() &&
1058                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1059         Args(Args) { }
1060
1061     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1062       if (isMemberInitMemcpyable(MemberInit)) {
1063         AggregatedInits.push_back(MemberInit);
1064         addMemcpyableField(MemberInit->getMember());
1065       } else {
1066         emitAggregatedInits();
1067         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1068                               ConstructorDecl, Args);
1069       }
1070     }
1071
1072     void emitAggregatedInits() {
1073       if (AggregatedInits.size() <= 1) {
1074         // This memcpy is too small to be worthwhile. Fall back on default
1075         // codegen.
1076         if (!AggregatedInits.empty()) {
1077           CopyingValueRepresentation CVR(CGF);
1078           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1079                                 AggregatedInits[0], ConstructorDecl, Args);
1080           AggregatedInits.clear();
1081         }
1082         reset();
1083         return;
1084       }
1085
1086       pushEHDestructors();
1087       emitMemcpy();
1088       AggregatedInits.clear();
1089     }
1090
1091     void pushEHDestructors() {
1092       llvm::Value *ThisPtr = CGF.LoadCXXThis();
1093       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1094       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
1095
1096       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1097         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1098         QualType FieldType = MemberInit->getAnyMember()->getType();
1099         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1100         if (!CGF.needsEHCleanup(dtorKind))
1101           continue;
1102         LValue FieldLHS = LHS;
1103         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1104         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1105       }
1106     }
1107
1108     void finish() {
1109       emitAggregatedInits();
1110     }
1111
1112   private:
1113     const CXXConstructorDecl *ConstructorDecl;
1114     bool MemcpyableCtor;
1115     FunctionArgList &Args;
1116     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1117   };
1118
1119   class AssignmentMemcpyizer : public FieldMemcpyizer {
1120   private:
1121
1122     // Returns the memcpyable field copied by the given statement, if one
1123     // exists. Otherwise returns null.
1124     FieldDecl *getMemcpyableField(Stmt *S) {
1125       if (!AssignmentsMemcpyable)
1126         return nullptr;
1127       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1128         // Recognise trivial assignments.
1129         if (BO->getOpcode() != BO_Assign)
1130           return nullptr;
1131         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1132         if (!ME)
1133           return nullptr;
1134         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1135         if (!Field || !isMemcpyableField(Field))
1136           return nullptr;
1137         Stmt *RHS = BO->getRHS();
1138         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1139           RHS = EC->getSubExpr();
1140         if (!RHS)
1141           return nullptr;
1142         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1143         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1144           return nullptr;
1145         return Field;
1146       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1147         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1148         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1149           return nullptr;
1150         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1151         if (!IOA)
1152           return nullptr;
1153         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1154         if (!Field || !isMemcpyableField(Field))
1155           return nullptr;
1156         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1157         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1158           return nullptr;
1159         return Field;
1160       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1161         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1162         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1163           return nullptr;
1164         Expr *DstPtr = CE->getArg(0);
1165         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1166           DstPtr = DC->getSubExpr();
1167         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1168         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1169           return nullptr;
1170         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1171         if (!ME)
1172           return nullptr;
1173         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1174         if (!Field || !isMemcpyableField(Field))
1175           return nullptr;
1176         Expr *SrcPtr = CE->getArg(1);
1177         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1178           SrcPtr = SC->getSubExpr();
1179         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1180         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1181           return nullptr;
1182         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1183         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1184           return nullptr;
1185         return Field;
1186       }
1187
1188       return nullptr;
1189     }
1190
1191     bool AssignmentsMemcpyable;
1192     SmallVector<Stmt*, 16> AggregatedStmts;
1193
1194   public:
1195
1196     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1197                          FunctionArgList &Args)
1198       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1199         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1200       assert(Args.size() == 2);
1201     }
1202
1203     void emitAssignment(Stmt *S) {
1204       FieldDecl *F = getMemcpyableField(S);
1205       if (F) {
1206         addMemcpyableField(F);
1207         AggregatedStmts.push_back(S);
1208       } else {
1209         emitAggregatedStmts();
1210         CGF.EmitStmt(S);
1211       }
1212     }
1213
1214     void emitAggregatedStmts() {
1215       if (AggregatedStmts.size() <= 1) {
1216         if (!AggregatedStmts.empty()) {
1217           CopyingValueRepresentation CVR(CGF);
1218           CGF.EmitStmt(AggregatedStmts[0]);
1219         }
1220         reset();
1221       }
1222
1223       emitMemcpy();
1224       AggregatedStmts.clear();
1225     }
1226
1227     void finish() {
1228       emitAggregatedStmts();
1229     }
1230   };
1231
1232 }
1233
1234 /// EmitCtorPrologue - This routine generates necessary code to initialize
1235 /// base classes and non-static data members belonging to this constructor.
1236 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1237                                        CXXCtorType CtorType,
1238                                        FunctionArgList &Args) {
1239   if (CD->isDelegatingConstructor())
1240     return EmitDelegatingCXXConstructorCall(CD, Args);
1241
1242   const CXXRecordDecl *ClassDecl = CD->getParent();
1243
1244   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1245                                           E = CD->init_end();
1246
1247   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1248   if (ClassDecl->getNumVBases() &&
1249       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1250     // The ABIs that don't have constructor variants need to put a branch
1251     // before the virtual base initialization code.
1252     BaseCtorContinueBB =
1253       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1254     assert(BaseCtorContinueBB);
1255   }
1256
1257   // Virtual base initializers first.
1258   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1259     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1260   }
1261
1262   if (BaseCtorContinueBB) {
1263     // Complete object handler should continue to the remaining initializers.
1264     Builder.CreateBr(BaseCtorContinueBB);
1265     EmitBlock(BaseCtorContinueBB);
1266   }
1267
1268   // Then, non-virtual base initializers.
1269   for (; B != E && (*B)->isBaseInitializer(); B++) {
1270     assert(!(*B)->isBaseVirtual());
1271     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1272   }
1273
1274   InitializeVTablePointers(ClassDecl);
1275
1276   // And finally, initialize class members.
1277   FieldConstructionScope FCS(*this, CXXThisValue);
1278   ConstructorMemcpyizer CM(*this, CD, Args);
1279   for (; B != E; B++) {
1280     CXXCtorInitializer *Member = (*B);
1281     assert(!Member->isBaseInitializer());
1282     assert(Member->isAnyMemberInitializer() &&
1283            "Delegating initializer on non-delegating constructor");
1284     CM.addMemberInitializer(Member);
1285   }
1286   CM.finish();
1287 }
1288
1289 static bool
1290 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1291
1292 static bool
1293 HasTrivialDestructorBody(ASTContext &Context,
1294                          const CXXRecordDecl *BaseClassDecl,
1295                          const CXXRecordDecl *MostDerivedClassDecl)
1296 {
1297   // If the destructor is trivial we don't have to check anything else.
1298   if (BaseClassDecl->hasTrivialDestructor())
1299     return true;
1300
1301   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1302     return false;
1303
1304   // Check fields.
1305   for (const auto *Field : BaseClassDecl->fields())
1306     if (!FieldHasTrivialDestructorBody(Context, Field))
1307       return false;
1308
1309   // Check non-virtual bases.
1310   for (const auto &I : BaseClassDecl->bases()) {
1311     if (I.isVirtual())
1312       continue;
1313
1314     const CXXRecordDecl *NonVirtualBase =
1315       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1316     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1317                                   MostDerivedClassDecl))
1318       return false;
1319   }
1320
1321   if (BaseClassDecl == MostDerivedClassDecl) {
1322     // Check virtual bases.
1323     for (const auto &I : BaseClassDecl->vbases()) {
1324       const CXXRecordDecl *VirtualBase =
1325         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1326       if (!HasTrivialDestructorBody(Context, VirtualBase,
1327                                     MostDerivedClassDecl))
1328         return false;
1329     }
1330   }
1331
1332   return true;
1333 }
1334
1335 static bool
1336 FieldHasTrivialDestructorBody(ASTContext &Context,
1337                               const FieldDecl *Field)
1338 {
1339   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1340
1341   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1342   if (!RT)
1343     return true;
1344
1345   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1346
1347   // The destructor for an implicit anonymous union member is never invoked.
1348   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1349     return false;
1350
1351   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1352 }
1353
1354 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1355 /// any vtable pointers before calling this destructor.
1356 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1357                                                const CXXDestructorDecl *Dtor) {
1358   if (!Dtor->hasTrivialBody())
1359     return false;
1360
1361   // Check the fields.
1362   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1363   for (const auto *Field : ClassDecl->fields())
1364     if (!FieldHasTrivialDestructorBody(Context, Field))
1365       return false;
1366
1367   return true;
1368 }
1369
1370 // Generates function call for handling object poisoning, passing in
1371 // references to 'this' and its size as arguments.
1372 static void EmitDtorSanitizerCallback(CodeGenFunction &CGF,
1373                                       const CXXDestructorDecl *Dtor) {
1374   const ASTRecordLayout &Layout =
1375       CGF.getContext().getASTRecordLayout(Dtor->getParent());
1376
1377   llvm::Value *Args[] = {
1378       CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.VoidPtrTy),
1379       llvm::ConstantInt::get(CGF.SizeTy, Layout.getSize().getQuantity())};
1380   llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1381
1382   llvm::FunctionType *FnType =
1383       llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1384   llvm::Value *Fn =
1385       CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1386   CGF.EmitNounwindRuntimeCall(Fn, Args);
1387 }
1388
1389 /// EmitDestructorBody - Emits the body of the current destructor.
1390 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1391   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1392   CXXDtorType DtorType = CurGD.getDtorType();
1393
1394   Stmt *Body = Dtor->getBody();
1395   if (Body)
1396     incrementProfileCounter(Body);
1397
1398   // The call to operator delete in a deleting destructor happens
1399   // outside of the function-try-block, which means it's always
1400   // possible to delegate the destructor body to the complete
1401   // destructor.  Do so.
1402   if (DtorType == Dtor_Deleting) {
1403     EnterDtorCleanups(Dtor, Dtor_Deleting);
1404     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1405                           /*Delegating=*/false, LoadCXXThis());
1406     PopCleanupBlock();
1407     return;
1408   }
1409
1410   // If the body is a function-try-block, enter the try before
1411   // anything else.
1412   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1413   if (isTryBody)
1414     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1415   EmitAsanPrologueOrEpilogue(false);
1416
1417   // Enter the epilogue cleanups.
1418   RunCleanupsScope DtorEpilogue(*this);
1419
1420   // If this is the complete variant, just invoke the base variant;
1421   // the epilogue will destruct the virtual bases.  But we can't do
1422   // this optimization if the body is a function-try-block, because
1423   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1424   // always delegate because we might not have a definition in this TU.
1425   switch (DtorType) {
1426   case Dtor_Comdat:
1427     llvm_unreachable("not expecting a COMDAT");
1428
1429   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1430
1431   case Dtor_Complete:
1432     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1433            "can't emit a dtor without a body for non-Microsoft ABIs");
1434
1435     // Enter the cleanup scopes for virtual bases.
1436     EnterDtorCleanups(Dtor, Dtor_Complete);
1437
1438     if (!isTryBody) {
1439       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1440                             /*Delegating=*/false, LoadCXXThis());
1441       break;
1442     }
1443     // Fallthrough: act like we're in the base variant.
1444
1445   case Dtor_Base:
1446     assert(Body);
1447
1448     // Enter the cleanup scopes for fields and non-virtual bases.
1449     EnterDtorCleanups(Dtor, Dtor_Base);
1450
1451     // Initialize the vtable pointers before entering the body.
1452     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1453         InitializeVTablePointers(Dtor->getParent());
1454
1455     if (isTryBody)
1456       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1457     else if (Body)
1458       EmitStmt(Body);
1459     else {
1460       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1461       // nothing to do besides what's in the epilogue
1462     }
1463     // -fapple-kext must inline any call to this dtor into
1464     // the caller's body.
1465     if (getLangOpts().AppleKext)
1466       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1467     break;
1468   }
1469
1470   // Jump out through the epilogue cleanups.
1471   DtorEpilogue.ForceCleanup();
1472
1473   // Exit the try if applicable.
1474   if (isTryBody)
1475     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1476
1477   // Insert memory-poisoning instrumentation.
1478   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor)
1479     EmitDtorSanitizerCallback(*this, Dtor);
1480 }
1481
1482 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1483   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1484   const Stmt *RootS = AssignOp->getBody();
1485   assert(isa<CompoundStmt>(RootS) &&
1486          "Body of an implicit assignment operator should be compound stmt.");
1487   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1488
1489   LexicalScope Scope(*this, RootCS->getSourceRange());
1490
1491   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1492   for (auto *I : RootCS->body())
1493     AM.emitAssignment(I);
1494   AM.finish();
1495 }
1496
1497 namespace {
1498   /// Call the operator delete associated with the current destructor.
1499   struct CallDtorDelete : EHScopeStack::Cleanup {
1500     CallDtorDelete() {}
1501
1502     void Emit(CodeGenFunction &CGF, Flags flags) override {
1503       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1504       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1505       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1506                          CGF.getContext().getTagDeclType(ClassDecl));
1507     }
1508   };
1509
1510   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1511     llvm::Value *ShouldDeleteCondition;
1512   public:
1513     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1514       : ShouldDeleteCondition(ShouldDeleteCondition) {
1515       assert(ShouldDeleteCondition != nullptr);
1516     }
1517
1518     void Emit(CodeGenFunction &CGF, Flags flags) override {
1519       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1520       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1521       llvm::Value *ShouldCallDelete
1522         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1523       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1524
1525       CGF.EmitBlock(callDeleteBB);
1526       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1527       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1528       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1529                          CGF.getContext().getTagDeclType(ClassDecl));
1530       CGF.Builder.CreateBr(continueBB);
1531
1532       CGF.EmitBlock(continueBB);
1533     }
1534   };
1535
1536   class DestroyField  : public EHScopeStack::Cleanup {
1537     const FieldDecl *field;
1538     CodeGenFunction::Destroyer *destroyer;
1539     bool useEHCleanupForArray;
1540
1541   public:
1542     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1543                  bool useEHCleanupForArray)
1544       : field(field), destroyer(destroyer),
1545         useEHCleanupForArray(useEHCleanupForArray) {}
1546
1547     void Emit(CodeGenFunction &CGF, Flags flags) override {
1548       // Find the address of the field.
1549       llvm::Value *thisValue = CGF.LoadCXXThis();
1550       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1551       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1552       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1553       assert(LV.isSimple());
1554
1555       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1556                       flags.isForNormalCleanup() && useEHCleanupForArray);
1557     }
1558   };
1559 }
1560
1561 /// \brief Emit all code that comes at the end of class's
1562 /// destructor. This is to call destructors on members and base classes
1563 /// in reverse order of their construction.
1564 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1565                                         CXXDtorType DtorType) {
1566   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1567          "Should not emit dtor epilogue for non-exported trivial dtor!");
1568
1569   // The deleting-destructor phase just needs to call the appropriate
1570   // operator delete that Sema picked up.
1571   if (DtorType == Dtor_Deleting) {
1572     assert(DD->getOperatorDelete() &&
1573            "operator delete missing - EnterDtorCleanups");
1574     if (CXXStructorImplicitParamValue) {
1575       // If there is an implicit param to the deleting dtor, it's a boolean
1576       // telling whether we should call delete at the end of the dtor.
1577       EHStack.pushCleanup<CallDtorDeleteConditional>(
1578           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1579     } else {
1580       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1581     }
1582     return;
1583   }
1584
1585   const CXXRecordDecl *ClassDecl = DD->getParent();
1586
1587   // Unions have no bases and do not call field destructors.
1588   if (ClassDecl->isUnion())
1589     return;
1590
1591   // The complete-destructor phase just destructs all the virtual bases.
1592   if (DtorType == Dtor_Complete) {
1593
1594     // We push them in the forward order so that they'll be popped in
1595     // the reverse order.
1596     for (const auto &Base : ClassDecl->vbases()) {
1597       CXXRecordDecl *BaseClassDecl
1598         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1599
1600       // Ignore trivial destructors.
1601       if (BaseClassDecl->hasTrivialDestructor())
1602         continue;
1603
1604       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1605                                         BaseClassDecl,
1606                                         /*BaseIsVirtual*/ true);
1607     }
1608
1609     return;
1610   }
1611
1612   assert(DtorType == Dtor_Base);
1613
1614   // Destroy non-virtual bases.
1615   for (const auto &Base : ClassDecl->bases()) {
1616     // Ignore virtual bases.
1617     if (Base.isVirtual())
1618       continue;
1619
1620     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1621
1622     // Ignore trivial destructors.
1623     if (BaseClassDecl->hasTrivialDestructor())
1624       continue;
1625
1626     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1627                                       BaseClassDecl,
1628                                       /*BaseIsVirtual*/ false);
1629   }
1630
1631   // Destroy direct fields.
1632   for (const auto *Field : ClassDecl->fields()) {
1633     QualType type = Field->getType();
1634     QualType::DestructionKind dtorKind = type.isDestructedType();
1635     if (!dtorKind) continue;
1636
1637     // Anonymous union members do not have their destructors called.
1638     const RecordType *RT = type->getAsUnionType();
1639     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1640
1641     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1642     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1643                                       getDestroyer(dtorKind),
1644                                       cleanupKind & EHCleanup);
1645   }
1646 }
1647
1648 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1649 /// constructor for each of several members of an array.
1650 ///
1651 /// \param ctor the constructor to call for each element
1652 /// \param arrayType the type of the array to initialize
1653 /// \param arrayBegin an arrayType*
1654 /// \param zeroInitialize true if each element should be
1655 ///   zero-initialized before it is constructed
1656 void CodeGenFunction::EmitCXXAggrConstructorCall(
1657     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1658     llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1659   QualType elementType;
1660   llvm::Value *numElements =
1661     emitArrayLength(arrayType, elementType, arrayBegin);
1662
1663   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1664 }
1665
1666 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1667 /// constructor for each of several members of an array.
1668 ///
1669 /// \param ctor the constructor to call for each element
1670 /// \param numElements the number of elements in the array;
1671 ///   may be zero
1672 /// \param arrayBegin a T*, where T is the type constructed by ctor
1673 /// \param zeroInitialize true if each element should be
1674 ///   zero-initialized before it is constructed
1675 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1676                                                  llvm::Value *numElements,
1677                                                  llvm::Value *arrayBegin,
1678                                                  const CXXConstructExpr *E,
1679                                                  bool zeroInitialize) {
1680
1681   // It's legal for numElements to be zero.  This can happen both
1682   // dynamically, because x can be zero in 'new A[x]', and statically,
1683   // because of GCC extensions that permit zero-length arrays.  There
1684   // are probably legitimate places where we could assume that this
1685   // doesn't happen, but it's not clear that it's worth it.
1686   llvm::BranchInst *zeroCheckBranch = nullptr;
1687
1688   // Optimize for a constant count.
1689   llvm::ConstantInt *constantCount
1690     = dyn_cast<llvm::ConstantInt>(numElements);
1691   if (constantCount) {
1692     // Just skip out if the constant count is zero.
1693     if (constantCount->isZero()) return;
1694
1695   // Otherwise, emit the check.
1696   } else {
1697     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1698     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1699     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1700     EmitBlock(loopBB);
1701   }
1702
1703   // Find the end of the array.
1704   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1705                                                     "arrayctor.end");
1706
1707   // Enter the loop, setting up a phi for the current location to initialize.
1708   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1709   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1710   EmitBlock(loopBB);
1711   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1712                                          "arrayctor.cur");
1713   cur->addIncoming(arrayBegin, entryBB);
1714
1715   // Inside the loop body, emit the constructor call on the array element.
1716
1717   QualType type = getContext().getTypeDeclType(ctor->getParent());
1718
1719   // Zero initialize the storage, if requested.
1720   if (zeroInitialize)
1721     EmitNullInitialization(cur, type);
1722
1723   // C++ [class.temporary]p4:
1724   // There are two contexts in which temporaries are destroyed at a different
1725   // point than the end of the full-expression. The first context is when a
1726   // default constructor is called to initialize an element of an array.
1727   // If the constructor has one or more default arguments, the destruction of
1728   // every temporary created in a default argument expression is sequenced
1729   // before the construction of the next array element, if any.
1730
1731   {
1732     RunCleanupsScope Scope(*this);
1733
1734     // Evaluate the constructor and its arguments in a regular
1735     // partial-destroy cleanup.
1736     if (getLangOpts().Exceptions &&
1737         !ctor->getParent()->hasTrivialDestructor()) {
1738       Destroyer *destroyer = destroyCXXObject;
1739       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1740     }
1741
1742     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1743                            /*Delegating=*/false, cur, E);
1744   }
1745
1746   // Go to the next element.
1747   llvm::Value *next =
1748     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1749                               "arrayctor.next");
1750   cur->addIncoming(next, Builder.GetInsertBlock());
1751
1752   // Check whether that's the end of the loop.
1753   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1754   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1755   Builder.CreateCondBr(done, contBB, loopBB);
1756
1757   // Patch the earlier check to skip over the loop.
1758   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1759
1760   EmitBlock(contBB);
1761 }
1762
1763 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1764                                        llvm::Value *addr,
1765                                        QualType type) {
1766   const RecordType *rtype = type->castAs<RecordType>();
1767   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1768   const CXXDestructorDecl *dtor = record->getDestructor();
1769   assert(!dtor->isTrivial());
1770   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1771                             /*Delegating=*/false, addr);
1772 }
1773
1774 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1775                                              CXXCtorType Type,
1776                                              bool ForVirtualBase,
1777                                              bool Delegating, llvm::Value *This,
1778                                              const CXXConstructExpr *E) {
1779   // C++11 [class.mfct.non-static]p2:
1780   //   If a non-static member function of a class X is called for an object that
1781   //   is not of type X, or of a type derived from X, the behavior is undefined.
1782   // FIXME: Provide a source location here.
1783   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
1784                 getContext().getRecordType(D->getParent()));
1785
1786   if (D->isTrivial() && D->isDefaultConstructor()) {
1787     assert(E->getNumArgs() == 0 && "trivial default ctor with args");
1788     return;
1789   }
1790
1791   // If this is a trivial constructor, just emit what's needed. If this is a
1792   // union copy constructor, we must emit a memcpy, because the AST does not
1793   // model that copy.
1794   if (isMemcpyEquivalentSpecialMember(D)) {
1795     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1796
1797     const Expr *Arg = E->getArg(0);
1798     QualType SrcTy = Arg->getType();
1799     llvm::Value *Src = EmitLValue(Arg).getAddress();
1800     QualType DestTy = getContext().getTypeDeclType(D->getParent());
1801     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
1802     return;
1803   }
1804
1805   CallArgList Args;
1806
1807   // Push the this ptr.
1808   Args.add(RValue::get(This), D->getThisType(getContext()));
1809
1810   // Add the rest of the user-supplied arguments.
1811   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1812   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor());
1813
1814   // Insert any ABI-specific implicit constructor arguments.
1815   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
1816       *this, D, Type, ForVirtualBase, Delegating, Args);
1817
1818   // Emit the call.
1819   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
1820   const CGFunctionInfo &Info =
1821       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
1822   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
1823 }
1824
1825 void
1826 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1827                                         llvm::Value *This, llvm::Value *Src,
1828                                         const CXXConstructExpr *E) {
1829   if (isMemcpyEquivalentSpecialMember(D)) {
1830     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1831     assert(D->isCopyOrMoveConstructor() &&
1832            "trivial 1-arg ctor not a copy/move ctor");
1833     EmitAggregateCopyCtor(This, Src,
1834                           getContext().getTypeDeclType(D->getParent()),
1835                           E->arg_begin()->getType());
1836     return;
1837   }
1838   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
1839   assert(D->isInstance() &&
1840          "Trying to emit a member call expr on a static method!");
1841
1842   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1843
1844   CallArgList Args;
1845
1846   // Push the this ptr.
1847   Args.add(RValue::get(This), D->getThisType(getContext()));
1848
1849   // Push the src ptr.
1850   QualType QT = *(FPT->param_type_begin());
1851   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1852   Src = Builder.CreateBitCast(Src, t);
1853   Args.add(RValue::get(Src), QT);
1854
1855   // Skip over first argument (Src).
1856   EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(),
1857                /*ParamsToSkip*/ 1);
1858
1859   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1860            Callee, ReturnValueSlot(), Args, D);
1861 }
1862
1863 void
1864 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1865                                                 CXXCtorType CtorType,
1866                                                 const FunctionArgList &Args,
1867                                                 SourceLocation Loc) {
1868   CallArgList DelegateArgs;
1869
1870   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1871   assert(I != E && "no parameters to constructor");
1872
1873   // this
1874   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1875   ++I;
1876
1877   // vtt
1878   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1879                                          /*ForVirtualBase=*/false,
1880                                          /*Delegating=*/true)) {
1881     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1882     DelegateArgs.add(RValue::get(VTT), VoidPP);
1883
1884     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1885       assert(I != E && "cannot skip vtt parameter, already done with args");
1886       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1887       ++I;
1888     }
1889   }
1890
1891   // Explicit arguments.
1892   for (; I != E; ++I) {
1893     const VarDecl *param = *I;
1894     // FIXME: per-argument source location
1895     EmitDelegateCallArg(DelegateArgs, param, Loc);
1896   }
1897
1898   llvm::Value *Callee =
1899       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
1900   EmitCall(CGM.getTypes()
1901                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
1902            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1903 }
1904
1905 namespace {
1906   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1907     const CXXDestructorDecl *Dtor;
1908     llvm::Value *Addr;
1909     CXXDtorType Type;
1910
1911     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1912                            CXXDtorType Type)
1913       : Dtor(D), Addr(Addr), Type(Type) {}
1914
1915     void Emit(CodeGenFunction &CGF, Flags flags) override {
1916       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1917                                 /*Delegating=*/true, Addr);
1918     }
1919   };
1920 }
1921
1922 void
1923 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1924                                                   const FunctionArgList &Args) {
1925   assert(Ctor->isDelegatingConstructor());
1926
1927   llvm::Value *ThisPtr = LoadCXXThis();
1928
1929   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1930   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1931   AggValueSlot AggSlot =
1932     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1933                           AggValueSlot::IsDestructed,
1934                           AggValueSlot::DoesNotNeedGCBarriers,
1935                           AggValueSlot::IsNotAliased);
1936
1937   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1938
1939   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1940   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1941     CXXDtorType Type =
1942       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1943
1944     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1945                                                 ClassDecl->getDestructor(),
1946                                                 ThisPtr, Type);
1947   }
1948 }
1949
1950 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1951                                             CXXDtorType Type,
1952                                             bool ForVirtualBase,
1953                                             bool Delegating,
1954                                             llvm::Value *This) {
1955   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
1956                                      Delegating, This);
1957 }
1958
1959 namespace {
1960   struct CallLocalDtor : EHScopeStack::Cleanup {
1961     const CXXDestructorDecl *Dtor;
1962     llvm::Value *Addr;
1963
1964     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1965       : Dtor(D), Addr(Addr) {}
1966
1967     void Emit(CodeGenFunction &CGF, Flags flags) override {
1968       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1969                                 /*ForVirtualBase=*/false,
1970                                 /*Delegating=*/false, Addr);
1971     }
1972   };
1973 }
1974
1975 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1976                                             llvm::Value *Addr) {
1977   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1978 }
1979
1980 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1981   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1982   if (!ClassDecl) return;
1983   if (ClassDecl->hasTrivialDestructor()) return;
1984
1985   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1986   assert(D && D->isUsed() && "destructor not marked as used!");
1987   PushDestructorCleanup(D, Addr);
1988 }
1989
1990 void
1991 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1992                                          const CXXRecordDecl *NearestVBase,
1993                                          CharUnits OffsetFromNearestVBase,
1994                                          const CXXRecordDecl *VTableClass) {
1995   const CXXRecordDecl *RD = Base.getBase();
1996
1997   // Don't initialize the vtable pointer if the class is marked with the
1998   // 'novtable' attribute.
1999   if ((RD == VTableClass || RD == NearestVBase) &&
2000       VTableClass->hasAttr<MSNoVTableAttr>())
2001     return;
2002
2003   // Compute the address point.
2004   bool NeedsVirtualOffset;
2005   llvm::Value *VTableAddressPoint =
2006       CGM.getCXXABI().getVTableAddressPointInStructor(
2007           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
2008   if (!VTableAddressPoint)
2009     return;
2010
2011   // Compute where to store the address point.
2012   llvm::Value *VirtualOffset = nullptr;
2013   CharUnits NonVirtualOffset = CharUnits::Zero();
2014
2015   if (NeedsVirtualOffset) {
2016     // We need to use the virtual base offset offset because the virtual base
2017     // might have a different offset in the most derived class.
2018     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
2019                                                               LoadCXXThis(),
2020                                                               VTableClass,
2021                                                               NearestVBase);
2022     NonVirtualOffset = OffsetFromNearestVBase;
2023   } else {
2024     // We can just use the base offset in the complete class.
2025     NonVirtualOffset = Base.getBaseOffset();
2026   }
2027
2028   // Apply the offsets.
2029   llvm::Value *VTableField = LoadCXXThis();
2030
2031   if (!NonVirtualOffset.isZero() || VirtualOffset)
2032     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
2033                                                   NonVirtualOffset,
2034                                                   VirtualOffset);
2035
2036   // Finally, store the address point. Use the same LLVM types as the field to
2037   // support optimization.
2038   llvm::Type *VTablePtrTy =
2039       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2040           ->getPointerTo()
2041           ->getPointerTo();
2042   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2043   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2044   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2045   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
2046 }
2047
2048 void
2049 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
2050                                           const CXXRecordDecl *NearestVBase,
2051                                           CharUnits OffsetFromNearestVBase,
2052                                           bool BaseIsNonVirtualPrimaryBase,
2053                                           const CXXRecordDecl *VTableClass,
2054                                           VisitedVirtualBasesSetTy& VBases) {
2055   // If this base is a non-virtual primary base the address point has already
2056   // been set.
2057   if (!BaseIsNonVirtualPrimaryBase) {
2058     // Initialize the vtable pointer for this base.
2059     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
2060                             VTableClass);
2061   }
2062
2063   const CXXRecordDecl *RD = Base.getBase();
2064
2065   // Traverse bases.
2066   for (const auto &I : RD->bases()) {
2067     CXXRecordDecl *BaseDecl
2068       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2069
2070     // Ignore classes without a vtable.
2071     if (!BaseDecl->isDynamicClass())
2072       continue;
2073
2074     CharUnits BaseOffset;
2075     CharUnits BaseOffsetFromNearestVBase;
2076     bool BaseDeclIsNonVirtualPrimaryBase;
2077
2078     if (I.isVirtual()) {
2079       // Check if we've visited this virtual base before.
2080       if (!VBases.insert(BaseDecl).second)
2081         continue;
2082
2083       const ASTRecordLayout &Layout =
2084         getContext().getASTRecordLayout(VTableClass);
2085
2086       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2087       BaseOffsetFromNearestVBase = CharUnits::Zero();
2088       BaseDeclIsNonVirtualPrimaryBase = false;
2089     } else {
2090       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2091
2092       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2093       BaseOffsetFromNearestVBase =
2094         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2095       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2096     }
2097
2098     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
2099                              I.isVirtual() ? BaseDecl : NearestVBase,
2100                              BaseOffsetFromNearestVBase,
2101                              BaseDeclIsNonVirtualPrimaryBase,
2102                              VTableClass, VBases);
2103   }
2104 }
2105
2106 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2107   // Ignore classes without a vtable.
2108   if (!RD->isDynamicClass())
2109     return;
2110
2111   // Initialize the vtable pointers for this class and all of its bases.
2112   VisitedVirtualBasesSetTy VBases;
2113   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
2114                            /*NearestVBase=*/nullptr,
2115                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2116                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
2117
2118   if (RD->getNumVBases())
2119     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2120 }
2121
2122 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
2123                                            llvm::Type *Ty) {
2124   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
2125   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2126   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
2127   return VTable;
2128 }
2129
2130 // If a class has a single non-virtual base and does not introduce or override
2131 // virtual member functions or fields, it will have the same layout as its base.
2132 // This function returns the least derived such class.
2133 //
2134 // Casting an instance of a base class to such a derived class is technically
2135 // undefined behavior, but it is a relatively common hack for introducing member
2136 // functions on class instances with specific properties (e.g. llvm::Operator)
2137 // that works under most compilers and should not have security implications, so
2138 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2139 static const CXXRecordDecl *
2140 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2141   if (!RD->field_empty())
2142     return RD;
2143
2144   if (RD->getNumVBases() != 0)
2145     return RD;
2146
2147   if (RD->getNumBases() != 1)
2148     return RD;
2149
2150   for (const CXXMethodDecl *MD : RD->methods()) {
2151     if (MD->isVirtual()) {
2152       // Virtual member functions are only ok if they are implicit destructors
2153       // because the implicit destructor will have the same semantics as the
2154       // base class's destructor if no fields are added.
2155       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2156         continue;
2157       return RD;
2158     }
2159   }
2160
2161   return LeastDerivedClassWithSameLayout(
2162       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2163 }
2164
2165 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
2166                                                 llvm::Value *VTable,
2167                                                 CFITypeCheckKind TCK,
2168                                                 SourceLocation Loc) {
2169   const CXXRecordDecl *ClassDecl = MD->getParent();
2170   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2171     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2172
2173   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2174 }
2175
2176 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2177                                                 llvm::Value *Derived,
2178                                                 bool MayBeNull,
2179                                                 CFITypeCheckKind TCK,
2180                                                 SourceLocation Loc) {
2181   if (!getLangOpts().CPlusPlus)
2182     return;
2183
2184   auto *ClassTy = T->getAs<RecordType>();
2185   if (!ClassTy)
2186     return;
2187
2188   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2189
2190   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2191     return;
2192
2193   SmallString<64> MangledName;
2194   llvm::raw_svector_ostream Out(MangledName);
2195   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(T.getUnqualifiedType(),
2196                                                    Out);
2197
2198   // Blacklist based on the mangled type.
2199   if (CGM.getContext().getSanitizerBlacklist().isBlacklistedType(Out.str()))
2200     return;
2201
2202   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2203     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2204
2205   llvm::BasicBlock *ContBlock = 0;
2206
2207   if (MayBeNull) {
2208     llvm::Value *DerivedNotNull =
2209         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2210
2211     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2212     ContBlock = createBasicBlock("cast.cont");
2213
2214     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2215
2216     EmitBlock(CheckBlock);
2217   }
2218
2219   llvm::Value *VTable = GetVTablePtr(Derived, Int8PtrTy);
2220   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2221
2222   if (MayBeNull) {
2223     Builder.CreateBr(ContBlock);
2224     EmitBlock(ContBlock);
2225   }
2226 }
2227
2228 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2229                                          llvm::Value *VTable,
2230                                          CFITypeCheckKind TCK,
2231                                          SourceLocation Loc) {
2232   if (CGM.IsCFIBlacklistedRecord(RD))
2233     return;
2234
2235   SanitizerScope SanScope(this);
2236
2237   std::string OutName;
2238   llvm::raw_string_ostream Out(OutName);
2239   CGM.getCXXABI().getMangleContext().mangleCXXVTableBitSet(RD, Out);
2240
2241   llvm::Value *BitSetName = llvm::MetadataAsValue::get(
2242       getLLVMContext(), llvm::MDString::get(getLLVMContext(), Out.str()));
2243
2244   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2245   llvm::Value *BitSetTest =
2246       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
2247                          {CastedVTable, BitSetName});
2248
2249   SanitizerMask M;
2250   switch (TCK) {
2251   case CFITCK_VCall:
2252     M = SanitizerKind::CFIVCall;
2253     break;
2254   case CFITCK_NVCall:
2255     M = SanitizerKind::CFINVCall;
2256     break;
2257   case CFITCK_DerivedCast:
2258     M = SanitizerKind::CFIDerivedCast;
2259     break;
2260   case CFITCK_UnrelatedCast:
2261     M = SanitizerKind::CFIUnrelatedCast;
2262     break;
2263   }
2264
2265   llvm::Constant *StaticData[] = {
2266     EmitCheckSourceLocation(Loc),
2267     EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2268     llvm::ConstantInt::get(Int8Ty, TCK),
2269   };
2270   EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData,
2271             CastedVTable);
2272 }
2273
2274 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2275 // quite what we want.
2276 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2277   while (true) {
2278     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2279       E = PE->getSubExpr();
2280       continue;
2281     }
2282
2283     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2284       if (CE->getCastKind() == CK_NoOp) {
2285         E = CE->getSubExpr();
2286         continue;
2287       }
2288     }
2289     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2290       if (UO->getOpcode() == UO_Extension) {
2291         E = UO->getSubExpr();
2292         continue;
2293       }
2294     }
2295     return E;
2296   }
2297 }
2298
2299 bool
2300 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2301                                                    const CXXMethodDecl *MD) {
2302   // When building with -fapple-kext, all calls must go through the vtable since
2303   // the kernel linker can do runtime patching of vtables.
2304   if (getLangOpts().AppleKext)
2305     return false;
2306
2307   // If the most derived class is marked final, we know that no subclass can
2308   // override this member function and so we can devirtualize it. For example:
2309   //
2310   // struct A { virtual void f(); }
2311   // struct B final : A { };
2312   //
2313   // void f(B *b) {
2314   //   b->f();
2315   // }
2316   //
2317   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2318   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2319     return true;
2320
2321   // If the member function is marked 'final', we know that it can't be
2322   // overridden and can therefore devirtualize it.
2323   if (MD->hasAttr<FinalAttr>())
2324     return true;
2325
2326   // Similarly, if the class itself is marked 'final' it can't be overridden
2327   // and we can therefore devirtualize the member function call.
2328   if (MD->getParent()->hasAttr<FinalAttr>())
2329     return true;
2330
2331   Base = skipNoOpCastsAndParens(Base);
2332   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2333     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2334       // This is a record decl. We know the type and can devirtualize it.
2335       return VD->getType()->isRecordType();
2336     }
2337
2338     return false;
2339   }
2340
2341   // We can devirtualize calls on an object accessed by a class member access
2342   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2343   // a derived class object constructed in the same location.
2344   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2345     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2346       return VD->getType()->isRecordType();
2347
2348   // We can always devirtualize calls on temporary object expressions.
2349   if (isa<CXXConstructExpr>(Base))
2350     return true;
2351
2352   // And calls on bound temporaries.
2353   if (isa<CXXBindTemporaryExpr>(Base))
2354     return true;
2355
2356   // Check if this is a call expr that returns a record type.
2357   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2358     return CE->getCallReturnType(getContext())->isRecordType();
2359
2360   // We can't devirtualize the call.
2361   return false;
2362 }
2363
2364 void CodeGenFunction::EmitForwardingCallToLambda(
2365                                       const CXXMethodDecl *callOperator,
2366                                       CallArgList &callArgs) {
2367   // Get the address of the call operator.
2368   const CGFunctionInfo &calleeFnInfo =
2369     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2370   llvm::Value *callee =
2371     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2372                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2373
2374   // Prepare the return slot.
2375   const FunctionProtoType *FPT =
2376     callOperator->getType()->castAs<FunctionProtoType>();
2377   QualType resultType = FPT->getReturnType();
2378   ReturnValueSlot returnSlot;
2379   if (!resultType->isVoidType() &&
2380       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2381       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2382     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2383
2384   // We don't need to separately arrange the call arguments because
2385   // the call can't be variadic anyway --- it's impossible to forward
2386   // variadic arguments.
2387
2388   // Now emit our call.
2389   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2390                        callArgs, callOperator);
2391
2392   // If necessary, copy the returned value into the slot.
2393   if (!resultType->isVoidType() && returnSlot.isNull())
2394     EmitReturnOfRValue(RV, resultType);
2395   else
2396     EmitBranchThroughCleanup(ReturnBlock);
2397 }
2398
2399 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2400   const BlockDecl *BD = BlockInfo->getBlockDecl();
2401   const VarDecl *variable = BD->capture_begin()->getVariable();
2402   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2403
2404   // Start building arguments for forwarding call
2405   CallArgList CallArgs;
2406
2407   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2408   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2409   CallArgs.add(RValue::get(ThisPtr), ThisType);
2410
2411   // Add the rest of the parameters.
2412   for (auto param : BD->params())
2413     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2414
2415   assert(!Lambda->isGenericLambda() &&
2416             "generic lambda interconversion to block not implemented");
2417   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2418 }
2419
2420 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2421   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2422     // FIXME: Making this work correctly is nasty because it requires either
2423     // cloning the body of the call operator or making the call operator forward.
2424     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2425     return;
2426   }
2427
2428   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2429 }
2430
2431 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2432   const CXXRecordDecl *Lambda = MD->getParent();
2433
2434   // Start building arguments for forwarding call
2435   CallArgList CallArgs;
2436
2437   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2438   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2439   CallArgs.add(RValue::get(ThisPtr), ThisType);
2440
2441   // Add the rest of the parameters.
2442   for (auto Param : MD->params())
2443     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2444
2445   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2446   // For a generic lambda, find the corresponding call operator specialization
2447   // to which the call to the static-invoker shall be forwarded.
2448   if (Lambda->isGenericLambda()) {
2449     assert(MD->isFunctionTemplateSpecialization());
2450     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2451     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2452     void *InsertPos = nullptr;
2453     FunctionDecl *CorrespondingCallOpSpecialization =
2454         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2455     assert(CorrespondingCallOpSpecialization);
2456     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2457   }
2458   EmitForwardingCallToLambda(CallOp, CallArgs);
2459 }
2460
2461 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2462   if (MD->isVariadic()) {
2463     // FIXME: Making this work correctly is nasty because it requires either
2464     // cloning the body of the call operator or making the call operator forward.
2465     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2466     return;
2467   }
2468
2469   EmitLambdaDelegatingInvokeBody(MD);
2470 }