]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/CodeGen/CGExprAgg.cpp
Vendor import of stripped clang trunk r375505, the last commit before
[FreeBSD/FreeBSD.git] / lib / CodeGen / CGExprAgg.cpp
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeGenFunction.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 using namespace clang;
28 using namespace CodeGen;
29
30 //===----------------------------------------------------------------------===//
31 //                        Aggregate Expression Emitter
32 //===----------------------------------------------------------------------===//
33
34 namespace  {
35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
36   CodeGenFunction &CGF;
37   CGBuilderTy &Builder;
38   AggValueSlot Dest;
39   bool IsResultUnused;
40
41   AggValueSlot EnsureSlot(QualType T) {
42     if (!Dest.isIgnored()) return Dest;
43     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
44   }
45   void EnsureDest(QualType T) {
46     if (!Dest.isIgnored()) return;
47     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
48   }
49
50   // Calls `Fn` with a valid return value slot, potentially creating a temporary
51   // to do so. If a temporary is created, an appropriate copy into `Dest` will
52   // be emitted, as will lifetime markers.
53   //
54   // The given function should take a ReturnValueSlot, and return an RValue that
55   // points to said slot.
56   void withReturnValueSlot(const Expr *E,
57                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
58
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
61     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
62     IsResultUnused(IsResultUnused) { }
63
64   //===--------------------------------------------------------------------===//
65   //                               Utilities
66   //===--------------------------------------------------------------------===//
67
68   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
69   /// represents a value lvalue, this method emits the address of the lvalue,
70   /// then loads the result into DestPtr.
71   void EmitAggLoadOfLValue(const Expr *E);
72
73   enum ExprValueKind {
74     EVK_RValue,
75     EVK_NonRValue
76   };
77
78   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
79   /// SrcIsRValue is true if source comes from an RValue.
80   void EmitFinalDestCopy(QualType type, const LValue &src,
81                          ExprValueKind SrcValueKind = EVK_NonRValue);
82   void EmitFinalDestCopy(QualType type, RValue src);
83   void EmitCopy(QualType type, const AggValueSlot &dest,
84                 const AggValueSlot &src);
85
86   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
87
88   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
89                      QualType ArrayQTy, InitListExpr *E);
90
91   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
92     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
93       return AggValueSlot::NeedsGCBarriers;
94     return AggValueSlot::DoesNotNeedGCBarriers;
95   }
96
97   bool TypeRequiresGCollection(QualType T);
98
99   //===--------------------------------------------------------------------===//
100   //                            Visitor Methods
101   //===--------------------------------------------------------------------===//
102
103   void Visit(Expr *E) {
104     ApplyDebugLocation DL(CGF, E);
105     StmtVisitor<AggExprEmitter>::Visit(E);
106   }
107
108   void VisitStmt(Stmt *S) {
109     CGF.ErrorUnsupported(S, "aggregate expression");
110   }
111   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
112   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     Visit(GE->getResultExpr());
114   }
115   void VisitCoawaitExpr(CoawaitExpr *E) {
116     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
117   }
118   void VisitCoyieldExpr(CoyieldExpr *E) {
119     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
120   }
121   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
122   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
124     return Visit(E->getReplacement());
125   }
126
127   void VisitConstantExpr(ConstantExpr *E) {
128     return Visit(E->getSubExpr());
129   }
130
131   // l-values.
132   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
133   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
134   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
135   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
136   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
137   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140   void VisitPredefinedExpr(const PredefinedExpr *E) {
141     EmitAggLoadOfLValue(E);
142   }
143
144   // Operators.
145   void VisitCastExpr(CastExpr *E);
146   void VisitCallExpr(const CallExpr *E);
147   void VisitStmtExpr(const StmtExpr *E);
148   void VisitBinaryOperator(const BinaryOperator *BO);
149   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
150   void VisitBinAssign(const BinaryOperator *E);
151   void VisitBinComma(const BinaryOperator *E);
152   void VisitBinCmp(const BinaryOperator *E);
153   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
154     Visit(E->getSemanticForm());
155   }
156
157   void VisitObjCMessageExpr(ObjCMessageExpr *E);
158   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
159     EmitAggLoadOfLValue(E);
160   }
161
162   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
163   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
164   void VisitChooseExpr(const ChooseExpr *CE);
165   void VisitInitListExpr(InitListExpr *E);
166   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
167                               llvm::Value *outerBegin = nullptr);
168   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
169   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
170   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
171     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
172     Visit(DAE->getExpr());
173   }
174   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
175     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
176     Visit(DIE->getExpr());
177   }
178   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
179   void VisitCXXConstructExpr(const CXXConstructExpr *E);
180   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
181   void VisitLambdaExpr(LambdaExpr *E);
182   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
183   void VisitExprWithCleanups(ExprWithCleanups *E);
184   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
185   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
186   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
187   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
188
189   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
190     if (E->isGLValue()) {
191       LValue LV = CGF.EmitPseudoObjectLValue(E);
192       return EmitFinalDestCopy(E->getType(), LV);
193     }
194
195     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
196   }
197
198   void VisitVAArgExpr(VAArgExpr *E);
199
200   void EmitInitializationToLValue(Expr *E, LValue Address);
201   void EmitNullInitializationToLValue(LValue Address);
202   //  case Expr::ChooseExprClass:
203   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
204   void VisitAtomicExpr(AtomicExpr *E) {
205     RValue Res = CGF.EmitAtomicExpr(E);
206     EmitFinalDestCopy(E->getType(), Res);
207   }
208 };
209 }  // end anonymous namespace.
210
211 //===----------------------------------------------------------------------===//
212 //                                Utilities
213 //===----------------------------------------------------------------------===//
214
215 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
216 /// represents a value lvalue, this method emits the address of the lvalue,
217 /// then loads the result into DestPtr.
218 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
219   LValue LV = CGF.EmitLValue(E);
220
221   // If the type of the l-value is atomic, then do an atomic load.
222   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
223     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
224     return;
225   }
226
227   EmitFinalDestCopy(E->getType(), LV);
228 }
229
230 /// True if the given aggregate type requires special GC API calls.
231 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
232   // Only record types have members that might require garbage collection.
233   const RecordType *RecordTy = T->getAs<RecordType>();
234   if (!RecordTy) return false;
235
236   // Don't mess with non-trivial C++ types.
237   RecordDecl *Record = RecordTy->getDecl();
238   if (isa<CXXRecordDecl>(Record) &&
239       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
240        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
241     return false;
242
243   // Check whether the type has an object member.
244   return Record->hasObjectMember();
245 }
246
247 void AggExprEmitter::withReturnValueSlot(
248     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
249   QualType RetTy = E->getType();
250   bool RequiresDestruction =
251       Dest.isIgnored() &&
252       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
253
254   // If it makes no observable difference, save a memcpy + temporary.
255   //
256   // We need to always provide our own temporary if destruction is required.
257   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
258   // its lifetime before we have the chance to emit a proper destructor call.
259   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
260                  (RequiresDestruction && !Dest.getAddress().isValid());
261
262   Address RetAddr = Address::invalid();
263   Address RetAllocaAddr = Address::invalid();
264
265   EHScopeStack::stable_iterator LifetimeEndBlock;
266   llvm::Value *LifetimeSizePtr = nullptr;
267   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
268   if (!UseTemp) {
269     RetAddr = Dest.getAddress();
270   } else {
271     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
272     uint64_t Size =
273         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
274     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
275     if (LifetimeSizePtr) {
276       LifetimeStartInst =
277           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
278       assert(LifetimeStartInst->getIntrinsicID() ==
279                  llvm::Intrinsic::lifetime_start &&
280              "Last insertion wasn't a lifetime.start?");
281
282       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
283           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
284       LifetimeEndBlock = CGF.EHStack.stable_begin();
285     }
286   }
287
288   RValue Src =
289       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
290
291   if (RequiresDestruction)
292     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
293
294   if (!UseTemp)
295     return;
296
297   assert(Dest.getPointer() != Src.getAggregatePointer());
298   EmitFinalDestCopy(E->getType(), Src);
299
300   if (!RequiresDestruction && LifetimeStartInst) {
301     // If there's no dtor to run, the copy was the last use of our temporary.
302     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
303     // eagerly.
304     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
305     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
306   }
307 }
308
309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
310 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
311   assert(src.isAggregate() && "value must be aggregate value!");
312   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
313   EmitFinalDestCopy(type, srcLV, EVK_RValue);
314 }
315
316 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
317 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
318                                        ExprValueKind SrcValueKind) {
319   // If Dest is ignored, then we're evaluating an aggregate expression
320   // in a context that doesn't care about the result.  Note that loads
321   // from volatile l-values force the existence of a non-ignored
322   // destination.
323   if (Dest.isIgnored())
324     return;
325
326   // Copy non-trivial C structs here.
327   LValue DstLV = CGF.MakeAddrLValue(
328       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
329
330   if (SrcValueKind == EVK_RValue) {
331     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
332       if (Dest.isPotentiallyAliased())
333         CGF.callCStructMoveAssignmentOperator(DstLV, src);
334       else
335         CGF.callCStructMoveConstructor(DstLV, src);
336       return;
337     }
338   } else {
339     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
340       if (Dest.isPotentiallyAliased())
341         CGF.callCStructCopyAssignmentOperator(DstLV, src);
342       else
343         CGF.callCStructCopyConstructor(DstLV, src);
344       return;
345     }
346   }
347
348   AggValueSlot srcAgg =
349     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
350                             needsGC(type), AggValueSlot::IsAliased,
351                             AggValueSlot::MayOverlap);
352   EmitCopy(type, Dest, srcAgg);
353 }
354
355 /// Perform a copy from the source into the destination.
356 ///
357 /// \param type - the type of the aggregate being copied; qualifiers are
358 ///   ignored
359 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
360                               const AggValueSlot &src) {
361   if (dest.requiresGCollection()) {
362     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
363     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
364     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
365                                                       dest.getAddress(),
366                                                       src.getAddress(),
367                                                       size);
368     return;
369   }
370
371   // If the result of the assignment is used, copy the LHS there also.
372   // It's volatile if either side is.  Use the minimum alignment of
373   // the two sides.
374   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
375   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
376   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
377                         dest.isVolatile() || src.isVolatile());
378 }
379
380 /// Emit the initializer for a std::initializer_list initialized with a
381 /// real initializer list.
382 void
383 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
384   // Emit an array containing the elements.  The array is externally destructed
385   // if the std::initializer_list object is.
386   ASTContext &Ctx = CGF.getContext();
387   LValue Array = CGF.EmitLValue(E->getSubExpr());
388   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
389   Address ArrayPtr = Array.getAddress();
390
391   const ConstantArrayType *ArrayType =
392       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
393   assert(ArrayType && "std::initializer_list constructed from non-array");
394
395   // FIXME: Perform the checks on the field types in SemaInit.
396   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
397   RecordDecl::field_iterator Field = Record->field_begin();
398   if (Field == Record->field_end()) {
399     CGF.ErrorUnsupported(E, "weird std::initializer_list");
400     return;
401   }
402
403   // Start pointer.
404   if (!Field->getType()->isPointerType() ||
405       !Ctx.hasSameType(Field->getType()->getPointeeType(),
406                        ArrayType->getElementType())) {
407     CGF.ErrorUnsupported(E, "weird std::initializer_list");
408     return;
409   }
410
411   AggValueSlot Dest = EnsureSlot(E->getType());
412   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
413   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
414   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
415   llvm::Value *IdxStart[] = { Zero, Zero };
416   llvm::Value *ArrayStart =
417       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
418   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
419   ++Field;
420
421   if (Field == Record->field_end()) {
422     CGF.ErrorUnsupported(E, "weird std::initializer_list");
423     return;
424   }
425
426   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
427   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
428   if (Field->getType()->isPointerType() &&
429       Ctx.hasSameType(Field->getType()->getPointeeType(),
430                       ArrayType->getElementType())) {
431     // End pointer.
432     llvm::Value *IdxEnd[] = { Zero, Size };
433     llvm::Value *ArrayEnd =
434         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
435     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
436   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
437     // Length.
438     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
439   } else {
440     CGF.ErrorUnsupported(E, "weird std::initializer_list");
441     return;
442   }
443 }
444
445 /// Determine if E is a trivial array filler, that is, one that is
446 /// equivalent to zero-initialization.
447 static bool isTrivialFiller(Expr *E) {
448   if (!E)
449     return true;
450
451   if (isa<ImplicitValueInitExpr>(E))
452     return true;
453
454   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
455     if (ILE->getNumInits())
456       return false;
457     return isTrivialFiller(ILE->getArrayFiller());
458   }
459
460   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
461     return Cons->getConstructor()->isDefaultConstructor() &&
462            Cons->getConstructor()->isTrivial();
463
464   // FIXME: Are there other cases where we can avoid emitting an initializer?
465   return false;
466 }
467
468 /// Emit initialization of an array from an initializer list.
469 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
470                                    QualType ArrayQTy, InitListExpr *E) {
471   uint64_t NumInitElements = E->getNumInits();
472
473   uint64_t NumArrayElements = AType->getNumElements();
474   assert(NumInitElements <= NumArrayElements);
475
476   QualType elementType =
477       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
478
479   // DestPtr is an array*.  Construct an elementType* by drilling
480   // down a level.
481   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
482   llvm::Value *indices[] = { zero, zero };
483   llvm::Value *begin =
484     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
485
486   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
487   CharUnits elementAlign =
488     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
489
490   // Consider initializing the array by copying from a global. For this to be
491   // more efficient than per-element initialization, the size of the elements
492   // with explicit initializers should be large enough.
493   if (NumInitElements * elementSize.getQuantity() > 16 &&
494       elementType.isTriviallyCopyableType(CGF.getContext())) {
495     CodeGen::CodeGenModule &CGM = CGF.CGM;
496     ConstantEmitter Emitter(CGM);
497     LangAS AS = ArrayQTy.getAddressSpace();
498     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
499       auto GV = new llvm::GlobalVariable(
500           CGM.getModule(), C->getType(),
501           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
502           llvm::GlobalValue::PrivateLinkage, C, "constinit",
503           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
504           CGM.getContext().getTargetAddressSpace(AS));
505       Emitter.finalize(GV);
506       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
507       GV->setAlignment(Align.getAsAlign());
508       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
509       return;
510     }
511   }
512
513   // Exception safety requires us to destroy all the
514   // already-constructed members if an initializer throws.
515   // For that, we'll need an EH cleanup.
516   QualType::DestructionKind dtorKind = elementType.isDestructedType();
517   Address endOfInit = Address::invalid();
518   EHScopeStack::stable_iterator cleanup;
519   llvm::Instruction *cleanupDominator = nullptr;
520   if (CGF.needsEHCleanup(dtorKind)) {
521     // In principle we could tell the cleanup where we are more
522     // directly, but the control flow can get so varied here that it
523     // would actually be quite complex.  Therefore we go through an
524     // alloca.
525     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
526                                      "arrayinit.endOfInit");
527     cleanupDominator = Builder.CreateStore(begin, endOfInit);
528     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
529                                          elementAlign,
530                                          CGF.getDestroyer(dtorKind));
531     cleanup = CGF.EHStack.stable_begin();
532
533   // Otherwise, remember that we didn't need a cleanup.
534   } else {
535     dtorKind = QualType::DK_none;
536   }
537
538   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
539
540   // The 'current element to initialize'.  The invariants on this
541   // variable are complicated.  Essentially, after each iteration of
542   // the loop, it points to the last initialized element, except
543   // that it points to the beginning of the array before any
544   // elements have been initialized.
545   llvm::Value *element = begin;
546
547   // Emit the explicit initializers.
548   for (uint64_t i = 0; i != NumInitElements; ++i) {
549     // Advance to the next element.
550     if (i > 0) {
551       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
552
553       // Tell the cleanup that it needs to destroy up to this
554       // element.  TODO: some of these stores can be trivially
555       // observed to be unnecessary.
556       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
557     }
558
559     LValue elementLV =
560       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
561     EmitInitializationToLValue(E->getInit(i), elementLV);
562   }
563
564   // Check whether there's a non-trivial array-fill expression.
565   Expr *filler = E->getArrayFiller();
566   bool hasTrivialFiller = isTrivialFiller(filler);
567
568   // Any remaining elements need to be zero-initialized, possibly
569   // using the filler expression.  We can skip this if the we're
570   // emitting to zeroed memory.
571   if (NumInitElements != NumArrayElements &&
572       !(Dest.isZeroed() && hasTrivialFiller &&
573         CGF.getTypes().isZeroInitializable(elementType))) {
574
575     // Use an actual loop.  This is basically
576     //   do { *array++ = filler; } while (array != end);
577
578     // Advance to the start of the rest of the array.
579     if (NumInitElements) {
580       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
581       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
582     }
583
584     // Compute the end of the array.
585     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
586                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
587                                                  "arrayinit.end");
588
589     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
590     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
591
592     // Jump into the body.
593     CGF.EmitBlock(bodyBB);
594     llvm::PHINode *currentElement =
595       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
596     currentElement->addIncoming(element, entryBB);
597
598     // Emit the actual filler expression.
599     {
600       // C++1z [class.temporary]p5:
601       //   when a default constructor is called to initialize an element of
602       //   an array with no corresponding initializer [...] the destruction of
603       //   every temporary created in a default argument is sequenced before
604       //   the construction of the next array element, if any
605       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
606       LValue elementLV =
607         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
608       if (filler)
609         EmitInitializationToLValue(filler, elementLV);
610       else
611         EmitNullInitializationToLValue(elementLV);
612     }
613
614     // Move on to the next element.
615     llvm::Value *nextElement =
616       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
617
618     // Tell the EH cleanup that we finished with the last element.
619     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
620
621     // Leave the loop if we're done.
622     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
623                                              "arrayinit.done");
624     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
625     Builder.CreateCondBr(done, endBB, bodyBB);
626     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
627
628     CGF.EmitBlock(endBB);
629   }
630
631   // Leave the partial-array cleanup if we entered one.
632   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
633 }
634
635 //===----------------------------------------------------------------------===//
636 //                            Visitor Methods
637 //===----------------------------------------------------------------------===//
638
639 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
640   Visit(E->GetTemporaryExpr());
641 }
642
643 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
644   // If this is a unique OVE, just visit its source expression.
645   if (e->isUnique())
646     Visit(e->getSourceExpr());
647   else
648     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
649 }
650
651 void
652 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
653   if (Dest.isPotentiallyAliased() &&
654       E->getType().isPODType(CGF.getContext())) {
655     // For a POD type, just emit a load of the lvalue + a copy, because our
656     // compound literal might alias the destination.
657     EmitAggLoadOfLValue(E);
658     return;
659   }
660
661   AggValueSlot Slot = EnsureSlot(E->getType());
662   CGF.EmitAggExpr(E->getInitializer(), Slot);
663 }
664
665 /// Attempt to look through various unimportant expressions to find a
666 /// cast of the given kind.
667 static Expr *findPeephole(Expr *op, CastKind kind) {
668   while (true) {
669     op = op->IgnoreParens();
670     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
671       if (castE->getCastKind() == kind)
672         return castE->getSubExpr();
673       if (castE->getCastKind() == CK_NoOp)
674         continue;
675     }
676     return nullptr;
677   }
678 }
679
680 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
681   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
682     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
683   switch (E->getCastKind()) {
684   case CK_Dynamic: {
685     // FIXME: Can this actually happen? We have no test coverage for it.
686     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
687     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
688                                       CodeGenFunction::TCK_Load);
689     // FIXME: Do we also need to handle property references here?
690     if (LV.isSimple())
691       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
692     else
693       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
694
695     if (!Dest.isIgnored())
696       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
697     break;
698   }
699
700   case CK_ToUnion: {
701     // Evaluate even if the destination is ignored.
702     if (Dest.isIgnored()) {
703       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
704                       /*ignoreResult=*/true);
705       break;
706     }
707
708     // GCC union extension
709     QualType Ty = E->getSubExpr()->getType();
710     Address CastPtr =
711       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
712     EmitInitializationToLValue(E->getSubExpr(),
713                                CGF.MakeAddrLValue(CastPtr, Ty));
714     break;
715   }
716
717   case CK_LValueToRValueBitCast: {
718     if (Dest.isIgnored()) {
719       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
720                       /*ignoreResult=*/true);
721       break;
722     }
723
724     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
725     Address SourceAddress =
726         Builder.CreateElementBitCast(SourceLV.getAddress(), CGF.Int8Ty);
727     Address DestAddress =
728         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
729     llvm::Value *SizeVal = llvm::ConstantInt::get(
730         CGF.SizeTy,
731         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
732     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
733     break;
734   }
735
736   case CK_DerivedToBase:
737   case CK_BaseToDerived:
738   case CK_UncheckedDerivedToBase: {
739     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
740                 "should have been unpacked before we got here");
741   }
742
743   case CK_NonAtomicToAtomic:
744   case CK_AtomicToNonAtomic: {
745     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
746
747     // Determine the atomic and value types.
748     QualType atomicType = E->getSubExpr()->getType();
749     QualType valueType = E->getType();
750     if (isToAtomic) std::swap(atomicType, valueType);
751
752     assert(atomicType->isAtomicType());
753     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
754                           atomicType->castAs<AtomicType>()->getValueType()));
755
756     // Just recurse normally if we're ignoring the result or the
757     // atomic type doesn't change representation.
758     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
759       return Visit(E->getSubExpr());
760     }
761
762     CastKind peepholeTarget =
763       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
764
765     // These two cases are reverses of each other; try to peephole them.
766     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
767       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
768                                                      E->getType()) &&
769            "peephole significantly changed types?");
770       return Visit(op);
771     }
772
773     // If we're converting an r-value of non-atomic type to an r-value
774     // of atomic type, just emit directly into the relevant sub-object.
775     if (isToAtomic) {
776       AggValueSlot valueDest = Dest;
777       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
778         // Zero-initialize.  (Strictly speaking, we only need to initialize
779         // the padding at the end, but this is simpler.)
780         if (!Dest.isZeroed())
781           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
782
783         // Build a GEP to refer to the subobject.
784         Address valueAddr =
785             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
786         valueDest = AggValueSlot::forAddr(valueAddr,
787                                           valueDest.getQualifiers(),
788                                           valueDest.isExternallyDestructed(),
789                                           valueDest.requiresGCollection(),
790                                           valueDest.isPotentiallyAliased(),
791                                           AggValueSlot::DoesNotOverlap,
792                                           AggValueSlot::IsZeroed);
793       }
794
795       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
796       return;
797     }
798
799     // Otherwise, we're converting an atomic type to a non-atomic type.
800     // Make an atomic temporary, emit into that, and then copy the value out.
801     AggValueSlot atomicSlot =
802       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
803     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
804
805     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
806     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
807     return EmitFinalDestCopy(valueType, rvalue);
808   }
809   case CK_AddressSpaceConversion:
810      return Visit(E->getSubExpr());
811
812   case CK_LValueToRValue:
813     // If we're loading from a volatile type, force the destination
814     // into existence.
815     if (E->getSubExpr()->getType().isVolatileQualified()) {
816       EnsureDest(E->getType());
817       return Visit(E->getSubExpr());
818     }
819
820     LLVM_FALLTHROUGH;
821
822
823   case CK_NoOp:
824   case CK_UserDefinedConversion:
825   case CK_ConstructorConversion:
826     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
827                                                    E->getType()) &&
828            "Implicit cast types must be compatible");
829     Visit(E->getSubExpr());
830     break;
831
832   case CK_LValueBitCast:
833     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
834
835   case CK_Dependent:
836   case CK_BitCast:
837   case CK_ArrayToPointerDecay:
838   case CK_FunctionToPointerDecay:
839   case CK_NullToPointer:
840   case CK_NullToMemberPointer:
841   case CK_BaseToDerivedMemberPointer:
842   case CK_DerivedToBaseMemberPointer:
843   case CK_MemberPointerToBoolean:
844   case CK_ReinterpretMemberPointer:
845   case CK_IntegralToPointer:
846   case CK_PointerToIntegral:
847   case CK_PointerToBoolean:
848   case CK_ToVoid:
849   case CK_VectorSplat:
850   case CK_IntegralCast:
851   case CK_BooleanToSignedIntegral:
852   case CK_IntegralToBoolean:
853   case CK_IntegralToFloating:
854   case CK_FloatingToIntegral:
855   case CK_FloatingToBoolean:
856   case CK_FloatingCast:
857   case CK_CPointerToObjCPointerCast:
858   case CK_BlockPointerToObjCPointerCast:
859   case CK_AnyPointerToBlockPointerCast:
860   case CK_ObjCObjectLValueCast:
861   case CK_FloatingRealToComplex:
862   case CK_FloatingComplexToReal:
863   case CK_FloatingComplexToBoolean:
864   case CK_FloatingComplexCast:
865   case CK_FloatingComplexToIntegralComplex:
866   case CK_IntegralRealToComplex:
867   case CK_IntegralComplexToReal:
868   case CK_IntegralComplexToBoolean:
869   case CK_IntegralComplexCast:
870   case CK_IntegralComplexToFloatingComplex:
871   case CK_ARCProduceObject:
872   case CK_ARCConsumeObject:
873   case CK_ARCReclaimReturnedObject:
874   case CK_ARCExtendBlockObject:
875   case CK_CopyAndAutoreleaseBlockObject:
876   case CK_BuiltinFnToFnPtr:
877   case CK_ZeroToOCLOpaqueType:
878
879   case CK_IntToOCLSampler:
880   case CK_FixedPointCast:
881   case CK_FixedPointToBoolean:
882   case CK_FixedPointToIntegral:
883   case CK_IntegralToFixedPoint:
884     llvm_unreachable("cast kind invalid for aggregate types");
885   }
886 }
887
888 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
889   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
890     EmitAggLoadOfLValue(E);
891     return;
892   }
893
894   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
895     return CGF.EmitCallExpr(E, Slot);
896   });
897 }
898
899 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
900   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
901     return CGF.EmitObjCMessageExpr(E, Slot);
902   });
903 }
904
905 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
906   CGF.EmitIgnoredExpr(E->getLHS());
907   Visit(E->getRHS());
908 }
909
910 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
911   CodeGenFunction::StmtExprEvaluation eval(CGF);
912   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
913 }
914
915 enum CompareKind {
916   CK_Less,
917   CK_Greater,
918   CK_Equal,
919 };
920
921 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
922                                 const BinaryOperator *E, llvm::Value *LHS,
923                                 llvm::Value *RHS, CompareKind Kind,
924                                 const char *NameSuffix = "") {
925   QualType ArgTy = E->getLHS()->getType();
926   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
927     ArgTy = CT->getElementType();
928
929   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
930     assert(Kind == CK_Equal &&
931            "member pointers may only be compared for equality");
932     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
933         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
934   }
935
936   // Compute the comparison instructions for the specified comparison kind.
937   struct CmpInstInfo {
938     const char *Name;
939     llvm::CmpInst::Predicate FCmp;
940     llvm::CmpInst::Predicate SCmp;
941     llvm::CmpInst::Predicate UCmp;
942   };
943   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
944     using FI = llvm::FCmpInst;
945     using II = llvm::ICmpInst;
946     switch (Kind) {
947     case CK_Less:
948       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
949     case CK_Greater:
950       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
951     case CK_Equal:
952       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
953     }
954     llvm_unreachable("Unrecognised CompareKind enum");
955   }();
956
957   if (ArgTy->hasFloatingRepresentation())
958     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
959                               llvm::Twine(InstInfo.Name) + NameSuffix);
960   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
961     auto Inst =
962         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
963     return Builder.CreateICmp(Inst, LHS, RHS,
964                               llvm::Twine(InstInfo.Name) + NameSuffix);
965   }
966
967   llvm_unreachable("unsupported aggregate binary expression should have "
968                    "already been handled");
969 }
970
971 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
972   using llvm::BasicBlock;
973   using llvm::PHINode;
974   using llvm::Value;
975   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
976                                       E->getRHS()->getType()));
977   const ComparisonCategoryInfo &CmpInfo =
978       CGF.getContext().CompCategories.getInfoForType(E->getType());
979   assert(CmpInfo.Record->isTriviallyCopyable() &&
980          "cannot copy non-trivially copyable aggregate");
981
982   QualType ArgTy = E->getLHS()->getType();
983
984   // TODO: Handle comparing these types.
985   if (ArgTy->isVectorType())
986     return CGF.ErrorUnsupported(
987         E, "aggregate three-way comparison with vector arguments");
988   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
989       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
990       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
991     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
992   }
993   bool IsComplex = ArgTy->isAnyComplexType();
994
995   // Evaluate the operands to the expression and extract their values.
996   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
997     RValue RV = CGF.EmitAnyExpr(E);
998     if (RV.isScalar())
999       return {RV.getScalarVal(), nullptr};
1000     if (RV.isAggregate())
1001       return {RV.getAggregatePointer(), nullptr};
1002     assert(RV.isComplex());
1003     return RV.getComplexVal();
1004   };
1005   auto LHSValues = EmitOperand(E->getLHS()),
1006        RHSValues = EmitOperand(E->getRHS());
1007
1008   auto EmitCmp = [&](CompareKind K) {
1009     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1010                              K, IsComplex ? ".r" : "");
1011     if (!IsComplex)
1012       return Cmp;
1013     assert(K == CompareKind::CK_Equal);
1014     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1015                                  RHSValues.second, K, ".i");
1016     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1017   };
1018   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1019     return Builder.getInt(VInfo->getIntValue());
1020   };
1021
1022   Value *Select;
1023   if (ArgTy->isNullPtrType()) {
1024     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1025   } else if (CmpInfo.isEquality()) {
1026     Select = Builder.CreateSelect(
1027         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1028         EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq");
1029   } else if (!CmpInfo.isPartial()) {
1030     Value *SelectOne =
1031         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1032                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1033     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1034                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1035                                   SelectOne, "sel.eq");
1036   } else {
1037     Value *SelectEq = Builder.CreateSelect(
1038         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1039         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1040     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1041                                            EmitCmpRes(CmpInfo.getGreater()),
1042                                            SelectEq, "sel.gt");
1043     Select = Builder.CreateSelect(
1044         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1045   }
1046   // Create the return value in the destination slot.
1047   EnsureDest(E->getType());
1048   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1049
1050   // Emit the address of the first (and only) field in the comparison category
1051   // type, and initialize it from the constant integer value selected above.
1052   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1053       DestLV, *CmpInfo.Record->field_begin());
1054   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1055
1056   // All done! The result is in the Dest slot.
1057 }
1058
1059 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1060   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1061     VisitPointerToDataMemberBinaryOperator(E);
1062   else
1063     CGF.ErrorUnsupported(E, "aggregate binary expression");
1064 }
1065
1066 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1067                                                     const BinaryOperator *E) {
1068   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1069   EmitFinalDestCopy(E->getType(), LV);
1070 }
1071
1072 /// Is the value of the given expression possibly a reference to or
1073 /// into a __block variable?
1074 static bool isBlockVarRef(const Expr *E) {
1075   // Make sure we look through parens.
1076   E = E->IgnoreParens();
1077
1078   // Check for a direct reference to a __block variable.
1079   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1080     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1081     return (var && var->hasAttr<BlocksAttr>());
1082   }
1083
1084   // More complicated stuff.
1085
1086   // Binary operators.
1087   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1088     // For an assignment or pointer-to-member operation, just care
1089     // about the LHS.
1090     if (op->isAssignmentOp() || op->isPtrMemOp())
1091       return isBlockVarRef(op->getLHS());
1092
1093     // For a comma, just care about the RHS.
1094     if (op->getOpcode() == BO_Comma)
1095       return isBlockVarRef(op->getRHS());
1096
1097     // FIXME: pointer arithmetic?
1098     return false;
1099
1100   // Check both sides of a conditional operator.
1101   } else if (const AbstractConditionalOperator *op
1102                = dyn_cast<AbstractConditionalOperator>(E)) {
1103     return isBlockVarRef(op->getTrueExpr())
1104         || isBlockVarRef(op->getFalseExpr());
1105
1106   // OVEs are required to support BinaryConditionalOperators.
1107   } else if (const OpaqueValueExpr *op
1108                = dyn_cast<OpaqueValueExpr>(E)) {
1109     if (const Expr *src = op->getSourceExpr())
1110       return isBlockVarRef(src);
1111
1112   // Casts are necessary to get things like (*(int*)&var) = foo().
1113   // We don't really care about the kind of cast here, except
1114   // we don't want to look through l2r casts, because it's okay
1115   // to get the *value* in a __block variable.
1116   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1117     if (cast->getCastKind() == CK_LValueToRValue)
1118       return false;
1119     return isBlockVarRef(cast->getSubExpr());
1120
1121   // Handle unary operators.  Again, just aggressively look through
1122   // it, ignoring the operation.
1123   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1124     return isBlockVarRef(uop->getSubExpr());
1125
1126   // Look into the base of a field access.
1127   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1128     return isBlockVarRef(mem->getBase());
1129
1130   // Look into the base of a subscript.
1131   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1132     return isBlockVarRef(sub->getBase());
1133   }
1134
1135   return false;
1136 }
1137
1138 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1139   // For an assignment to work, the value on the right has
1140   // to be compatible with the value on the left.
1141   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1142                                                  E->getRHS()->getType())
1143          && "Invalid assignment");
1144
1145   // If the LHS might be a __block variable, and the RHS can
1146   // potentially cause a block copy, we need to evaluate the RHS first
1147   // so that the assignment goes the right place.
1148   // This is pretty semantically fragile.
1149   if (isBlockVarRef(E->getLHS()) &&
1150       E->getRHS()->HasSideEffects(CGF.getContext())) {
1151     // Ensure that we have a destination, and evaluate the RHS into that.
1152     EnsureDest(E->getRHS()->getType());
1153     Visit(E->getRHS());
1154
1155     // Now emit the LHS and copy into it.
1156     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1157
1158     // That copy is an atomic copy if the LHS is atomic.
1159     if (LHS.getType()->isAtomicType() ||
1160         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1161       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1162       return;
1163     }
1164
1165     EmitCopy(E->getLHS()->getType(),
1166              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1167                                      needsGC(E->getLHS()->getType()),
1168                                      AggValueSlot::IsAliased,
1169                                      AggValueSlot::MayOverlap),
1170              Dest);
1171     return;
1172   }
1173
1174   LValue LHS = CGF.EmitLValue(E->getLHS());
1175
1176   // If we have an atomic type, evaluate into the destination and then
1177   // do an atomic copy.
1178   if (LHS.getType()->isAtomicType() ||
1179       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1180     EnsureDest(E->getRHS()->getType());
1181     Visit(E->getRHS());
1182     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1183     return;
1184   }
1185
1186   // Codegen the RHS so that it stores directly into the LHS.
1187   AggValueSlot LHSSlot =
1188     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1189                             needsGC(E->getLHS()->getType()),
1190                             AggValueSlot::IsAliased,
1191                             AggValueSlot::MayOverlap);
1192   // A non-volatile aggregate destination might have volatile member.
1193   if (!LHSSlot.isVolatile() &&
1194       CGF.hasVolatileMember(E->getLHS()->getType()))
1195     LHSSlot.setVolatile(true);
1196
1197   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1198
1199   // Copy into the destination if the assignment isn't ignored.
1200   EmitFinalDestCopy(E->getType(), LHS);
1201 }
1202
1203 void AggExprEmitter::
1204 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1205   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1206   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1207   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1208
1209   // Bind the common expression if necessary.
1210   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1211
1212   CodeGenFunction::ConditionalEvaluation eval(CGF);
1213   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1214                            CGF.getProfileCount(E));
1215
1216   // Save whether the destination's lifetime is externally managed.
1217   bool isExternallyDestructed = Dest.isExternallyDestructed();
1218
1219   eval.begin(CGF);
1220   CGF.EmitBlock(LHSBlock);
1221   CGF.incrementProfileCounter(E);
1222   Visit(E->getTrueExpr());
1223   eval.end(CGF);
1224
1225   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1226   CGF.Builder.CreateBr(ContBlock);
1227
1228   // If the result of an agg expression is unused, then the emission
1229   // of the LHS might need to create a destination slot.  That's fine
1230   // with us, and we can safely emit the RHS into the same slot, but
1231   // we shouldn't claim that it's already being destructed.
1232   Dest.setExternallyDestructed(isExternallyDestructed);
1233
1234   eval.begin(CGF);
1235   CGF.EmitBlock(RHSBlock);
1236   Visit(E->getFalseExpr());
1237   eval.end(CGF);
1238
1239   CGF.EmitBlock(ContBlock);
1240 }
1241
1242 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1243   Visit(CE->getChosenSubExpr());
1244 }
1245
1246 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1247   Address ArgValue = Address::invalid();
1248   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1249
1250   // If EmitVAArg fails, emit an error.
1251   if (!ArgPtr.isValid()) {
1252     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1253     return;
1254   }
1255
1256   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1257 }
1258
1259 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1260   // Ensure that we have a slot, but if we already do, remember
1261   // whether it was externally destructed.
1262   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1263   EnsureDest(E->getType());
1264
1265   // We're going to push a destructor if there isn't already one.
1266   Dest.setExternallyDestructed();
1267
1268   Visit(E->getSubExpr());
1269
1270   // Push that destructor we promised.
1271   if (!wasExternallyDestructed)
1272     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1273 }
1274
1275 void
1276 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1277   AggValueSlot Slot = EnsureSlot(E->getType());
1278   CGF.EmitCXXConstructExpr(E, Slot);
1279 }
1280
1281 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1282     const CXXInheritedCtorInitExpr *E) {
1283   AggValueSlot Slot = EnsureSlot(E->getType());
1284   CGF.EmitInheritedCXXConstructorCall(
1285       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1286       E->inheritedFromVBase(), E);
1287 }
1288
1289 void
1290 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1291   AggValueSlot Slot = EnsureSlot(E->getType());
1292   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1293
1294   // We'll need to enter cleanup scopes in case any of the element
1295   // initializers throws an exception.
1296   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1297   llvm::Instruction *CleanupDominator = nullptr;
1298
1299   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1300   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1301                                                e = E->capture_init_end();
1302        i != e; ++i, ++CurField) {
1303     // Emit initialization
1304     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1305     if (CurField->hasCapturedVLAType()) {
1306       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1307       continue;
1308     }
1309
1310     EmitInitializationToLValue(*i, LV);
1311
1312     // Push a destructor if necessary.
1313     if (QualType::DestructionKind DtorKind =
1314             CurField->getType().isDestructedType()) {
1315       assert(LV.isSimple());
1316       if (CGF.needsEHCleanup(DtorKind)) {
1317         if (!CleanupDominator)
1318           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1319               CGF.Int8Ty,
1320               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1321               CharUnits::One()); // placeholder
1322
1323         CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(),
1324                         CGF.getDestroyer(DtorKind), false);
1325         Cleanups.push_back(CGF.EHStack.stable_begin());
1326       }
1327     }
1328   }
1329
1330   // Deactivate all the partial cleanups in reverse order, which
1331   // generally means popping them.
1332   for (unsigned i = Cleanups.size(); i != 0; --i)
1333     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1334
1335   // Destroy the placeholder if we made one.
1336   if (CleanupDominator)
1337     CleanupDominator->eraseFromParent();
1338 }
1339
1340 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1341   CGF.enterFullExpression(E);
1342   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1343   Visit(E->getSubExpr());
1344 }
1345
1346 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1347   QualType T = E->getType();
1348   AggValueSlot Slot = EnsureSlot(T);
1349   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1350 }
1351
1352 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1353   QualType T = E->getType();
1354   AggValueSlot Slot = EnsureSlot(T);
1355   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1356 }
1357
1358 /// isSimpleZero - If emitting this value will obviously just cause a store of
1359 /// zero to memory, return true.  This can return false if uncertain, so it just
1360 /// handles simple cases.
1361 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1362   E = E->IgnoreParens();
1363
1364   // 0
1365   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1366     return IL->getValue() == 0;
1367   // +0.0
1368   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1369     return FL->getValue().isPosZero();
1370   // int()
1371   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1372       CGF.getTypes().isZeroInitializable(E->getType()))
1373     return true;
1374   // (int*)0 - Null pointer expressions.
1375   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1376     return ICE->getCastKind() == CK_NullToPointer &&
1377            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1378            !E->HasSideEffects(CGF.getContext());
1379   // '\0'
1380   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1381     return CL->getValue() == 0;
1382
1383   // Otherwise, hard case: conservatively return false.
1384   return false;
1385 }
1386
1387
1388 void
1389 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1390   QualType type = LV.getType();
1391   // FIXME: Ignore result?
1392   // FIXME: Are initializers affected by volatile?
1393   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1394     // Storing "i32 0" to a zero'd memory location is a noop.
1395     return;
1396   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1397     return EmitNullInitializationToLValue(LV);
1398   } else if (isa<NoInitExpr>(E)) {
1399     // Do nothing.
1400     return;
1401   } else if (type->isReferenceType()) {
1402     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1403     return CGF.EmitStoreThroughLValue(RV, LV);
1404   }
1405
1406   switch (CGF.getEvaluationKind(type)) {
1407   case TEK_Complex:
1408     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1409     return;
1410   case TEK_Aggregate:
1411     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1412                                                AggValueSlot::IsDestructed,
1413                                       AggValueSlot::DoesNotNeedGCBarriers,
1414                                                AggValueSlot::IsNotAliased,
1415                                                AggValueSlot::MayOverlap,
1416                                                Dest.isZeroed()));
1417     return;
1418   case TEK_Scalar:
1419     if (LV.isSimple()) {
1420       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1421     } else {
1422       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1423     }
1424     return;
1425   }
1426   llvm_unreachable("bad evaluation kind");
1427 }
1428
1429 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1430   QualType type = lv.getType();
1431
1432   // If the destination slot is already zeroed out before the aggregate is
1433   // copied into it, we don't have to emit any zeros here.
1434   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1435     return;
1436
1437   if (CGF.hasScalarEvaluationKind(type)) {
1438     // For non-aggregates, we can store the appropriate null constant.
1439     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1440     // Note that the following is not equivalent to
1441     // EmitStoreThroughBitfieldLValue for ARC types.
1442     if (lv.isBitField()) {
1443       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1444     } else {
1445       assert(lv.isSimple());
1446       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1447     }
1448   } else {
1449     // There's a potential optimization opportunity in combining
1450     // memsets; that would be easy for arrays, but relatively
1451     // difficult for structures with the current code.
1452     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1453   }
1454 }
1455
1456 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1457 #if 0
1458   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1459   // (Length of globals? Chunks of zeroed-out space?).
1460   //
1461   // If we can, prefer a copy from a global; this is a lot less code for long
1462   // globals, and it's easier for the current optimizers to analyze.
1463   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1464     llvm::GlobalVariable* GV =
1465     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1466                              llvm::GlobalValue::InternalLinkage, C, "");
1467     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1468     return;
1469   }
1470 #endif
1471   if (E->hadArrayRangeDesignator())
1472     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1473
1474   if (E->isTransparent())
1475     return Visit(E->getInit(0));
1476
1477   AggValueSlot Dest = EnsureSlot(E->getType());
1478
1479   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1480
1481   // Handle initialization of an array.
1482   if (E->getType()->isArrayType()) {
1483     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1484     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1485     return;
1486   }
1487
1488   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1489
1490   // Do struct initialization; this code just sets each individual member
1491   // to the approprate value.  This makes bitfield support automatic;
1492   // the disadvantage is that the generated code is more difficult for
1493   // the optimizer, especially with bitfields.
1494   unsigned NumInitElements = E->getNumInits();
1495   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1496
1497   // We'll need to enter cleanup scopes in case any of the element
1498   // initializers throws an exception.
1499   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1500   llvm::Instruction *cleanupDominator = nullptr;
1501   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1502     cleanups.push_back(cleanup);
1503     if (!cleanupDominator) // create placeholder once needed
1504       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1505           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1506           CharUnits::One());
1507   };
1508
1509   unsigned curInitIndex = 0;
1510
1511   // Emit initialization of base classes.
1512   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1513     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1514            "missing initializer for base class");
1515     for (auto &Base : CXXRD->bases()) {
1516       assert(!Base.isVirtual() && "should not see vbases here");
1517       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1518       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1519           Dest.getAddress(), CXXRD, BaseRD,
1520           /*isBaseVirtual*/ false);
1521       AggValueSlot AggSlot = AggValueSlot::forAddr(
1522           V, Qualifiers(),
1523           AggValueSlot::IsDestructed,
1524           AggValueSlot::DoesNotNeedGCBarriers,
1525           AggValueSlot::IsNotAliased,
1526           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1527       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1528
1529       if (QualType::DestructionKind dtorKind =
1530               Base.getType().isDestructedType()) {
1531         CGF.pushDestroy(dtorKind, V, Base.getType());
1532         addCleanup(CGF.EHStack.stable_begin());
1533       }
1534     }
1535   }
1536
1537   // Prepare a 'this' for CXXDefaultInitExprs.
1538   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1539
1540   if (record->isUnion()) {
1541     // Only initialize one field of a union. The field itself is
1542     // specified by the initializer list.
1543     if (!E->getInitializedFieldInUnion()) {
1544       // Empty union; we have nothing to do.
1545
1546 #ifndef NDEBUG
1547       // Make sure that it's really an empty and not a failure of
1548       // semantic analysis.
1549       for (const auto *Field : record->fields())
1550         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1551 #endif
1552       return;
1553     }
1554
1555     // FIXME: volatility
1556     FieldDecl *Field = E->getInitializedFieldInUnion();
1557
1558     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1559     if (NumInitElements) {
1560       // Store the initializer into the field
1561       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1562     } else {
1563       // Default-initialize to null.
1564       EmitNullInitializationToLValue(FieldLoc);
1565     }
1566
1567     return;
1568   }
1569
1570   // Here we iterate over the fields; this makes it simpler to both
1571   // default-initialize fields and skip over unnamed fields.
1572   for (const auto *field : record->fields()) {
1573     // We're done once we hit the flexible array member.
1574     if (field->getType()->isIncompleteArrayType())
1575       break;
1576
1577     // Always skip anonymous bitfields.
1578     if (field->isUnnamedBitfield())
1579       continue;
1580
1581     // We're done if we reach the end of the explicit initializers, we
1582     // have a zeroed object, and the rest of the fields are
1583     // zero-initializable.
1584     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1585         CGF.getTypes().isZeroInitializable(E->getType()))
1586       break;
1587
1588
1589     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1590     // We never generate write-barries for initialized fields.
1591     LV.setNonGC(true);
1592
1593     if (curInitIndex < NumInitElements) {
1594       // Store the initializer into the field.
1595       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1596     } else {
1597       // We're out of initializers; default-initialize to null
1598       EmitNullInitializationToLValue(LV);
1599     }
1600
1601     // Push a destructor if necessary.
1602     // FIXME: if we have an array of structures, all explicitly
1603     // initialized, we can end up pushing a linear number of cleanups.
1604     bool pushedCleanup = false;
1605     if (QualType::DestructionKind dtorKind
1606           = field->getType().isDestructedType()) {
1607       assert(LV.isSimple());
1608       if (CGF.needsEHCleanup(dtorKind)) {
1609         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1610                         CGF.getDestroyer(dtorKind), false);
1611         addCleanup(CGF.EHStack.stable_begin());
1612         pushedCleanup = true;
1613       }
1614     }
1615
1616     // If the GEP didn't get used because of a dead zero init or something
1617     // else, clean it up for -O0 builds and general tidiness.
1618     if (!pushedCleanup && LV.isSimple())
1619       if (llvm::GetElementPtrInst *GEP =
1620             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1621         if (GEP->use_empty())
1622           GEP->eraseFromParent();
1623   }
1624
1625   // Deactivate all the partial cleanups in reverse order, which
1626   // generally means popping them.
1627   assert((cleanupDominator || cleanups.empty()) &&
1628          "Missing cleanupDominator before deactivating cleanup blocks");
1629   for (unsigned i = cleanups.size(); i != 0; --i)
1630     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1631
1632   // Destroy the placeholder if we made one.
1633   if (cleanupDominator)
1634     cleanupDominator->eraseFromParent();
1635 }
1636
1637 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1638                                             llvm::Value *outerBegin) {
1639   // Emit the common subexpression.
1640   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1641
1642   Address destPtr = EnsureSlot(E->getType()).getAddress();
1643   uint64_t numElements = E->getArraySize().getZExtValue();
1644
1645   if (!numElements)
1646     return;
1647
1648   // destPtr is an array*. Construct an elementType* by drilling down a level.
1649   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1650   llvm::Value *indices[] = {zero, zero};
1651   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1652                                                  "arrayinit.begin");
1653
1654   // Prepare to special-case multidimensional array initialization: we avoid
1655   // emitting multiple destructor loops in that case.
1656   if (!outerBegin)
1657     outerBegin = begin;
1658   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1659
1660   QualType elementType =
1661       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1662   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1663   CharUnits elementAlign =
1664       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1665
1666   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1667   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1668
1669   // Jump into the body.
1670   CGF.EmitBlock(bodyBB);
1671   llvm::PHINode *index =
1672       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1673   index->addIncoming(zero, entryBB);
1674   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1675
1676   // Prepare for a cleanup.
1677   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1678   EHScopeStack::stable_iterator cleanup;
1679   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1680     if (outerBegin->getType() != element->getType())
1681       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1682     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1683                                        elementAlign,
1684                                        CGF.getDestroyer(dtorKind));
1685     cleanup = CGF.EHStack.stable_begin();
1686   } else {
1687     dtorKind = QualType::DK_none;
1688   }
1689
1690   // Emit the actual filler expression.
1691   {
1692     // Temporaries created in an array initialization loop are destroyed
1693     // at the end of each iteration.
1694     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1695     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1696     LValue elementLV =
1697         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1698
1699     if (InnerLoop) {
1700       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1701       auto elementSlot = AggValueSlot::forLValue(
1702           elementLV, AggValueSlot::IsDestructed,
1703           AggValueSlot::DoesNotNeedGCBarriers,
1704           AggValueSlot::IsNotAliased,
1705           AggValueSlot::DoesNotOverlap);
1706       AggExprEmitter(CGF, elementSlot, false)
1707           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1708     } else
1709       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1710   }
1711
1712   // Move on to the next element.
1713   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1714       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1715   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1716
1717   // Leave the loop if we're done.
1718   llvm::Value *done = Builder.CreateICmpEQ(
1719       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1720       "arrayinit.done");
1721   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1722   Builder.CreateCondBr(done, endBB, bodyBB);
1723
1724   CGF.EmitBlock(endBB);
1725
1726   // Leave the partial-array cleanup if we entered one.
1727   if (dtorKind)
1728     CGF.DeactivateCleanupBlock(cleanup, index);
1729 }
1730
1731 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1732   AggValueSlot Dest = EnsureSlot(E->getType());
1733
1734   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1735   EmitInitializationToLValue(E->getBase(), DestLV);
1736   VisitInitListExpr(E->getUpdater());
1737 }
1738
1739 //===----------------------------------------------------------------------===//
1740 //                        Entry Points into this File
1741 //===----------------------------------------------------------------------===//
1742
1743 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1744 /// non-zero bytes that will be stored when outputting the initializer for the
1745 /// specified initializer expression.
1746 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1747   E = E->IgnoreParens();
1748
1749   // 0 and 0.0 won't require any non-zero stores!
1750   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1751
1752   // If this is an initlist expr, sum up the size of sizes of the (present)
1753   // elements.  If this is something weird, assume the whole thing is non-zero.
1754   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1755   while (ILE && ILE->isTransparent())
1756     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1757   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1758     return CGF.getContext().getTypeSizeInChars(E->getType());
1759
1760   // InitListExprs for structs have to be handled carefully.  If there are
1761   // reference members, we need to consider the size of the reference, not the
1762   // referencee.  InitListExprs for unions and arrays can't have references.
1763   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1764     if (!RT->isUnionType()) {
1765       RecordDecl *SD = RT->getDecl();
1766       CharUnits NumNonZeroBytes = CharUnits::Zero();
1767
1768       unsigned ILEElement = 0;
1769       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1770         while (ILEElement != CXXRD->getNumBases())
1771           NumNonZeroBytes +=
1772               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1773       for (const auto *Field : SD->fields()) {
1774         // We're done once we hit the flexible array member or run out of
1775         // InitListExpr elements.
1776         if (Field->getType()->isIncompleteArrayType() ||
1777             ILEElement == ILE->getNumInits())
1778           break;
1779         if (Field->isUnnamedBitfield())
1780           continue;
1781
1782         const Expr *E = ILE->getInit(ILEElement++);
1783
1784         // Reference values are always non-null and have the width of a pointer.
1785         if (Field->getType()->isReferenceType())
1786           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1787               CGF.getTarget().getPointerWidth(0));
1788         else
1789           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1790       }
1791
1792       return NumNonZeroBytes;
1793     }
1794   }
1795
1796
1797   CharUnits NumNonZeroBytes = CharUnits::Zero();
1798   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1799     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1800   return NumNonZeroBytes;
1801 }
1802
1803 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1804 /// zeros in it, emit a memset and avoid storing the individual zeros.
1805 ///
1806 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1807                                      CodeGenFunction &CGF) {
1808   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1809   // volatile stores.
1810   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1811     return;
1812
1813   // C++ objects with a user-declared constructor don't need zero'ing.
1814   if (CGF.getLangOpts().CPlusPlus)
1815     if (const RecordType *RT = CGF.getContext()
1816                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1817       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1818       if (RD->hasUserDeclaredConstructor())
1819         return;
1820     }
1821
1822   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1823   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1824   if (Size <= CharUnits::fromQuantity(16))
1825     return;
1826
1827   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1828   // we prefer to emit memset + individual stores for the rest.
1829   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1830   if (NumNonZeroBytes*4 > Size)
1831     return;
1832
1833   // Okay, it seems like a good idea to use an initial memset, emit the call.
1834   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1835
1836   Address Loc = Slot.getAddress();
1837   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1838   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1839
1840   // Tell the AggExprEmitter that the slot is known zero.
1841   Slot.setZeroed();
1842 }
1843
1844
1845
1846
1847 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1848 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1849 /// the value of the aggregate expression is not needed.  If VolatileDest is
1850 /// true, DestPtr cannot be 0.
1851 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1852   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1853          "Invalid aggregate expression to emit");
1854   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1855          "slot has bits but no address");
1856
1857   // Optimize the slot if possible.
1858   CheckAggExprForMemSetUse(Slot, E, *this);
1859
1860   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1861 }
1862
1863 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1864   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1865   Address Temp = CreateMemTemp(E->getType());
1866   LValue LV = MakeAddrLValue(Temp, E->getType());
1867   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1868                                          AggValueSlot::DoesNotNeedGCBarriers,
1869                                          AggValueSlot::IsNotAliased,
1870                                          AggValueSlot::DoesNotOverlap));
1871   return LV;
1872 }
1873
1874 AggValueSlot::Overlap_t
1875 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1876   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1877     return AggValueSlot::DoesNotOverlap;
1878
1879   // If the field lies entirely within the enclosing class's nvsize, its tail
1880   // padding cannot overlap any already-initialized object. (The only subobjects
1881   // with greater addresses that might already be initialized are vbases.)
1882   const RecordDecl *ClassRD = FD->getParent();
1883   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1884   if (Layout.getFieldOffset(FD->getFieldIndex()) +
1885           getContext().getTypeSize(FD->getType()) <=
1886       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1887     return AggValueSlot::DoesNotOverlap;
1888
1889   // The tail padding may contain values we need to preserve.
1890   return AggValueSlot::MayOverlap;
1891 }
1892
1893 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1894     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1895   // If the most-derived object is a field declared with [[no_unique_address]],
1896   // the tail padding of any virtual base could be reused for other subobjects
1897   // of that field's class.
1898   if (IsVirtual)
1899     return AggValueSlot::MayOverlap;
1900
1901   // If the base class is laid out entirely within the nvsize of the derived
1902   // class, its tail padding cannot yet be initialized, so we can issue
1903   // stores at the full width of the base class.
1904   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1905   if (Layout.getBaseClassOffset(BaseRD) +
1906           getContext().getASTRecordLayout(BaseRD).getSize() <=
1907       Layout.getNonVirtualSize())
1908     return AggValueSlot::DoesNotOverlap;
1909
1910   // The tail padding may contain values we need to preserve.
1911   return AggValueSlot::MayOverlap;
1912 }
1913
1914 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1915                                         AggValueSlot::Overlap_t MayOverlap,
1916                                         bool isVolatile) {
1917   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1918
1919   Address DestPtr = Dest.getAddress();
1920   Address SrcPtr = Src.getAddress();
1921
1922   if (getLangOpts().CPlusPlus) {
1923     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1924       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1925       assert((Record->hasTrivialCopyConstructor() ||
1926               Record->hasTrivialCopyAssignment() ||
1927               Record->hasTrivialMoveConstructor() ||
1928               Record->hasTrivialMoveAssignment() ||
1929               Record->isUnion()) &&
1930              "Trying to aggregate-copy a type without a trivial copy/move "
1931              "constructor or assignment operator");
1932       // Ignore empty classes in C++.
1933       if (Record->isEmpty())
1934         return;
1935     }
1936   }
1937
1938   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1939   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1940   // read from another object that overlaps in anyway the storage of the first
1941   // object, then the overlap shall be exact and the two objects shall have
1942   // qualified or unqualified versions of a compatible type."
1943   //
1944   // memcpy is not defined if the source and destination pointers are exactly
1945   // equal, but other compilers do this optimization, and almost every memcpy
1946   // implementation handles this case safely.  If there is a libc that does not
1947   // safely handle this, we can add a target hook.
1948
1949   // Get data size info for this aggregate. Don't copy the tail padding if this
1950   // might be a potentially-overlapping subobject, since the tail padding might
1951   // be occupied by a different object. Otherwise, copying it is fine.
1952   std::pair<CharUnits, CharUnits> TypeInfo;
1953   if (MayOverlap)
1954     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1955   else
1956     TypeInfo = getContext().getTypeInfoInChars(Ty);
1957
1958   llvm::Value *SizeVal = nullptr;
1959   if (TypeInfo.first.isZero()) {
1960     // But note that getTypeInfo returns 0 for a VLA.
1961     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1962             getContext().getAsArrayType(Ty))) {
1963       QualType BaseEltTy;
1964       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1965       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1966       assert(!TypeInfo.first.isZero());
1967       SizeVal = Builder.CreateNUWMul(
1968           SizeVal,
1969           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1970     }
1971   }
1972   if (!SizeVal) {
1973     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1974   }
1975
1976   // FIXME: If we have a volatile struct, the optimizer can remove what might
1977   // appear to be `extra' memory ops:
1978   //
1979   // volatile struct { int i; } a, b;
1980   //
1981   // int main() {
1982   //   a = b;
1983   //   a = b;
1984   // }
1985   //
1986   // we need to use a different call here.  We use isVolatile to indicate when
1987   // either the source or the destination is volatile.
1988
1989   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1990   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1991
1992   // Don't do any of the memmove_collectable tests if GC isn't set.
1993   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1994     // fall through
1995   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1996     RecordDecl *Record = RecordTy->getDecl();
1997     if (Record->hasObjectMember()) {
1998       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1999                                                     SizeVal);
2000       return;
2001     }
2002   } else if (Ty->isArrayType()) {
2003     QualType BaseType = getContext().getBaseElementType(Ty);
2004     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2005       if (RecordTy->getDecl()->hasObjectMember()) {
2006         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2007                                                       SizeVal);
2008         return;
2009       }
2010     }
2011   }
2012
2013   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2014
2015   // Determine the metadata to describe the position of any padding in this
2016   // memcpy, as well as the TBAA tags for the members of the struct, in case
2017   // the optimizer wishes to expand it in to scalar memory operations.
2018   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2019     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2020
2021   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2022     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2023         Dest.getTBAAInfo(), Src.getTBAAInfo());
2024     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2025   }
2026 }