]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
Vendor import of llvm trunk r338150:
[FreeBSD/FreeBSD.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SelectionDAGISel.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/CFG.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/CodeGen/FastISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachinePassRegistry.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/SchedulerRegistry.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGNodes.h"
50 #include "llvm/CodeGen/StackProtector.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetLowering.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/IR/BasicBlock.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/DebugLoc.h"
61 #include "llvm/IR/DiagnosticInfo.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/InlineAsm.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instruction.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCInstrDesc.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CodeGen.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/Timer.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetIntrinsicInfo.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <limits>
97 #include <memory>
98 #include <string>
99 #include <utility>
100 #include <vector>
101
102 using namespace llvm;
103
104 #define DEBUG_TYPE "isel"
105
106 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
107 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
108 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
109 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
110 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
111 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
112 STATISTIC(NumFastIselFailLowerArguments,
113           "Number of entry blocks where fast isel failed to lower arguments");
114
115 static cl::opt<int> EnableFastISelAbort(
116     "fast-isel-abort", cl::Hidden,
117     cl::desc("Enable abort calls when \"fast\" instruction selection "
118              "fails to lower an instruction: 0 disable the abort, 1 will "
119              "abort but for args, calls and terminators, 2 will also "
120              "abort for argument lowering, and 3 will never fallback "
121              "to SelectionDAG."));
122
123 static cl::opt<bool> EnableFastISelFallbackReport(
124     "fast-isel-report-on-fallback", cl::Hidden,
125     cl::desc("Emit a diagnostic when \"fast\" instruction selection "
126              "falls back to SelectionDAG."));
127
128 static cl::opt<bool>
129 UseMBPI("use-mbpi",
130         cl::desc("use Machine Branch Probability Info"),
131         cl::init(true), cl::Hidden);
132
133 #ifndef NDEBUG
134 static cl::opt<std::string>
135 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
136                         cl::desc("Only display the basic block whose name "
137                                  "matches this for all view-*-dags options"));
138 static cl::opt<bool>
139 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
140           cl::desc("Pop up a window to show dags before the first "
141                    "dag combine pass"));
142 static cl::opt<bool>
143 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
144           cl::desc("Pop up a window to show dags before legalize types"));
145 static cl::opt<bool>
146 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
147           cl::desc("Pop up a window to show dags before legalize"));
148 static cl::opt<bool>
149 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
150           cl::desc("Pop up a window to show dags before the second "
151                    "dag combine pass"));
152 static cl::opt<bool>
153 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
154           cl::desc("Pop up a window to show dags before the post legalize types"
155                    " dag combine pass"));
156 static cl::opt<bool>
157 ViewISelDAGs("view-isel-dags", cl::Hidden,
158           cl::desc("Pop up a window to show isel dags as they are selected"));
159 static cl::opt<bool>
160 ViewSchedDAGs("view-sched-dags", cl::Hidden,
161           cl::desc("Pop up a window to show sched dags as they are processed"));
162 static cl::opt<bool>
163 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
164       cl::desc("Pop up a window to show SUnit dags after they are processed"));
165 #else
166 static const bool ViewDAGCombine1 = false,
167                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
168                   ViewDAGCombine2 = false,
169                   ViewDAGCombineLT = false,
170                   ViewISelDAGs = false, ViewSchedDAGs = false,
171                   ViewSUnitDAGs = false;
172 #endif
173
174 //===---------------------------------------------------------------------===//
175 ///
176 /// RegisterScheduler class - Track the registration of instruction schedulers.
177 ///
178 //===---------------------------------------------------------------------===//
179 MachinePassRegistry RegisterScheduler::Registry;
180
181 //===---------------------------------------------------------------------===//
182 ///
183 /// ISHeuristic command line option for instruction schedulers.
184 ///
185 //===---------------------------------------------------------------------===//
186 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
187                RegisterPassParser<RegisterScheduler>>
188 ISHeuristic("pre-RA-sched",
189             cl::init(&createDefaultScheduler), cl::Hidden,
190             cl::desc("Instruction schedulers available (before register"
191                      " allocation):"));
192
193 static RegisterScheduler
194 defaultListDAGScheduler("default", "Best scheduler for the target",
195                         createDefaultScheduler);
196
197 namespace llvm {
198
199   //===--------------------------------------------------------------------===//
200   /// This class is used by SelectionDAGISel to temporarily override
201   /// the optimization level on a per-function basis.
202   class OptLevelChanger {
203     SelectionDAGISel &IS;
204     CodeGenOpt::Level SavedOptLevel;
205     bool SavedFastISel;
206
207   public:
208     OptLevelChanger(SelectionDAGISel &ISel,
209                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
210       SavedOptLevel = IS.OptLevel;
211       if (NewOptLevel == SavedOptLevel)
212         return;
213       IS.OptLevel = NewOptLevel;
214       IS.TM.setOptLevel(NewOptLevel);
215       LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
216                         << IS.MF->getFunction().getName() << "\n");
217       LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
218                         << NewOptLevel << "\n");
219       SavedFastISel = IS.TM.Options.EnableFastISel;
220       if (NewOptLevel == CodeGenOpt::None) {
221         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
222         LLVM_DEBUG(
223             dbgs() << "\tFastISel is "
224                    << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
225                    << "\n");
226       }
227     }
228
229     ~OptLevelChanger() {
230       if (IS.OptLevel == SavedOptLevel)
231         return;
232       LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
233                         << IS.MF->getFunction().getName() << "\n");
234       LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
235                         << SavedOptLevel << "\n");
236       IS.OptLevel = SavedOptLevel;
237       IS.TM.setOptLevel(SavedOptLevel);
238       IS.TM.setFastISel(SavedFastISel);
239     }
240   };
241
242   //===--------------------------------------------------------------------===//
243   /// createDefaultScheduler - This creates an instruction scheduler appropriate
244   /// for the target.
245   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
246                                              CodeGenOpt::Level OptLevel) {
247     const TargetLowering *TLI = IS->TLI;
248     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
249
250     // Try first to see if the Target has its own way of selecting a scheduler
251     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
252       return SchedulerCtor(IS, OptLevel);
253     }
254
255     if (OptLevel == CodeGenOpt::None ||
256         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
257         TLI->getSchedulingPreference() == Sched::Source)
258       return createSourceListDAGScheduler(IS, OptLevel);
259     if (TLI->getSchedulingPreference() == Sched::RegPressure)
260       return createBURRListDAGScheduler(IS, OptLevel);
261     if (TLI->getSchedulingPreference() == Sched::Hybrid)
262       return createHybridListDAGScheduler(IS, OptLevel);
263     if (TLI->getSchedulingPreference() == Sched::VLIW)
264       return createVLIWDAGScheduler(IS, OptLevel);
265     assert(TLI->getSchedulingPreference() == Sched::ILP &&
266            "Unknown sched type!");
267     return createILPListDAGScheduler(IS, OptLevel);
268   }
269
270 } // end namespace llvm
271
272 // EmitInstrWithCustomInserter - This method should be implemented by targets
273 // that mark instructions with the 'usesCustomInserter' flag.  These
274 // instructions are special in various ways, which require special support to
275 // insert.  The specified MachineInstr is created but not inserted into any
276 // basic blocks, and this method is called to expand it into a sequence of
277 // instructions, potentially also creating new basic blocks and control flow.
278 // When new basic blocks are inserted and the edges from MBB to its successors
279 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
280 // DenseMap.
281 MachineBasicBlock *
282 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
283                                             MachineBasicBlock *MBB) const {
284 #ifndef NDEBUG
285   dbgs() << "If a target marks an instruction with "
286           "'usesCustomInserter', it must implement "
287           "TargetLowering::EmitInstrWithCustomInserter!";
288 #endif
289   llvm_unreachable(nullptr);
290 }
291
292 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
293                                                    SDNode *Node) const {
294   assert(!MI.hasPostISelHook() &&
295          "If a target marks an instruction with 'hasPostISelHook', "
296          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
297 }
298
299 //===----------------------------------------------------------------------===//
300 // SelectionDAGISel code
301 //===----------------------------------------------------------------------===//
302
303 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
304                                    CodeGenOpt::Level OL) :
305   MachineFunctionPass(ID), TM(tm),
306   FuncInfo(new FunctionLoweringInfo()),
307   CurDAG(new SelectionDAG(tm, OL)),
308   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
309   AA(), GFI(),
310   OptLevel(OL),
311   DAGSize(0) {
312     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
313     initializeBranchProbabilityInfoWrapperPassPass(
314         *PassRegistry::getPassRegistry());
315     initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
316     initializeTargetLibraryInfoWrapperPassPass(
317         *PassRegistry::getPassRegistry());
318   }
319
320 SelectionDAGISel::~SelectionDAGISel() {
321   delete SDB;
322   delete CurDAG;
323   delete FuncInfo;
324 }
325
326 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
327   if (OptLevel != CodeGenOpt::None)
328     AU.addRequired<AAResultsWrapperPass>();
329   AU.addRequired<GCModuleInfo>();
330   AU.addRequired<StackProtector>();
331   AU.addPreserved<GCModuleInfo>();
332   AU.addRequired<TargetLibraryInfoWrapperPass>();
333   AU.addRequired<TargetTransformInfoWrapperPass>();
334   if (UseMBPI && OptLevel != CodeGenOpt::None)
335     AU.addRequired<BranchProbabilityInfoWrapperPass>();
336   MachineFunctionPass::getAnalysisUsage(AU);
337 }
338
339 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
340 /// may trap on it.  In this case we have to split the edge so that the path
341 /// through the predecessor block that doesn't go to the phi block doesn't
342 /// execute the possibly trapping instruction. If available, we pass domtree
343 /// and loop info to be updated when we split critical edges. This is because
344 /// SelectionDAGISel preserves these analyses.
345 /// This is required for correctness, so it must be done at -O0.
346 ///
347 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
348                                          LoopInfo *LI) {
349   // Loop for blocks with phi nodes.
350   for (BasicBlock &BB : Fn) {
351     PHINode *PN = dyn_cast<PHINode>(BB.begin());
352     if (!PN) continue;
353
354   ReprocessBlock:
355     // For each block with a PHI node, check to see if any of the input values
356     // are potentially trapping constant expressions.  Constant expressions are
357     // the only potentially trapping value that can occur as the argument to a
358     // PHI.
359     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
360       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
361         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
362         if (!CE || !CE->canTrap()) continue;
363
364         // The only case we have to worry about is when the edge is critical.
365         // Since this block has a PHI Node, we assume it has multiple input
366         // edges: check to see if the pred has multiple successors.
367         BasicBlock *Pred = PN->getIncomingBlock(i);
368         if (Pred->getTerminator()->getNumSuccessors() == 1)
369           continue;
370
371         // Okay, we have to split this edge.
372         SplitCriticalEdge(
373             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
374             CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
375         goto ReprocessBlock;
376       }
377   }
378 }
379
380 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
381   // If we already selected that function, we do not need to run SDISel.
382   if (mf.getProperties().hasProperty(
383           MachineFunctionProperties::Property::Selected))
384     return false;
385   // Do some sanity-checking on the command-line options.
386   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
387          "-fast-isel-abort > 0 requires -fast-isel");
388
389   const Function &Fn = mf.getFunction();
390   MF = &mf;
391
392   // Reset the target options before resetting the optimization
393   // level below.
394   // FIXME: This is a horrible hack and should be processed via
395   // codegen looking at the optimization level explicitly when
396   // it wants to look at it.
397   TM.resetTargetOptions(Fn);
398   // Reset OptLevel to None for optnone functions.
399   CodeGenOpt::Level NewOptLevel = OptLevel;
400   if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
401     NewOptLevel = CodeGenOpt::None;
402   OptLevelChanger OLC(*this, NewOptLevel);
403
404   TII = MF->getSubtarget().getInstrInfo();
405   TLI = MF->getSubtarget().getTargetLowering();
406   RegInfo = &MF->getRegInfo();
407   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
408   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
409   ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
410   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
411   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
412   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
413   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
414
415   LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
416
417   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
418
419   CurDAG->init(*MF, *ORE, this, LibInfo,
420    getAnalysisIfAvailable<DivergenceAnalysis>());
421   FuncInfo->set(Fn, *MF, CurDAG);
422
423   // Now get the optional analyzes if we want to.
424   // This is based on the possibly changed OptLevel (after optnone is taken
425   // into account).  That's unfortunate but OK because it just means we won't
426   // ask for passes that have been required anyway.
427
428   if (UseMBPI && OptLevel != CodeGenOpt::None)
429     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
430   else
431     FuncInfo->BPI = nullptr;
432
433   if (OptLevel != CodeGenOpt::None)
434     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
435   else
436     AA = nullptr;
437
438   SDB->init(GFI, AA, LibInfo);
439
440   MF->setHasInlineAsm(false);
441
442   FuncInfo->SplitCSR = false;
443
444   // We split CSR if the target supports it for the given function
445   // and the function has only return exits.
446   if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
447     FuncInfo->SplitCSR = true;
448
449     // Collect all the return blocks.
450     for (const BasicBlock &BB : Fn) {
451       if (!succ_empty(&BB))
452         continue;
453
454       const TerminatorInst *Term = BB.getTerminator();
455       if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
456         continue;
457
458       // Bail out if the exit block is not Return nor Unreachable.
459       FuncInfo->SplitCSR = false;
460       break;
461     }
462   }
463
464   MachineBasicBlock *EntryMBB = &MF->front();
465   if (FuncInfo->SplitCSR)
466     // This performs initialization so lowering for SplitCSR will be correct.
467     TLI->initializeSplitCSR(EntryMBB);
468
469   SelectAllBasicBlocks(Fn);
470   if (FastISelFailed && EnableFastISelFallbackReport) {
471     DiagnosticInfoISelFallback DiagFallback(Fn);
472     Fn.getContext().diagnose(DiagFallback);
473   }
474
475   // If the first basic block in the function has live ins that need to be
476   // copied into vregs, emit the copies into the top of the block before
477   // emitting the code for the block.
478   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
479   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
480
481   // Insert copies in the entry block and the return blocks.
482   if (FuncInfo->SplitCSR) {
483     SmallVector<MachineBasicBlock*, 4> Returns;
484     // Collect all the return blocks.
485     for (MachineBasicBlock &MBB : mf) {
486       if (!MBB.succ_empty())
487         continue;
488
489       MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
490       if (Term != MBB.end() && Term->isReturn()) {
491         Returns.push_back(&MBB);
492         continue;
493       }
494     }
495     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
496   }
497
498   DenseMap<unsigned, unsigned> LiveInMap;
499   if (!FuncInfo->ArgDbgValues.empty())
500     for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
501       if (LI.second)
502         LiveInMap.insert(LI);
503
504   // Insert DBG_VALUE instructions for function arguments to the entry block.
505   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
506     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
507     bool hasFI = MI->getOperand(0).isFI();
508     unsigned Reg =
509         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
510     if (TargetRegisterInfo::isPhysicalRegister(Reg))
511       EntryMBB->insert(EntryMBB->begin(), MI);
512     else {
513       MachineInstr *Def = RegInfo->getVRegDef(Reg);
514       if (Def) {
515         MachineBasicBlock::iterator InsertPos = Def;
516         // FIXME: VR def may not be in entry block.
517         Def->getParent()->insert(std::next(InsertPos), MI);
518       } else
519         LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
520                           << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
521     }
522
523     // If Reg is live-in then update debug info to track its copy in a vreg.
524     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
525     if (LDI != LiveInMap.end()) {
526       assert(!hasFI && "There's no handling of frame pointer updating here yet "
527                        "- add if needed");
528       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
529       MachineBasicBlock::iterator InsertPos = Def;
530       const MDNode *Variable = MI->getDebugVariable();
531       const MDNode *Expr = MI->getDebugExpression();
532       DebugLoc DL = MI->getDebugLoc();
533       bool IsIndirect = MI->isIndirectDebugValue();
534       if (IsIndirect)
535         assert(MI->getOperand(1).getImm() == 0 &&
536                "DBG_VALUE with nonzero offset");
537       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
538              "Expected inlined-at fields to agree");
539       // Def is never a terminator here, so it is ok to increment InsertPos.
540       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
541               IsIndirect, LDI->second, Variable, Expr);
542
543       // If this vreg is directly copied into an exported register then
544       // that COPY instructions also need DBG_VALUE, if it is the only
545       // user of LDI->second.
546       MachineInstr *CopyUseMI = nullptr;
547       for (MachineRegisterInfo::use_instr_iterator
548            UI = RegInfo->use_instr_begin(LDI->second),
549            E = RegInfo->use_instr_end(); UI != E; ) {
550         MachineInstr *UseMI = &*(UI++);
551         if (UseMI->isDebugValue()) continue;
552         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
553           CopyUseMI = UseMI; continue;
554         }
555         // Otherwise this is another use or second copy use.
556         CopyUseMI = nullptr; break;
557       }
558       if (CopyUseMI) {
559         // Use MI's debug location, which describes where Variable was
560         // declared, rather than whatever is attached to CopyUseMI.
561         MachineInstr *NewMI =
562             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
563                     CopyUseMI->getOperand(0).getReg(), Variable, Expr);
564         MachineBasicBlock::iterator Pos = CopyUseMI;
565         EntryMBB->insertAfter(Pos, NewMI);
566       }
567     }
568   }
569
570   // Determine if there are any calls in this machine function.
571   MachineFrameInfo &MFI = MF->getFrameInfo();
572   for (const auto &MBB : *MF) {
573     if (MFI.hasCalls() && MF->hasInlineAsm())
574       break;
575
576     for (const auto &MI : MBB) {
577       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
578       if ((MCID.isCall() && !MCID.isReturn()) ||
579           MI.isStackAligningInlineAsm()) {
580         MFI.setHasCalls(true);
581       }
582       if (MI.isInlineAsm()) {
583         MF->setHasInlineAsm(true);
584       }
585     }
586   }
587
588   // Determine if there is a call to setjmp in the machine function.
589   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
590
591   // Replace forward-declared registers with the registers containing
592   // the desired value.
593   MachineRegisterInfo &MRI = MF->getRegInfo();
594   for (DenseMap<unsigned, unsigned>::iterator
595        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
596        I != E; ++I) {
597     unsigned From = I->first;
598     unsigned To = I->second;
599     // If To is also scheduled to be replaced, find what its ultimate
600     // replacement is.
601     while (true) {
602       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
603       if (J == E) break;
604       To = J->second;
605     }
606     // Make sure the new register has a sufficiently constrained register class.
607     if (TargetRegisterInfo::isVirtualRegister(From) &&
608         TargetRegisterInfo::isVirtualRegister(To))
609       MRI.constrainRegClass(To, MRI.getRegClass(From));
610     // Replace it.
611
612
613     // Replacing one register with another won't touch the kill flags.
614     // We need to conservatively clear the kill flags as a kill on the old
615     // register might dominate existing uses of the new register.
616     if (!MRI.use_empty(To))
617       MRI.clearKillFlags(From);
618     MRI.replaceRegWith(From, To);
619   }
620
621   TLI->finalizeLowering(*MF);
622
623   // Release function-specific state. SDB and CurDAG are already cleared
624   // at this point.
625   FuncInfo->clear();
626
627   LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
628   LLVM_DEBUG(MF->print(dbgs()));
629
630   return true;
631 }
632
633 static void reportFastISelFailure(MachineFunction &MF,
634                                   OptimizationRemarkEmitter &ORE,
635                                   OptimizationRemarkMissed &R,
636                                   bool ShouldAbort) {
637   // Print the function name explicitly if we don't have a debug location (which
638   // makes the diagnostic less useful) or if we're going to emit a raw error.
639   if (!R.getLocation().isValid() || ShouldAbort)
640     R << (" (in function: " + MF.getName() + ")").str();
641
642   if (ShouldAbort)
643     report_fatal_error(R.getMsg());
644
645   ORE.emit(R);
646 }
647
648 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
649                                         BasicBlock::const_iterator End,
650                                         bool &HadTailCall) {
651   // Allow creating illegal types during DAG building for the basic block.
652   CurDAG->NewNodesMustHaveLegalTypes = false;
653
654   // Lower the instructions. If a call is emitted as a tail call, cease emitting
655   // nodes for this block.
656   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
657     if (!ElidedArgCopyInstrs.count(&*I))
658       SDB->visit(*I);
659   }
660
661   // Make sure the root of the DAG is up-to-date.
662   CurDAG->setRoot(SDB->getControlRoot());
663   HadTailCall = SDB->HasTailCall;
664   SDB->clear();
665
666   // Final step, emit the lowered DAG as machine code.
667   CodeGenAndEmitDAG();
668 }
669
670 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
671   SmallPtrSet<SDNode*, 16> VisitedNodes;
672   SmallVector<SDNode*, 128> Worklist;
673
674   Worklist.push_back(CurDAG->getRoot().getNode());
675
676   KnownBits Known;
677
678   do {
679     SDNode *N = Worklist.pop_back_val();
680
681     // If we've already seen this node, ignore it.
682     if (!VisitedNodes.insert(N).second)
683       continue;
684
685     // Otherwise, add all chain operands to the worklist.
686     for (const SDValue &Op : N->op_values())
687       if (Op.getValueType() == MVT::Other)
688         Worklist.push_back(Op.getNode());
689
690     // If this is a CopyToReg with a vreg dest, process it.
691     if (N->getOpcode() != ISD::CopyToReg)
692       continue;
693
694     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
695     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
696       continue;
697
698     // Ignore non-scalar or non-integer values.
699     SDValue Src = N->getOperand(2);
700     EVT SrcVT = Src.getValueType();
701     if (!SrcVT.isInteger() || SrcVT.isVector())
702       continue;
703
704     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
705     CurDAG->computeKnownBits(Src, Known);
706     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
707   } while (!Worklist.empty());
708 }
709
710 void SelectionDAGISel::CodeGenAndEmitDAG() {
711   StringRef GroupName = "sdag";
712   StringRef GroupDescription = "Instruction Selection and Scheduling";
713   std::string BlockName;
714   int BlockNumber = -1;
715   (void)BlockNumber;
716   bool MatchFilterBB = false; (void)MatchFilterBB;
717   TargetTransformInfo &TTI =
718       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
719
720   // Pre-type legalization allow creation of any node types.
721   CurDAG->NewNodesMustHaveLegalTypes = false;
722
723 #ifndef NDEBUG
724   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
725                    FilterDAGBasicBlockName ==
726                        FuncInfo->MBB->getBasicBlock()->getName());
727 #endif
728 #ifdef NDEBUG
729   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
730       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
731       ViewSUnitDAGs)
732 #endif
733   {
734     BlockNumber = FuncInfo->MBB->getNumber();
735     BlockName =
736         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
737   }
738   LLVM_DEBUG(dbgs() << "Initial selection DAG: "
739                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
740                     << "'\n";
741              CurDAG->dump());
742
743   if (ViewDAGCombine1 && MatchFilterBB)
744     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
745
746   // Run the DAG combiner in pre-legalize mode.
747   {
748     NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
749                        GroupDescription, TimePassesIsEnabled);
750     CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
751   }
752
753   if (TTI.hasBranchDivergence())
754     CurDAG->VerifyDAGDiverence();
755
756   LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
757                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
758                     << "'\n";
759              CurDAG->dump());
760
761   // Second step, hack on the DAG until it only uses operations and types that
762   // the target supports.
763   if (ViewLegalizeTypesDAGs && MatchFilterBB)
764     CurDAG->viewGraph("legalize-types input for " + BlockName);
765
766   bool Changed;
767   {
768     NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
769                        GroupDescription, TimePassesIsEnabled);
770     Changed = CurDAG->LegalizeTypes();
771   }
772
773   if (TTI.hasBranchDivergence())
774     CurDAG->VerifyDAGDiverence();
775
776   LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
777                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
778                     << "'\n";
779              CurDAG->dump());
780
781   // Only allow creation of legal node types.
782   CurDAG->NewNodesMustHaveLegalTypes = true;
783
784   if (Changed) {
785     if (ViewDAGCombineLT && MatchFilterBB)
786       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
787
788     // Run the DAG combiner in post-type-legalize mode.
789     {
790       NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
791                          GroupName, GroupDescription, TimePassesIsEnabled);
792       CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
793     }
794
795     if (TTI.hasBranchDivergence())
796       CurDAG->VerifyDAGDiverence();
797
798     LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
799                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
800                       << "'\n";
801                CurDAG->dump());
802   }
803
804   {
805     NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
806                        GroupDescription, TimePassesIsEnabled);
807     Changed = CurDAG->LegalizeVectors();
808   }
809
810   if (Changed) {
811     LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
812                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
813                       << "'\n";
814                CurDAG->dump());
815
816     {
817       NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
818                          GroupDescription, TimePassesIsEnabled);
819       CurDAG->LegalizeTypes();
820     }
821
822     LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
823                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
824                       << "'\n";
825                CurDAG->dump());
826
827     if (ViewDAGCombineLT && MatchFilterBB)
828       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
829
830     // Run the DAG combiner in post-type-legalize mode.
831     {
832       NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
833                          GroupName, GroupDescription, TimePassesIsEnabled);
834       CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
835     }
836
837     LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
838                       << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
839                       << "'\n";
840                CurDAG->dump());
841
842     if (TTI.hasBranchDivergence())
843       CurDAG->VerifyDAGDiverence();
844   }
845
846   if (ViewLegalizeDAGs && MatchFilterBB)
847     CurDAG->viewGraph("legalize input for " + BlockName);
848
849   {
850     NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
851                        GroupDescription, TimePassesIsEnabled);
852     CurDAG->Legalize();
853   }
854
855   if (TTI.hasBranchDivergence())
856     CurDAG->VerifyDAGDiverence();
857
858   LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
859                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
860                     << "'\n";
861              CurDAG->dump());
862
863   if (ViewDAGCombine2 && MatchFilterBB)
864     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
865
866   // Run the DAG combiner in post-legalize mode.
867   {
868     NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
869                        GroupDescription, TimePassesIsEnabled);
870     CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
871   }
872
873   if (TTI.hasBranchDivergence())
874     CurDAG->VerifyDAGDiverence();
875
876   LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
877                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
878                     << "'\n";
879              CurDAG->dump());
880
881   if (OptLevel != CodeGenOpt::None)
882     ComputeLiveOutVRegInfo();
883
884   if (ViewISelDAGs && MatchFilterBB)
885     CurDAG->viewGraph("isel input for " + BlockName);
886
887   // Third, instruction select all of the operations to machine code, adding the
888   // code to the MachineBasicBlock.
889   {
890     NamedRegionTimer T("isel", "Instruction Selection", GroupName,
891                        GroupDescription, TimePassesIsEnabled);
892     DoInstructionSelection();
893   }
894
895   LLVM_DEBUG(dbgs() << "Selected selection DAG: "
896                     << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
897                     << "'\n";
898              CurDAG->dump());
899
900   if (ViewSchedDAGs && MatchFilterBB)
901     CurDAG->viewGraph("scheduler input for " + BlockName);
902
903   // Schedule machine code.
904   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
905   {
906     NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
907                        GroupDescription, TimePassesIsEnabled);
908     Scheduler->Run(CurDAG, FuncInfo->MBB);
909   }
910
911   if (ViewSUnitDAGs && MatchFilterBB)
912     Scheduler->viewGraph();
913
914   // Emit machine code to BB.  This can change 'BB' to the last block being
915   // inserted into.
916   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
917   {
918     NamedRegionTimer T("emit", "Instruction Creation", GroupName,
919                        GroupDescription, TimePassesIsEnabled);
920
921     // FuncInfo->InsertPt is passed by reference and set to the end of the
922     // scheduled instructions.
923     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
924   }
925
926   // If the block was split, make sure we update any references that are used to
927   // update PHI nodes later on.
928   if (FirstMBB != LastMBB)
929     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
930
931   // Free the scheduler state.
932   {
933     NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
934                        GroupDescription, TimePassesIsEnabled);
935     delete Scheduler;
936   }
937
938   // Free the SelectionDAG state, now that we're finished with it.
939   CurDAG->clear();
940 }
941
942 namespace {
943
944 /// ISelUpdater - helper class to handle updates of the instruction selection
945 /// graph.
946 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
947   SelectionDAG::allnodes_iterator &ISelPosition;
948
949 public:
950   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
951     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
952
953   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
954   /// deleted is the current ISelPosition node, update ISelPosition.
955   ///
956   void NodeDeleted(SDNode *N, SDNode *E) override {
957     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
958       ++ISelPosition;
959   }
960 };
961
962 } // end anonymous namespace
963
964 // This function is used to enforce the topological node id property
965 // property leveraged during Instruction selection. Before selection all
966 // nodes are given a non-negative id such that all nodes have a larger id than
967 // their operands. As this holds transitively we can prune checks that a node N
968 // is a predecessor of M another by not recursively checking through M's
969 // operands if N's ID is larger than M's ID. This is significantly improves
970 // performance of for various legality checks (e.g. IsLegalToFold /
971 // UpdateChains).
972
973 // However, when we fuse multiple nodes into a single node
974 // during selection we may induce a predecessor relationship between inputs and
975 // outputs of distinct nodes being merged violating the topological property.
976 // Should a fused node have a successor which has yet to be selected, our
977 // legality checks would be incorrect. To avoid this we mark all unselected
978 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
979 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
980 // We use bit-negation to more clearly enforce that node id -1 can only be
981 // achieved by selected nodes). As the conversion is reversable the original Id,
982 // topological pruning can still be leveraged when looking for unselected nodes.
983 // This method is call internally in all ISel replacement calls.
984 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
985   SmallVector<SDNode *, 4> Nodes;
986   Nodes.push_back(Node);
987
988   while (!Nodes.empty()) {
989     SDNode *N = Nodes.pop_back_val();
990     for (auto *U : N->uses()) {
991       auto UId = U->getNodeId();
992       if (UId > 0) {
993         InvalidateNodeId(U);
994         Nodes.push_back(U);
995       }
996     }
997   }
998 }
999
1000 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1001 // NodeId with the equivalent node id which is invalid for topological
1002 // pruning.
1003 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1004   int InvalidId = -(N->getNodeId() + 1);
1005   N->setNodeId(InvalidId);
1006 }
1007
1008 // getUninvalidatedNodeId - get original uninvalidated node id.
1009 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1010   int Id = N->getNodeId();
1011   if (Id < -1)
1012     return -(Id + 1);
1013   return Id;
1014 }
1015
1016 void SelectionDAGISel::DoInstructionSelection() {
1017   LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1018                     << printMBBReference(*FuncInfo->MBB) << " '"
1019                     << FuncInfo->MBB->getName() << "'\n");
1020
1021   PreprocessISelDAG();
1022
1023   // Select target instructions for the DAG.
1024   {
1025     // Number all nodes with a topological order and set DAGSize.
1026     DAGSize = CurDAG->AssignTopologicalOrder();
1027
1028     // Create a dummy node (which is not added to allnodes), that adds
1029     // a reference to the root node, preventing it from being deleted,
1030     // and tracking any changes of the root.
1031     HandleSDNode Dummy(CurDAG->getRoot());
1032     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1033     ++ISelPosition;
1034
1035     // Make sure that ISelPosition gets properly updated when nodes are deleted
1036     // in calls made from this function.
1037     ISelUpdater ISU(*CurDAG, ISelPosition);
1038
1039     // The AllNodes list is now topological-sorted. Visit the
1040     // nodes by starting at the end of the list (the root of the
1041     // graph) and preceding back toward the beginning (the entry
1042     // node).
1043     while (ISelPosition != CurDAG->allnodes_begin()) {
1044       SDNode *Node = &*--ISelPosition;
1045       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1046       // but there are currently some corner cases that it misses. Also, this
1047       // makes it theoretically possible to disable the DAGCombiner.
1048       if (Node->use_empty())
1049         continue;
1050
1051 #ifndef NDEBUG
1052       SmallVector<SDNode *, 4> Nodes;
1053       Nodes.push_back(Node);
1054
1055       while (!Nodes.empty()) {
1056         auto N = Nodes.pop_back_val();
1057         if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1058           continue;
1059         for (const SDValue &Op : N->op_values()) {
1060           if (Op->getOpcode() == ISD::TokenFactor)
1061             Nodes.push_back(Op.getNode());
1062           else {
1063             // We rely on topological ordering of node ids for checking for
1064             // cycles when fusing nodes during selection. All unselected nodes
1065             // successors of an already selected node should have a negative id.
1066             // This assertion will catch such cases. If this assertion triggers
1067             // it is likely you using DAG-level Value/Node replacement functions
1068             // (versus equivalent ISEL replacement) in backend-specific
1069             // selections. See comment in EnforceNodeIdInvariant for more
1070             // details.
1071             assert(Op->getNodeId() != -1 &&
1072                    "Node has already selected predecessor node");
1073           }
1074         }
1075       }
1076 #endif
1077
1078       // When we are using non-default rounding modes or FP exception behavior
1079       // FP operations are represented by StrictFP pseudo-operations.  They
1080       // need to be simplified here so that the target-specific instruction
1081       // selectors know how to handle them.
1082       //
1083       // If the current node is a strict FP pseudo-op, the isStrictFPOp()
1084       // function will provide the corresponding normal FP opcode to which the
1085       // node should be mutated.
1086       //
1087       // FIXME: The backends need a way to handle FP constraints.
1088       if (Node->isStrictFPOpcode())
1089         Node = CurDAG->mutateStrictFPToFP(Node);
1090
1091       LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1092                  Node->dump(CurDAG));
1093
1094       Select(Node);
1095     }
1096
1097     CurDAG->setRoot(Dummy.getValue());
1098   }
1099
1100   LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1101
1102   PostprocessISelDAG();
1103 }
1104
1105 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1106   for (const User *U : CPI->users()) {
1107     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1108       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1109       if (IID == Intrinsic::eh_exceptionpointer ||
1110           IID == Intrinsic::eh_exceptioncode)
1111         return true;
1112     }
1113   }
1114   return false;
1115 }
1116
1117 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1118 /// do other setup for EH landing-pad blocks.
1119 bool SelectionDAGISel::PrepareEHLandingPad() {
1120   MachineBasicBlock *MBB = FuncInfo->MBB;
1121   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1122   const BasicBlock *LLVMBB = MBB->getBasicBlock();
1123   const TargetRegisterClass *PtrRC =
1124       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1125
1126   // Catchpads have one live-in register, which typically holds the exception
1127   // pointer or code.
1128   if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1129     if (hasExceptionPointerOrCodeUser(CPI)) {
1130       // Get or create the virtual register to hold the pointer or code.  Mark
1131       // the live in physreg and copy into the vreg.
1132       MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1133       assert(EHPhysReg && "target lacks exception pointer register");
1134       MBB->addLiveIn(EHPhysReg);
1135       unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1136       BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1137               TII->get(TargetOpcode::COPY), VReg)
1138           .addReg(EHPhysReg, RegState::Kill);
1139     }
1140     return true;
1141   }
1142
1143   if (!LLVMBB->isLandingPad())
1144     return true;
1145
1146   // Add a label to mark the beginning of the landing pad.  Deletion of the
1147   // landing pad can thus be detected via the MachineModuleInfo.
1148   MCSymbol *Label = MF->addLandingPad(MBB);
1149
1150   // Assign the call site to the landing pad's begin label.
1151   MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1152
1153   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1154   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1155     .addSym(Label);
1156
1157   // Mark exception register as live in.
1158   if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1159     FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1160
1161   // Mark exception selector register as live in.
1162   if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1163     FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1164
1165   return true;
1166 }
1167
1168 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1169 /// side-effect free and is either dead or folded into a generated instruction.
1170 /// Return false if it needs to be emitted.
1171 static bool isFoldedOrDeadInstruction(const Instruction *I,
1172                                       FunctionLoweringInfo *FuncInfo) {
1173   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1174          !isa<TerminatorInst>(I) &&    // Terminators aren't folded.
1175          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
1176          !I->isEHPad() &&              // EH pad instructions aren't folded.
1177          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1178 }
1179
1180 /// Set up SwiftErrorVals by going through the function. If the function has
1181 /// swifterror argument, it will be the first entry.
1182 static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
1183                                 FunctionLoweringInfo *FuncInfo) {
1184   if (!TLI->supportSwiftError())
1185     return;
1186
1187   FuncInfo->SwiftErrorVals.clear();
1188   FuncInfo->SwiftErrorVRegDefMap.clear();
1189   FuncInfo->SwiftErrorVRegUpwardsUse.clear();
1190   FuncInfo->SwiftErrorVRegDefUses.clear();
1191   FuncInfo->SwiftErrorArg = nullptr;
1192
1193   // Check if function has a swifterror argument.
1194   bool HaveSeenSwiftErrorArg = false;
1195   for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
1196        AI != AE; ++AI)
1197     if (AI->hasSwiftErrorAttr()) {
1198       assert(!HaveSeenSwiftErrorArg &&
1199              "Must have only one swifterror parameter");
1200       (void)HaveSeenSwiftErrorArg; // silence warning.
1201       HaveSeenSwiftErrorArg = true;
1202       FuncInfo->SwiftErrorArg = &*AI;
1203       FuncInfo->SwiftErrorVals.push_back(&*AI);
1204     }
1205
1206   for (const auto &LLVMBB : Fn)
1207     for (const auto &Inst : LLVMBB) {
1208       if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
1209         if (Alloca->isSwiftError())
1210           FuncInfo->SwiftErrorVals.push_back(Alloca);
1211     }
1212 }
1213
1214 static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
1215                                                 FastISel *FastIS,
1216                                                 const TargetLowering *TLI,
1217                                                 const TargetInstrInfo *TII,
1218                                                 SelectionDAGBuilder *SDB) {
1219   if (!TLI->supportSwiftError())
1220     return;
1221
1222   // We only need to do this when we have swifterror parameter or swifterror
1223   // alloc.
1224   if (FuncInfo->SwiftErrorVals.empty())
1225     return;
1226
1227   assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
1228          "expected to insert into entry block");
1229   auto &DL = FuncInfo->MF->getDataLayout();
1230   auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1231   for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1232     // We will always generate a copy from the argument. It is always used at
1233     // least by the 'return' of the swifterror.
1234     if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
1235       continue;
1236     unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1237     // Assign Undef to Vreg. We construct MI directly to make sure it works
1238     // with FastISel.
1239     BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
1240             SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
1241             VReg);
1242
1243     // Keep FastIS informed about the value we just inserted.
1244     if (FastIS)
1245       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1246
1247     FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
1248   }
1249 }
1250
1251 /// Collect llvm.dbg.declare information. This is done after argument lowering
1252 /// in case the declarations refer to arguments.
1253 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
1254   MachineFunction *MF = FuncInfo->MF;
1255   const DataLayout &DL = MF->getDataLayout();
1256   for (const BasicBlock &BB : *FuncInfo->Fn) {
1257     for (const Instruction &I : BB) {
1258       const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1259       if (!DI)
1260         continue;
1261
1262       assert(DI->getVariable() && "Missing variable");
1263       assert(DI->getDebugLoc() && "Missing location");
1264       const Value *Address = DI->getAddress();
1265       if (!Address)
1266         continue;
1267
1268       // Look through casts and constant offset GEPs. These mostly come from
1269       // inalloca.
1270       APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1271       Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1272
1273       // Check if the variable is a static alloca or a byval or inalloca
1274       // argument passed in memory. If it is not, then we will ignore this
1275       // intrinsic and handle this during isel like dbg.value.
1276       int FI = std::numeric_limits<int>::max();
1277       if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1278         auto SI = FuncInfo->StaticAllocaMap.find(AI);
1279         if (SI != FuncInfo->StaticAllocaMap.end())
1280           FI = SI->second;
1281       } else if (const auto *Arg = dyn_cast<Argument>(Address))
1282         FI = FuncInfo->getArgumentFrameIndex(Arg);
1283
1284       if (FI == std::numeric_limits<int>::max())
1285         continue;
1286
1287       DIExpression *Expr = DI->getExpression();
1288       if (Offset.getBoolValue())
1289         Expr = DIExpression::prepend(Expr, DIExpression::NoDeref,
1290                                      Offset.getZExtValue());
1291       MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1292     }
1293   }
1294 }
1295
1296 /// Propagate swifterror values through the machine function CFG.
1297 static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
1298   auto *TLI = FuncInfo->TLI;
1299   if (!TLI->supportSwiftError())
1300     return;
1301
1302   // We only need to do this when we have swifterror parameter or swifterror
1303   // alloc.
1304   if (FuncInfo->SwiftErrorVals.empty())
1305     return;
1306
1307   // For each machine basic block in reverse post order.
1308   ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
1309   for (MachineBasicBlock *MBB : RPOT) {
1310     // For each swifterror value in the function.
1311     for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
1312       auto Key = std::make_pair(MBB, SwiftErrorVal);
1313       auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1314       auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
1315       bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
1316       unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
1317       bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
1318       assert(!(UpwardsUse && !DownwardDef) &&
1319              "We can't have an upwards use but no downwards def");
1320
1321       // If there is no upwards exposed use and an entry for the swifterror in
1322       // the def map for this value we don't need to do anything: We already
1323       // have a downward def for this basic block.
1324       if (!UpwardsUse && DownwardDef)
1325         continue;
1326
1327       // Otherwise we either have an upwards exposed use vreg that we need to
1328       // materialize or need to forward the downward def from predecessors.
1329
1330       // Check whether we have a single vreg def from all predecessors.
1331       // Otherwise we need a phi.
1332       SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
1333       SmallSet<const MachineBasicBlock*, 8> Visited;
1334       for (auto *Pred : MBB->predecessors()) {
1335         if (!Visited.insert(Pred).second)
1336           continue;
1337         VRegs.push_back(std::make_pair(
1338             Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
1339         if (Pred != MBB)
1340           continue;
1341         // We have a self-edge.
1342         // If there was no upwards use in this basic block there is now one: the
1343         // phi needs to use it self.
1344         if (!UpwardsUse) {
1345           UpwardsUse = true;
1346           UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
1347           assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
1348           UUseVReg = UUseIt->second;
1349         }
1350       }
1351
1352       // We need a phi node if we have more than one predecessor with different
1353       // downward defs.
1354       bool needPHI =
1355           VRegs.size() >= 1 &&
1356           std::find_if(
1357               VRegs.begin(), VRegs.end(),
1358               [&](const std::pair<const MachineBasicBlock *, unsigned> &V)
1359                   -> bool { return V.second != VRegs[0].second; }) !=
1360               VRegs.end();
1361
1362       // If there is no upwards exposed used and we don't need a phi just
1363       // forward the swifterror vreg from the predecessor(s).
1364       if (!UpwardsUse && !needPHI) {
1365         assert(!VRegs.empty() &&
1366                "No predecessors? The entry block should bail out earlier");
1367         // Just forward the swifterror vreg from the predecessor(s).
1368         FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
1369         continue;
1370       }
1371
1372       auto DLoc = isa<Instruction>(SwiftErrorVal)
1373                       ? cast<Instruction>(SwiftErrorVal)->getDebugLoc()
1374                       : DebugLoc();
1375       const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
1376
1377       // If we don't need a phi create a copy to the upward exposed vreg.
1378       if (!needPHI) {
1379         assert(UpwardsUse);
1380         assert(!VRegs.empty() &&
1381                "No predecessors?  Is the Calling Convention correct?");
1382         unsigned DestReg = UUseVReg;
1383         BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
1384                 DestReg)
1385             .addReg(VRegs[0].second);
1386         continue;
1387       }
1388
1389       // We need a phi: if there is an upwards exposed use we already have a
1390       // destination virtual register number otherwise we generate a new one.
1391       auto &DL = FuncInfo->MF->getDataLayout();
1392       auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
1393       unsigned PHIVReg =
1394           UpwardsUse ? UUseVReg
1395                      : FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
1396       MachineInstrBuilder SwiftErrorPHI =
1397           BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
1398                   TII->get(TargetOpcode::PHI), PHIVReg);
1399       for (auto BBRegPair : VRegs) {
1400         SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
1401       }
1402
1403       // We did not have a definition in this block before: store the phi's vreg
1404       // as this block downward exposed def.
1405       if (!UpwardsUse)
1406         FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
1407     }
1408   }
1409 }
1410
1411 static void preassignSwiftErrorRegs(const TargetLowering *TLI,
1412                                     FunctionLoweringInfo *FuncInfo,
1413                                     BasicBlock::const_iterator Begin,
1414                                     BasicBlock::const_iterator End) {
1415   if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
1416     return;
1417
1418   // Iterator over instructions and assign vregs to swifterror defs and uses.
1419   for (auto It = Begin; It != End; ++It) {
1420     ImmutableCallSite CS(&*It);
1421     if (CS) {
1422       // A call-site with a swifterror argument is both use and def.
1423       const Value *SwiftErrorAddr = nullptr;
1424       for (auto &Arg : CS.args()) {
1425         if (!Arg->isSwiftError())
1426           continue;
1427         // Use of swifterror.
1428         assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
1429         SwiftErrorAddr = &*Arg;
1430         assert(SwiftErrorAddr->isSwiftError() &&
1431                "Must have a swifterror value argument");
1432         unsigned VReg; bool CreatedReg;
1433         std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1434           &*It, FuncInfo->MBB, SwiftErrorAddr);
1435         assert(CreatedReg);
1436       }
1437       if (!SwiftErrorAddr)
1438         continue;
1439
1440       // Def of swifterror.
1441       unsigned VReg; bool CreatedReg;
1442       std::tie(VReg, CreatedReg) =
1443           FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1444       assert(CreatedReg);
1445       FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1446
1447     // A load is a use.
1448     } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
1449       const Value *V = LI->getOperand(0);
1450       if (!V->isSwiftError())
1451         continue;
1452
1453       unsigned VReg; bool CreatedReg;
1454       std::tie(VReg, CreatedReg) =
1455           FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
1456       assert(CreatedReg);
1457
1458     // A store is a def.
1459     } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
1460       const Value *SwiftErrorAddr = SI->getOperand(1);
1461       if (!SwiftErrorAddr->isSwiftError())
1462         continue;
1463
1464       // Def of swifterror.
1465       unsigned VReg; bool CreatedReg;
1466       std::tie(VReg, CreatedReg) =
1467           FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
1468       assert(CreatedReg);
1469       FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
1470
1471     // A return in a swiferror returning function is a use.
1472     } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
1473       const Function *F = R->getParent()->getParent();
1474       if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1475         continue;
1476
1477       unsigned VReg; bool CreatedReg;
1478       std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
1479           R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
1480       assert(CreatedReg);
1481     }
1482   }
1483 }
1484
1485 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1486   FastISelFailed = false;
1487   // Initialize the Fast-ISel state, if needed.
1488   FastISel *FastIS = nullptr;
1489   if (TM.Options.EnableFastISel) {
1490     LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1491     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1492   }
1493
1494   setupSwiftErrorVals(Fn, TLI, FuncInfo);
1495
1496   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1497
1498   // Lower arguments up front. An RPO iteration always visits the entry block
1499   // first.
1500   assert(*RPOT.begin() == &Fn.getEntryBlock());
1501   ++NumEntryBlocks;
1502
1503   // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1504   FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1505   FuncInfo->InsertPt = FuncInfo->MBB->begin();
1506
1507   CurDAG->setFunctionLoweringInfo(FuncInfo);
1508
1509   if (!FastIS) {
1510     LowerArguments(Fn);
1511   } else {
1512     // See if fast isel can lower the arguments.
1513     FastIS->startNewBlock();
1514     if (!FastIS->lowerArguments()) {
1515       FastISelFailed = true;
1516       // Fast isel failed to lower these arguments
1517       ++NumFastIselFailLowerArguments;
1518
1519       OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1520                                  Fn.getSubprogram(),
1521                                  &Fn.getEntryBlock());
1522       R << "FastISel didn't lower all arguments: "
1523         << ore::NV("Prototype", Fn.getType());
1524       reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1525
1526       // Use SelectionDAG argument lowering
1527       LowerArguments(Fn);
1528       CurDAG->setRoot(SDB->getControlRoot());
1529       SDB->clear();
1530       CodeGenAndEmitDAG();
1531     }
1532
1533     // If we inserted any instructions at the beginning, make a note of
1534     // where they are, so we can be sure to emit subsequent instructions
1535     // after them.
1536     if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1537       FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1538     else
1539       FastIS->setLastLocalValue(nullptr);
1540   }
1541   createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
1542
1543   processDbgDeclares(FuncInfo);
1544
1545   // Iterate over all basic blocks in the function.
1546   StackProtector &SP = getAnalysis<StackProtector>();
1547   for (const BasicBlock *LLVMBB : RPOT) {
1548     if (OptLevel != CodeGenOpt::None) {
1549       bool AllPredsVisited = true;
1550       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1551            PI != PE; ++PI) {
1552         if (!FuncInfo->VisitedBBs.count(*PI)) {
1553           AllPredsVisited = false;
1554           break;
1555         }
1556       }
1557
1558       if (AllPredsVisited) {
1559         for (const PHINode &PN : LLVMBB->phis())
1560           FuncInfo->ComputePHILiveOutRegInfo(&PN);
1561       } else {
1562         for (const PHINode &PN : LLVMBB->phis())
1563           FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1564       }
1565
1566       FuncInfo->VisitedBBs.insert(LLVMBB);
1567     }
1568
1569     BasicBlock::const_iterator const Begin =
1570         LLVMBB->getFirstNonPHI()->getIterator();
1571     BasicBlock::const_iterator const End = LLVMBB->end();
1572     BasicBlock::const_iterator BI = End;
1573
1574     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1575     if (!FuncInfo->MBB)
1576       continue; // Some blocks like catchpads have no code or MBB.
1577
1578     // Insert new instructions after any phi or argument setup code.
1579     FuncInfo->InsertPt = FuncInfo->MBB->end();
1580
1581     // Setup an EH landing-pad block.
1582     FuncInfo->ExceptionPointerVirtReg = 0;
1583     FuncInfo->ExceptionSelectorVirtReg = 0;
1584     if (LLVMBB->isEHPad())
1585       if (!PrepareEHLandingPad())
1586         continue;
1587
1588     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1589     if (FastIS) {
1590       if (LLVMBB != &Fn.getEntryBlock())
1591         FastIS->startNewBlock();
1592
1593       unsigned NumFastIselRemaining = std::distance(Begin, End);
1594
1595       // Pre-assign swifterror vregs.
1596       preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
1597
1598       // Do FastISel on as many instructions as possible.
1599       for (; BI != Begin; --BI) {
1600         const Instruction *Inst = &*std::prev(BI);
1601
1602         // If we no longer require this instruction, skip it.
1603         if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
1604             ElidedArgCopyInstrs.count(Inst)) {
1605           --NumFastIselRemaining;
1606           continue;
1607         }
1608
1609         // Bottom-up: reset the insert pos at the top, after any local-value
1610         // instructions.
1611         FastIS->recomputeInsertPt();
1612
1613         // Try to select the instruction with FastISel.
1614         if (FastIS->selectInstruction(Inst)) {
1615           --NumFastIselRemaining;
1616           ++NumFastIselSuccess;
1617           // If fast isel succeeded, skip over all the folded instructions, and
1618           // then see if there is a load right before the selected instructions.
1619           // Try to fold the load if so.
1620           const Instruction *BeforeInst = Inst;
1621           while (BeforeInst != &*Begin) {
1622             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1623             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1624               break;
1625           }
1626           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1627               BeforeInst->hasOneUse() &&
1628               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1629             // If we succeeded, don't re-select the load.
1630             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1631             --NumFastIselRemaining;
1632             ++NumFastIselSuccess;
1633           }
1634           continue;
1635         }
1636
1637         FastISelFailed = true;
1638
1639         // Then handle certain instructions as single-LLVM-Instruction blocks.
1640         // We cannot separate out GCrelocates to their own blocks since we need
1641         // to keep track of gc-relocates for a particular gc-statepoint. This is
1642         // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1643         // visitGCRelocate.
1644         if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) {
1645           OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1646                                      Inst->getDebugLoc(), LLVMBB);
1647
1648           R << "FastISel missed call";
1649
1650           if (R.isEnabled() || EnableFastISelAbort) {
1651             std::string InstStrStorage;
1652             raw_string_ostream InstStr(InstStrStorage);
1653             InstStr << *Inst;
1654
1655             R << ": " << InstStr.str();
1656           }
1657
1658           reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1659
1660           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1661               !Inst->use_empty()) {
1662             unsigned &R = FuncInfo->ValueMap[Inst];
1663             if (!R)
1664               R = FuncInfo->CreateRegs(Inst->getType());
1665           }
1666
1667           bool HadTailCall = false;
1668           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1669           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1670
1671           // If the call was emitted as a tail call, we're done with the block.
1672           // We also need to delete any previously emitted instructions.
1673           if (HadTailCall) {
1674             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1675             --BI;
1676             break;
1677           }
1678
1679           // Recompute NumFastIselRemaining as Selection DAG instruction
1680           // selection may have handled the call, input args, etc.
1681           unsigned RemainingNow = std::distance(Begin, BI);
1682           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1683           NumFastIselRemaining = RemainingNow;
1684           continue;
1685         }
1686
1687         OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1688                                    Inst->getDebugLoc(), LLVMBB);
1689
1690         bool ShouldAbort = EnableFastISelAbort;
1691         if (isa<TerminatorInst>(Inst)) {
1692           // Use a different message for terminator misses.
1693           R << "FastISel missed terminator";
1694           // Don't abort for terminator unless the level is really high
1695           ShouldAbort = (EnableFastISelAbort > 2);
1696         } else {
1697           R << "FastISel missed";
1698         }
1699
1700         if (R.isEnabled() || EnableFastISelAbort) {
1701           std::string InstStrStorage;
1702           raw_string_ostream InstStr(InstStrStorage);
1703           InstStr << *Inst;
1704           R << ": " << InstStr.str();
1705         }
1706
1707         reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1708
1709         NumFastIselFailures += NumFastIselRemaining;
1710         break;
1711       }
1712
1713       FastIS->recomputeInsertPt();
1714     }
1715
1716     if (SP.shouldEmitSDCheck(*LLVMBB)) {
1717       bool FunctionBasedInstrumentation =
1718           TLI->getSSPStackGuardCheck(*Fn.getParent());
1719       SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1720                                    FunctionBasedInstrumentation);
1721     }
1722
1723     if (Begin != BI)
1724       ++NumDAGBlocks;
1725     else
1726       ++NumFastIselBlocks;
1727
1728     if (Begin != BI) {
1729       // Run SelectionDAG instruction selection on the remainder of the block
1730       // not handled by FastISel. If FastISel is not run, this is the entire
1731       // block.
1732       bool HadTailCall;
1733       SelectBasicBlock(Begin, BI, HadTailCall);
1734
1735       // But if FastISel was run, we already selected some of the block.
1736       // If we emitted a tail-call, we need to delete any previously emitted
1737       // instruction that follows it.
1738       if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1739         FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1740     }
1741
1742     if (FastIS)
1743       FastIS->finishBasicBlock();
1744     FinishBasicBlock();
1745     FuncInfo->PHINodesToUpdate.clear();
1746     ElidedArgCopyInstrs.clear();
1747   }
1748
1749   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1750
1751   propagateSwiftErrorVRegs(FuncInfo);
1752
1753   delete FastIS;
1754   SDB->clearDanglingDebugInfo();
1755   SDB->SPDescriptor.resetPerFunctionState();
1756 }
1757
1758 /// Given that the input MI is before a partial terminator sequence TSeq, return
1759 /// true if M + TSeq also a partial terminator sequence.
1760 ///
1761 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1762 /// lowering copy vregs into physical registers, which are then passed into
1763 /// terminator instructors so we can satisfy ABI constraints. A partial
1764 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1765 /// may be the whole terminator sequence).
1766 static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1767   // If we do not have a copy or an implicit def, we return true if and only if
1768   // MI is a debug value.
1769   if (!MI.isCopy() && !MI.isImplicitDef())
1770     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1771     // physical registers if there is debug info associated with the terminator
1772     // of our mbb. We want to include said debug info in our terminator
1773     // sequence, so we return true in that case.
1774     return MI.isDebugValue();
1775
1776   // We have left the terminator sequence if we are not doing one of the
1777   // following:
1778   //
1779   // 1. Copying a vreg into a physical register.
1780   // 2. Copying a vreg into a vreg.
1781   // 3. Defining a register via an implicit def.
1782
1783   // OPI should always be a register definition...
1784   MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1785   if (!OPI->isReg() || !OPI->isDef())
1786     return false;
1787
1788   // Defining any register via an implicit def is always ok.
1789   if (MI.isImplicitDef())
1790     return true;
1791
1792   // Grab the copy source...
1793   MachineInstr::const_mop_iterator OPI2 = OPI;
1794   ++OPI2;
1795   assert(OPI2 != MI.operands_end()
1796          && "Should have a copy implying we should have 2 arguments.");
1797
1798   // Make sure that the copy dest is not a vreg when the copy source is a
1799   // physical register.
1800   if (!OPI2->isReg() ||
1801       (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1802        TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1803     return false;
1804
1805   return true;
1806 }
1807
1808 /// Find the split point at which to splice the end of BB into its success stack
1809 /// protector check machine basic block.
1810 ///
1811 /// On many platforms, due to ABI constraints, terminators, even before register
1812 /// allocation, use physical registers. This creates an issue for us since
1813 /// physical registers at this point can not travel across basic
1814 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1815 /// when they enter functions and moves them through a sequence of copies back
1816 /// into the physical registers right before the terminator creating a
1817 /// ``Terminator Sequence''. This function is searching for the beginning of the
1818 /// terminator sequence so that we can ensure that we splice off not just the
1819 /// terminator, but additionally the copies that move the vregs into the
1820 /// physical registers.
1821 static MachineBasicBlock::iterator
1822 FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1823   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1824   //
1825   if (SplitPoint == BB->begin())
1826     return SplitPoint;
1827
1828   MachineBasicBlock::iterator Start = BB->begin();
1829   MachineBasicBlock::iterator Previous = SplitPoint;
1830   --Previous;
1831
1832   while (MIIsInTerminatorSequence(*Previous)) {
1833     SplitPoint = Previous;
1834     if (Previous == Start)
1835       break;
1836     --Previous;
1837   }
1838
1839   return SplitPoint;
1840 }
1841
1842 void
1843 SelectionDAGISel::FinishBasicBlock() {
1844   LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1845                     << FuncInfo->PHINodesToUpdate.size() << "\n";
1846              for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1847                   ++i) dbgs()
1848              << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1849              << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1850
1851   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1852   // PHI nodes in successors.
1853   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1854     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1855     assert(PHI->isPHI() &&
1856            "This is not a machine PHI node that we are updating!");
1857     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1858       continue;
1859     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1860   }
1861
1862   // Handle stack protector.
1863   if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1864     // The target provides a guard check function. There is no need to
1865     // generate error handling code or to split current basic block.
1866     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1867
1868     // Add load and check to the basicblock.
1869     FuncInfo->MBB = ParentMBB;
1870     FuncInfo->InsertPt =
1871         FindSplitPointForStackProtector(ParentMBB);
1872     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1873     CurDAG->setRoot(SDB->getRoot());
1874     SDB->clear();
1875     CodeGenAndEmitDAG();
1876
1877     // Clear the Per-BB State.
1878     SDB->SPDescriptor.resetPerBBState();
1879   } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1880     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1881     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1882
1883     // Find the split point to split the parent mbb. At the same time copy all
1884     // physical registers used in the tail of parent mbb into virtual registers
1885     // before the split point and back into physical registers after the split
1886     // point. This prevents us needing to deal with Live-ins and many other
1887     // register allocation issues caused by us splitting the parent mbb. The
1888     // register allocator will clean up said virtual copies later on.
1889     MachineBasicBlock::iterator SplitPoint =
1890         FindSplitPointForStackProtector(ParentMBB);
1891
1892     // Splice the terminator of ParentMBB into SuccessMBB.
1893     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1894                        SplitPoint,
1895                        ParentMBB->end());
1896
1897     // Add compare/jump on neq/jump to the parent BB.
1898     FuncInfo->MBB = ParentMBB;
1899     FuncInfo->InsertPt = ParentMBB->end();
1900     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1901     CurDAG->setRoot(SDB->getRoot());
1902     SDB->clear();
1903     CodeGenAndEmitDAG();
1904
1905     // CodeGen Failure MBB if we have not codegened it yet.
1906     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1907     if (FailureMBB->empty()) {
1908       FuncInfo->MBB = FailureMBB;
1909       FuncInfo->InsertPt = FailureMBB->end();
1910       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1911       CurDAG->setRoot(SDB->getRoot());
1912       SDB->clear();
1913       CodeGenAndEmitDAG();
1914     }
1915
1916     // Clear the Per-BB State.
1917     SDB->SPDescriptor.resetPerBBState();
1918   }
1919
1920   // Lower each BitTestBlock.
1921   for (auto &BTB : SDB->BitTestCases) {
1922     // Lower header first, if it wasn't already lowered
1923     if (!BTB.Emitted) {
1924       // Set the current basic block to the mbb we wish to insert the code into
1925       FuncInfo->MBB = BTB.Parent;
1926       FuncInfo->InsertPt = FuncInfo->MBB->end();
1927       // Emit the code
1928       SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1929       CurDAG->setRoot(SDB->getRoot());
1930       SDB->clear();
1931       CodeGenAndEmitDAG();
1932     }
1933
1934     BranchProbability UnhandledProb = BTB.Prob;
1935     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1936       UnhandledProb -= BTB.Cases[j].ExtraProb;
1937       // Set the current basic block to the mbb we wish to insert the code into
1938       FuncInfo->MBB = BTB.Cases[j].ThisBB;
1939       FuncInfo->InsertPt = FuncInfo->MBB->end();
1940       // Emit the code
1941
1942       // If all cases cover a contiguous range, it is not necessary to jump to
1943       // the default block after the last bit test fails. This is because the
1944       // range check during bit test header creation has guaranteed that every
1945       // case here doesn't go outside the range. In this case, there is no need
1946       // to perform the last bit test, as it will always be true. Instead, make
1947       // the second-to-last bit-test fall through to the target of the last bit
1948       // test, and delete the last bit test.
1949
1950       MachineBasicBlock *NextMBB;
1951       if (BTB.ContiguousRange && j + 2 == ej) {
1952         // Second-to-last bit-test with contiguous range: fall through to the
1953         // target of the final bit test.
1954         NextMBB = BTB.Cases[j + 1].TargetBB;
1955       } else if (j + 1 == ej) {
1956         // For the last bit test, fall through to Default.
1957         NextMBB = BTB.Default;
1958       } else {
1959         // Otherwise, fall through to the next bit test.
1960         NextMBB = BTB.Cases[j + 1].ThisBB;
1961       }
1962
1963       SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1964                             FuncInfo->MBB);
1965
1966       CurDAG->setRoot(SDB->getRoot());
1967       SDB->clear();
1968       CodeGenAndEmitDAG();
1969
1970       if (BTB.ContiguousRange && j + 2 == ej) {
1971         // Since we're not going to use the final bit test, remove it.
1972         BTB.Cases.pop_back();
1973         break;
1974       }
1975     }
1976
1977     // Update PHI Nodes
1978     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1979          pi != pe; ++pi) {
1980       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1981       MachineBasicBlock *PHIBB = PHI->getParent();
1982       assert(PHI->isPHI() &&
1983              "This is not a machine PHI node that we are updating!");
1984       // This is "default" BB. We have two jumps to it. From "header" BB and
1985       // from last "case" BB, unless the latter was skipped.
1986       if (PHIBB == BTB.Default) {
1987         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1988         if (!BTB.ContiguousRange) {
1989           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1990               .addMBB(BTB.Cases.back().ThisBB);
1991          }
1992       }
1993       // One of "cases" BB.
1994       for (unsigned j = 0, ej = BTB.Cases.size();
1995            j != ej; ++j) {
1996         MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1997         if (cBB->isSuccessor(PHIBB))
1998           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1999       }
2000     }
2001   }
2002   SDB->BitTestCases.clear();
2003
2004   // If the JumpTable record is filled in, then we need to emit a jump table.
2005   // Updating the PHI nodes is tricky in this case, since we need to determine
2006   // whether the PHI is a successor of the range check MBB or the jump table MBB
2007   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
2008     // Lower header first, if it wasn't already lowered
2009     if (!SDB->JTCases[i].first.Emitted) {
2010       // Set the current basic block to the mbb we wish to insert the code into
2011       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
2012       FuncInfo->InsertPt = FuncInfo->MBB->end();
2013       // Emit the code
2014       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
2015                                 FuncInfo->MBB);
2016       CurDAG->setRoot(SDB->getRoot());
2017       SDB->clear();
2018       CodeGenAndEmitDAG();
2019     }
2020
2021     // Set the current basic block to the mbb we wish to insert the code into
2022     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
2023     FuncInfo->InsertPt = FuncInfo->MBB->end();
2024     // Emit the code
2025     SDB->visitJumpTable(SDB->JTCases[i].second);
2026     CurDAG->setRoot(SDB->getRoot());
2027     SDB->clear();
2028     CodeGenAndEmitDAG();
2029
2030     // Update PHI Nodes
2031     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2032          pi != pe; ++pi) {
2033       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2034       MachineBasicBlock *PHIBB = PHI->getParent();
2035       assert(PHI->isPHI() &&
2036              "This is not a machine PHI node that we are updating!");
2037       // "default" BB. We can go there only from header BB.
2038       if (PHIBB == SDB->JTCases[i].second.Default)
2039         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2040            .addMBB(SDB->JTCases[i].first.HeaderBB);
2041       // JT BB. Just iterate over successors here
2042       if (FuncInfo->MBB->isSuccessor(PHIBB))
2043         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
2044     }
2045   }
2046   SDB->JTCases.clear();
2047
2048   // If we generated any switch lowering information, build and codegen any
2049   // additional DAGs necessary.
2050   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
2051     // Set the current basic block to the mbb we wish to insert the code into
2052     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
2053     FuncInfo->InsertPt = FuncInfo->MBB->end();
2054
2055     // Determine the unique successors.
2056     SmallVector<MachineBasicBlock *, 2> Succs;
2057     Succs.push_back(SDB->SwitchCases[i].TrueBB);
2058     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
2059       Succs.push_back(SDB->SwitchCases[i].FalseBB);
2060
2061     // Emit the code. Note that this could result in FuncInfo->MBB being split.
2062     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
2063     CurDAG->setRoot(SDB->getRoot());
2064     SDB->clear();
2065     CodeGenAndEmitDAG();
2066
2067     // Remember the last block, now that any splitting is done, for use in
2068     // populating PHI nodes in successors.
2069     MachineBasicBlock *ThisBB = FuncInfo->MBB;
2070
2071     // Handle any PHI nodes in successors of this chunk, as if we were coming
2072     // from the original BB before switch expansion.  Note that PHI nodes can
2073     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
2074     // handle them the right number of times.
2075     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
2076       FuncInfo->MBB = Succs[i];
2077       FuncInfo->InsertPt = FuncInfo->MBB->end();
2078       // FuncInfo->MBB may have been removed from the CFG if a branch was
2079       // constant folded.
2080       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
2081         for (MachineBasicBlock::iterator
2082              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
2083              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2084           MachineInstrBuilder PHI(*MF, MBBI);
2085           // This value for this PHI node is recorded in PHINodesToUpdate.
2086           for (unsigned pn = 0; ; ++pn) {
2087             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2088                    "Didn't find PHI entry!");
2089             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2090               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2091               break;
2092             }
2093           }
2094         }
2095       }
2096     }
2097   }
2098   SDB->SwitchCases.clear();
2099 }
2100
2101 /// Create the scheduler. If a specific scheduler was specified
2102 /// via the SchedulerRegistry, use it, otherwise select the
2103 /// one preferred by the target.
2104 ///
2105 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2106   return ISHeuristic(this, OptLevel);
2107 }
2108
2109 //===----------------------------------------------------------------------===//
2110 // Helper functions used by the generated instruction selector.
2111 //===----------------------------------------------------------------------===//
2112 // Calls to these methods are generated by tblgen.
2113
2114 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
2115 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2116 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2117 /// specified in the .td file (e.g. 255).
2118 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
2119                                     int64_t DesiredMaskS) const {
2120   const APInt &ActualMask = RHS->getAPIntValue();
2121   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2122
2123   // If the actual mask exactly matches, success!
2124   if (ActualMask == DesiredMask)
2125     return true;
2126
2127   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2128   if (!ActualMask.isSubsetOf(DesiredMask))
2129     return false;
2130
2131   // Otherwise, the DAG Combiner may have proven that the value coming in is
2132   // either already zero or is not demanded.  Check for known zero input bits.
2133   APInt NeededMask = DesiredMask & ~ActualMask;
2134   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2135     return true;
2136
2137   // TODO: check to see if missing bits are just not demanded.
2138
2139   // Otherwise, this pattern doesn't match.
2140   return false;
2141 }
2142
2143 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
2144 /// the dag combiner simplified the 255, we still want to match.  RHS is the
2145 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2146 /// specified in the .td file (e.g. 255).
2147 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
2148                                    int64_t DesiredMaskS) const {
2149   const APInt &ActualMask = RHS->getAPIntValue();
2150   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2151
2152   // If the actual mask exactly matches, success!
2153   if (ActualMask == DesiredMask)
2154     return true;
2155
2156   // If the actual AND mask is allowing unallowed bits, this doesn't match.
2157   if (!ActualMask.isSubsetOf(DesiredMask))
2158     return false;
2159
2160   // Otherwise, the DAG Combiner may have proven that the value coming in is
2161   // either already zero or is not demanded.  Check for known zero input bits.
2162   APInt NeededMask = DesiredMask & ~ActualMask;
2163
2164   KnownBits Known;
2165   CurDAG->computeKnownBits(LHS, Known);
2166
2167   // If all the missing bits in the or are already known to be set, match!
2168   if (NeededMask.isSubsetOf(Known.One))
2169     return true;
2170
2171   // TODO: check to see if missing bits are just not demanded.
2172
2173   // Otherwise, this pattern doesn't match.
2174   return false;
2175 }
2176
2177 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2178 /// by tblgen.  Others should not call it.
2179 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2180                                                      const SDLoc &DL) {
2181   std::vector<SDValue> InOps;
2182   std::swap(InOps, Ops);
2183
2184   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2185   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2186   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2187   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2188
2189   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2190   if (InOps[e-1].getValueType() == MVT::Glue)
2191     --e;  // Don't process a glue operand if it is here.
2192
2193   while (i != e) {
2194     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2195     if (!InlineAsm::isMemKind(Flags)) {
2196       // Just skip over this operand, copying the operands verbatim.
2197       Ops.insert(Ops.end(), InOps.begin()+i,
2198                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2199       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2200     } else {
2201       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2202              "Memory operand with multiple values?");
2203
2204       unsigned TiedToOperand;
2205       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2206         // We need the constraint ID from the operand this is tied to.
2207         unsigned CurOp = InlineAsm::Op_FirstOperand;
2208         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2209         for (; TiedToOperand; --TiedToOperand) {
2210           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2211           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2212         }
2213       }
2214
2215       // Otherwise, this is a memory operand.  Ask the target to select it.
2216       std::vector<SDValue> SelOps;
2217       unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2218       if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2219         report_fatal_error("Could not match memory address.  Inline asm"
2220                            " failure!");
2221
2222       // Add this to the output node.
2223       unsigned NewFlags =
2224         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2225       NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2226       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2227       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2228       i += 2;
2229     }
2230   }
2231
2232   // Add the glue input back if present.
2233   if (e != InOps.size())
2234     Ops.push_back(InOps.back());
2235 }
2236
2237 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2238 /// SDNode.
2239 ///
2240 static SDNode *findGlueUse(SDNode *N) {
2241   unsigned FlagResNo = N->getNumValues()-1;
2242   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2243     SDUse &Use = I.getUse();
2244     if (Use.getResNo() == FlagResNo)
2245       return Use.getUser();
2246   }
2247   return nullptr;
2248 }
2249
2250 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2251 /// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2252 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2253                           bool IgnoreChains) {
2254   SmallPtrSet<const SDNode *, 16> Visited;
2255   SmallVector<const SDNode *, 16> WorkList;
2256   // Only check if we have non-immediate uses of Def.
2257   if (ImmedUse->isOnlyUserOf(Def))
2258     return false;
2259
2260   // We don't care about paths to Def that go through ImmedUse so mark it
2261   // visited and mark non-def operands as used.
2262   Visited.insert(ImmedUse);
2263   for (const SDValue &Op : ImmedUse->op_values()) {
2264     SDNode *N = Op.getNode();
2265     // Ignore chain deps (they are validated by
2266     // HandleMergeInputChains) and immediate uses
2267     if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2268       continue;
2269     if (!Visited.insert(N).second)
2270       continue;
2271     WorkList.push_back(N);
2272   }
2273
2274   // Initialize worklist to operands of Root.
2275   if (Root != ImmedUse) {
2276     for (const SDValue &Op : Root->op_values()) {
2277       SDNode *N = Op.getNode();
2278       // Ignore chains (they are validated by HandleMergeInputChains)
2279       if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2280         continue;
2281       if (!Visited.insert(N).second)
2282         continue;
2283       WorkList.push_back(N);
2284     }
2285   }
2286
2287   return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2288 }
2289
2290 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2291 /// operand node N of U during instruction selection that starts at Root.
2292 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2293                                           SDNode *Root) const {
2294   if (OptLevel == CodeGenOpt::None) return false;
2295   return N.hasOneUse();
2296 }
2297
2298 /// IsLegalToFold - Returns true if the specific operand node N of
2299 /// U can be folded during instruction selection that starts at Root.
2300 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2301                                      CodeGenOpt::Level OptLevel,
2302                                      bool IgnoreChains) {
2303   if (OptLevel == CodeGenOpt::None) return false;
2304
2305   // If Root use can somehow reach N through a path that that doesn't contain
2306   // U then folding N would create a cycle. e.g. In the following
2307   // diagram, Root can reach N through X. If N is folded into Root, then
2308   // X is both a predecessor and a successor of U.
2309   //
2310   //          [N*]           //
2311   //         ^   ^           //
2312   //        /     \          //
2313   //      [U*]    [X]?       //
2314   //        ^     ^          //
2315   //         \   /           //
2316   //          \ /            //
2317   //         [Root*]         //
2318   //
2319   // * indicates nodes to be folded together.
2320   //
2321   // If Root produces glue, then it gets (even more) interesting. Since it
2322   // will be "glued" together with its glue use in the scheduler, we need to
2323   // check if it might reach N.
2324   //
2325   //          [N*]           //
2326   //         ^   ^           //
2327   //        /     \          //
2328   //      [U*]    [X]?       //
2329   //        ^       ^        //
2330   //         \       \       //
2331   //          \      |       //
2332   //         [Root*] |       //
2333   //          ^      |       //
2334   //          f      |       //
2335   //          |      /       //
2336   //         [Y]    /        //
2337   //           ^   /         //
2338   //           f  /          //
2339   //           | /           //
2340   //          [GU]           //
2341   //
2342   // If GU (glue use) indirectly reaches N (the load), and Root folds N
2343   // (call it Fold), then X is a predecessor of GU and a successor of
2344   // Fold. But since Fold and GU are glued together, this will create
2345   // a cycle in the scheduling graph.
2346
2347   // If the node has glue, walk down the graph to the "lowest" node in the
2348   // glueged set.
2349   EVT VT = Root->getValueType(Root->getNumValues()-1);
2350   while (VT == MVT::Glue) {
2351     SDNode *GU = findGlueUse(Root);
2352     if (!GU)
2353       break;
2354     Root = GU;
2355     VT = Root->getValueType(Root->getNumValues()-1);
2356
2357     // If our query node has a glue result with a use, we've walked up it.  If
2358     // the user (which has already been selected) has a chain or indirectly uses
2359     // the chain, HandleMergeInputChains will not consider it.  Because of
2360     // this, we cannot ignore chains in this predicate.
2361     IgnoreChains = false;
2362   }
2363
2364   return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2365 }
2366
2367 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2368   SDLoc DL(N);
2369
2370   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2371   SelectInlineAsmMemoryOperands(Ops, DL);
2372
2373   const EVT VTs[] = {MVT::Other, MVT::Glue};
2374   SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
2375   New->setNodeId(-1);
2376   ReplaceUses(N, New.getNode());
2377   CurDAG->RemoveDeadNode(N);
2378 }
2379
2380 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2381   SDLoc dl(Op);
2382   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2383   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2384   unsigned Reg =
2385       TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
2386                              *CurDAG);
2387   SDValue New = CurDAG->getCopyFromReg(
2388                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
2389   New->setNodeId(-1);
2390   ReplaceUses(Op, New.getNode());
2391   CurDAG->RemoveDeadNode(Op);
2392 }
2393
2394 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2395   SDLoc dl(Op);
2396   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2397   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2398   unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2399                                         Op->getOperand(2).getValueType(),
2400                                         *CurDAG);
2401   SDValue New = CurDAG->getCopyToReg(
2402                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
2403   New->setNodeId(-1);
2404   ReplaceUses(Op, New.getNode());
2405   CurDAG->RemoveDeadNode(Op);
2406 }
2407
2408 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2409   CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2410 }
2411
2412 /// GetVBR - decode a vbr encoding whose top bit is set.
2413 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2414 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2415   assert(Val >= 128 && "Not a VBR");
2416   Val &= 127;  // Remove first vbr bit.
2417
2418   unsigned Shift = 7;
2419   uint64_t NextBits;
2420   do {
2421     NextBits = MatcherTable[Idx++];
2422     Val |= (NextBits&127) << Shift;
2423     Shift += 7;
2424   } while (NextBits & 128);
2425
2426   return Val;
2427 }
2428
2429 /// When a match is complete, this method updates uses of interior chain results
2430 /// to use the new results.
2431 void SelectionDAGISel::UpdateChains(
2432     SDNode *NodeToMatch, SDValue InputChain,
2433     SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2434   SmallVector<SDNode*, 4> NowDeadNodes;
2435
2436   // Now that all the normal results are replaced, we replace the chain and
2437   // glue results if present.
2438   if (!ChainNodesMatched.empty()) {
2439     assert(InputChain.getNode() &&
2440            "Matched input chains but didn't produce a chain");
2441     // Loop over all of the nodes we matched that produced a chain result.
2442     // Replace all the chain results with the final chain we ended up with.
2443     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2444       SDNode *ChainNode = ChainNodesMatched[i];
2445       // If ChainNode is null, it's because we replaced it on a previous
2446       // iteration and we cleared it out of the map. Just skip it.
2447       if (!ChainNode)
2448         continue;
2449
2450       assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2451              "Deleted node left in chain");
2452
2453       // Don't replace the results of the root node if we're doing a
2454       // MorphNodeTo.
2455       if (ChainNode == NodeToMatch && isMorphNodeTo)
2456         continue;
2457
2458       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2459       if (ChainVal.getValueType() == MVT::Glue)
2460         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2461       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2462       SelectionDAG::DAGNodeDeletedListener NDL(
2463           *CurDAG, [&](SDNode *N, SDNode *E) {
2464             std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2465                          static_cast<SDNode *>(nullptr));
2466           });
2467       if (ChainNode->getOpcode() != ISD::TokenFactor)
2468         ReplaceUses(ChainVal, InputChain);
2469
2470       // If the node became dead and we haven't already seen it, delete it.
2471       if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2472           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2473         NowDeadNodes.push_back(ChainNode);
2474     }
2475   }
2476
2477   if (!NowDeadNodes.empty())
2478     CurDAG->RemoveDeadNodes(NowDeadNodes);
2479
2480   LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2481 }
2482
2483 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2484 /// operation for when the pattern matched at least one node with a chains.  The
2485 /// input vector contains a list of all of the chained nodes that we match.  We
2486 /// must determine if this is a valid thing to cover (i.e. matching it won't
2487 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2488 /// be used as the input node chain for the generated nodes.
2489 static SDValue
2490 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2491                        SelectionDAG *CurDAG) {
2492
2493   SmallPtrSet<const SDNode *, 16> Visited;
2494   SmallVector<const SDNode *, 8> Worklist;
2495   SmallVector<SDValue, 3> InputChains;
2496   unsigned int Max = 8192;
2497
2498   // Quick exit on trivial merge.
2499   if (ChainNodesMatched.size() == 1)
2500     return ChainNodesMatched[0]->getOperand(0);
2501
2502   // Add chains that aren't already added (internal). Peek through
2503   // token factors.
2504   std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2505     if (V.getValueType() != MVT::Other)
2506       return;
2507     if (V->getOpcode() == ISD::EntryToken)
2508       return;
2509     if (!Visited.insert(V.getNode()).second)
2510       return;
2511     if (V->getOpcode() == ISD::TokenFactor) {
2512       for (const SDValue &Op : V->op_values())
2513         AddChains(Op);
2514     } else
2515       InputChains.push_back(V);
2516   };
2517
2518   for (auto *N : ChainNodesMatched) {
2519     Worklist.push_back(N);
2520     Visited.insert(N);
2521   }
2522
2523   while (!Worklist.empty())
2524     AddChains(Worklist.pop_back_val()->getOperand(0));
2525
2526   // Skip the search if there are no chain dependencies.
2527   if (InputChains.size() == 0)
2528     return CurDAG->getEntryNode();
2529
2530   // If one of these chains is a successor of input, we must have a
2531   // node that is both the predecessor and successor of the
2532   // to-be-merged nodes. Fail.
2533   Visited.clear();
2534   for (SDValue V : InputChains)
2535     Worklist.push_back(V.getNode());
2536
2537   for (auto *N : ChainNodesMatched)
2538     if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2539       return SDValue();
2540
2541   // Return merged chain.
2542   if (InputChains.size() == 1)
2543     return InputChains[0];
2544   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2545                          MVT::Other, InputChains);
2546 }
2547
2548 /// MorphNode - Handle morphing a node in place for the selector.
2549 SDNode *SelectionDAGISel::
2550 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2551           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2552   // It is possible we're using MorphNodeTo to replace a node with no
2553   // normal results with one that has a normal result (or we could be
2554   // adding a chain) and the input could have glue and chains as well.
2555   // In this case we need to shift the operands down.
2556   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2557   // than the old isel though.
2558   int OldGlueResultNo = -1, OldChainResultNo = -1;
2559
2560   unsigned NTMNumResults = Node->getNumValues();
2561   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2562     OldGlueResultNo = NTMNumResults-1;
2563     if (NTMNumResults != 1 &&
2564         Node->getValueType(NTMNumResults-2) == MVT::Other)
2565       OldChainResultNo = NTMNumResults-2;
2566   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2567     OldChainResultNo = NTMNumResults-1;
2568
2569   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2570   // that this deletes operands of the old node that become dead.
2571   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2572
2573   // MorphNodeTo can operate in two ways: if an existing node with the
2574   // specified operands exists, it can just return it.  Otherwise, it
2575   // updates the node in place to have the requested operands.
2576   if (Res == Node) {
2577     // If we updated the node in place, reset the node ID.  To the isel,
2578     // this should be just like a newly allocated machine node.
2579     Res->setNodeId(-1);
2580   }
2581
2582   unsigned ResNumResults = Res->getNumValues();
2583   // Move the glue if needed.
2584   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2585       (unsigned)OldGlueResultNo != ResNumResults-1)
2586     ReplaceUses(SDValue(Node, OldGlueResultNo),
2587                 SDValue(Res, ResNumResults - 1));
2588
2589   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2590     --ResNumResults;
2591
2592   // Move the chain reference if needed.
2593   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2594       (unsigned)OldChainResultNo != ResNumResults-1)
2595     ReplaceUses(SDValue(Node, OldChainResultNo),
2596                 SDValue(Res, ResNumResults - 1));
2597
2598   // Otherwise, no replacement happened because the node already exists. Replace
2599   // Uses of the old node with the new one.
2600   if (Res != Node) {
2601     ReplaceNode(Node, Res);
2602   } else {
2603     EnforceNodeIdInvariant(Res);
2604   }
2605
2606   return Res;
2607 }
2608
2609 /// CheckSame - Implements OP_CheckSame.
2610 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2611 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2612           SDValue N,
2613           const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2614   // Accept if it is exactly the same as a previously recorded node.
2615   unsigned RecNo = MatcherTable[MatcherIndex++];
2616   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2617   return N == RecordedNodes[RecNo].first;
2618 }
2619
2620 /// CheckChildSame - Implements OP_CheckChildXSame.
2621 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2622 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2623               SDValue N,
2624               const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2625               unsigned ChildNo) {
2626   if (ChildNo >= N.getNumOperands())
2627     return false;  // Match fails if out of range child #.
2628   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2629                      RecordedNodes);
2630 }
2631
2632 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2633 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2634 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2635                       const SelectionDAGISel &SDISel) {
2636   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2637 }
2638
2639 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2640 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2641 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2642                    const SelectionDAGISel &SDISel, SDNode *N) {
2643   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2644 }
2645
2646 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2647 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2648             SDNode *N) {
2649   uint16_t Opc = MatcherTable[MatcherIndex++];
2650   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2651   return N->getOpcode() == Opc;
2652 }
2653
2654 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2655 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2656           const TargetLowering *TLI, const DataLayout &DL) {
2657   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2658   if (N.getValueType() == VT) return true;
2659
2660   // Handle the case when VT is iPTR.
2661   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2662 }
2663
2664 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2665 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2666                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2667                unsigned ChildNo) {
2668   if (ChildNo >= N.getNumOperands())
2669     return false;  // Match fails if out of range child #.
2670   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2671                      DL);
2672 }
2673
2674 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2675 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2676               SDValue N) {
2677   return cast<CondCodeSDNode>(N)->get() ==
2678       (ISD::CondCode)MatcherTable[MatcherIndex++];
2679 }
2680
2681 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2682 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2683                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2684   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2685   if (cast<VTSDNode>(N)->getVT() == VT)
2686     return true;
2687
2688   // Handle the case when VT is iPTR.
2689   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2690 }
2691
2692 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2693 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2694              SDValue N) {
2695   int64_t Val = MatcherTable[MatcherIndex++];
2696   if (Val & 128)
2697     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2698
2699   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2700   return C && C->getSExtValue() == Val;
2701 }
2702
2703 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2704 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2705                   SDValue N, unsigned ChildNo) {
2706   if (ChildNo >= N.getNumOperands())
2707     return false;  // Match fails if out of range child #.
2708   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2709 }
2710
2711 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2712 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2713             SDValue N, const SelectionDAGISel &SDISel) {
2714   int64_t Val = MatcherTable[MatcherIndex++];
2715   if (Val & 128)
2716     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2717
2718   if (N->getOpcode() != ISD::AND) return false;
2719
2720   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2721   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2722 }
2723
2724 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2725 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2726            SDValue N, const SelectionDAGISel &SDISel) {
2727   int64_t Val = MatcherTable[MatcherIndex++];
2728   if (Val & 128)
2729     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2730
2731   if (N->getOpcode() != ISD::OR) return false;
2732
2733   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2734   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2735 }
2736
2737 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2738 /// scope, evaluate the current node.  If the current predicate is known to
2739 /// fail, set Result=true and return anything.  If the current predicate is
2740 /// known to pass, set Result=false and return the MatcherIndex to continue
2741 /// with.  If the current predicate is unknown, set Result=false and return the
2742 /// MatcherIndex to continue with.
2743 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2744                                        unsigned Index, SDValue N,
2745                                        bool &Result,
2746                                        const SelectionDAGISel &SDISel,
2747                   SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2748   switch (Table[Index++]) {
2749   default:
2750     Result = false;
2751     return Index-1;  // Could not evaluate this predicate.
2752   case SelectionDAGISel::OPC_CheckSame:
2753     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2754     return Index;
2755   case SelectionDAGISel::OPC_CheckChild0Same:
2756   case SelectionDAGISel::OPC_CheckChild1Same:
2757   case SelectionDAGISel::OPC_CheckChild2Same:
2758   case SelectionDAGISel::OPC_CheckChild3Same:
2759     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2760                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2761     return Index;
2762   case SelectionDAGISel::OPC_CheckPatternPredicate:
2763     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2764     return Index;
2765   case SelectionDAGISel::OPC_CheckPredicate:
2766     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2767     return Index;
2768   case SelectionDAGISel::OPC_CheckOpcode:
2769     Result = !::CheckOpcode(Table, Index, N.getNode());
2770     return Index;
2771   case SelectionDAGISel::OPC_CheckType:
2772     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2773                           SDISel.CurDAG->getDataLayout());
2774     return Index;
2775   case SelectionDAGISel::OPC_CheckTypeRes: {
2776     unsigned Res = Table[Index++];
2777     Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2778                           SDISel.CurDAG->getDataLayout());
2779     return Index;
2780   }
2781   case SelectionDAGISel::OPC_CheckChild0Type:
2782   case SelectionDAGISel::OPC_CheckChild1Type:
2783   case SelectionDAGISel::OPC_CheckChild2Type:
2784   case SelectionDAGISel::OPC_CheckChild3Type:
2785   case SelectionDAGISel::OPC_CheckChild4Type:
2786   case SelectionDAGISel::OPC_CheckChild5Type:
2787   case SelectionDAGISel::OPC_CheckChild6Type:
2788   case SelectionDAGISel::OPC_CheckChild7Type:
2789     Result = !::CheckChildType(
2790                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2791                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2792     return Index;
2793   case SelectionDAGISel::OPC_CheckCondCode:
2794     Result = !::CheckCondCode(Table, Index, N);
2795     return Index;
2796   case SelectionDAGISel::OPC_CheckValueType:
2797     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2798                                SDISel.CurDAG->getDataLayout());
2799     return Index;
2800   case SelectionDAGISel::OPC_CheckInteger:
2801     Result = !::CheckInteger(Table, Index, N);
2802     return Index;
2803   case SelectionDAGISel::OPC_CheckChild0Integer:
2804   case SelectionDAGISel::OPC_CheckChild1Integer:
2805   case SelectionDAGISel::OPC_CheckChild2Integer:
2806   case SelectionDAGISel::OPC_CheckChild3Integer:
2807   case SelectionDAGISel::OPC_CheckChild4Integer:
2808     Result = !::CheckChildInteger(Table, Index, N,
2809                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2810     return Index;
2811   case SelectionDAGISel::OPC_CheckAndImm:
2812     Result = !::CheckAndImm(Table, Index, N, SDISel);
2813     return Index;
2814   case SelectionDAGISel::OPC_CheckOrImm:
2815     Result = !::CheckOrImm(Table, Index, N, SDISel);
2816     return Index;
2817   }
2818 }
2819
2820 namespace {
2821
2822 struct MatchScope {
2823   /// FailIndex - If this match fails, this is the index to continue with.
2824   unsigned FailIndex;
2825
2826   /// NodeStack - The node stack when the scope was formed.
2827   SmallVector<SDValue, 4> NodeStack;
2828
2829   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2830   unsigned NumRecordedNodes;
2831
2832   /// NumMatchedMemRefs - The number of matched memref entries.
2833   unsigned NumMatchedMemRefs;
2834
2835   /// InputChain/InputGlue - The current chain/glue
2836   SDValue InputChain, InputGlue;
2837
2838   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2839   bool HasChainNodesMatched;
2840 };
2841
2842 /// \A DAG update listener to keep the matching state
2843 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2844 /// change the DAG while matching.  X86 addressing mode matcher is an example
2845 /// for this.
2846 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2847 {
2848   SDNode **NodeToMatch;
2849   SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2850   SmallVectorImpl<MatchScope> &MatchScopes;
2851
2852 public:
2853   MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2854                     SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2855                     SmallVectorImpl<MatchScope> &MS)
2856       : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2857         RecordedNodes(RN), MatchScopes(MS) {}
2858
2859   void NodeDeleted(SDNode *N, SDNode *E) override {
2860     // Some early-returns here to avoid the search if we deleted the node or
2861     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2862     // do, so it's unnecessary to update matching state at that point).
2863     // Neither of these can occur currently because we only install this
2864     // update listener during matching a complex patterns.
2865     if (!E || E->isMachineOpcode())
2866       return;
2867     // Check if NodeToMatch was updated.
2868     if (N == *NodeToMatch)
2869       *NodeToMatch = E;
2870     // Performing linear search here does not matter because we almost never
2871     // run this code.  You'd have to have a CSE during complex pattern
2872     // matching.
2873     for (auto &I : RecordedNodes)
2874       if (I.first.getNode() == N)
2875         I.first.setNode(E);
2876
2877     for (auto &I : MatchScopes)
2878       for (auto &J : I.NodeStack)
2879         if (J.getNode() == N)
2880           J.setNode(E);
2881   }
2882 };
2883
2884 } // end anonymous namespace
2885
2886 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2887                                         const unsigned char *MatcherTable,
2888                                         unsigned TableSize) {
2889   // FIXME: Should these even be selected?  Handle these cases in the caller?
2890   switch (NodeToMatch->getOpcode()) {
2891   default:
2892     break;
2893   case ISD::EntryToken:       // These nodes remain the same.
2894   case ISD::BasicBlock:
2895   case ISD::Register:
2896   case ISD::RegisterMask:
2897   case ISD::HANDLENODE:
2898   case ISD::MDNODE_SDNODE:
2899   case ISD::TargetConstant:
2900   case ISD::TargetConstantFP:
2901   case ISD::TargetConstantPool:
2902   case ISD::TargetFrameIndex:
2903   case ISD::TargetExternalSymbol:
2904   case ISD::MCSymbol:
2905   case ISD::TargetBlockAddress:
2906   case ISD::TargetJumpTable:
2907   case ISD::TargetGlobalTLSAddress:
2908   case ISD::TargetGlobalAddress:
2909   case ISD::TokenFactor:
2910   case ISD::CopyFromReg:
2911   case ISD::CopyToReg:
2912   case ISD::EH_LABEL:
2913   case ISD::ANNOTATION_LABEL:
2914   case ISD::LIFETIME_START:
2915   case ISD::LIFETIME_END:
2916     NodeToMatch->setNodeId(-1); // Mark selected.
2917     return;
2918   case ISD::AssertSext:
2919   case ISD::AssertZext:
2920     ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2921     CurDAG->RemoveDeadNode(NodeToMatch);
2922     return;
2923   case ISD::INLINEASM:
2924     Select_INLINEASM(NodeToMatch);
2925     return;
2926   case ISD::READ_REGISTER:
2927     Select_READ_REGISTER(NodeToMatch);
2928     return;
2929   case ISD::WRITE_REGISTER:
2930     Select_WRITE_REGISTER(NodeToMatch);
2931     return;
2932   case ISD::UNDEF:
2933     Select_UNDEF(NodeToMatch);
2934     return;
2935   }
2936
2937   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2938
2939   // Set up the node stack with NodeToMatch as the only node on the stack.
2940   SmallVector<SDValue, 8> NodeStack;
2941   SDValue N = SDValue(NodeToMatch, 0);
2942   NodeStack.push_back(N);
2943
2944   // MatchScopes - Scopes used when matching, if a match failure happens, this
2945   // indicates where to continue checking.
2946   SmallVector<MatchScope, 8> MatchScopes;
2947
2948   // RecordedNodes - This is the set of nodes that have been recorded by the
2949   // state machine.  The second value is the parent of the node, or null if the
2950   // root is recorded.
2951   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2952
2953   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2954   // pattern.
2955   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2956
2957   // These are the current input chain and glue for use when generating nodes.
2958   // Various Emit operations change these.  For example, emitting a copytoreg
2959   // uses and updates these.
2960   SDValue InputChain, InputGlue;
2961
2962   // ChainNodesMatched - If a pattern matches nodes that have input/output
2963   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2964   // which ones they are.  The result is captured into this list so that we can
2965   // update the chain results when the pattern is complete.
2966   SmallVector<SDNode*, 3> ChainNodesMatched;
2967
2968   LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2969
2970   // Determine where to start the interpreter.  Normally we start at opcode #0,
2971   // but if the state machine starts with an OPC_SwitchOpcode, then we
2972   // accelerate the first lookup (which is guaranteed to be hot) with the
2973   // OpcodeOffset table.
2974   unsigned MatcherIndex = 0;
2975
2976   if (!OpcodeOffset.empty()) {
2977     // Already computed the OpcodeOffset table, just index into it.
2978     if (N.getOpcode() < OpcodeOffset.size())
2979       MatcherIndex = OpcodeOffset[N.getOpcode()];
2980     LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2981
2982   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2983     // Otherwise, the table isn't computed, but the state machine does start
2984     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2985     // is the first time we're selecting an instruction.
2986     unsigned Idx = 1;
2987     while (true) {
2988       // Get the size of this case.
2989       unsigned CaseSize = MatcherTable[Idx++];
2990       if (CaseSize & 128)
2991         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2992       if (CaseSize == 0) break;
2993
2994       // Get the opcode, add the index to the table.
2995       uint16_t Opc = MatcherTable[Idx++];
2996       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2997       if (Opc >= OpcodeOffset.size())
2998         OpcodeOffset.resize((Opc+1)*2);
2999       OpcodeOffset[Opc] = Idx;
3000       Idx += CaseSize;
3001     }
3002
3003     // Okay, do the lookup for the first opcode.
3004     if (N.getOpcode() < OpcodeOffset.size())
3005       MatcherIndex = OpcodeOffset[N.getOpcode()];
3006   }
3007
3008   while (true) {
3009     assert(MatcherIndex < TableSize && "Invalid index");
3010 #ifndef NDEBUG
3011     unsigned CurrentOpcodeIndex = MatcherIndex;
3012 #endif
3013     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
3014     switch (Opcode) {
3015     case OPC_Scope: {
3016       // Okay, the semantics of this operation are that we should push a scope
3017       // then evaluate the first child.  However, pushing a scope only to have
3018       // the first check fail (which then pops it) is inefficient.  If we can
3019       // determine immediately that the first check (or first several) will
3020       // immediately fail, don't even bother pushing a scope for them.
3021       unsigned FailIndex;
3022
3023       while (true) {
3024         unsigned NumToSkip = MatcherTable[MatcherIndex++];
3025         if (NumToSkip & 128)
3026           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3027         // Found the end of the scope with no match.
3028         if (NumToSkip == 0) {
3029           FailIndex = 0;
3030           break;
3031         }
3032
3033         FailIndex = MatcherIndex+NumToSkip;
3034
3035         unsigned MatcherIndexOfPredicate = MatcherIndex;
3036         (void)MatcherIndexOfPredicate; // silence warning.
3037
3038         // If we can't evaluate this predicate without pushing a scope (e.g. if
3039         // it is a 'MoveParent') or if the predicate succeeds on this node, we
3040         // push the scope and evaluate the full predicate chain.
3041         bool Result;
3042         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3043                                               Result, *this, RecordedNodes);
3044         if (!Result)
3045           break;
3046
3047         LLVM_DEBUG(
3048             dbgs() << "  Skipped scope entry (due to false predicate) at "
3049                    << "index " << MatcherIndexOfPredicate << ", continuing at "
3050                    << FailIndex << "\n");
3051         ++NumDAGIselRetries;
3052
3053         // Otherwise, we know that this case of the Scope is guaranteed to fail,
3054         // move to the next case.
3055         MatcherIndex = FailIndex;
3056       }
3057
3058       // If the whole scope failed to match, bail.
3059       if (FailIndex == 0) break;
3060
3061       // Push a MatchScope which indicates where to go if the first child fails
3062       // to match.
3063       MatchScope NewEntry;
3064       NewEntry.FailIndex = FailIndex;
3065       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3066       NewEntry.NumRecordedNodes = RecordedNodes.size();
3067       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3068       NewEntry.InputChain = InputChain;
3069       NewEntry.InputGlue = InputGlue;
3070       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3071       MatchScopes.push_back(NewEntry);
3072       continue;
3073     }
3074     case OPC_RecordNode: {
3075       // Remember this node, it may end up being an operand in the pattern.
3076       SDNode *Parent = nullptr;
3077       if (NodeStack.size() > 1)
3078         Parent = NodeStack[NodeStack.size()-2].getNode();
3079       RecordedNodes.push_back(std::make_pair(N, Parent));
3080       continue;
3081     }
3082
3083     case OPC_RecordChild0: case OPC_RecordChild1:
3084     case OPC_RecordChild2: case OPC_RecordChild3:
3085     case OPC_RecordChild4: case OPC_RecordChild5:
3086     case OPC_RecordChild6: case OPC_RecordChild7: {
3087       unsigned ChildNo = Opcode-OPC_RecordChild0;
3088       if (ChildNo >= N.getNumOperands())
3089         break;  // Match fails if out of range child #.
3090
3091       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3092                                              N.getNode()));
3093       continue;
3094     }
3095     case OPC_RecordMemRef:
3096       if (auto *MN = dyn_cast<MemSDNode>(N))
3097         MatchedMemRefs.push_back(MN->getMemOperand());
3098       else {
3099         LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3100                    dbgs() << '\n');
3101       }
3102
3103       continue;
3104
3105     case OPC_CaptureGlueInput:
3106       // If the current node has an input glue, capture it in InputGlue.
3107       if (N->getNumOperands() != 0 &&
3108           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3109         InputGlue = N->getOperand(N->getNumOperands()-1);
3110       continue;
3111
3112     case OPC_MoveChild: {
3113       unsigned ChildNo = MatcherTable[MatcherIndex++];
3114       if (ChildNo >= N.getNumOperands())
3115         break;  // Match fails if out of range child #.
3116       N = N.getOperand(ChildNo);
3117       NodeStack.push_back(N);
3118       continue;
3119     }
3120
3121     case OPC_MoveChild0: case OPC_MoveChild1:
3122     case OPC_MoveChild2: case OPC_MoveChild3:
3123     case OPC_MoveChild4: case OPC_MoveChild5:
3124     case OPC_MoveChild6: case OPC_MoveChild7: {
3125       unsigned ChildNo = Opcode-OPC_MoveChild0;
3126       if (ChildNo >= N.getNumOperands())
3127         break;  // Match fails if out of range child #.
3128       N = N.getOperand(ChildNo);
3129       NodeStack.push_back(N);
3130       continue;
3131     }
3132
3133     case OPC_MoveParent:
3134       // Pop the current node off the NodeStack.
3135       NodeStack.pop_back();
3136       assert(!NodeStack.empty() && "Node stack imbalance!");
3137       N = NodeStack.back();
3138       continue;
3139
3140     case OPC_CheckSame:
3141       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3142       continue;
3143
3144     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3145     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3146       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3147                             Opcode-OPC_CheckChild0Same))
3148         break;
3149       continue;
3150
3151     case OPC_CheckPatternPredicate:
3152       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3153       continue;
3154     case OPC_CheckPredicate:
3155       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3156                                 N.getNode()))
3157         break;
3158       continue;
3159     case OPC_CheckComplexPat: {
3160       unsigned CPNum = MatcherTable[MatcherIndex++];
3161       unsigned RecNo = MatcherTable[MatcherIndex++];
3162       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3163
3164       // If target can modify DAG during matching, keep the matching state
3165       // consistent.
3166       std::unique_ptr<MatchStateUpdater> MSU;
3167       if (ComplexPatternFuncMutatesDAG())
3168         MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3169                                         MatchScopes));
3170
3171       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3172                                RecordedNodes[RecNo].first, CPNum,
3173                                RecordedNodes))
3174         break;
3175       continue;
3176     }
3177     case OPC_CheckOpcode:
3178       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3179       continue;
3180
3181     case OPC_CheckType:
3182       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3183                        CurDAG->getDataLayout()))
3184         break;
3185       continue;
3186
3187     case OPC_CheckTypeRes: {
3188       unsigned Res = MatcherTable[MatcherIndex++];
3189       if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3190                        CurDAG->getDataLayout()))
3191         break;
3192       continue;
3193     }
3194
3195     case OPC_SwitchOpcode: {
3196       unsigned CurNodeOpcode = N.getOpcode();
3197       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3198       unsigned CaseSize;
3199       while (true) {
3200         // Get the size of this case.
3201         CaseSize = MatcherTable[MatcherIndex++];
3202         if (CaseSize & 128)
3203           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3204         if (CaseSize == 0) break;
3205
3206         uint16_t Opc = MatcherTable[MatcherIndex++];
3207         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3208
3209         // If the opcode matches, then we will execute this case.
3210         if (CurNodeOpcode == Opc)
3211           break;
3212
3213         // Otherwise, skip over this case.
3214         MatcherIndex += CaseSize;
3215       }
3216
3217       // If no cases matched, bail out.
3218       if (CaseSize == 0) break;
3219
3220       // Otherwise, execute the case we found.
3221       LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3222                         << MatcherIndex << "\n");
3223       continue;
3224     }
3225
3226     case OPC_SwitchType: {
3227       MVT CurNodeVT = N.getSimpleValueType();
3228       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3229       unsigned CaseSize;
3230       while (true) {
3231         // Get the size of this case.
3232         CaseSize = MatcherTable[MatcherIndex++];
3233         if (CaseSize & 128)
3234           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3235         if (CaseSize == 0) break;
3236
3237         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3238         if (CaseVT == MVT::iPTR)
3239           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3240
3241         // If the VT matches, then we will execute this case.
3242         if (CurNodeVT == CaseVT)
3243           break;
3244
3245         // Otherwise, skip over this case.
3246         MatcherIndex += CaseSize;
3247       }
3248
3249       // If no cases matched, bail out.
3250       if (CaseSize == 0) break;
3251
3252       // Otherwise, execute the case we found.
3253       LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3254                         << "] from " << SwitchStart << " to " << MatcherIndex
3255                         << '\n');
3256       continue;
3257     }
3258     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3259     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3260     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3261     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3262       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3263                             CurDAG->getDataLayout(),
3264                             Opcode - OPC_CheckChild0Type))
3265         break;
3266       continue;
3267     case OPC_CheckCondCode:
3268       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3269       continue;
3270     case OPC_CheckValueType:
3271       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3272                             CurDAG->getDataLayout()))
3273         break;
3274       continue;
3275     case OPC_CheckInteger:
3276       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3277       continue;
3278     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3279     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3280     case OPC_CheckChild4Integer:
3281       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3282                                Opcode-OPC_CheckChild0Integer)) break;
3283       continue;
3284     case OPC_CheckAndImm:
3285       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3286       continue;
3287     case OPC_CheckOrImm:
3288       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3289       continue;
3290
3291     case OPC_CheckFoldableChainNode: {
3292       assert(NodeStack.size() != 1 && "No parent node");
3293       // Verify that all intermediate nodes between the root and this one have
3294       // a single use.
3295       bool HasMultipleUses = false;
3296       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
3297         if (!NodeStack[i].getNode()->hasOneUse()) {
3298           HasMultipleUses = true;
3299           break;
3300         }
3301       if (HasMultipleUses) break;
3302
3303       // Check to see that the target thinks this is profitable to fold and that
3304       // we can fold it without inducing cycles in the graph.
3305       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3306                               NodeToMatch) ||
3307           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3308                          NodeToMatch, OptLevel,
3309                          true/*We validate our own chains*/))
3310         break;
3311
3312       continue;
3313     }
3314     case OPC_EmitInteger: {
3315       MVT::SimpleValueType VT =
3316         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3317       int64_t Val = MatcherTable[MatcherIndex++];
3318       if (Val & 128)
3319         Val = GetVBR(Val, MatcherTable, MatcherIndex);
3320       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3321                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3322                                                         VT), nullptr));
3323       continue;
3324     }
3325     case OPC_EmitRegister: {
3326       MVT::SimpleValueType VT =
3327         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3328       unsigned RegNo = MatcherTable[MatcherIndex++];
3329       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3330                               CurDAG->getRegister(RegNo, VT), nullptr));
3331       continue;
3332     }
3333     case OPC_EmitRegister2: {
3334       // For targets w/ more than 256 register names, the register enum
3335       // values are stored in two bytes in the matcher table (just like
3336       // opcodes).
3337       MVT::SimpleValueType VT =
3338         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3339       unsigned RegNo = MatcherTable[MatcherIndex++];
3340       RegNo |= MatcherTable[MatcherIndex++] << 8;
3341       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3342                               CurDAG->getRegister(RegNo, VT), nullptr));
3343       continue;
3344     }
3345
3346     case OPC_EmitConvertToTarget:  {
3347       // Convert from IMM/FPIMM to target version.
3348       unsigned RecNo = MatcherTable[MatcherIndex++];
3349       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3350       SDValue Imm = RecordedNodes[RecNo].first;
3351
3352       if (Imm->getOpcode() == ISD::Constant) {
3353         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3354         Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3355                                         Imm.getValueType());
3356       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3357         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3358         Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3359                                           Imm.getValueType());
3360       }
3361
3362       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3363       continue;
3364     }
3365
3366     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3367     case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3368     case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3369       // These are space-optimized forms of OPC_EmitMergeInputChains.
3370       assert(!InputChain.getNode() &&
3371              "EmitMergeInputChains should be the first chain producing node");
3372       assert(ChainNodesMatched.empty() &&
3373              "Should only have one EmitMergeInputChains per match");
3374
3375       // Read all of the chained nodes.
3376       unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3377       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3378       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3379
3380       // FIXME: What if other value results of the node have uses not matched
3381       // by this pattern?
3382       if (ChainNodesMatched.back() != NodeToMatch &&
3383           !RecordedNodes[RecNo].first.hasOneUse()) {
3384         ChainNodesMatched.clear();
3385         break;
3386       }
3387
3388       // Merge the input chains if they are not intra-pattern references.
3389       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3390
3391       if (!InputChain.getNode())
3392         break;  // Failed to merge.
3393       continue;
3394     }
3395
3396     case OPC_EmitMergeInputChains: {
3397       assert(!InputChain.getNode() &&
3398              "EmitMergeInputChains should be the first chain producing node");
3399       // This node gets a list of nodes we matched in the input that have
3400       // chains.  We want to token factor all of the input chains to these nodes
3401       // together.  However, if any of the input chains is actually one of the
3402       // nodes matched in this pattern, then we have an intra-match reference.
3403       // Ignore these because the newly token factored chain should not refer to
3404       // the old nodes.
3405       unsigned NumChains = MatcherTable[MatcherIndex++];
3406       assert(NumChains != 0 && "Can't TF zero chains");
3407
3408       assert(ChainNodesMatched.empty() &&
3409              "Should only have one EmitMergeInputChains per match");
3410
3411       // Read all of the chained nodes.
3412       for (unsigned i = 0; i != NumChains; ++i) {
3413         unsigned RecNo = MatcherTable[MatcherIndex++];
3414         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3415         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3416
3417         // FIXME: What if other value results of the node have uses not matched
3418         // by this pattern?
3419         if (ChainNodesMatched.back() != NodeToMatch &&
3420             !RecordedNodes[RecNo].first.hasOneUse()) {
3421           ChainNodesMatched.clear();
3422           break;
3423         }
3424       }
3425
3426       // If the inner loop broke out, the match fails.
3427       if (ChainNodesMatched.empty())
3428         break;
3429
3430       // Merge the input chains if they are not intra-pattern references.
3431       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3432
3433       if (!InputChain.getNode())
3434         break;  // Failed to merge.
3435
3436       continue;
3437     }
3438
3439     case OPC_EmitCopyToReg: {
3440       unsigned RecNo = MatcherTable[MatcherIndex++];
3441       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3442       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3443
3444       if (!InputChain.getNode())
3445         InputChain = CurDAG->getEntryNode();
3446
3447       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3448                                         DestPhysReg, RecordedNodes[RecNo].first,
3449                                         InputGlue);
3450
3451       InputGlue = InputChain.getValue(1);
3452       continue;
3453     }
3454
3455     case OPC_EmitNodeXForm: {
3456       unsigned XFormNo = MatcherTable[MatcherIndex++];
3457       unsigned RecNo = MatcherTable[MatcherIndex++];
3458       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3459       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3460       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3461       continue;
3462     }
3463     case OPC_Coverage: {
3464       // This is emitted right before MorphNode/EmitNode.
3465       // So it should be safe to assume that this node has been selected
3466       unsigned index = MatcherTable[MatcherIndex++];
3467       index |= (MatcherTable[MatcherIndex++] << 8);
3468       dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3469       dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3470       continue;
3471     }
3472
3473     case OPC_EmitNode:     case OPC_MorphNodeTo:
3474     case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3475     case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3476       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3477       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3478       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3479       // Get the result VT list.
3480       unsigned NumVTs;
3481       // If this is one of the compressed forms, get the number of VTs based
3482       // on the Opcode. Otherwise read the next byte from the table.
3483       if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3484         NumVTs = Opcode - OPC_MorphNodeTo0;
3485       else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3486         NumVTs = Opcode - OPC_EmitNode0;
3487       else
3488         NumVTs = MatcherTable[MatcherIndex++];
3489       SmallVector<EVT, 4> VTs;
3490       for (unsigned i = 0; i != NumVTs; ++i) {
3491         MVT::SimpleValueType VT =
3492           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3493         if (VT == MVT::iPTR)
3494           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3495         VTs.push_back(VT);
3496       }
3497
3498       if (EmitNodeInfo & OPFL_Chain)
3499         VTs.push_back(MVT::Other);
3500       if (EmitNodeInfo & OPFL_GlueOutput)
3501         VTs.push_back(MVT::Glue);
3502
3503       // This is hot code, so optimize the two most common cases of 1 and 2
3504       // results.
3505       SDVTList VTList;
3506       if (VTs.size() == 1)
3507         VTList = CurDAG->getVTList(VTs[0]);
3508       else if (VTs.size() == 2)
3509         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3510       else
3511         VTList = CurDAG->getVTList(VTs);
3512
3513       // Get the operand list.
3514       unsigned NumOps = MatcherTable[MatcherIndex++];
3515       SmallVector<SDValue, 8> Ops;
3516       for (unsigned i = 0; i != NumOps; ++i) {
3517         unsigned RecNo = MatcherTable[MatcherIndex++];
3518         if (RecNo & 128)
3519           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3520
3521         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3522         Ops.push_back(RecordedNodes[RecNo].first);
3523       }
3524
3525       // If there are variadic operands to add, handle them now.
3526       if (EmitNodeInfo & OPFL_VariadicInfo) {
3527         // Determine the start index to copy from.
3528         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3529         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3530         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3531                "Invalid variadic node");
3532         // Copy all of the variadic operands, not including a potential glue
3533         // input.
3534         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3535              i != e; ++i) {
3536           SDValue V = NodeToMatch->getOperand(i);
3537           if (V.getValueType() == MVT::Glue) break;
3538           Ops.push_back(V);
3539         }
3540       }
3541
3542       // If this has chain/glue inputs, add them.
3543       if (EmitNodeInfo & OPFL_Chain)
3544         Ops.push_back(InputChain);
3545       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3546         Ops.push_back(InputGlue);
3547
3548       // Create the node.
3549       MachineSDNode *Res = nullptr;
3550       bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3551                      (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3552       if (!IsMorphNodeTo) {
3553         // If this is a normal EmitNode command, just create the new node and
3554         // add the results to the RecordedNodes list.
3555         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3556                                      VTList, Ops);
3557
3558         // Add all the non-glue/non-chain results to the RecordedNodes list.
3559         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3560           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3561           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3562                                                              nullptr));
3563         }
3564       } else {
3565         assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3566                "NodeToMatch was removed partway through selection");
3567         SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3568                                                               SDNode *E) {
3569           CurDAG->salvageDebugInfo(*N);
3570           auto &Chain = ChainNodesMatched;
3571           assert((!E || !is_contained(Chain, N)) &&
3572                  "Chain node replaced during MorphNode");
3573           Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3574         });
3575         Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3576                                             Ops, EmitNodeInfo));
3577       }
3578
3579       // If the node had chain/glue results, update our notion of the current
3580       // chain and glue.
3581       if (EmitNodeInfo & OPFL_GlueOutput) {
3582         InputGlue = SDValue(Res, VTs.size()-1);
3583         if (EmitNodeInfo & OPFL_Chain)
3584           InputChain = SDValue(Res, VTs.size()-2);
3585       } else if (EmitNodeInfo & OPFL_Chain)
3586         InputChain = SDValue(Res, VTs.size()-1);
3587
3588       // If the OPFL_MemRefs glue is set on this node, slap all of the
3589       // accumulated memrefs onto it.
3590       //
3591       // FIXME: This is vastly incorrect for patterns with multiple outputs
3592       // instructions that access memory and for ComplexPatterns that match
3593       // loads.
3594       if (EmitNodeInfo & OPFL_MemRefs) {
3595         // Only attach load or store memory operands if the generated
3596         // instruction may load or store.
3597         const MCInstrDesc &MCID = TII->get(TargetOpc);
3598         bool mayLoad = MCID.mayLoad();
3599         bool mayStore = MCID.mayStore();
3600
3601         unsigned NumMemRefs = 0;
3602         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3603                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3604           if ((*I)->isLoad()) {
3605             if (mayLoad)
3606               ++NumMemRefs;
3607           } else if ((*I)->isStore()) {
3608             if (mayStore)
3609               ++NumMemRefs;
3610           } else {
3611             ++NumMemRefs;
3612           }
3613         }
3614
3615         MachineSDNode::mmo_iterator MemRefs =
3616           MF->allocateMemRefsArray(NumMemRefs);
3617
3618         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3619         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3620                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3621           if ((*I)->isLoad()) {
3622             if (mayLoad)
3623               *MemRefsPos++ = *I;
3624           } else if ((*I)->isStore()) {
3625             if (mayStore)
3626               *MemRefsPos++ = *I;
3627           } else {
3628             *MemRefsPos++ = *I;
3629           }
3630         }
3631
3632         Res->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3633       }
3634
3635       LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3636                      << "  Dropping mem operands\n";
3637                  dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3638                         << " node: ";
3639                  Res->dump(CurDAG););
3640
3641       // If this was a MorphNodeTo then we're completely done!
3642       if (IsMorphNodeTo) {
3643         // Update chain uses.
3644         UpdateChains(Res, InputChain, ChainNodesMatched, true);
3645         return;
3646       }
3647       continue;
3648     }
3649
3650     case OPC_CompleteMatch: {
3651       // The match has been completed, and any new nodes (if any) have been
3652       // created.  Patch up references to the matched dag to use the newly
3653       // created nodes.
3654       unsigned NumResults = MatcherTable[MatcherIndex++];
3655
3656       for (unsigned i = 0; i != NumResults; ++i) {
3657         unsigned ResSlot = MatcherTable[MatcherIndex++];
3658         if (ResSlot & 128)
3659           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3660
3661         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3662         SDValue Res = RecordedNodes[ResSlot].first;
3663
3664         assert(i < NodeToMatch->getNumValues() &&
3665                NodeToMatch->getValueType(i) != MVT::Other &&
3666                NodeToMatch->getValueType(i) != MVT::Glue &&
3667                "Invalid number of results to complete!");
3668         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3669                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3670                 Res.getValueType() == MVT::iPTR ||
3671                 NodeToMatch->getValueType(i).getSizeInBits() ==
3672                     Res.getValueSizeInBits()) &&
3673                "invalid replacement");
3674         ReplaceUses(SDValue(NodeToMatch, i), Res);
3675       }
3676
3677       // Update chain uses.
3678       UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3679
3680       // If the root node defines glue, we need to update it to the glue result.
3681       // TODO: This never happens in our tests and I think it can be removed /
3682       // replaced with an assert, but if we do it this the way the change is
3683       // NFC.
3684       if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3685               MVT::Glue &&
3686           InputGlue.getNode())
3687         ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3688                     InputGlue);
3689
3690       assert(NodeToMatch->use_empty() &&
3691              "Didn't replace all uses of the node?");
3692       CurDAG->RemoveDeadNode(NodeToMatch);
3693
3694       return;
3695     }
3696     }
3697
3698     // If the code reached this point, then the match failed.  See if there is
3699     // another child to try in the current 'Scope', otherwise pop it until we
3700     // find a case to check.
3701     LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3702                       << "\n");
3703     ++NumDAGIselRetries;
3704     while (true) {
3705       if (MatchScopes.empty()) {
3706         CannotYetSelect(NodeToMatch);
3707         return;
3708       }
3709
3710       // Restore the interpreter state back to the point where the scope was
3711       // formed.
3712       MatchScope &LastScope = MatchScopes.back();
3713       RecordedNodes.resize(LastScope.NumRecordedNodes);
3714       NodeStack.clear();
3715       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3716       N = NodeStack.back();
3717
3718       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3719         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3720       MatcherIndex = LastScope.FailIndex;
3721
3722       LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3723
3724       InputChain = LastScope.InputChain;
3725       InputGlue = LastScope.InputGlue;
3726       if (!LastScope.HasChainNodesMatched)
3727         ChainNodesMatched.clear();
3728
3729       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3730       // we have reached the end of this scope, otherwise we have another child
3731       // in the current scope to try.
3732       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3733       if (NumToSkip & 128)
3734         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3735
3736       // If we have another child in this scope to match, update FailIndex and
3737       // try it.
3738       if (NumToSkip != 0) {
3739         LastScope.FailIndex = MatcherIndex+NumToSkip;
3740         break;
3741       }
3742
3743       // End of this scope, pop it and try the next child in the containing
3744       // scope.
3745       MatchScopes.pop_back();
3746     }
3747   }
3748 }
3749
3750 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3751   assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3752   auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3753   if (!C)
3754     return false;
3755
3756   // Detect when "or" is used to add an offset to a stack object.
3757   if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3758     MachineFrameInfo &MFI = MF->getFrameInfo();
3759     unsigned A = MFI.getObjectAlignment(FN->getIndex());
3760     assert(isPowerOf2_32(A) && "Unexpected alignment");
3761     int32_t Off = C->getSExtValue();
3762     // If the alleged offset fits in the zero bits guaranteed by
3763     // the alignment, then this or is really an add.
3764     return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
3765   }
3766   return false;
3767 }
3768
3769 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3770   std::string msg;
3771   raw_string_ostream Msg(msg);
3772   Msg << "Cannot select: ";
3773
3774   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3775       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3776       N->getOpcode() != ISD::INTRINSIC_VOID) {
3777     N->printrFull(Msg, CurDAG);
3778     Msg << "\nIn function: " << MF->getName();
3779   } else {
3780     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3781     unsigned iid =
3782       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3783     if (iid < Intrinsic::num_intrinsics)
3784       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3785     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3786       Msg << "target intrinsic %" << TII->getName(iid);
3787     else
3788       Msg << "unknown intrinsic #" << iid;
3789   }
3790   report_fatal_error(Msg.str());
3791 }
3792
3793 char SelectionDAGISel::ID = 0;