]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/CodeGen/SwiftCallingConv.cpp
Vendor import of clang trunk r290819:
[FreeBSD/FreeBSD.git] / lib / CodeGen / SwiftCallingConv.cpp
1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the abstract lowering for the Swift calling convention.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/CodeGen/SwiftCallingConv.h"
15 #include "clang/Basic/TargetInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18
19 using namespace clang;
20 using namespace CodeGen;
21 using namespace swiftcall;
22
23 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
24   return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
25 }
26
27 static bool isPowerOf2(unsigned n) {
28   return n == (n & -n);
29 }
30
31 /// Given two types with the same size, try to find a common type.
32 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
33   assert(first != second);
34
35   // Allow pointers to merge with integers, but prefer the integer type.
36   if (first->isIntegerTy()) {
37     if (second->isPointerTy()) return first;
38   } else if (first->isPointerTy()) {
39     if (second->isIntegerTy()) return second;
40     if (second->isPointerTy()) return first;
41
42   // Allow two vectors to be merged (given that they have the same size).
43   // This assumes that we never have two different vector register sets.
44   } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
45     if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
46       if (auto commonTy = getCommonType(firstVecTy->getElementType(),
47                                         secondVecTy->getElementType())) {
48         return (commonTy == firstVecTy->getElementType() ? first : second);
49       }
50     }
51   }
52
53   return nullptr;
54 }
55
56 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
57   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
58 }
59
60 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
61   // Deal with various aggregate types as special cases:
62
63   // Record types.
64   if (auto recType = type->getAs<RecordType>()) {
65     addTypedData(recType->getDecl(), begin);
66
67   // Array types.
68   } else if (type->isArrayType()) {
69     // Incomplete array types (flexible array members?) don't provide
70     // data to lay out, and the other cases shouldn't be possible.
71     auto arrayType = CGM.getContext().getAsConstantArrayType(type);
72     if (!arrayType) return;
73
74     QualType eltType = arrayType->getElementType();
75     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
76     for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
77       addTypedData(eltType, begin + i * eltSize);
78     }
79
80   // Complex types.
81   } else if (auto complexType = type->getAs<ComplexType>()) {
82     auto eltType = complexType->getElementType();
83     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
84     auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
85     addTypedData(eltLLVMType, begin, begin + eltSize);
86     addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
87
88   // Member pointer types.
89   } else if (type->getAs<MemberPointerType>()) {
90     // Just add it all as opaque.
91     addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
92
93   // Everything else is scalar and should not convert as an LLVM aggregate.
94   } else {
95     // We intentionally convert as !ForMem because we want to preserve
96     // that a type was an i1.
97     auto llvmType = CGM.getTypes().ConvertType(type);
98     addTypedData(llvmType, begin);
99   }
100 }
101
102 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
103   addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
104 }
105
106 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
107                                     const ASTRecordLayout &layout) {
108   // Unions are a special case.
109   if (record->isUnion()) {
110     for (auto field : record->fields()) {
111       if (field->isBitField()) {
112         addBitFieldData(field, begin, 0);
113       } else {
114         addTypedData(field->getType(), begin);
115       }
116     }
117     return;
118   }
119
120   // Note that correctness does not rely on us adding things in
121   // their actual order of layout; it's just somewhat more efficient
122   // for the builder.
123
124   // With that in mind, add "early" C++ data.
125   auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
126   if (cxxRecord) {
127     //   - a v-table pointer, if the class adds its own
128     if (layout.hasOwnVFPtr()) {
129       addTypedData(CGM.Int8PtrTy, begin);
130     }
131
132     //   - non-virtual bases
133     for (auto &baseSpecifier : cxxRecord->bases()) {
134       if (baseSpecifier.isVirtual()) continue;
135
136       auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
137       addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
138     }
139
140     //   - a vbptr if the class adds its own
141     if (layout.hasOwnVBPtr()) {
142       addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
143     }
144   }
145
146   // Add fields.
147   for (auto field : record->fields()) {
148     auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
149     if (field->isBitField()) {
150       addBitFieldData(field, begin, fieldOffsetInBits);
151     } else {
152       addTypedData(field->getType(),
153               begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
154     }
155   }
156
157   // Add "late" C++ data:
158   if (cxxRecord) {
159     //   - virtual bases
160     for (auto &vbaseSpecifier : cxxRecord->vbases()) {
161       auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
162       addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));      
163     }
164   }
165 }
166
167 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
168                                        CharUnits recordBegin,
169                                        uint64_t bitfieldBitBegin) {
170   assert(bitfield->isBitField());
171   auto &ctx = CGM.getContext();
172   auto width = bitfield->getBitWidthValue(ctx);
173
174   // We can ignore zero-width bit-fields.
175   if (width == 0) return;
176
177   // toCharUnitsFromBits rounds down.
178   CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
179
180   // Find the offset of the last byte that is partially occupied by the
181   // bit-field; since we otherwise expect exclusive ends, the end is the
182   // next byte.
183   uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
184   CharUnits bitfieldByteEnd =
185     ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
186   addOpaqueData(recordBegin + bitfieldByteBegin,
187                 recordBegin + bitfieldByteEnd);
188 }
189
190 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
191   assert(type && "didn't provide type for typed data");
192   addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
193 }
194
195 void SwiftAggLowering::addTypedData(llvm::Type *type,
196                                     CharUnits begin, CharUnits end) {
197   assert(type && "didn't provide type for typed data");
198   assert(getTypeStoreSize(CGM, type) == end - begin);
199
200   // Legalize vector types.
201   if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
202     SmallVector<llvm::Type*, 4> componentTys;
203     legalizeVectorType(CGM, end - begin, vecTy, componentTys);
204     assert(componentTys.size() >= 1);
205
206     // Walk the initial components.
207     for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
208       llvm::Type *componentTy = componentTys[i];
209       auto componentSize = getTypeStoreSize(CGM, componentTy);
210       assert(componentSize < end - begin);
211       addLegalTypedData(componentTy, begin, begin + componentSize);
212       begin += componentSize;
213     }
214
215     return addLegalTypedData(componentTys.back(), begin, end);
216   }
217
218   // Legalize integer types.
219   if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
220     if (!isLegalIntegerType(CGM, intTy))
221       return addOpaqueData(begin, end);
222   }
223
224   // All other types should be legal.
225   return addLegalTypedData(type, begin, end);
226 }
227
228 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
229                                          CharUnits begin, CharUnits end) {
230   // Require the type to be naturally aligned.
231   if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
232
233     // Try splitting vector types.
234     if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
235       auto split = splitLegalVectorType(CGM, end - begin, vecTy);
236       auto eltTy = split.first;
237       auto numElts = split.second;
238
239       auto eltSize = (end - begin) / numElts;
240       assert(eltSize == getTypeStoreSize(CGM, eltTy));
241       for (size_t i = 0, e = numElts; i != e; ++i) {
242         addLegalTypedData(eltTy, begin, begin + eltSize);
243         begin += eltSize;
244       }
245       assert(begin == end);
246       return;
247     }
248
249     return addOpaqueData(begin, end);
250   }
251
252   addEntry(type, begin, end);
253 }
254
255 void SwiftAggLowering::addEntry(llvm::Type *type,
256                                 CharUnits begin, CharUnits end) {
257   assert((!type ||
258           (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
259          "cannot add aggregate-typed data");
260   assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
261
262   // Fast path: we can just add entries to the end.
263   if (Entries.empty() || Entries.back().End <= begin) {
264     Entries.push_back({begin, end, type});
265     return;
266   }
267
268   // Find the first existing entry that ends after the start of the new data.
269   // TODO: do a binary search if Entries is big enough for it to matter.
270   size_t index = Entries.size() - 1;
271   while (index != 0) {
272     if (Entries[index - 1].End <= begin) break;
273     --index;
274   }
275
276   // The entry ends after the start of the new data.
277   // If the entry starts after the end of the new data, there's no conflict.
278   if (Entries[index].Begin >= end) {
279     // This insertion is potentially O(n), but the way we generally build
280     // these layouts makes that unlikely to matter: we'd need a union of
281     // several very large types.
282     Entries.insert(Entries.begin() + index, {begin, end, type});
283     return;
284   }
285
286   // Otherwise, the ranges overlap.  The new range might also overlap
287   // with later ranges.
288 restartAfterSplit:
289
290   // Simplest case: an exact overlap.
291   if (Entries[index].Begin == begin && Entries[index].End == end) {
292     // If the types match exactly, great.
293     if (Entries[index].Type == type) return;
294
295     // If either type is opaque, make the entry opaque and return.
296     if (Entries[index].Type == nullptr) {
297       return;
298     } else if (type == nullptr) {
299       Entries[index].Type = nullptr;
300       return;
301     }
302
303     // If they disagree in an ABI-agnostic way, just resolve the conflict
304     // arbitrarily.
305     if (auto entryType = getCommonType(Entries[index].Type, type)) {
306       Entries[index].Type = entryType;
307       return;
308     }
309
310     // Otherwise, make the entry opaque.
311     Entries[index].Type = nullptr;
312     return;
313   }
314
315   // Okay, we have an overlapping conflict of some sort.
316
317   // If we have a vector type, split it.
318   if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
319     auto eltTy = vecTy->getElementType();
320     CharUnits eltSize = (end - begin) / vecTy->getNumElements();
321     assert(eltSize == getTypeStoreSize(CGM, eltTy));
322     for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
323       addEntry(eltTy, begin, begin + eltSize);
324       begin += eltSize;
325     }
326     assert(begin == end);
327     return;
328   }
329
330   // If the entry is a vector type, split it and try again.
331   if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
332     splitVectorEntry(index);
333     goto restartAfterSplit;
334   }
335
336   // Okay, we have no choice but to make the existing entry opaque.
337
338   Entries[index].Type = nullptr;
339
340   // Stretch the start of the entry to the beginning of the range.
341   if (begin < Entries[index].Begin) {
342     Entries[index].Begin = begin;
343     assert(index == 0 || begin >= Entries[index - 1].End);
344   }
345
346   // Stretch the end of the entry to the end of the range; but if we run
347   // into the start of the next entry, just leave the range there and repeat.
348   while (end > Entries[index].End) {
349     assert(Entries[index].Type == nullptr);
350
351     // If the range doesn't overlap the next entry, we're done.
352     if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
353       Entries[index].End = end;
354       break;
355     }
356
357     // Otherwise, stretch to the start of the next entry.
358     Entries[index].End = Entries[index + 1].Begin;
359
360     // Continue with the next entry.
361     index++;
362
363     // This entry needs to be made opaque if it is not already.
364     if (Entries[index].Type == nullptr)
365       continue;
366
367     // Split vector entries unless we completely subsume them.
368     if (Entries[index].Type->isVectorTy() &&
369         end < Entries[index].End) {
370       splitVectorEntry(index);
371     }
372
373     // Make the entry opaque.
374     Entries[index].Type = nullptr;
375   }
376 }
377
378 /// Replace the entry of vector type at offset 'index' with a sequence
379 /// of its component vectors.
380 void SwiftAggLowering::splitVectorEntry(unsigned index) {
381   auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
382   auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
383
384   auto eltTy = split.first;
385   CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
386   auto numElts = split.second;
387   Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
388
389   CharUnits begin = Entries[index].Begin;
390   for (unsigned i = 0; i != numElts; ++i) {
391     Entries[index].Type = eltTy;
392     Entries[index].Begin = begin;
393     Entries[index].End = begin + eltSize;
394     begin += eltSize;
395   }
396 }
397
398 /// Given a power-of-two unit size, return the offset of the aligned unit
399 /// of that size which contains the given offset.
400 ///
401 /// In other words, round down to the nearest multiple of the unit size.
402 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
403   assert(isPowerOf2(unitSize.getQuantity()));
404   auto unitMask = ~(unitSize.getQuantity() - 1);
405   return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
406 }
407
408 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
409                                CharUnits chunkSize) {
410   return getOffsetAtStartOfUnit(first, chunkSize)
411       == getOffsetAtStartOfUnit(second, chunkSize);
412 }
413
414 void SwiftAggLowering::finish() {
415   if (Entries.empty()) {
416     Finished = true;
417     return;
418   }
419
420   // We logically split the layout down into a series of chunks of this size,
421   // which is generally the size of a pointer.
422   const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
423
424   // First pass: if two entries share a chunk, make them both opaque
425   // and stretch one to meet the next.
426   bool hasOpaqueEntries = (Entries[0].Type == nullptr);
427   for (size_t i = 1, e = Entries.size(); i != e; ++i) {
428     if (areBytesInSameUnit(Entries[i - 1].End - CharUnits::One(),
429                            Entries[i].Begin, chunkSize)) {
430       Entries[i - 1].Type = nullptr;
431       Entries[i].Type = nullptr;
432       Entries[i - 1].End = Entries[i].Begin;
433       hasOpaqueEntries = true;
434
435     } else if (Entries[i].Type == nullptr) {
436       hasOpaqueEntries = true;
437     }
438   }
439
440   // The rest of the algorithm leaves non-opaque entries alone, so if we
441   // have no opaque entries, we're done.
442   if (!hasOpaqueEntries) {
443     Finished = true;
444     return;
445   }
446
447   // Okay, move the entries to a temporary and rebuild Entries.
448   auto orig = std::move(Entries);
449   assert(Entries.empty());
450
451   for (size_t i = 0, e = orig.size(); i != e; ++i) {
452     // Just copy over non-opaque entries.
453     if (orig[i].Type != nullptr) {
454       Entries.push_back(orig[i]);
455       continue;
456     }
457
458     // Scan forward to determine the full extent of the next opaque range.
459     // We know from the first pass that only contiguous ranges will overlap
460     // the same aligned chunk.
461     auto begin = orig[i].Begin;
462     auto end = orig[i].End;
463     while (i + 1 != e &&
464            orig[i + 1].Type == nullptr &&
465            end == orig[i + 1].Begin) {
466       end = orig[i + 1].End;
467       i++;
468     }
469
470     // Add an entry per intersected chunk.
471     do {
472       // Find the smallest aligned storage unit in the maximal aligned
473       // storage unit containing 'begin' that contains all the bytes in
474       // the intersection between the range and this chunk.
475       CharUnits localBegin = begin;
476       CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
477       CharUnits chunkEnd = chunkBegin + chunkSize;
478       CharUnits localEnd = std::min(end, chunkEnd);
479
480       // Just do a simple loop over ever-increasing unit sizes.
481       CharUnits unitSize = CharUnits::One();
482       CharUnits unitBegin, unitEnd;
483       for (; ; unitSize *= 2) {
484         assert(unitSize <= chunkSize);
485         unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
486         unitEnd = unitBegin + unitSize;
487         if (unitEnd >= localEnd) break;
488       }
489
490       // Add an entry for this unit.
491       auto entryTy =
492         llvm::IntegerType::get(CGM.getLLVMContext(),
493                                CGM.getContext().toBits(unitSize));
494       Entries.push_back({unitBegin, unitEnd, entryTy});
495
496       // The next chunk starts where this chunk left off.
497       begin = localEnd;
498     } while (begin != end);
499   }
500
501   // Okay, finally finished.
502   Finished = true;
503 }
504
505 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
506   assert(Finished && "haven't yet finished lowering");
507
508   for (auto &entry : Entries) {
509     callback(entry.Begin, entry.End, entry.Type);
510   }
511 }
512
513 std::pair<llvm::StructType*, llvm::Type*>
514 SwiftAggLowering::getCoerceAndExpandTypes() const {
515   assert(Finished && "haven't yet finished lowering");
516
517   auto &ctx = CGM.getLLVMContext();
518
519   if (Entries.empty()) {
520     auto type = llvm::StructType::get(ctx);
521     return { type, type };
522   }
523
524   SmallVector<llvm::Type*, 8> elts;
525   CharUnits lastEnd = CharUnits::Zero();
526   bool hasPadding = false;
527   bool packed = false;
528   for (auto &entry : Entries) {
529     if (entry.Begin != lastEnd) {
530       auto paddingSize = entry.Begin - lastEnd;
531       assert(!paddingSize.isNegative());
532
533       auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
534                                           paddingSize.getQuantity());
535       elts.push_back(padding);
536       hasPadding = true;
537     }
538
539     if (!packed && !entry.Begin.isMultipleOf(
540           CharUnits::fromQuantity(
541             CGM.getDataLayout().getABITypeAlignment(entry.Type))))
542       packed = true;
543
544     elts.push_back(entry.Type);
545     lastEnd = entry.End;
546   }
547
548   // We don't need to adjust 'packed' to deal with possible tail padding
549   // because we never do that kind of access through the coercion type.
550   auto coercionType = llvm::StructType::get(ctx, elts, packed);
551
552   llvm::Type *unpaddedType = coercionType;
553   if (hasPadding) {
554     elts.clear();
555     for (auto &entry : Entries) {
556       elts.push_back(entry.Type);
557     }
558     if (elts.size() == 1) {
559       unpaddedType = elts[0];
560     } else {
561       unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
562     }
563   } else if (Entries.size() == 1) {
564     unpaddedType = Entries[0].Type;
565   }
566
567   return { coercionType, unpaddedType };
568 }
569
570 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
571   assert(Finished && "haven't yet finished lowering");
572
573   // Empty types don't need to be passed indirectly.
574   if (Entries.empty()) return false;
575
576   CharUnits totalSize = Entries.back().End;
577
578   // Avoid copying the array of types when there's just a single element.
579   if (Entries.size() == 1) {
580     return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize,
581                                                            Entries.back().Type,
582                                                              asReturnValue);    
583   }
584
585   SmallVector<llvm::Type*, 8> componentTys;
586   componentTys.reserve(Entries.size());
587   for (auto &entry : Entries) {
588     componentTys.push_back(entry.Type);
589   }
590   return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize,
591                                                            componentTys,
592                                                            asReturnValue);
593 }
594
595 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
596   // Currently always the size of an ordinary pointer.
597   return CGM.getContext().toCharUnitsFromBits(
598            CGM.getContext().getTargetInfo().getPointerWidth(0));
599 }
600
601 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
602   // For Swift's purposes, this is always just the store size of the type
603   // rounded up to a power of 2.
604   auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
605   if (!isPowerOf2(size)) {
606     size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
607   }
608   assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
609   return CharUnits::fromQuantity(size);
610 }
611
612 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
613                                    llvm::IntegerType *intTy) {
614   auto size = intTy->getBitWidth();
615   switch (size) {
616   case 1:
617   case 8:
618   case 16:
619   case 32:
620   case 64:
621     // Just assume that the above are always legal.
622     return true;
623
624   case 128:
625     return CGM.getContext().getTargetInfo().hasInt128Type();
626
627   default:
628     return false;
629   }
630 }
631
632 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
633                                   llvm::VectorType *vectorTy) {
634   return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
635                            vectorTy->getNumElements());
636 }
637
638 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
639                                   llvm::Type *eltTy, unsigned numElts) {
640   assert(numElts > 1 && "illegal vector length");
641   return getSwiftABIInfo(CGM)
642            .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
643 }
644
645 std::pair<llvm::Type*, unsigned>
646 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
647                                 llvm::VectorType *vectorTy) {
648   auto numElts = vectorTy->getNumElements();
649   auto eltTy = vectorTy->getElementType();
650
651   // Try to split the vector type in half.
652   if (numElts >= 4 && isPowerOf2(numElts)) {
653     if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
654       return {llvm::VectorType::get(eltTy, numElts / 2), 2};
655   }
656
657   return {eltTy, numElts};
658 }
659
660 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
661                                    llvm::VectorType *origVectorTy,
662                              llvm::SmallVectorImpl<llvm::Type*> &components) {
663   // If it's already a legal vector type, use it.
664   if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
665     components.push_back(origVectorTy);
666     return;
667   }
668
669   // Try to split the vector into legal subvectors.
670   auto numElts = origVectorTy->getNumElements();
671   auto eltTy = origVectorTy->getElementType();
672   assert(numElts != 1);
673
674   // The largest size that we're still considering making subvectors of.
675   // Always a power of 2.
676   unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
677   unsigned candidateNumElts = 1U << logCandidateNumElts;
678   assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
679
680   // Minor optimization: don't check the legality of this exact size twice.
681   if (candidateNumElts == numElts) {
682     logCandidateNumElts--;
683     candidateNumElts >>= 1;
684   }
685
686   CharUnits eltSize = (origVectorSize / numElts);
687   CharUnits candidateSize = eltSize * candidateNumElts;
688
689   // The sensibility of this algorithm relies on the fact that we never
690   // have a legal non-power-of-2 vector size without having the power of 2
691   // also be legal.
692   while (logCandidateNumElts > 0) {
693     assert(candidateNumElts == 1U << logCandidateNumElts);
694     assert(candidateNumElts <= numElts);
695     assert(candidateSize == eltSize * candidateNumElts);
696
697     // Skip illegal vector sizes.
698     if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
699       logCandidateNumElts--;
700       candidateNumElts /= 2;
701       candidateSize /= 2;
702       continue;
703     }
704
705     // Add the right number of vectors of this size.
706     auto numVecs = numElts >> logCandidateNumElts;
707     components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
708     numElts -= (numVecs << logCandidateNumElts);
709
710     if (numElts == 0) return;
711
712     // It's possible that the number of elements remaining will be legal.
713     // This can happen with e.g. <7 x float> when <3 x float> is legal.
714     // This only needs to be separately checked if it's not a power of 2.
715     if (numElts > 2 && !isPowerOf2(numElts) &&
716         isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
717       components.push_back(llvm::VectorType::get(eltTy, numElts));
718       return;
719     }
720
721     // Bring vecSize down to something no larger than numElts.
722     do {
723       logCandidateNumElts--;
724       candidateNumElts /= 2;
725       candidateSize /= 2;
726     } while (candidateNumElts > numElts);
727   }
728
729   // Otherwise, just append a bunch of individual elements.
730   components.append(numElts, eltTy);
731 }
732
733 bool swiftcall::shouldPassCXXRecordIndirectly(CodeGenModule &CGM,
734                                               const CXXRecordDecl *record) {
735   // Following a recommendation from Richard Smith, pass a C++ type
736   // indirectly only if the destructor is non-trivial or *all* of the
737   // copy/move constructors are deleted or non-trivial.
738
739   if (record->hasNonTrivialDestructor())
740     return true;
741
742   // It would be nice if this were summarized on the CXXRecordDecl.
743   for (auto ctor : record->ctors()) {
744     if (ctor->isCopyOrMoveConstructor() && !ctor->isDeleted() &&
745         ctor->isTrivial()) {
746       return false;
747     }
748   }
749
750   return true;
751 }
752
753 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
754                                        bool forReturn,
755                                        CharUnits alignmentForIndirect) {
756   if (lowering.empty()) {
757     return ABIArgInfo::getIgnore();
758   } else if (lowering.shouldPassIndirectly(forReturn)) {
759     return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
760   } else {
761     auto types = lowering.getCoerceAndExpandTypes();
762     return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
763   }
764 }
765
766 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
767                                bool forReturn) {
768   if (auto recordType = dyn_cast<RecordType>(type)) {
769     auto record = recordType->getDecl();
770     auto &layout = CGM.getContext().getASTRecordLayout(record);
771
772     if (auto cxxRecord = dyn_cast<CXXRecordDecl>(record)) {
773       if (shouldPassCXXRecordIndirectly(CGM, cxxRecord))
774         return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
775     }
776
777     SwiftAggLowering lowering(CGM);
778     lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
779     lowering.finish();
780
781     return classifyExpandedType(lowering, forReturn, layout.getAlignment());
782   }
783
784   // Just assume that all of our target ABIs can support returning at least
785   // two integer or floating-point values.
786   if (isa<ComplexType>(type)) {
787     return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
788   }
789
790   // Vector types may need to be legalized.
791   if (isa<VectorType>(type)) {
792     SwiftAggLowering lowering(CGM);
793     lowering.addTypedData(type, CharUnits::Zero());
794     lowering.finish();
795
796     CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
797     return classifyExpandedType(lowering, forReturn, alignment);
798   }
799
800   // Member pointer types need to be expanded, but it's a simple form of
801   // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
802   // true for this to work.
803
804   // 'void' needs to be ignored.
805   if (type->isVoidType()) {
806     return ABIArgInfo::getIgnore();
807   }
808
809   // Everything else can be passed directly.
810   return ABIArgInfo::getDirect();
811 }
812
813 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
814   return classifyType(CGM, type, /*forReturn*/ true);
815 }
816
817 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
818                                            CanQualType type) {
819   return classifyType(CGM, type, /*forReturn*/ false);
820 }
821
822 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
823   auto &retInfo = FI.getReturnInfo();
824   retInfo = classifyReturnType(CGM, FI.getReturnType());
825
826   for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
827     auto &argInfo = FI.arg_begin()[i];
828     argInfo.info = classifyArgumentType(CGM, argInfo.type);
829   }
830 }
831
832 // Is swifterror lowered to a register by the target ABI.
833 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
834   return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
835 }