]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Sema/SemaCXXScopeSpec.cpp
Vendor import of clang trunk r161861:
[FreeBSD/FreeBSD.git] / lib / Sema / SemaCXXScopeSpec.cpp
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Lookup.h"
16 #include "clang/Sema/Template.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/NestedNameSpecifier.h"
21 #include "clang/Basic/PartialDiagnostic.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "TypeLocBuilder.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27
28 /// \brief Find the current instantiation that associated with the given type.
29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T, 
30                                                 DeclContext *CurContext) {
31   if (T.isNull())
32     return 0;
33
34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37     if (!T->isDependentType())
38       return Record;
39
40     // This may be a member of a class template or class template partial
41     // specialization. If it's part of the current semantic context, then it's
42     // an injected-class-name;
43     for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
44       if (CurContext->Equals(Record))
45         return Record;
46     
47     return 0;
48   } else if (isa<InjectedClassNameType>(Ty))
49     return cast<InjectedClassNameType>(Ty)->getDecl();
50   else
51     return 0;
52 }
53
54 /// \brief Compute the DeclContext that is associated with the given type.
55 ///
56 /// \param T the type for which we are attempting to find a DeclContext.
57 ///
58 /// \returns the declaration context represented by the type T,
59 /// or NULL if the declaration context cannot be computed (e.g., because it is
60 /// dependent and not the current instantiation).
61 DeclContext *Sema::computeDeclContext(QualType T) {
62   if (!T->isDependentType())
63     if (const TagType *Tag = T->getAs<TagType>())
64       return Tag->getDecl();
65
66   return ::getCurrentInstantiationOf(T, CurContext);
67 }
68
69 /// \brief Compute the DeclContext that is associated with the given
70 /// scope specifier.
71 ///
72 /// \param SS the C++ scope specifier as it appears in the source
73 ///
74 /// \param EnteringContext when true, we will be entering the context of
75 /// this scope specifier, so we can retrieve the declaration context of a
76 /// class template or class template partial specialization even if it is
77 /// not the current instantiation.
78 ///
79 /// \returns the declaration context represented by the scope specifier @p SS,
80 /// or NULL if the declaration context cannot be computed (e.g., because it is
81 /// dependent and not the current instantiation).
82 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
83                                       bool EnteringContext) {
84   if (!SS.isSet() || SS.isInvalid())
85     return 0;
86
87   NestedNameSpecifier *NNS
88     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
89   if (NNS->isDependent()) {
90     // If this nested-name-specifier refers to the current
91     // instantiation, return its DeclContext.
92     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
93       return Record;
94
95     if (EnteringContext) {
96       const Type *NNSType = NNS->getAsType();
97       if (!NNSType) {
98         return 0;
99       }
100
101       // Look through type alias templates, per C++0x [temp.dep.type]p1.
102       NNSType = Context.getCanonicalType(NNSType);
103       if (const TemplateSpecializationType *SpecType
104             = NNSType->getAs<TemplateSpecializationType>()) {
105         // We are entering the context of the nested name specifier, so try to
106         // match the nested name specifier to either a primary class template
107         // or a class template partial specialization.
108         if (ClassTemplateDecl *ClassTemplate
109               = dyn_cast_or_null<ClassTemplateDecl>(
110                             SpecType->getTemplateName().getAsTemplateDecl())) {
111           QualType ContextType
112             = Context.getCanonicalType(QualType(SpecType, 0));
113
114           // If the type of the nested name specifier is the same as the
115           // injected class name of the named class template, we're entering
116           // into that class template definition.
117           QualType Injected
118             = ClassTemplate->getInjectedClassNameSpecialization();
119           if (Context.hasSameType(Injected, ContextType))
120             return ClassTemplate->getTemplatedDecl();
121
122           // If the type of the nested name specifier is the same as the
123           // type of one of the class template's class template partial
124           // specializations, we're entering into the definition of that
125           // class template partial specialization.
126           if (ClassTemplatePartialSpecializationDecl *PartialSpec
127                 = ClassTemplate->findPartialSpecialization(ContextType))
128             return PartialSpec;
129         }
130       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
131         // The nested name specifier refers to a member of a class template.
132         return RecordT->getDecl();
133       }
134     }
135
136     return 0;
137   }
138
139   switch (NNS->getKind()) {
140   case NestedNameSpecifier::Identifier:
141     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
142
143   case NestedNameSpecifier::Namespace:
144     return NNS->getAsNamespace();
145
146   case NestedNameSpecifier::NamespaceAlias:
147     return NNS->getAsNamespaceAlias()->getNamespace();
148
149   case NestedNameSpecifier::TypeSpec:
150   case NestedNameSpecifier::TypeSpecWithTemplate: {
151     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
152     assert(Tag && "Non-tag type in nested-name-specifier");
153     return Tag->getDecl();
154   }
155
156   case NestedNameSpecifier::Global:
157     return Context.getTranslationUnitDecl();
158   }
159
160   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
161 }
162
163 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
164   if (!SS.isSet() || SS.isInvalid())
165     return false;
166
167   NestedNameSpecifier *NNS
168     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
169   return NNS->isDependent();
170 }
171
172 // \brief Determine whether this C++ scope specifier refers to an
173 // unknown specialization, i.e., a dependent type that is not the
174 // current instantiation.
175 bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
176   if (!isDependentScopeSpecifier(SS))
177     return false;
178
179   NestedNameSpecifier *NNS
180     = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
181   return getCurrentInstantiationOf(NNS) == 0;
182 }
183
184 /// \brief If the given nested name specifier refers to the current
185 /// instantiation, return the declaration that corresponds to that
186 /// current instantiation (C++0x [temp.dep.type]p1).
187 ///
188 /// \param NNS a dependent nested name specifier.
189 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
190   assert(getLangOpts().CPlusPlus && "Only callable in C++");
191   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
192
193   if (!NNS->getAsType())
194     return 0;
195
196   QualType T = QualType(NNS->getAsType(), 0);
197   return ::getCurrentInstantiationOf(T, CurContext);
198 }
199
200 /// \brief Require that the context specified by SS be complete.
201 ///
202 /// If SS refers to a type, this routine checks whether the type is
203 /// complete enough (or can be made complete enough) for name lookup
204 /// into the DeclContext. A type that is not yet completed can be
205 /// considered "complete enough" if it is a class/struct/union/enum
206 /// that is currently being defined. Or, if we have a type that names
207 /// a class template specialization that is not a complete type, we
208 /// will attempt to instantiate that class template.
209 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
210                                       DeclContext *DC) {
211   assert(DC != 0 && "given null context");
212
213   TagDecl *tag = dyn_cast<TagDecl>(DC);
214
215   // If this is a dependent type, then we consider it complete.
216   if (!tag || tag->isDependentContext())
217     return false;
218
219   // If we're currently defining this type, then lookup into the
220   // type is okay: don't complain that it isn't complete yet.
221   QualType type = Context.getTypeDeclType(tag);
222   const TagType *tagType = type->getAs<TagType>();
223   if (tagType && tagType->isBeingDefined())
224     return false;
225
226   SourceLocation loc = SS.getLastQualifierNameLoc();
227   if (loc.isInvalid()) loc = SS.getRange().getBegin();
228
229   // The type must be complete.
230   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
231                           SS.getRange())) {
232     SS.SetInvalid(SS.getRange());
233     return true;
234   }
235
236   // Fixed enum types are complete, but they aren't valid as scopes
237   // until we see a definition, so awkwardly pull out this special
238   // case.
239   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
240   if (!enumType || enumType->getDecl()->isCompleteDefinition())
241     return false;
242
243   // Try to instantiate the definition, if this is a specialization of an
244   // enumeration temploid.
245   EnumDecl *ED = enumType->getDecl();
246   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
247     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
248     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
249       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
250                           TSK_ImplicitInstantiation)) {
251         SS.SetInvalid(SS.getRange());
252         return true;
253       }
254       return false;
255     }
256   }
257
258   Diag(loc, diag::err_incomplete_nested_name_spec)
259     << type << SS.getRange();
260   SS.SetInvalid(SS.getRange());
261   return true;
262 }
263
264 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
265                                         CXXScopeSpec &SS) {
266   SS.MakeGlobal(Context, CCLoc);
267   return false;
268 }
269
270 /// \brief Determines whether the given declaration is an valid acceptable
271 /// result for name lookup of a nested-name-specifier.
272 bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
273   if (!SD)
274     return false;
275
276   // Namespace and namespace aliases are fine.
277   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
278     return true;
279
280   if (!isa<TypeDecl>(SD))
281     return false;
282
283   // Determine whether we have a class (or, in C++11, an enum) or
284   // a typedef thereof. If so, build the nested-name-specifier.
285   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
286   if (T->isDependentType())
287     return true;
288   else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
289     if (TD->getUnderlyingType()->isRecordType() ||
290         (Context.getLangOpts().CPlusPlus0x &&
291          TD->getUnderlyingType()->isEnumeralType()))
292       return true;
293   } else if (isa<RecordDecl>(SD) ||
294              (Context.getLangOpts().CPlusPlus0x && isa<EnumDecl>(SD)))
295     return true;
296
297   return false;
298 }
299
300 /// \brief If the given nested-name-specifier begins with a bare identifier
301 /// (e.g., Base::), perform name lookup for that identifier as a
302 /// nested-name-specifier within the given scope, and return the result of that
303 /// name lookup.
304 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
305   if (!S || !NNS)
306     return 0;
307
308   while (NNS->getPrefix())
309     NNS = NNS->getPrefix();
310
311   if (NNS->getKind() != NestedNameSpecifier::Identifier)
312     return 0;
313
314   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
315                      LookupNestedNameSpecifierName);
316   LookupName(Found, S);
317   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
318
319   if (!Found.isSingleResult())
320     return 0;
321
322   NamedDecl *Result = Found.getFoundDecl();
323   if (isAcceptableNestedNameSpecifier(Result))
324     return Result;
325
326   return 0;
327 }
328
329 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
330                                         SourceLocation IdLoc,
331                                         IdentifierInfo &II,
332                                         ParsedType ObjectTypePtr) {
333   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
334   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
335   
336   // Determine where to perform name lookup
337   DeclContext *LookupCtx = 0;
338   bool isDependent = false;
339   if (!ObjectType.isNull()) {
340     // This nested-name-specifier occurs in a member access expression, e.g.,
341     // x->B::f, and we are looking into the type of the object.
342     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
343     LookupCtx = computeDeclContext(ObjectType);
344     isDependent = ObjectType->isDependentType();
345   } else if (SS.isSet()) {
346     // This nested-name-specifier occurs after another nested-name-specifier,
347     // so long into the context associated with the prior nested-name-specifier.
348     LookupCtx = computeDeclContext(SS, false);
349     isDependent = isDependentScopeSpecifier(SS);
350     Found.setContextRange(SS.getRange());
351   }
352   
353   if (LookupCtx) {
354     // Perform "qualified" name lookup into the declaration context we
355     // computed, which is either the type of the base of a member access
356     // expression or the declaration context associated with a prior
357     // nested-name-specifier.
358     
359     // The declaration context must be complete.
360     if (!LookupCtx->isDependentContext() &&
361         RequireCompleteDeclContext(SS, LookupCtx))
362       return false;
363     
364     LookupQualifiedName(Found, LookupCtx);
365   } else if (isDependent) {
366     return false;
367   } else {
368     LookupName(Found, S);
369   }
370   Found.suppressDiagnostics();
371   
372   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
373     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
374   
375   return false;
376 }
377
378 namespace {
379
380 // Callback to only accept typo corrections that can be a valid C++ member
381 // intializer: either a non-static field member or a base class.
382 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
383  public:
384   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
385       : SRef(SRef) {}
386
387   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
388     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
389   }
390
391  private:
392   Sema &SRef;
393 };
394
395 }
396
397 /// \brief Build a new nested-name-specifier for "identifier::", as described
398 /// by ActOnCXXNestedNameSpecifier.
399 ///
400 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
401 /// that it contains an extra parameter \p ScopeLookupResult, which provides
402 /// the result of name lookup within the scope of the nested-name-specifier
403 /// that was computed at template definition time.
404 ///
405 /// If ErrorRecoveryLookup is true, then this call is used to improve error
406 /// recovery.  This means that it should not emit diagnostics, it should
407 /// just return true on failure.  It also means it should only return a valid
408 /// scope if it *knows* that the result is correct.  It should not return in a
409 /// dependent context, for example. Nor will it extend \p SS with the scope
410 /// specifier.
411 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
412                                        IdentifierInfo &Identifier,
413                                        SourceLocation IdentifierLoc,
414                                        SourceLocation CCLoc,
415                                        QualType ObjectType,
416                                        bool EnteringContext,
417                                        CXXScopeSpec &SS,
418                                        NamedDecl *ScopeLookupResult,
419                                        bool ErrorRecoveryLookup) {
420   LookupResult Found(*this, &Identifier, IdentifierLoc, 
421                      LookupNestedNameSpecifierName);
422
423   // Determine where to perform name lookup
424   DeclContext *LookupCtx = 0;
425   bool isDependent = false;
426   if (!ObjectType.isNull()) {
427     // This nested-name-specifier occurs in a member access expression, e.g.,
428     // x->B::f, and we are looking into the type of the object.
429     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
430     LookupCtx = computeDeclContext(ObjectType);
431     isDependent = ObjectType->isDependentType();
432   } else if (SS.isSet()) {
433     // This nested-name-specifier occurs after another nested-name-specifier,
434     // so look into the context associated with the prior nested-name-specifier.
435     LookupCtx = computeDeclContext(SS, EnteringContext);
436     isDependent = isDependentScopeSpecifier(SS);
437     Found.setContextRange(SS.getRange());
438   }
439
440
441   bool ObjectTypeSearchedInScope = false;
442   if (LookupCtx) {
443     // Perform "qualified" name lookup into the declaration context we
444     // computed, which is either the type of the base of a member access
445     // expression or the declaration context associated with a prior
446     // nested-name-specifier.
447
448     // The declaration context must be complete.
449     if (!LookupCtx->isDependentContext() &&
450         RequireCompleteDeclContext(SS, LookupCtx))
451       return true;
452
453     LookupQualifiedName(Found, LookupCtx);
454
455     if (!ObjectType.isNull() && Found.empty()) {
456       // C++ [basic.lookup.classref]p4:
457       //   If the id-expression in a class member access is a qualified-id of
458       //   the form
459       //
460       //        class-name-or-namespace-name::...
461       //
462       //   the class-name-or-namespace-name following the . or -> operator is
463       //   looked up both in the context of the entire postfix-expression and in
464       //   the scope of the class of the object expression. If the name is found
465       //   only in the scope of the class of the object expression, the name
466       //   shall refer to a class-name. If the name is found only in the
467       //   context of the entire postfix-expression, the name shall refer to a
468       //   class-name or namespace-name. [...]
469       //
470       // Qualified name lookup into a class will not find a namespace-name,
471       // so we do not need to diagnose that case specifically. However,
472       // this qualified name lookup may find nothing. In that case, perform
473       // unqualified name lookup in the given scope (if available) or
474       // reconstruct the result from when name lookup was performed at template
475       // definition time.
476       if (S)
477         LookupName(Found, S);
478       else if (ScopeLookupResult)
479         Found.addDecl(ScopeLookupResult);
480
481       ObjectTypeSearchedInScope = true;
482     }
483   } else if (!isDependent) {
484     // Perform unqualified name lookup in the current scope.
485     LookupName(Found, S);
486   }
487
488   // If we performed lookup into a dependent context and did not find anything,
489   // that's fine: just build a dependent nested-name-specifier.
490   if (Found.empty() && isDependent &&
491       !(LookupCtx && LookupCtx->isRecord() &&
492         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
493          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
494     // Don't speculate if we're just trying to improve error recovery.
495     if (ErrorRecoveryLookup)
496       return true;
497     
498     // We were not able to compute the declaration context for a dependent
499     // base object type or prior nested-name-specifier, so this
500     // nested-name-specifier refers to an unknown specialization. Just build
501     // a dependent nested-name-specifier.
502     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
503     return false;
504   } 
505   
506   // FIXME: Deal with ambiguities cleanly.
507
508   if (Found.empty() && !ErrorRecoveryLookup) {
509     // We haven't found anything, and we're not recovering from a
510     // different kind of error, so look for typos.
511     DeclarationName Name = Found.getLookupName();
512     NestedNameSpecifierValidatorCCC Validator(*this);
513     TypoCorrection Corrected;
514     Found.clear();
515     if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
516                                  Found.getLookupKind(), S, &SS, Validator,
517                                  LookupCtx, EnteringContext))) {
518       std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
519       std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
520       if (LookupCtx)
521         Diag(Found.getNameLoc(), diag::err_no_member_suggest)
522           << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
523           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
524       else
525         Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
526           << Name << CorrectedQuotedStr
527           << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
528       
529       if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
530         Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
531         Found.addDecl(ND);
532       }
533       Found.setLookupName(Corrected.getCorrection());
534     } else {
535       Found.setLookupName(&Identifier);
536     }
537   }
538
539   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
540   if (isAcceptableNestedNameSpecifier(SD)) {
541     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
542         !getLangOpts().CPlusPlus0x) {
543       // C++03 [basic.lookup.classref]p4:
544       //   [...] If the name is found in both contexts, the
545       //   class-name-or-namespace-name shall refer to the same entity.
546       //
547       // We already found the name in the scope of the object. Now, look
548       // into the current scope (the scope of the postfix-expression) to
549       // see if we can find the same name there. As above, if there is no
550       // scope, reconstruct the result from the template instantiation itself.
551       //
552       // Note that C++11 does *not* perform this redundant lookup.
553       NamedDecl *OuterDecl;
554       if (S) {
555         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, 
556                                 LookupNestedNameSpecifierName);
557         LookupName(FoundOuter, S);
558         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
559       } else
560         OuterDecl = ScopeLookupResult;
561
562       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
563           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
564           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
565            !Context.hasSameType(
566                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
567                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
568          if (ErrorRecoveryLookup)
569            return true;
570
571          Diag(IdentifierLoc, 
572               diag::err_nested_name_member_ref_lookup_ambiguous)
573            << &Identifier;
574          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
575            << ObjectType;
576          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
577
578          // Fall through so that we'll pick the name we found in the object
579          // type, since that's probably what the user wanted anyway.
580        }
581     }
582
583     // If we're just performing this lookup for error-recovery purposes, 
584     // don't extend the nested-name-specifier. Just return now.
585     if (ErrorRecoveryLookup)
586       return false;
587     
588     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
589       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
590       return false;
591     }
592
593     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
594       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
595       return false;
596     }
597
598     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
599     TypeLocBuilder TLB;
600     if (isa<InjectedClassNameType>(T)) {
601       InjectedClassNameTypeLoc InjectedTL
602         = TLB.push<InjectedClassNameTypeLoc>(T);
603       InjectedTL.setNameLoc(IdentifierLoc);
604     } else if (isa<RecordType>(T)) {
605       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
606       RecordTL.setNameLoc(IdentifierLoc);
607     } else if (isa<TypedefType>(T)) {
608       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
609       TypedefTL.setNameLoc(IdentifierLoc);
610     } else if (isa<EnumType>(T)) {
611       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
612       EnumTL.setNameLoc(IdentifierLoc);
613     } else if (isa<TemplateTypeParmType>(T)) {
614       TemplateTypeParmTypeLoc TemplateTypeTL
615         = TLB.push<TemplateTypeParmTypeLoc>(T);
616       TemplateTypeTL.setNameLoc(IdentifierLoc);
617     } else if (isa<UnresolvedUsingType>(T)) {
618       UnresolvedUsingTypeLoc UnresolvedTL
619         = TLB.push<UnresolvedUsingTypeLoc>(T);
620       UnresolvedTL.setNameLoc(IdentifierLoc);
621     } else if (isa<SubstTemplateTypeParmType>(T)) {
622       SubstTemplateTypeParmTypeLoc TL 
623         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
624       TL.setNameLoc(IdentifierLoc);
625     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
626       SubstTemplateTypeParmPackTypeLoc TL
627         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
628       TL.setNameLoc(IdentifierLoc);
629     } else {
630       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
631     }
632
633     if (T->isEnumeralType())
634       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
635
636     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
637               CCLoc);
638     return false;
639   }
640
641   // Otherwise, we have an error case.  If we don't want diagnostics, just
642   // return an error now.
643   if (ErrorRecoveryLookup)
644     return true;
645
646   // If we didn't find anything during our lookup, try again with
647   // ordinary name lookup, which can help us produce better error
648   // messages.
649   if (Found.empty()) {
650     Found.clear(LookupOrdinaryName);
651     LookupName(Found, S);
652   }
653
654   // In Microsoft mode, if we are within a templated function and we can't
655   // resolve Identifier, then extend the SS with Identifier. This will have 
656   // the effect of resolving Identifier during template instantiation. 
657   // The goal is to be able to resolve a function call whose
658   // nested-name-specifier is located inside a dependent base class.
659   // Example: 
660   //
661   // class C {
662   // public:
663   //    static void foo2() {  }
664   // };
665   // template <class T> class A { public: typedef C D; };
666   //
667   // template <class T> class B : public A<T> {
668   // public:
669   //   void foo() { D::foo2(); }
670   // };
671   if (getLangOpts().MicrosoftExt) {
672     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
673     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
674       SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
675       return false;
676     }
677   }
678
679   unsigned DiagID;
680   if (!Found.empty())
681     DiagID = diag::err_expected_class_or_namespace;
682   else if (SS.isSet()) {
683     Diag(IdentifierLoc, diag::err_no_member) 
684       << &Identifier << LookupCtx << SS.getRange();
685     return true;
686   } else
687     DiagID = diag::err_undeclared_var_use;
688
689   if (SS.isSet())
690     Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
691   else
692     Diag(IdentifierLoc, DiagID) << &Identifier;
693
694   return true;
695 }
696
697 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
698                                        IdentifierInfo &Identifier,
699                                        SourceLocation IdentifierLoc,
700                                        SourceLocation CCLoc,
701                                        ParsedType ObjectType,
702                                        bool EnteringContext,
703                                        CXXScopeSpec &SS) {
704   if (SS.isInvalid())
705     return true;
706   
707   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
708                                      GetTypeFromParser(ObjectType),
709                                      EnteringContext, SS, 
710                                      /*ScopeLookupResult=*/0, false);
711 }
712
713 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
714                                                const DeclSpec &DS,
715                                                SourceLocation ColonColonLoc) {
716   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
717     return true;
718
719   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
720
721   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
722   if (!T->isDependentType() && !T->getAs<TagType>()) {
723     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class) 
724       << T << getLangOpts().CPlusPlus;
725     return true;
726   }
727
728   TypeLocBuilder TLB;
729   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
730   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
731   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
732             ColonColonLoc);
733   return false;
734 }
735
736 /// IsInvalidUnlessNestedName - This method is used for error recovery
737 /// purposes to determine whether the specified identifier is only valid as
738 /// a nested name specifier, for example a namespace name.  It is
739 /// conservatively correct to always return false from this method.
740 ///
741 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
742 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
743                                      IdentifierInfo &Identifier, 
744                                      SourceLocation IdentifierLoc,
745                                      SourceLocation ColonLoc,
746                                      ParsedType ObjectType,
747                                      bool EnteringContext) {
748   if (SS.isInvalid())
749     return false;
750   
751   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
752                                       GetTypeFromParser(ObjectType),
753                                       EnteringContext, SS, 
754                                       /*ScopeLookupResult=*/0, true);
755 }
756
757 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
758                                        CXXScopeSpec &SS,
759                                        SourceLocation TemplateKWLoc,
760                                        TemplateTy Template,
761                                        SourceLocation TemplateNameLoc,
762                                        SourceLocation LAngleLoc,
763                                        ASTTemplateArgsPtr TemplateArgsIn,
764                                        SourceLocation RAngleLoc,
765                                        SourceLocation CCLoc,
766                                        bool EnteringContext) {
767   if (SS.isInvalid())
768     return true;
769   
770   // Translate the parser's template argument list in our AST format.
771   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
772   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
773
774   if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
775     // Handle a dependent template specialization for which we cannot resolve
776     // the template name.
777     assert(DTN->getQualifier()
778              == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
779     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
780                                                           DTN->getQualifier(),
781                                                           DTN->getIdentifier(),
782                                                                 TemplateArgs);
783     
784     // Create source-location information for this type.
785     TypeLocBuilder Builder;
786     DependentTemplateSpecializationTypeLoc SpecTL
787       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
788     SpecTL.setElaboratedKeywordLoc(SourceLocation());
789     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
790     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
791     SpecTL.setTemplateNameLoc(TemplateNameLoc);
792     SpecTL.setLAngleLoc(LAngleLoc);
793     SpecTL.setRAngleLoc(RAngleLoc);
794     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
795       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
796     
797     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
798               CCLoc);
799     return false;
800   }
801   
802   
803   if (Template.get().getAsOverloadedTemplate() ||
804       isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
805     SourceRange R(TemplateNameLoc, RAngleLoc);
806     if (SS.getRange().isValid())
807       R.setBegin(SS.getRange().getBegin());
808       
809     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
810       << Template.get() << R;
811     NoteAllFoundTemplates(Template.get());
812     return true;
813   }
814                                 
815   // We were able to resolve the template name to an actual template. 
816   // Build an appropriate nested-name-specifier.
817   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, 
818                                    TemplateArgs);
819   if (T.isNull())
820     return true;
821
822   // Alias template specializations can produce types which are not valid
823   // nested name specifiers.
824   if (!T->isDependentType() && !T->getAs<TagType>()) {
825     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
826     NoteAllFoundTemplates(Template.get());
827     return true;
828   }
829
830   // Provide source-location information for the template specialization type.
831   TypeLocBuilder Builder;
832   TemplateSpecializationTypeLoc SpecTL
833     = Builder.push<TemplateSpecializationTypeLoc>(T);
834   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
835   SpecTL.setTemplateNameLoc(TemplateNameLoc);
836   SpecTL.setLAngleLoc(LAngleLoc);
837   SpecTL.setRAngleLoc(RAngleLoc);
838   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
839     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
840
841
842   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
843             CCLoc);
844   return false;
845 }
846
847 namespace {
848   /// \brief A structure that stores a nested-name-specifier annotation,
849   /// including both the nested-name-specifier 
850   struct NestedNameSpecifierAnnotation {
851     NestedNameSpecifier *NNS;
852   };
853 }
854
855 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
856   if (SS.isEmpty() || SS.isInvalid())
857     return 0;
858   
859   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
860                                                         SS.location_size()),
861                                llvm::alignOf<NestedNameSpecifierAnnotation>());
862   NestedNameSpecifierAnnotation *Annotation
863     = new (Mem) NestedNameSpecifierAnnotation;
864   Annotation->NNS = SS.getScopeRep();
865   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
866   return Annotation;
867 }
868
869 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, 
870                                                 SourceRange AnnotationRange,
871                                                 CXXScopeSpec &SS) {
872   if (!AnnotationPtr) {
873     SS.SetInvalid(AnnotationRange);
874     return;
875   }
876   
877   NestedNameSpecifierAnnotation *Annotation
878     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
879   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
880 }
881
882 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
883   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
884
885   NestedNameSpecifier *Qualifier =
886     static_cast<NestedNameSpecifier*>(SS.getScopeRep());
887
888   // There are only two places a well-formed program may qualify a
889   // declarator: first, when defining a namespace or class member
890   // out-of-line, and second, when naming an explicitly-qualified
891   // friend function.  The latter case is governed by
892   // C++03 [basic.lookup.unqual]p10:
893   //   In a friend declaration naming a member function, a name used
894   //   in the function declarator and not part of a template-argument
895   //   in a template-id is first looked up in the scope of the member
896   //   function's class. If it is not found, or if the name is part of
897   //   a template-argument in a template-id, the look up is as
898   //   described for unqualified names in the definition of the class
899   //   granting friendship.
900   // i.e. we don't push a scope unless it's a class member.
901
902   switch (Qualifier->getKind()) {
903   case NestedNameSpecifier::Global:
904   case NestedNameSpecifier::Namespace:
905   case NestedNameSpecifier::NamespaceAlias:
906     // These are always namespace scopes.  We never want to enter a
907     // namespace scope from anything but a file context.
908     return CurContext->getRedeclContext()->isFileContext();
909
910   case NestedNameSpecifier::Identifier:
911   case NestedNameSpecifier::TypeSpec:
912   case NestedNameSpecifier::TypeSpecWithTemplate:
913     // These are never namespace scopes.
914     return true;
915   }
916
917   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
918 }
919
920 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
921 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
922 /// After this method is called, according to [C++ 3.4.3p3], names should be
923 /// looked up in the declarator-id's scope, until the declarator is parsed and
924 /// ActOnCXXExitDeclaratorScope is called.
925 /// The 'SS' should be a non-empty valid CXXScopeSpec.
926 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
927   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
928
929   if (SS.isInvalid()) return true;
930
931   DeclContext *DC = computeDeclContext(SS, true);
932   if (!DC) return true;
933
934   // Before we enter a declarator's context, we need to make sure that
935   // it is a complete declaration context.
936   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
937     return true;
938     
939   EnterDeclaratorContext(S, DC);
940
941   // Rebuild the nested name specifier for the new scope.
942   if (DC->isDependentContext())
943     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
944
945   return false;
946 }
947
948 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
949 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
950 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
951 /// Used to indicate that names should revert to being looked up in the
952 /// defining scope.
953 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
954   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
955   if (SS.isInvalid())
956     return;
957   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
958          "exiting declarator scope we never really entered");
959   ExitDeclaratorContext(S);
960 }