]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Sema/SemaStmt.cpp
Vendor import of clang trunk r238337:
[FreeBSD/FreeBSD.git] / lib / Sema / SemaStmt.cpp
1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/Initialization.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Scope.h"
32 #include "clang/Sema/ScopeInfo.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallString.h"
38 #include "llvm/ADT/SmallVector.h"
39 using namespace clang;
40 using namespace sema;
41
42 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
43   if (FE.isInvalid())
44     return StmtError();
45
46   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
47                            /*DiscardedValue*/ true);
48   if (FE.isInvalid())
49     return StmtError();
50
51   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
52   // void expression for its side effects.  Conversion to void allows any
53   // operand, even incomplete types.
54
55   // Same thing in for stmt first clause (when expr) and third clause.
56   return StmtResult(FE.getAs<Stmt>());
57 }
58
59
60 StmtResult Sema::ActOnExprStmtError() {
61   DiscardCleanupsInEvaluationContext();
62   return StmtError();
63 }
64
65 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
66                                bool HasLeadingEmptyMacro) {
67   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
68 }
69
70 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
71                                SourceLocation EndLoc) {
72   DeclGroupRef DG = dg.get();
73
74   // If we have an invalid decl, just return an error.
75   if (DG.isNull()) return StmtError();
76
77   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
78 }
79
80 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
81   DeclGroupRef DG = dg.get();
82
83   // If we don't have a declaration, or we have an invalid declaration,
84   // just return.
85   if (DG.isNull() || !DG.isSingleDecl())
86     return;
87
88   Decl *decl = DG.getSingleDecl();
89   if (!decl || decl->isInvalidDecl())
90     return;
91
92   // Only variable declarations are permitted.
93   VarDecl *var = dyn_cast<VarDecl>(decl);
94   if (!var) {
95     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
96     decl->setInvalidDecl();
97     return;
98   }
99
100   // foreach variables are never actually initialized in the way that
101   // the parser came up with.
102   var->setInit(nullptr);
103
104   // In ARC, we don't need to retain the iteration variable of a fast
105   // enumeration loop.  Rather than actually trying to catch that
106   // during declaration processing, we remove the consequences here.
107   if (getLangOpts().ObjCAutoRefCount) {
108     QualType type = var->getType();
109
110     // Only do this if we inferred the lifetime.  Inferred lifetime
111     // will show up as a local qualifier because explicit lifetime
112     // should have shown up as an AttributedType instead.
113     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
114       // Add 'const' and mark the variable as pseudo-strong.
115       var->setType(type.withConst());
116       var->setARCPseudoStrong(true);
117     }
118   }
119 }
120
121 /// \brief Diagnose unused comparisons, both builtin and overloaded operators.
122 /// For '==' and '!=', suggest fixits for '=' or '|='.
123 ///
124 /// Adding a cast to void (or other expression wrappers) will prevent the
125 /// warning from firing.
126 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
127   SourceLocation Loc;
128   bool IsNotEqual, CanAssign, IsRelational;
129
130   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
131     if (!Op->isComparisonOp())
132       return false;
133
134     IsRelational = Op->isRelationalOp();
135     Loc = Op->getOperatorLoc();
136     IsNotEqual = Op->getOpcode() == BO_NE;
137     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
138   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
139     switch (Op->getOperator()) {
140     default:
141       return false;
142     case OO_EqualEqual:
143     case OO_ExclaimEqual:
144       IsRelational = false;
145       break;
146     case OO_Less:
147     case OO_Greater:
148     case OO_GreaterEqual:
149     case OO_LessEqual:
150       IsRelational = true;
151       break;
152     }
153
154     Loc = Op->getOperatorLoc();
155     IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
156     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
157   } else {
158     // Not a typo-prone comparison.
159     return false;
160   }
161
162   // Suppress warnings when the operator, suspicious as it may be, comes from
163   // a macro expansion.
164   if (S.SourceMgr.isMacroBodyExpansion(Loc))
165     return false;
166
167   S.Diag(Loc, diag::warn_unused_comparison)
168     << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
169
170   // If the LHS is a plausible entity to assign to, provide a fixit hint to
171   // correct common typos.
172   if (!IsRelational && CanAssign) {
173     if (IsNotEqual)
174       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
175         << FixItHint::CreateReplacement(Loc, "|=");
176     else
177       S.Diag(Loc, diag::note_equality_comparison_to_assign)
178         << FixItHint::CreateReplacement(Loc, "=");
179   }
180
181   return true;
182 }
183
184 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
185   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
186     return DiagnoseUnusedExprResult(Label->getSubStmt());
187
188   const Expr *E = dyn_cast_or_null<Expr>(S);
189   if (!E)
190     return;
191
192   // If we are in an unevaluated expression context, then there can be no unused
193   // results because the results aren't expected to be used in the first place.
194   if (isUnevaluatedContext())
195     return;
196
197   SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
198   // In most cases, we don't want to warn if the expression is written in a
199   // macro body, or if the macro comes from a system header. If the offending
200   // expression is a call to a function with the warn_unused_result attribute,
201   // we warn no matter the location. Because of the order in which the various
202   // checks need to happen, we factor out the macro-related test here.
203   bool ShouldSuppress = 
204       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
205       SourceMgr.isInSystemMacro(ExprLoc);
206
207   const Expr *WarnExpr;
208   SourceLocation Loc;
209   SourceRange R1, R2;
210   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
211     return;
212
213   // If this is a GNU statement expression expanded from a macro, it is probably
214   // unused because it is a function-like macro that can be used as either an
215   // expression or statement.  Don't warn, because it is almost certainly a
216   // false positive.
217   if (isa<StmtExpr>(E) && Loc.isMacroID())
218     return;
219
220   // Okay, we have an unused result.  Depending on what the base expression is,
221   // we might want to make a more specific diagnostic.  Check for one of these
222   // cases now.
223   unsigned DiagID = diag::warn_unused_expr;
224   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
225     E = Temps->getSubExpr();
226   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
227     E = TempExpr->getSubExpr();
228
229   if (DiagnoseUnusedComparison(*this, E))
230     return;
231
232   E = WarnExpr;
233   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
234     if (E->getType()->isVoidType())
235       return;
236
237     // If the callee has attribute pure, const, or warn_unused_result, warn with
238     // a more specific message to make it clear what is happening. If the call
239     // is written in a macro body, only warn if it has the warn_unused_result
240     // attribute.
241     if (const Decl *FD = CE->getCalleeDecl()) {
242       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
243       if (Func ? Func->hasUnusedResultAttr()
244                : FD->hasAttr<WarnUnusedResultAttr>()) {
245         Diag(Loc, diag::warn_unused_result) << R1 << R2;
246         return;
247       }
248       if (ShouldSuppress)
249         return;
250       if (FD->hasAttr<PureAttr>()) {
251         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
252         return;
253       }
254       if (FD->hasAttr<ConstAttr>()) {
255         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
256         return;
257       }
258     }
259   } else if (ShouldSuppress)
260     return;
261
262   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
263     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
264       Diag(Loc, diag::err_arc_unused_init_message) << R1;
265       return;
266     }
267     const ObjCMethodDecl *MD = ME->getMethodDecl();
268     if (MD) {
269       if (MD->hasAttr<WarnUnusedResultAttr>()) {
270         Diag(Loc, diag::warn_unused_result) << R1 << R2;
271         return;
272       }
273     }
274   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
275     const Expr *Source = POE->getSyntacticForm();
276     if (isa<ObjCSubscriptRefExpr>(Source))
277       DiagID = diag::warn_unused_container_subscript_expr;
278     else
279       DiagID = diag::warn_unused_property_expr;
280   } else if (const CXXFunctionalCastExpr *FC
281                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
282     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
283         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
284       return;
285   }
286   // Diagnose "(void*) blah" as a typo for "(void) blah".
287   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
288     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
289     QualType T = TI->getType();
290
291     // We really do want to use the non-canonical type here.
292     if (T == Context.VoidPtrTy) {
293       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
294
295       Diag(Loc, diag::warn_unused_voidptr)
296         << FixItHint::CreateRemoval(TL.getStarLoc());
297       return;
298     }
299   }
300
301   if (E->isGLValue() && E->getType().isVolatileQualified()) {
302     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
303     return;
304   }
305
306   DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
307 }
308
309 void Sema::ActOnStartOfCompoundStmt() {
310   PushCompoundScope();
311 }
312
313 void Sema::ActOnFinishOfCompoundStmt() {
314   PopCompoundScope();
315 }
316
317 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
318   return getCurFunction()->CompoundScopes.back();
319 }
320
321 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
322                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
323   const unsigned NumElts = Elts.size();
324
325   // If we're in C89 mode, check that we don't have any decls after stmts.  If
326   // so, emit an extension diagnostic.
327   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
328     // Note that __extension__ can be around a decl.
329     unsigned i = 0;
330     // Skip over all declarations.
331     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
332       /*empty*/;
333
334     // We found the end of the list or a statement.  Scan for another declstmt.
335     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
336       /*empty*/;
337
338     if (i != NumElts) {
339       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
340       Diag(D->getLocation(), diag::ext_mixed_decls_code);
341     }
342   }
343   // Warn about unused expressions in statements.
344   for (unsigned i = 0; i != NumElts; ++i) {
345     // Ignore statements that are last in a statement expression.
346     if (isStmtExpr && i == NumElts - 1)
347       continue;
348
349     DiagnoseUnusedExprResult(Elts[i]);
350   }
351
352   // Check for suspicious empty body (null statement) in `for' and `while'
353   // statements.  Don't do anything for template instantiations, this just adds
354   // noise.
355   if (NumElts != 0 && !CurrentInstantiationScope &&
356       getCurCompoundScope().HasEmptyLoopBodies) {
357     for (unsigned i = 0; i != NumElts - 1; ++i)
358       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
359   }
360
361   return new (Context) CompoundStmt(Context, Elts, L, R);
362 }
363
364 StmtResult
365 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
366                     SourceLocation DotDotDotLoc, Expr *RHSVal,
367                     SourceLocation ColonLoc) {
368   assert(LHSVal && "missing expression in case statement");
369
370   if (getCurFunction()->SwitchStack.empty()) {
371     Diag(CaseLoc, diag::err_case_not_in_switch);
372     return StmtError();
373   }
374
375   ExprResult LHS =
376       CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
377         if (!getLangOpts().CPlusPlus11)
378           return VerifyIntegerConstantExpression(E);
379         if (Expr *CondExpr =
380                 getCurFunction()->SwitchStack.back()->getCond()) {
381           QualType CondType = CondExpr->getType();
382           llvm::APSInt TempVal;
383           return CheckConvertedConstantExpression(E, CondType, TempVal,
384                                                         CCEK_CaseValue);
385         }
386         return ExprError();
387       });
388   if (LHS.isInvalid())
389     return StmtError();
390   LHSVal = LHS.get();
391
392   if (!getLangOpts().CPlusPlus11) {
393     // C99 6.8.4.2p3: The expression shall be an integer constant.
394     // However, GCC allows any evaluatable integer expression.
395     if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
396       LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
397       if (!LHSVal)
398         return StmtError();
399     }
400
401     // GCC extension: The expression shall be an integer constant.
402
403     if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
404       RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
405       // Recover from an error by just forgetting about it.
406     }
407   }
408
409   LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
410                                  getLangOpts().CPlusPlus11);
411   if (LHS.isInvalid())
412     return StmtError();
413
414   auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
415                                           getLangOpts().CPlusPlus11)
416                     : ExprResult();
417   if (RHS.isInvalid())
418     return StmtError();
419
420   CaseStmt *CS = new (Context)
421       CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
422   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
423   return CS;
424 }
425
426 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
427 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
428   DiagnoseUnusedExprResult(SubStmt);
429
430   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
431   CS->setSubStmt(SubStmt);
432 }
433
434 StmtResult
435 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
436                        Stmt *SubStmt, Scope *CurScope) {
437   DiagnoseUnusedExprResult(SubStmt);
438
439   if (getCurFunction()->SwitchStack.empty()) {
440     Diag(DefaultLoc, diag::err_default_not_in_switch);
441     return SubStmt;
442   }
443
444   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
445   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
446   return DS;
447 }
448
449 StmtResult
450 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
451                      SourceLocation ColonLoc, Stmt *SubStmt) {
452   // If the label was multiply defined, reject it now.
453   if (TheDecl->getStmt()) {
454     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
455     Diag(TheDecl->getLocation(), diag::note_previous_definition);
456     return SubStmt;
457   }
458
459   // Otherwise, things are good.  Fill in the declaration and return it.
460   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
461   TheDecl->setStmt(LS);
462   if (!TheDecl->isGnuLocal()) {
463     TheDecl->setLocStart(IdentLoc);
464     if (!TheDecl->isMSAsmLabel()) {
465       // Don't update the location of MS ASM labels.  These will result in
466       // a diagnostic, and changing the location here will mess that up.
467       TheDecl->setLocation(IdentLoc);
468     }
469   }
470   return LS;
471 }
472
473 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
474                                      ArrayRef<const Attr*> Attrs,
475                                      Stmt *SubStmt) {
476   // Fill in the declaration and return it.
477   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
478   return LS;
479 }
480
481 StmtResult
482 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
483                   Stmt *thenStmt, SourceLocation ElseLoc,
484                   Stmt *elseStmt) {
485   // If the condition was invalid, discard the if statement.  We could recover
486   // better by replacing it with a valid expr, but don't do that yet.
487   if (!CondVal.get() && !CondVar) {
488     getCurFunction()->setHasDroppedStmt();
489     return StmtError();
490   }
491
492   ExprResult CondResult(CondVal.release());
493
494   VarDecl *ConditionVar = nullptr;
495   if (CondVar) {
496     ConditionVar = cast<VarDecl>(CondVar);
497     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
498     if (CondResult.isInvalid())
499       return StmtError();
500   }
501   Expr *ConditionExpr = CondResult.getAs<Expr>();
502   if (!ConditionExpr)
503     return StmtError();
504
505   DiagnoseUnusedExprResult(thenStmt);
506
507   if (!elseStmt) {
508     DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
509                           diag::warn_empty_if_body);
510   }
511
512   DiagnoseUnusedExprResult(elseStmt);
513
514   return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
515                               thenStmt, ElseLoc, elseStmt);
516 }
517
518 namespace {
519   struct CaseCompareFunctor {
520     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
521                     const llvm::APSInt &RHS) {
522       return LHS.first < RHS;
523     }
524     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
525                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
526       return LHS.first < RHS.first;
527     }
528     bool operator()(const llvm::APSInt &LHS,
529                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
530       return LHS < RHS.first;
531     }
532   };
533 }
534
535 /// CmpCaseVals - Comparison predicate for sorting case values.
536 ///
537 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
538                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
539   if (lhs.first < rhs.first)
540     return true;
541
542   if (lhs.first == rhs.first &&
543       lhs.second->getCaseLoc().getRawEncoding()
544        < rhs.second->getCaseLoc().getRawEncoding())
545     return true;
546   return false;
547 }
548
549 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
550 ///
551 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
552                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
553 {
554   return lhs.first < rhs.first;
555 }
556
557 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
558 ///
559 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
560                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
561 {
562   return lhs.first == rhs.first;
563 }
564
565 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
566 /// potentially integral-promoted expression @p expr.
567 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
568   if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
569     expr = cleanups->getSubExpr();
570   while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
571     if (impcast->getCastKind() != CK_IntegralCast) break;
572     expr = impcast->getSubExpr();
573   }
574   return expr->getType();
575 }
576
577 StmtResult
578 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
579                              Decl *CondVar) {
580   ExprResult CondResult;
581
582   VarDecl *ConditionVar = nullptr;
583   if (CondVar) {
584     ConditionVar = cast<VarDecl>(CondVar);
585     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
586     if (CondResult.isInvalid())
587       return StmtError();
588
589     Cond = CondResult.get();
590   }
591
592   if (!Cond)
593     return StmtError();
594
595   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
596     Expr *Cond;
597
598   public:
599     SwitchConvertDiagnoser(Expr *Cond)
600         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
601           Cond(Cond) {}
602
603     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
604                                          QualType T) override {
605       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
606     }
607
608     SemaDiagnosticBuilder diagnoseIncomplete(
609         Sema &S, SourceLocation Loc, QualType T) override {
610       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
611                << T << Cond->getSourceRange();
612     }
613
614     SemaDiagnosticBuilder diagnoseExplicitConv(
615         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
616       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
617     }
618
619     SemaDiagnosticBuilder noteExplicitConv(
620         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
621       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
622         << ConvTy->isEnumeralType() << ConvTy;
623     }
624
625     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
626                                             QualType T) override {
627       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
628     }
629
630     SemaDiagnosticBuilder noteAmbiguous(
631         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
632       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
633       << ConvTy->isEnumeralType() << ConvTy;
634     }
635
636     SemaDiagnosticBuilder diagnoseConversion(
637         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
638       llvm_unreachable("conversion functions are permitted");
639     }
640   } SwitchDiagnoser(Cond);
641
642   CondResult =
643       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
644   if (CondResult.isInvalid()) return StmtError();
645   Cond = CondResult.get();
646
647   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
648   CondResult = UsualUnaryConversions(Cond);
649   if (CondResult.isInvalid()) return StmtError();
650   Cond = CondResult.get();
651
652   if (!CondVar) {
653     CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
654     if (CondResult.isInvalid())
655       return StmtError();
656     Cond = CondResult.get();
657   }
658
659   getCurFunction()->setHasBranchIntoScope();
660
661   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
662   getCurFunction()->SwitchStack.push_back(SS);
663   return SS;
664 }
665
666 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
667   Val = Val.extOrTrunc(BitWidth);
668   Val.setIsSigned(IsSigned);
669 }
670
671 /// Check the specified case value is in range for the given unpromoted switch
672 /// type.
673 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
674                            unsigned UnpromotedWidth, bool UnpromotedSign) {
675   // If the case value was signed and negative and the switch expression is
676   // unsigned, don't bother to warn: this is implementation-defined behavior.
677   // FIXME: Introduce a second, default-ignored warning for this case?
678   if (UnpromotedWidth < Val.getBitWidth()) {
679     llvm::APSInt ConvVal(Val);
680     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
681     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
682     // FIXME: Use different diagnostics for overflow  in conversion to promoted
683     // type versus "switch expression cannot have this value". Use proper
684     // IntRange checking rather than just looking at the unpromoted type here.
685     if (ConvVal != Val)
686       S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
687                                                   << ConvVal.toString(10);
688   }
689 }
690
691 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
692
693 /// Returns true if we should emit a diagnostic about this case expression not
694 /// being a part of the enum used in the switch controlling expression.
695 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
696                                               const EnumDecl *ED,
697                                               const Expr *CaseExpr,
698                                               EnumValsTy::iterator &EI,
699                                               EnumValsTy::iterator &EIEnd,
700                                               const llvm::APSInt &Val) {
701   bool FlagType = ED->hasAttr<FlagEnumAttr>();
702
703   if (const DeclRefExpr *DRE =
704           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
705     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
706       QualType VarType = VD->getType();
707       QualType EnumType = S.Context.getTypeDeclType(ED);
708       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
709           S.Context.hasSameUnqualifiedType(EnumType, VarType))
710         return false;
711     }
712   }
713
714   if (FlagType) {
715     return !S.IsValueInFlagEnum(ED, Val, false);
716   } else {
717     while (EI != EIEnd && EI->first < Val)
718       EI++;
719
720     if (EI != EIEnd && EI->first == Val)
721       return false;
722   }
723
724   return true;
725 }
726
727 StmtResult
728 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
729                             Stmt *BodyStmt) {
730   SwitchStmt *SS = cast<SwitchStmt>(Switch);
731   assert(SS == getCurFunction()->SwitchStack.back() &&
732          "switch stack missing push/pop!");
733
734   getCurFunction()->SwitchStack.pop_back();
735
736   if (!BodyStmt) return StmtError();
737   SS->setBody(BodyStmt, SwitchLoc);
738
739   Expr *CondExpr = SS->getCond();
740   if (!CondExpr) return StmtError();
741
742   QualType CondType = CondExpr->getType();
743
744   Expr *CondExprBeforePromotion = CondExpr;
745   QualType CondTypeBeforePromotion =
746       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
747
748   // C++ 6.4.2.p2:
749   // Integral promotions are performed (on the switch condition).
750   //
751   // A case value unrepresentable by the original switch condition
752   // type (before the promotion) doesn't make sense, even when it can
753   // be represented by the promoted type.  Therefore we need to find
754   // the pre-promotion type of the switch condition.
755   if (!CondExpr->isTypeDependent()) {
756     // We have already converted the expression to an integral or enumeration
757     // type, when we started the switch statement. If we don't have an
758     // appropriate type now, just return an error.
759     if (!CondType->isIntegralOrEnumerationType())
760       return StmtError();
761
762     if (CondExpr->isKnownToHaveBooleanValue()) {
763       // switch(bool_expr) {...} is often a programmer error, e.g.
764       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
765       // One can always use an if statement instead of switch(bool_expr).
766       Diag(SwitchLoc, diag::warn_bool_switch_condition)
767           << CondExpr->getSourceRange();
768     }
769   }
770
771   // Get the bitwidth of the switched-on value after promotions. We must
772   // convert the integer case values to this width before comparison.
773   bool HasDependentValue
774     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
775   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
776   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
777
778   // Get the width and signedness that the condition might actually have, for
779   // warning purposes.
780   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
781   // type.
782   unsigned CondWidthBeforePromotion
783     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
784   bool CondIsSignedBeforePromotion
785     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
786
787   // Accumulate all of the case values in a vector so that we can sort them
788   // and detect duplicates.  This vector contains the APInt for the case after
789   // it has been converted to the condition type.
790   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
791   CaseValsTy CaseVals;
792
793   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
794   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
795   CaseRangesTy CaseRanges;
796
797   DefaultStmt *TheDefaultStmt = nullptr;
798
799   bool CaseListIsErroneous = false;
800
801   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
802        SC = SC->getNextSwitchCase()) {
803
804     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
805       if (TheDefaultStmt) {
806         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
807         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
808
809         // FIXME: Remove the default statement from the switch block so that
810         // we'll return a valid AST.  This requires recursing down the AST and
811         // finding it, not something we are set up to do right now.  For now,
812         // just lop the entire switch stmt out of the AST.
813         CaseListIsErroneous = true;
814       }
815       TheDefaultStmt = DS;
816
817     } else {
818       CaseStmt *CS = cast<CaseStmt>(SC);
819
820       Expr *Lo = CS->getLHS();
821
822       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
823         HasDependentValue = true;
824         break;
825       }
826
827       llvm::APSInt LoVal;
828
829       if (getLangOpts().CPlusPlus11) {
830         // C++11 [stmt.switch]p2: the constant-expression shall be a converted
831         // constant expression of the promoted type of the switch condition.
832         ExprResult ConvLo =
833           CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
834         if (ConvLo.isInvalid()) {
835           CaseListIsErroneous = true;
836           continue;
837         }
838         Lo = ConvLo.get();
839       } else {
840         // We already verified that the expression has a i-c-e value (C99
841         // 6.8.4.2p3) - get that value now.
842         LoVal = Lo->EvaluateKnownConstInt(Context);
843
844         // If the LHS is not the same type as the condition, insert an implicit
845         // cast.
846         Lo = DefaultLvalueConversion(Lo).get();
847         Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
848       }
849
850       // Check the unconverted value is within the range of possible values of
851       // the switch expression.
852       checkCaseValue(*this, Lo->getLocStart(), LoVal,
853                      CondWidthBeforePromotion, CondIsSignedBeforePromotion);
854
855       // Convert the value to the same width/sign as the condition.
856       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
857
858       CS->setLHS(Lo);
859
860       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
861       if (CS->getRHS()) {
862         if (CS->getRHS()->isTypeDependent() ||
863             CS->getRHS()->isValueDependent()) {
864           HasDependentValue = true;
865           break;
866         }
867         CaseRanges.push_back(std::make_pair(LoVal, CS));
868       } else
869         CaseVals.push_back(std::make_pair(LoVal, CS));
870     }
871   }
872
873   if (!HasDependentValue) {
874     // If we don't have a default statement, check whether the
875     // condition is constant.
876     llvm::APSInt ConstantCondValue;
877     bool HasConstantCond = false;
878     if (!HasDependentValue && !TheDefaultStmt) {
879       HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
880                                                 Expr::SE_AllowSideEffects);
881       assert(!HasConstantCond ||
882              (ConstantCondValue.getBitWidth() == CondWidth &&
883               ConstantCondValue.isSigned() == CondIsSigned));
884     }
885     bool ShouldCheckConstantCond = HasConstantCond;
886
887     // Sort all the scalar case values so we can easily detect duplicates.
888     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
889
890     if (!CaseVals.empty()) {
891       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
892         if (ShouldCheckConstantCond &&
893             CaseVals[i].first == ConstantCondValue)
894           ShouldCheckConstantCond = false;
895
896         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
897           // If we have a duplicate, report it.
898           // First, determine if either case value has a name
899           StringRef PrevString, CurrString;
900           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
901           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
902           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
903             PrevString = DeclRef->getDecl()->getName();
904           }
905           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
906             CurrString = DeclRef->getDecl()->getName();
907           }
908           SmallString<16> CaseValStr;
909           CaseVals[i-1].first.toString(CaseValStr);
910
911           if (PrevString == CurrString)
912             Diag(CaseVals[i].second->getLHS()->getLocStart(),
913                  diag::err_duplicate_case) <<
914                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
915           else
916             Diag(CaseVals[i].second->getLHS()->getLocStart(),
917                  diag::err_duplicate_case_differing_expr) <<
918                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
919                  (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
920                  CaseValStr;
921
922           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
923                diag::note_duplicate_case_prev);
924           // FIXME: We really want to remove the bogus case stmt from the
925           // substmt, but we have no way to do this right now.
926           CaseListIsErroneous = true;
927         }
928       }
929     }
930
931     // Detect duplicate case ranges, which usually don't exist at all in
932     // the first place.
933     if (!CaseRanges.empty()) {
934       // Sort all the case ranges by their low value so we can easily detect
935       // overlaps between ranges.
936       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
937
938       // Scan the ranges, computing the high values and removing empty ranges.
939       std::vector<llvm::APSInt> HiVals;
940       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
941         llvm::APSInt &LoVal = CaseRanges[i].first;
942         CaseStmt *CR = CaseRanges[i].second;
943         Expr *Hi = CR->getRHS();
944         llvm::APSInt HiVal;
945
946         if (getLangOpts().CPlusPlus11) {
947           // C++11 [stmt.switch]p2: the constant-expression shall be a converted
948           // constant expression of the promoted type of the switch condition.
949           ExprResult ConvHi =
950             CheckConvertedConstantExpression(Hi, CondType, HiVal,
951                                              CCEK_CaseValue);
952           if (ConvHi.isInvalid()) {
953             CaseListIsErroneous = true;
954             continue;
955           }
956           Hi = ConvHi.get();
957         } else {
958           HiVal = Hi->EvaluateKnownConstInt(Context);
959
960           // If the RHS is not the same type as the condition, insert an
961           // implicit cast.
962           Hi = DefaultLvalueConversion(Hi).get();
963           Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
964         }
965
966         // Check the unconverted value is within the range of possible values of
967         // the switch expression.
968         checkCaseValue(*this, Hi->getLocStart(), HiVal,
969                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
970
971         // Convert the value to the same width/sign as the condition.
972         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
973
974         CR->setRHS(Hi);
975
976         // If the low value is bigger than the high value, the case is empty.
977         if (LoVal > HiVal) {
978           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
979             << SourceRange(CR->getLHS()->getLocStart(),
980                            Hi->getLocEnd());
981           CaseRanges.erase(CaseRanges.begin()+i);
982           --i, --e;
983           continue;
984         }
985
986         if (ShouldCheckConstantCond &&
987             LoVal <= ConstantCondValue &&
988             ConstantCondValue <= HiVal)
989           ShouldCheckConstantCond = false;
990
991         HiVals.push_back(HiVal);
992       }
993
994       // Rescan the ranges, looking for overlap with singleton values and other
995       // ranges.  Since the range list is sorted, we only need to compare case
996       // ranges with their neighbors.
997       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
998         llvm::APSInt &CRLo = CaseRanges[i].first;
999         llvm::APSInt &CRHi = HiVals[i];
1000         CaseStmt *CR = CaseRanges[i].second;
1001
1002         // Check to see whether the case range overlaps with any
1003         // singleton cases.
1004         CaseStmt *OverlapStmt = nullptr;
1005         llvm::APSInt OverlapVal(32);
1006
1007         // Find the smallest value >= the lower bound.  If I is in the
1008         // case range, then we have overlap.
1009         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
1010                                                   CaseVals.end(), CRLo,
1011                                                   CaseCompareFunctor());
1012         if (I != CaseVals.end() && I->first < CRHi) {
1013           OverlapVal  = I->first;   // Found overlap with scalar.
1014           OverlapStmt = I->second;
1015         }
1016
1017         // Find the smallest value bigger than the upper bound.
1018         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1019         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1020           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1021           OverlapStmt = (I-1)->second;
1022         }
1023
1024         // Check to see if this case stmt overlaps with the subsequent
1025         // case range.
1026         if (i && CRLo <= HiVals[i-1]) {
1027           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1028           OverlapStmt = CaseRanges[i-1].second;
1029         }
1030
1031         if (OverlapStmt) {
1032           // If we have a duplicate, report it.
1033           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
1034             << OverlapVal.toString(10);
1035           Diag(OverlapStmt->getLHS()->getLocStart(),
1036                diag::note_duplicate_case_prev);
1037           // FIXME: We really want to remove the bogus case stmt from the
1038           // substmt, but we have no way to do this right now.
1039           CaseListIsErroneous = true;
1040         }
1041       }
1042     }
1043
1044     // Complain if we have a constant condition and we didn't find a match.
1045     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
1046       // TODO: it would be nice if we printed enums as enums, chars as
1047       // chars, etc.
1048       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1049         << ConstantCondValue.toString(10)
1050         << CondExpr->getSourceRange();
1051     }
1052
1053     // Check to see if switch is over an Enum and handles all of its
1054     // values.  We only issue a warning if there is not 'default:', but
1055     // we still do the analysis to preserve this information in the AST
1056     // (which can be used by flow-based analyes).
1057     //
1058     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1059
1060     // If switch has default case, then ignore it.
1061     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
1062       const EnumDecl *ED = ET->getDecl();
1063       EnumValsTy EnumVals;
1064
1065       // Gather all enum values, set their type and sort them,
1066       // allowing easier comparison with CaseVals.
1067       for (auto *EDI : ED->enumerators()) {
1068         llvm::APSInt Val = EDI->getInitVal();
1069         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1070         EnumVals.push_back(std::make_pair(Val, EDI));
1071       }
1072       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1073       auto EI = EnumVals.begin(), EIEnd =
1074         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1075
1076       // See which case values aren't in enum.
1077       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1078           CI != CaseVals.end(); CI++) {
1079         Expr *CaseExpr = CI->second->getLHS();
1080         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1081                                               CI->first))
1082           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1083             << CondTypeBeforePromotion;
1084       }
1085
1086       // See which of case ranges aren't in enum
1087       EI = EnumVals.begin();
1088       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1089           RI != CaseRanges.end(); RI++) {
1090         Expr *CaseExpr = RI->second->getLHS();
1091         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1092                                               RI->first))
1093           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1094             << CondTypeBeforePromotion;
1095
1096         llvm::APSInt Hi =
1097           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1098         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1099
1100         CaseExpr = RI->second->getRHS();
1101         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1102                                               Hi))
1103           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1104             << CondTypeBeforePromotion;
1105       }
1106
1107       // Check which enum vals aren't in switch
1108       auto CI = CaseVals.begin();
1109       auto RI = CaseRanges.begin();
1110       bool hasCasesNotInSwitch = false;
1111
1112       SmallVector<DeclarationName,8> UnhandledNames;
1113
1114       for (EI = EnumVals.begin(); EI != EIEnd; EI++){
1115         // Drop unneeded case values
1116         while (CI != CaseVals.end() && CI->first < EI->first)
1117           CI++;
1118
1119         if (CI != CaseVals.end() && CI->first == EI->first)
1120           continue;
1121
1122         // Drop unneeded case ranges
1123         for (; RI != CaseRanges.end(); RI++) {
1124           llvm::APSInt Hi =
1125             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1126           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1127           if (EI->first <= Hi)
1128             break;
1129         }
1130
1131         if (RI == CaseRanges.end() || EI->first < RI->first) {
1132           hasCasesNotInSwitch = true;
1133           UnhandledNames.push_back(EI->second->getDeclName());
1134         }
1135       }
1136
1137       if (TheDefaultStmt && UnhandledNames.empty())
1138         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1139
1140       // Produce a nice diagnostic if multiple values aren't handled.
1141       if (!UnhandledNames.empty()) {
1142         DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1143                                     TheDefaultStmt ? diag::warn_def_missing_case
1144                                                    : diag::warn_missing_case)
1145                                << (int)UnhandledNames.size();
1146
1147         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1148              I != E; ++I)
1149           DB << UnhandledNames[I];
1150       }
1151
1152       if (!hasCasesNotInSwitch)
1153         SS->setAllEnumCasesCovered();
1154     }
1155   }
1156
1157   if (BodyStmt)
1158     DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1159                           diag::warn_empty_switch_body);
1160
1161   // FIXME: If the case list was broken is some way, we don't have a good system
1162   // to patch it up.  Instead, just return the whole substmt as broken.
1163   if (CaseListIsErroneous)
1164     return StmtError();
1165
1166   return SS;
1167 }
1168
1169 void
1170 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1171                              Expr *SrcExpr) {
1172   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1173     return;
1174
1175   if (const EnumType *ET = DstType->getAs<EnumType>())
1176     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1177         SrcType->isIntegerType()) {
1178       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1179           SrcExpr->isIntegerConstantExpr(Context)) {
1180         // Get the bitwidth of the enum value before promotions.
1181         unsigned DstWidth = Context.getIntWidth(DstType);
1182         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1183
1184         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1185         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1186         const EnumDecl *ED = ET->getDecl();
1187
1188         if (ED->hasAttr<FlagEnumAttr>()) {
1189           if (!IsValueInFlagEnum(ED, RhsVal, true))
1190             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1191               << DstType.getUnqualifiedType();
1192         } else {
1193           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1194               EnumValsTy;
1195           EnumValsTy EnumVals;
1196
1197           // Gather all enum values, set their type and sort them,
1198           // allowing easier comparison with rhs constant.
1199           for (auto *EDI : ED->enumerators()) {
1200             llvm::APSInt Val = EDI->getInitVal();
1201             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1202             EnumVals.push_back(std::make_pair(Val, EDI));
1203           }
1204           if (EnumVals.empty())
1205             return;
1206           std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1207           EnumValsTy::iterator EIend =
1208               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1209
1210           // See which values aren't in the enum.
1211           EnumValsTy::const_iterator EI = EnumVals.begin();
1212           while (EI != EIend && EI->first < RhsVal)
1213             EI++;
1214           if (EI == EIend || EI->first != RhsVal) {
1215             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1216                 << DstType.getUnqualifiedType();
1217           }
1218         }
1219       }
1220     }
1221 }
1222
1223 StmtResult
1224 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1225                      Decl *CondVar, Stmt *Body) {
1226   ExprResult CondResult(Cond.release());
1227
1228   VarDecl *ConditionVar = nullptr;
1229   if (CondVar) {
1230     ConditionVar = cast<VarDecl>(CondVar);
1231     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1232     if (CondResult.isInvalid())
1233       return StmtError();
1234   }
1235   Expr *ConditionExpr = CondResult.get();
1236   if (!ConditionExpr)
1237     return StmtError();
1238   CheckBreakContinueBinding(ConditionExpr);
1239
1240   DiagnoseUnusedExprResult(Body);
1241
1242   if (isa<NullStmt>(Body))
1243     getCurCompoundScope().setHasEmptyLoopBodies();
1244
1245   return new (Context)
1246       WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
1247 }
1248
1249 StmtResult
1250 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1251                   SourceLocation WhileLoc, SourceLocation CondLParen,
1252                   Expr *Cond, SourceLocation CondRParen) {
1253   assert(Cond && "ActOnDoStmt(): missing expression");
1254
1255   CheckBreakContinueBinding(Cond);
1256   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1257   if (CondResult.isInvalid())
1258     return StmtError();
1259   Cond = CondResult.get();
1260
1261   CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1262   if (CondResult.isInvalid())
1263     return StmtError();
1264   Cond = CondResult.get();
1265
1266   DiagnoseUnusedExprResult(Body);
1267
1268   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1269 }
1270
1271 namespace {
1272   // This visitor will traverse a conditional statement and store all
1273   // the evaluated decls into a vector.  Simple is set to true if none
1274   // of the excluded constructs are used.
1275   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1276     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1277     SmallVectorImpl<SourceRange> &Ranges;
1278     bool Simple;
1279   public:
1280     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1281
1282     DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1283                   SmallVectorImpl<SourceRange> &Ranges) :
1284         Inherited(S.Context),
1285         Decls(Decls),
1286         Ranges(Ranges),
1287         Simple(true) {}
1288
1289     bool isSimple() { return Simple; }
1290
1291     // Replaces the method in EvaluatedExprVisitor.
1292     void VisitMemberExpr(MemberExpr* E) {
1293       Simple = false;
1294     }
1295
1296     // Any Stmt not whitelisted will cause the condition to be marked complex.
1297     void VisitStmt(Stmt *S) {
1298       Simple = false;
1299     }
1300
1301     void VisitBinaryOperator(BinaryOperator *E) {
1302       Visit(E->getLHS());
1303       Visit(E->getRHS());
1304     }
1305
1306     void VisitCastExpr(CastExpr *E) {
1307       Visit(E->getSubExpr());
1308     }
1309
1310     void VisitUnaryOperator(UnaryOperator *E) {
1311       // Skip checking conditionals with derefernces.
1312       if (E->getOpcode() == UO_Deref)
1313         Simple = false;
1314       else
1315         Visit(E->getSubExpr());
1316     }
1317
1318     void VisitConditionalOperator(ConditionalOperator *E) {
1319       Visit(E->getCond());
1320       Visit(E->getTrueExpr());
1321       Visit(E->getFalseExpr());
1322     }
1323
1324     void VisitParenExpr(ParenExpr *E) {
1325       Visit(E->getSubExpr());
1326     }
1327
1328     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1329       Visit(E->getOpaqueValue()->getSourceExpr());
1330       Visit(E->getFalseExpr());
1331     }
1332
1333     void VisitIntegerLiteral(IntegerLiteral *E) { }
1334     void VisitFloatingLiteral(FloatingLiteral *E) { }
1335     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1336     void VisitCharacterLiteral(CharacterLiteral *E) { }
1337     void VisitGNUNullExpr(GNUNullExpr *E) { }
1338     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1339
1340     void VisitDeclRefExpr(DeclRefExpr *E) {
1341       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1342       if (!VD) return;
1343
1344       Ranges.push_back(E->getSourceRange());
1345
1346       Decls.insert(VD);
1347     }
1348
1349   }; // end class DeclExtractor
1350
1351   // DeclMatcher checks to see if the decls are used in a non-evauluated
1352   // context.
1353   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1354     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1355     bool FoundDecl;
1356
1357   public:
1358     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1359
1360     DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1361                 Stmt *Statement) :
1362         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1363       if (!Statement) return;
1364
1365       Visit(Statement);
1366     }
1367
1368     void VisitReturnStmt(ReturnStmt *S) {
1369       FoundDecl = true;
1370     }
1371
1372     void VisitBreakStmt(BreakStmt *S) {
1373       FoundDecl = true;
1374     }
1375
1376     void VisitGotoStmt(GotoStmt *S) {
1377       FoundDecl = true;
1378     }
1379
1380     void VisitCastExpr(CastExpr *E) {
1381       if (E->getCastKind() == CK_LValueToRValue)
1382         CheckLValueToRValueCast(E->getSubExpr());
1383       else
1384         Visit(E->getSubExpr());
1385     }
1386
1387     void CheckLValueToRValueCast(Expr *E) {
1388       E = E->IgnoreParenImpCasts();
1389
1390       if (isa<DeclRefExpr>(E)) {
1391         return;
1392       }
1393
1394       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1395         Visit(CO->getCond());
1396         CheckLValueToRValueCast(CO->getTrueExpr());
1397         CheckLValueToRValueCast(CO->getFalseExpr());
1398         return;
1399       }
1400
1401       if (BinaryConditionalOperator *BCO =
1402               dyn_cast<BinaryConditionalOperator>(E)) {
1403         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1404         CheckLValueToRValueCast(BCO->getFalseExpr());
1405         return;
1406       }
1407
1408       Visit(E);
1409     }
1410
1411     void VisitDeclRefExpr(DeclRefExpr *E) {
1412       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1413         if (Decls.count(VD))
1414           FoundDecl = true;
1415     }
1416
1417     bool FoundDeclInUse() { return FoundDecl; }
1418
1419   };  // end class DeclMatcher
1420
1421   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1422                                         Expr *Third, Stmt *Body) {
1423     // Condition is empty
1424     if (!Second) return;
1425
1426     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1427                           Second->getLocStart()))
1428       return;
1429
1430     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1431     llvm::SmallPtrSet<VarDecl*, 8> Decls;
1432     SmallVector<SourceRange, 10> Ranges;
1433     DeclExtractor DE(S, Decls, Ranges);
1434     DE.Visit(Second);
1435
1436     // Don't analyze complex conditionals.
1437     if (!DE.isSimple()) return;
1438
1439     // No decls found.
1440     if (Decls.size() == 0) return;
1441
1442     // Don't warn on volatile, static, or global variables.
1443     for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1444                                                    E = Decls.end();
1445          I != E; ++I)
1446       if ((*I)->getType().isVolatileQualified() ||
1447           (*I)->hasGlobalStorage()) return;
1448
1449     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1450         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1451         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1452       return;
1453
1454     // Load decl names into diagnostic.
1455     if (Decls.size() > 4)
1456       PDiag << 0;
1457     else {
1458       PDiag << Decls.size();
1459       for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1460                                                      E = Decls.end();
1461            I != E; ++I)
1462         PDiag << (*I)->getDeclName();
1463     }
1464
1465     // Load SourceRanges into diagnostic if there is room.
1466     // Otherwise, load the SourceRange of the conditional expression.
1467     if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1468       for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
1469                                                   E = Ranges.end();
1470            I != E; ++I)
1471         PDiag << *I;
1472     else
1473       PDiag << Second->getSourceRange();
1474
1475     S.Diag(Ranges.begin()->getBegin(), PDiag);
1476   }
1477
1478   // If Statement is an incemement or decrement, return true and sets the
1479   // variables Increment and DRE.
1480   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1481                             DeclRefExpr *&DRE) {
1482     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1483       switch (UO->getOpcode()) {
1484         default: return false;
1485         case UO_PostInc:
1486         case UO_PreInc:
1487           Increment = true;
1488           break;
1489         case UO_PostDec:
1490         case UO_PreDec:
1491           Increment = false;
1492           break;
1493       }
1494       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1495       return DRE;
1496     }
1497
1498     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1499       FunctionDecl *FD = Call->getDirectCallee();
1500       if (!FD || !FD->isOverloadedOperator()) return false;
1501       switch (FD->getOverloadedOperator()) {
1502         default: return false;
1503         case OO_PlusPlus:
1504           Increment = true;
1505           break;
1506         case OO_MinusMinus:
1507           Increment = false;
1508           break;
1509       }
1510       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1511       return DRE;
1512     }
1513
1514     return false;
1515   }
1516
1517   // A visitor to determine if a continue or break statement is a
1518   // subexpression.
1519   class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
1520     SourceLocation BreakLoc;
1521     SourceLocation ContinueLoc;
1522   public:
1523     BreakContinueFinder(Sema &S, Stmt* Body) :
1524         Inherited(S.Context) {
1525       Visit(Body);
1526     }
1527
1528     typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
1529
1530     void VisitContinueStmt(ContinueStmt* E) {
1531       ContinueLoc = E->getContinueLoc();
1532     }
1533
1534     void VisitBreakStmt(BreakStmt* E) {
1535       BreakLoc = E->getBreakLoc();
1536     }
1537
1538     bool ContinueFound() { return ContinueLoc.isValid(); }
1539     bool BreakFound() { return BreakLoc.isValid(); }
1540     SourceLocation GetContinueLoc() { return ContinueLoc; }
1541     SourceLocation GetBreakLoc() { return BreakLoc; }
1542
1543   };  // end class BreakContinueFinder
1544
1545   // Emit a warning when a loop increment/decrement appears twice per loop
1546   // iteration.  The conditions which trigger this warning are:
1547   // 1) The last statement in the loop body and the third expression in the
1548   //    for loop are both increment or both decrement of the same variable
1549   // 2) No continue statements in the loop body.
1550   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1551     // Return when there is nothing to check.
1552     if (!Body || !Third) return;
1553
1554     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1555                           Third->getLocStart()))
1556       return;
1557
1558     // Get the last statement from the loop body.
1559     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1560     if (!CS || CS->body_empty()) return;
1561     Stmt *LastStmt = CS->body_back();
1562     if (!LastStmt) return;
1563
1564     bool LoopIncrement, LastIncrement;
1565     DeclRefExpr *LoopDRE, *LastDRE;
1566
1567     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1568     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1569
1570     // Check that the two statements are both increments or both decrements
1571     // on the same variable.
1572     if (LoopIncrement != LastIncrement ||
1573         LoopDRE->getDecl() != LastDRE->getDecl()) return;
1574
1575     if (BreakContinueFinder(S, Body).ContinueFound()) return;
1576
1577     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1578          << LastDRE->getDecl() << LastIncrement;
1579     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1580          << LoopIncrement;
1581   }
1582
1583 } // end namespace
1584
1585
1586 void Sema::CheckBreakContinueBinding(Expr *E) {
1587   if (!E || getLangOpts().CPlusPlus)
1588     return;
1589   BreakContinueFinder BCFinder(*this, E);
1590   Scope *BreakParent = CurScope->getBreakParent();
1591   if (BCFinder.BreakFound() && BreakParent) {
1592     if (BreakParent->getFlags() & Scope::SwitchScope) {
1593       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1594     } else {
1595       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1596           << "break";
1597     }
1598   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1599     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1600         << "continue";
1601   }
1602 }
1603
1604 StmtResult
1605 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1606                    Stmt *First, FullExprArg second, Decl *secondVar,
1607                    FullExprArg third,
1608                    SourceLocation RParenLoc, Stmt *Body) {
1609   if (!getLangOpts().CPlusPlus) {
1610     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1611       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1612       // declare identifiers for objects having storage class 'auto' or
1613       // 'register'.
1614       for (auto *DI : DS->decls()) {
1615         VarDecl *VD = dyn_cast<VarDecl>(DI);
1616         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1617           VD = nullptr;
1618         if (!VD) {
1619           Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1620           DI->setInvalidDecl();
1621         }
1622       }
1623     }
1624   }
1625
1626   CheckBreakContinueBinding(second.get());
1627   CheckBreakContinueBinding(third.get());
1628
1629   CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1630   CheckForRedundantIteration(*this, third.get(), Body);
1631
1632   ExprResult SecondResult(second.release());
1633   VarDecl *ConditionVar = nullptr;
1634   if (secondVar) {
1635     ConditionVar = cast<VarDecl>(secondVar);
1636     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1637     if (SecondResult.isInvalid())
1638       return StmtError();
1639   }
1640
1641   Expr *Third  = third.release().getAs<Expr>();
1642
1643   DiagnoseUnusedExprResult(First);
1644   DiagnoseUnusedExprResult(Third);
1645   DiagnoseUnusedExprResult(Body);
1646
1647   if (isa<NullStmt>(Body))
1648     getCurCompoundScope().setHasEmptyLoopBodies();
1649
1650   return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
1651                                Third, Body, ForLoc, LParenLoc, RParenLoc);
1652 }
1653
1654 /// In an Objective C collection iteration statement:
1655 ///   for (x in y)
1656 /// x can be an arbitrary l-value expression.  Bind it up as a
1657 /// full-expression.
1658 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1659   // Reduce placeholder expressions here.  Note that this rejects the
1660   // use of pseudo-object l-values in this position.
1661   ExprResult result = CheckPlaceholderExpr(E);
1662   if (result.isInvalid()) return StmtError();
1663   E = result.get();
1664
1665   ExprResult FullExpr = ActOnFinishFullExpr(E);
1666   if (FullExpr.isInvalid())
1667     return StmtError();
1668   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1669 }
1670
1671 ExprResult
1672 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1673   if (!collection)
1674     return ExprError();
1675
1676   ExprResult result = CorrectDelayedTyposInExpr(collection);
1677   if (!result.isUsable())
1678     return ExprError();
1679   collection = result.get();
1680
1681   // Bail out early if we've got a type-dependent expression.
1682   if (collection->isTypeDependent()) return collection;
1683
1684   // Perform normal l-value conversion.
1685   result = DefaultFunctionArrayLvalueConversion(collection);
1686   if (result.isInvalid())
1687     return ExprError();
1688   collection = result.get();
1689
1690   // The operand needs to have object-pointer type.
1691   // TODO: should we do a contextual conversion?
1692   const ObjCObjectPointerType *pointerType =
1693     collection->getType()->getAs<ObjCObjectPointerType>();
1694   if (!pointerType)
1695     return Diag(forLoc, diag::err_collection_expr_type)
1696              << collection->getType() << collection->getSourceRange();
1697
1698   // Check that the operand provides
1699   //   - countByEnumeratingWithState:objects:count:
1700   const ObjCObjectType *objectType = pointerType->getObjectType();
1701   ObjCInterfaceDecl *iface = objectType->getInterface();
1702
1703   // If we have a forward-declared type, we can't do this check.
1704   // Under ARC, it is an error not to have a forward-declared class.
1705   if (iface &&
1706       RequireCompleteType(forLoc, QualType(objectType, 0),
1707                           getLangOpts().ObjCAutoRefCount
1708                             ? diag::err_arc_collection_forward
1709                             : 0,
1710                           collection)) {
1711     // Otherwise, if we have any useful type information, check that
1712     // the type declares the appropriate method.
1713   } else if (iface || !objectType->qual_empty()) {
1714     IdentifierInfo *selectorIdents[] = {
1715       &Context.Idents.get("countByEnumeratingWithState"),
1716       &Context.Idents.get("objects"),
1717       &Context.Idents.get("count")
1718     };
1719     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1720
1721     ObjCMethodDecl *method = nullptr;
1722
1723     // If there's an interface, look in both the public and private APIs.
1724     if (iface) {
1725       method = iface->lookupInstanceMethod(selector);
1726       if (!method) method = iface->lookupPrivateMethod(selector);
1727     }
1728
1729     // Also check protocol qualifiers.
1730     if (!method)
1731       method = LookupMethodInQualifiedType(selector, pointerType,
1732                                            /*instance*/ true);
1733
1734     // If we didn't find it anywhere, give up.
1735     if (!method) {
1736       Diag(forLoc, diag::warn_collection_expr_type)
1737         << collection->getType() << selector << collection->getSourceRange();
1738     }
1739
1740     // TODO: check for an incompatible signature?
1741   }
1742
1743   // Wrap up any cleanups in the expression.
1744   return collection;
1745 }
1746
1747 StmtResult
1748 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1749                                  Stmt *First, Expr *collection,
1750                                  SourceLocation RParenLoc) {
1751
1752   ExprResult CollectionExprResult =
1753     CheckObjCForCollectionOperand(ForLoc, collection);
1754
1755   if (First) {
1756     QualType FirstType;
1757     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1758       if (!DS->isSingleDecl())
1759         return StmtError(Diag((*DS->decl_begin())->getLocation(),
1760                          diag::err_toomany_element_decls));
1761
1762       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1763       if (!D || D->isInvalidDecl())
1764         return StmtError();
1765       
1766       FirstType = D->getType();
1767       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1768       // declare identifiers for objects having storage class 'auto' or
1769       // 'register'.
1770       if (!D->hasLocalStorage())
1771         return StmtError(Diag(D->getLocation(),
1772                               diag::err_non_local_variable_decl_in_for));
1773
1774       // If the type contained 'auto', deduce the 'auto' to 'id'.
1775       if (FirstType->getContainedAutoType()) {
1776         OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1777                                  VK_RValue);
1778         Expr *DeducedInit = &OpaqueId;
1779         if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1780                 DAR_Failed)
1781           DiagnoseAutoDeductionFailure(D, DeducedInit);
1782         if (FirstType.isNull()) {
1783           D->setInvalidDecl();
1784           return StmtError();
1785         }
1786
1787         D->setType(FirstType);
1788
1789         if (ActiveTemplateInstantiations.empty()) {
1790           SourceLocation Loc =
1791               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1792           Diag(Loc, diag::warn_auto_var_is_id)
1793             << D->getDeclName();
1794         }
1795       }
1796
1797     } else {
1798       Expr *FirstE = cast<Expr>(First);
1799       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1800         return StmtError(Diag(First->getLocStart(),
1801                    diag::err_selector_element_not_lvalue)
1802           << First->getSourceRange());
1803
1804       FirstType = static_cast<Expr*>(First)->getType();
1805       if (FirstType.isConstQualified())
1806         Diag(ForLoc, diag::err_selector_element_const_type)
1807           << FirstType << First->getSourceRange();
1808     }
1809     if (!FirstType->isDependentType() &&
1810         !FirstType->isObjCObjectPointerType() &&
1811         !FirstType->isBlockPointerType())
1812         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1813                            << FirstType << First->getSourceRange());
1814   }
1815
1816   if (CollectionExprResult.isInvalid())
1817     return StmtError();
1818
1819   CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1820   if (CollectionExprResult.isInvalid())
1821     return StmtError();
1822
1823   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1824                                              nullptr, ForLoc, RParenLoc);
1825 }
1826
1827 /// Finish building a variable declaration for a for-range statement.
1828 /// \return true if an error occurs.
1829 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1830                                   SourceLocation Loc, int DiagID) {
1831   if (Decl->getType()->isUndeducedType()) {
1832     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1833     if (!Res.isUsable()) {
1834       Decl->setInvalidDecl();
1835       return true;
1836     }
1837     Init = Res.get();
1838   }
1839
1840   // Deduce the type for the iterator variable now rather than leaving it to
1841   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1842   QualType InitType;
1843   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1844       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1845           Sema::DAR_Failed)
1846     SemaRef.Diag(Loc, DiagID) << Init->getType();
1847   if (InitType.isNull()) {
1848     Decl->setInvalidDecl();
1849     return true;
1850   }
1851   Decl->setType(InitType);
1852
1853   // In ARC, infer lifetime.
1854   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1855   // we're doing the equivalent of fast iteration.
1856   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1857       SemaRef.inferObjCARCLifetime(Decl))
1858     Decl->setInvalidDecl();
1859
1860   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1861                                /*TypeMayContainAuto=*/false);
1862   SemaRef.FinalizeDeclaration(Decl);
1863   SemaRef.CurContext->addHiddenDecl(Decl);
1864   return false;
1865 }
1866
1867 namespace {
1868
1869 /// Produce a note indicating which begin/end function was implicitly called
1870 /// by a C++11 for-range statement. This is often not obvious from the code,
1871 /// nor from the diagnostics produced when analysing the implicit expressions
1872 /// required in a for-range statement.
1873 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1874                                   Sema::BeginEndFunction BEF) {
1875   CallExpr *CE = dyn_cast<CallExpr>(E);
1876   if (!CE)
1877     return;
1878   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1879   if (!D)
1880     return;
1881   SourceLocation Loc = D->getLocation();
1882
1883   std::string Description;
1884   bool IsTemplate = false;
1885   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1886     Description = SemaRef.getTemplateArgumentBindingsText(
1887       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1888     IsTemplate = true;
1889   }
1890
1891   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1892     << BEF << IsTemplate << Description << E->getType();
1893 }
1894
1895 /// Build a variable declaration for a for-range statement.
1896 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1897                               QualType Type, const char *Name) {
1898   DeclContext *DC = SemaRef.CurContext;
1899   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1900   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1901   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1902                                   TInfo, SC_None);
1903   Decl->setImplicit();
1904   return Decl;
1905 }
1906
1907 }
1908
1909 static bool ObjCEnumerationCollection(Expr *Collection) {
1910   return !Collection->isTypeDependent()
1911           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
1912 }
1913
1914 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1915 ///
1916 /// C++11 [stmt.ranged]:
1917 ///   A range-based for statement is equivalent to
1918 ///
1919 ///   {
1920 ///     auto && __range = range-init;
1921 ///     for ( auto __begin = begin-expr,
1922 ///           __end = end-expr;
1923 ///           __begin != __end;
1924 ///           ++__begin ) {
1925 ///       for-range-declaration = *__begin;
1926 ///       statement
1927 ///     }
1928 ///   }
1929 ///
1930 /// The body of the loop is not available yet, since it cannot be analysed until
1931 /// we have determined the type of the for-range-declaration.
1932 StmtResult
1933 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1934                            Stmt *First, SourceLocation ColonLoc, Expr *Range,
1935                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
1936   if (!First)
1937     return StmtError();
1938
1939   if (Range && ObjCEnumerationCollection(Range))
1940     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1941
1942   DeclStmt *DS = dyn_cast<DeclStmt>(First);
1943   assert(DS && "first part of for range not a decl stmt");
1944
1945   if (!DS->isSingleDecl()) {
1946     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1947     return StmtError();
1948   }
1949
1950   Decl *LoopVar = DS->getSingleDecl();
1951   if (LoopVar->isInvalidDecl() || !Range ||
1952       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
1953     LoopVar->setInvalidDecl();
1954     return StmtError();
1955   }
1956
1957   // Build  auto && __range = range-init
1958   SourceLocation RangeLoc = Range->getLocStart();
1959   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1960                                            Context.getAutoRRefDeductType(),
1961                                            "__range");
1962   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1963                             diag::err_for_range_deduction_failure)) {
1964     LoopVar->setInvalidDecl();
1965     return StmtError();
1966   }
1967
1968   // Claim the type doesn't contain auto: we've already done the checking.
1969   DeclGroupPtrTy RangeGroup =
1970       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
1971                            /*TypeMayContainAuto=*/ false);
1972   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1973   if (RangeDecl.isInvalid()) {
1974     LoopVar->setInvalidDecl();
1975     return StmtError();
1976   }
1977
1978   return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1979                               /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
1980                               /*Inc=*/nullptr, DS, RParenLoc, Kind);
1981 }
1982
1983 /// \brief Create the initialization, compare, and increment steps for
1984 /// the range-based for loop expression.
1985 /// This function does not handle array-based for loops,
1986 /// which are created in Sema::BuildCXXForRangeStmt.
1987 ///
1988 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
1989 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1990 /// CandidateSet and BEF are set and some non-success value is returned on
1991 /// failure.
1992 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1993                                             Expr *BeginRange, Expr *EndRange,
1994                                             QualType RangeType,
1995                                             VarDecl *BeginVar,
1996                                             VarDecl *EndVar,
1997                                             SourceLocation ColonLoc,
1998                                             OverloadCandidateSet *CandidateSet,
1999                                             ExprResult *BeginExpr,
2000                                             ExprResult *EndExpr,
2001                                             Sema::BeginEndFunction *BEF) {
2002   DeclarationNameInfo BeginNameInfo(
2003       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2004   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2005                                   ColonLoc);
2006
2007   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2008                                  Sema::LookupMemberName);
2009   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2010
2011   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2012     // - if _RangeT is a class type, the unqualified-ids begin and end are
2013     //   looked up in the scope of class _RangeT as if by class member access
2014     //   lookup (3.4.5), and if either (or both) finds at least one
2015     //   declaration, begin-expr and end-expr are __range.begin() and
2016     //   __range.end(), respectively;
2017     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2018     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2019
2020     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2021       SourceLocation RangeLoc = BeginVar->getLocation();
2022       *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
2023
2024       SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
2025           << RangeLoc << BeginRange->getType() << *BEF;
2026       return Sema::FRS_DiagnosticIssued;
2027     }
2028   } else {
2029     // - otherwise, begin-expr and end-expr are begin(__range) and
2030     //   end(__range), respectively, where begin and end are looked up with
2031     //   argument-dependent lookup (3.4.2). For the purposes of this name
2032     //   lookup, namespace std is an associated namespace.
2033
2034   }
2035
2036   *BEF = Sema::BEF_begin;
2037   Sema::ForRangeStatus RangeStatus =
2038       SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
2039                                         Sema::BEF_begin, BeginNameInfo,
2040                                         BeginMemberLookup, CandidateSet,
2041                                         BeginRange, BeginExpr);
2042
2043   if (RangeStatus != Sema::FRS_Success)
2044     return RangeStatus;
2045   if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2046                             diag::err_for_range_iter_deduction_failure)) {
2047     NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2048     return Sema::FRS_DiagnosticIssued;
2049   }
2050
2051   *BEF = Sema::BEF_end;
2052   RangeStatus =
2053       SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
2054                                         Sema::BEF_end, EndNameInfo,
2055                                         EndMemberLookup, CandidateSet,
2056                                         EndRange, EndExpr);
2057   if (RangeStatus != Sema::FRS_Success)
2058     return RangeStatus;
2059   if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2060                             diag::err_for_range_iter_deduction_failure)) {
2061     NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2062     return Sema::FRS_DiagnosticIssued;
2063   }
2064   return Sema::FRS_Success;
2065 }
2066
2067 /// Speculatively attempt to dereference an invalid range expression.
2068 /// If the attempt fails, this function will return a valid, null StmtResult
2069 /// and emit no diagnostics.
2070 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2071                                                  SourceLocation ForLoc,
2072                                                  Stmt *LoopVarDecl,
2073                                                  SourceLocation ColonLoc,
2074                                                  Expr *Range,
2075                                                  SourceLocation RangeLoc,
2076                                                  SourceLocation RParenLoc) {
2077   // Determine whether we can rebuild the for-range statement with a
2078   // dereferenced range expression.
2079   ExprResult AdjustedRange;
2080   {
2081     Sema::SFINAETrap Trap(SemaRef);
2082
2083     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2084     if (AdjustedRange.isInvalid())
2085       return StmtResult();
2086
2087     StmtResult SR =
2088       SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
2089                                    AdjustedRange.get(), RParenLoc,
2090                                    Sema::BFRK_Check);
2091     if (SR.isInvalid())
2092       return StmtResult();
2093   }
2094
2095   // The attempt to dereference worked well enough that it could produce a valid
2096   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2097   // case there are any other (non-fatal) problems with it.
2098   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2099     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2100   return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
2101                                       AdjustedRange.get(), RParenLoc,
2102                                       Sema::BFRK_Rebuild);
2103 }
2104
2105 namespace {
2106 /// RAII object to automatically invalidate a declaration if an error occurs.
2107 struct InvalidateOnErrorScope {
2108   InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2109       : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
2110   ~InvalidateOnErrorScope() {
2111     if (Enabled && Trap.hasErrorOccurred())
2112       D->setInvalidDecl();
2113   }
2114
2115   DiagnosticErrorTrap Trap;
2116   Decl *D;
2117   bool Enabled;
2118 };
2119 }
2120
2121 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2122 StmtResult
2123 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
2124                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
2125                            Expr *Inc, Stmt *LoopVarDecl,
2126                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
2127   Scope *S = getCurScope();
2128
2129   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2130   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2131   QualType RangeVarType = RangeVar->getType();
2132
2133   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2134   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2135
2136   // If we hit any errors, mark the loop variable as invalid if its type
2137   // contains 'auto'.
2138   InvalidateOnErrorScope Invalidate(*this, LoopVar,
2139                                     LoopVar->getType()->isUndeducedType());
2140
2141   StmtResult BeginEndDecl = BeginEnd;
2142   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2143
2144   if (RangeVarType->isDependentType()) {
2145     // The range is implicitly used as a placeholder when it is dependent.
2146     RangeVar->markUsed(Context);
2147
2148     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2149     // them in properly when we instantiate the loop.
2150     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
2151       LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2152   } else if (!BeginEndDecl.get()) {
2153     SourceLocation RangeLoc = RangeVar->getLocation();
2154
2155     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2156
2157     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2158                                                 VK_LValue, ColonLoc);
2159     if (BeginRangeRef.isInvalid())
2160       return StmtError();
2161
2162     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2163                                               VK_LValue, ColonLoc);
2164     if (EndRangeRef.isInvalid())
2165       return StmtError();
2166
2167     QualType AutoType = Context.getAutoDeductType();
2168     Expr *Range = RangeVar->getInit();
2169     if (!Range)
2170       return StmtError();
2171     QualType RangeType = Range->getType();
2172
2173     if (RequireCompleteType(RangeLoc, RangeType,
2174                             diag::err_for_range_incomplete_type))
2175       return StmtError();
2176
2177     // Build auto __begin = begin-expr, __end = end-expr.
2178     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2179                                              "__begin");
2180     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2181                                            "__end");
2182
2183     // Build begin-expr and end-expr and attach to __begin and __end variables.
2184     ExprResult BeginExpr, EndExpr;
2185     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2186       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2187       //   __range + __bound, respectively, where __bound is the array bound. If
2188       //   _RangeT is an array of unknown size or an array of incomplete type,
2189       //   the program is ill-formed;
2190
2191       // begin-expr is __range.
2192       BeginExpr = BeginRangeRef;
2193       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2194                                 diag::err_for_range_iter_deduction_failure)) {
2195         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2196         return StmtError();
2197       }
2198
2199       // Find the array bound.
2200       ExprResult BoundExpr;
2201       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2202         BoundExpr = IntegerLiteral::Create(
2203             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2204       else if (const VariableArrayType *VAT =
2205                dyn_cast<VariableArrayType>(UnqAT))
2206         BoundExpr = VAT->getSizeExpr();
2207       else {
2208         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2209         // UnqAT is not incomplete and Range is not type-dependent.
2210         llvm_unreachable("Unexpected array type in for-range");
2211       }
2212
2213       // end-expr is __range + __bound.
2214       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2215                            BoundExpr.get());
2216       if (EndExpr.isInvalid())
2217         return StmtError();
2218       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2219                                 diag::err_for_range_iter_deduction_failure)) {
2220         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2221         return StmtError();
2222       }
2223     } else {
2224       OverloadCandidateSet CandidateSet(RangeLoc,
2225                                         OverloadCandidateSet::CSK_Normal);
2226       Sema::BeginEndFunction BEFFailure;
2227       ForRangeStatus RangeStatus =
2228           BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
2229                                 EndRangeRef.get(), RangeType,
2230                                 BeginVar, EndVar, ColonLoc, &CandidateSet,
2231                                 &BeginExpr, &EndExpr, &BEFFailure);
2232
2233       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2234           BEFFailure == BEF_begin) {
2235         // If the range is being built from an array parameter, emit a
2236         // a diagnostic that it is being treated as a pointer.
2237         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2238           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2239             QualType ArrayTy = PVD->getOriginalType();
2240             QualType PointerTy = PVD->getType();
2241             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2242               Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
2243                 << RangeLoc << PVD << ArrayTy << PointerTy;
2244               Diag(PVD->getLocation(), diag::note_declared_at);
2245               return StmtError();
2246             }
2247           }
2248         }
2249
2250         // If building the range failed, try dereferencing the range expression
2251         // unless a diagnostic was issued or the end function is problematic.
2252         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2253                                                        LoopVarDecl, ColonLoc,
2254                                                        Range, RangeLoc,
2255                                                        RParenLoc);
2256         if (SR.isInvalid() || SR.isUsable())
2257           return SR;
2258       }
2259
2260       // Otherwise, emit diagnostics if we haven't already.
2261       if (RangeStatus == FRS_NoViableFunction) {
2262         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2263         Diag(Range->getLocStart(), diag::err_for_range_invalid)
2264             << RangeLoc << Range->getType() << BEFFailure;
2265         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2266       }
2267       // Return an error if no fix was discovered.
2268       if (RangeStatus != FRS_Success)
2269         return StmtError();
2270     }
2271
2272     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2273            "invalid range expression in for loop");
2274
2275     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2276     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2277     if (!Context.hasSameType(BeginType, EndType)) {
2278       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2279         << BeginType << EndType;
2280       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2281       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2282     }
2283
2284     Decl *BeginEndDecls[] = { BeginVar, EndVar };
2285     // Claim the type doesn't contain auto: we've already done the checking.
2286     DeclGroupPtrTy BeginEndGroup =
2287         BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
2288                              /*TypeMayContainAuto=*/ false);
2289     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2290
2291     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2292     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2293                                            VK_LValue, ColonLoc);
2294     if (BeginRef.isInvalid())
2295       return StmtError();
2296
2297     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2298                                          VK_LValue, ColonLoc);
2299     if (EndRef.isInvalid())
2300       return StmtError();
2301
2302     // Build and check __begin != __end expression.
2303     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2304                            BeginRef.get(), EndRef.get());
2305     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2306     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2307     if (NotEqExpr.isInvalid()) {
2308       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2309         << RangeLoc << 0 << BeginRangeRef.get()->getType();
2310       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2311       if (!Context.hasSameType(BeginType, EndType))
2312         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2313       return StmtError();
2314     }
2315
2316     // Build and check ++__begin expression.
2317     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2318                                 VK_LValue, ColonLoc);
2319     if (BeginRef.isInvalid())
2320       return StmtError();
2321
2322     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2323     IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2324     if (IncrExpr.isInvalid()) {
2325       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2326         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2327       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2328       return StmtError();
2329     }
2330
2331     // Build and check *__begin  expression.
2332     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2333                                 VK_LValue, ColonLoc);
2334     if (BeginRef.isInvalid())
2335       return StmtError();
2336
2337     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2338     if (DerefExpr.isInvalid()) {
2339       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2340         << RangeLoc << 1 << BeginRangeRef.get()->getType();
2341       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2342       return StmtError();
2343     }
2344
2345     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2346     // trying to determine whether this would be a valid range.
2347     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2348       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2349                            /*TypeMayContainAuto=*/true);
2350       if (LoopVar->isInvalidDecl())
2351         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2352     }
2353   }
2354
2355   // Don't bother to actually allocate the result if we're just trying to
2356   // determine whether it would be valid.
2357   if (Kind == BFRK_Check)
2358     return StmtResult();
2359
2360   return new (Context) CXXForRangeStmt(
2361       RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
2362       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, ColonLoc, RParenLoc);
2363 }
2364
2365 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2366 /// statement.
2367 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2368   if (!S || !B)
2369     return StmtError();
2370   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2371
2372   ForStmt->setBody(B);
2373   return S;
2374 }
2375
2376 // Warn when the loop variable is a const reference that creates a copy.
2377 // Suggest using the non-reference type for copies.  If a copy can be prevented
2378 // suggest the const reference type that would do so.
2379 // For instance, given "for (const &Foo : Range)", suggest
2380 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
2381 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2382 // the copy altogether.
2383 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2384                                                     const VarDecl *VD,
2385                                                     QualType RangeInitType) {
2386   const Expr *InitExpr = VD->getInit();
2387   if (!InitExpr)
2388     return;
2389
2390   QualType VariableType = VD->getType();
2391
2392   const MaterializeTemporaryExpr *MTE =
2393       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2394
2395   // No copy made.
2396   if (!MTE)
2397     return;
2398
2399   const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2400
2401   // Searching for either UnaryOperator for dereference of a pointer or
2402   // CXXOperatorCallExpr for handling iterators.
2403   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2404     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2405       E = CCE->getArg(0);
2406     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2407       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2408       E = ME->getBase();
2409     } else {
2410       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2411       E = MTE->GetTemporaryExpr();
2412     }
2413     E = E->IgnoreImpCasts();
2414   }
2415
2416   bool ReturnsReference = false;
2417   if (isa<UnaryOperator>(E)) {
2418     ReturnsReference = true;
2419   } else {
2420     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2421     const FunctionDecl *FD = Call->getDirectCallee();
2422     QualType ReturnType = FD->getReturnType();
2423     ReturnsReference = ReturnType->isReferenceType();
2424   }
2425
2426   if (ReturnsReference) {
2427     // Loop variable creates a temporary.  Suggest either to go with
2428     // non-reference loop variable to indiciate a copy is made, or
2429     // the correct time to bind a const reference.
2430     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2431         << VD << VariableType << E->getType();
2432     QualType NonReferenceType = VariableType.getNonReferenceType();
2433     NonReferenceType.removeLocalConst();
2434     QualType NewReferenceType =
2435         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2436     SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
2437         << NonReferenceType << NewReferenceType << VD->getSourceRange();
2438   } else {
2439     // The range always returns a copy, so a temporary is always created.
2440     // Suggest removing the reference from the loop variable.
2441     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2442         << VD << RangeInitType;
2443     QualType NonReferenceType = VariableType.getNonReferenceType();
2444     NonReferenceType.removeLocalConst();
2445     SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
2446         << NonReferenceType << VD->getSourceRange();
2447   }
2448 }
2449
2450 // Warns when the loop variable can be changed to a reference type to
2451 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
2452 // "for (const Foo &x : Range)" if this form does not make a copy.
2453 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
2454                                                 const VarDecl *VD) {
2455   const Expr *InitExpr = VD->getInit();
2456   if (!InitExpr)
2457     return;
2458
2459   QualType VariableType = VD->getType();
2460
2461   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2462     if (!CE->getConstructor()->isCopyConstructor())
2463       return;
2464   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2465     if (CE->getCastKind() != CK_LValueToRValue)
2466       return;
2467   } else {
2468     return;
2469   }
2470
2471   // TODO: Determine a maximum size that a POD type can be before a diagnostic
2472   // should be emitted.  Also, only ignore POD types with trivial copy
2473   // constructors.
2474   if (VariableType.isPODType(SemaRef.Context))
2475     return;
2476
2477   // Suggest changing from a const variable to a const reference variable
2478   // if doing so will prevent a copy.
2479   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2480       << VD << VariableType << InitExpr->getType();
2481   SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
2482       << SemaRef.Context.getLValueReferenceType(VariableType)
2483       << VD->getSourceRange();
2484 }
2485
2486 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2487 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
2488 ///    using "const foo x" to show that a copy is made
2489 /// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
2490 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
2491 ///    prevent the copy.
2492 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2493 ///    Suggest "const foo &x" to prevent the copy.
2494 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
2495                                            const CXXForRangeStmt *ForStmt) {
2496   if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2497                               ForStmt->getLocStart()) &&
2498       SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2499                               ForStmt->getLocStart()) &&
2500       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2501                               ForStmt->getLocStart())) {
2502     return;
2503   }
2504
2505   const VarDecl *VD = ForStmt->getLoopVariable();
2506   if (!VD)
2507     return;
2508
2509   QualType VariableType = VD->getType();
2510
2511   if (VariableType->isIncompleteType())
2512     return;
2513
2514   const Expr *InitExpr = VD->getInit();
2515   if (!InitExpr)
2516     return;
2517
2518   if (VariableType->isReferenceType()) {
2519     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
2520                                             ForStmt->getRangeInit()->getType());
2521   } else if (VariableType.isConstQualified()) {
2522     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
2523   }
2524 }
2525
2526 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2527 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2528 /// body cannot be performed until after the type of the range variable is
2529 /// determined.
2530 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2531   if (!S || !B)
2532     return StmtError();
2533
2534   if (isa<ObjCForCollectionStmt>(S))
2535     return FinishObjCForCollectionStmt(S, B);
2536
2537   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2538   ForStmt->setBody(B);
2539
2540   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2541                         diag::warn_empty_range_based_for_body);
2542
2543   DiagnoseForRangeVariableCopies(*this, ForStmt);
2544
2545   return S;
2546 }
2547
2548 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2549                                SourceLocation LabelLoc,
2550                                LabelDecl *TheDecl) {
2551   getCurFunction()->setHasBranchIntoScope();
2552   TheDecl->markUsed(Context);
2553   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2554 }
2555
2556 StmtResult
2557 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2558                             Expr *E) {
2559   // Convert operand to void*
2560   if (!E->isTypeDependent()) {
2561     QualType ETy = E->getType();
2562     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2563     ExprResult ExprRes = E;
2564     AssignConvertType ConvTy =
2565       CheckSingleAssignmentConstraints(DestTy, ExprRes);
2566     if (ExprRes.isInvalid())
2567       return StmtError();
2568     E = ExprRes.get();
2569     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2570       return StmtError();
2571   }
2572
2573   ExprResult ExprRes = ActOnFinishFullExpr(E);
2574   if (ExprRes.isInvalid())
2575     return StmtError();
2576   E = ExprRes.get();
2577
2578   getCurFunction()->setHasIndirectGoto();
2579
2580   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2581 }
2582
2583 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
2584                                      const Scope &DestScope) {
2585   if (!S.CurrentSEHFinally.empty() &&
2586       DestScope.Contains(*S.CurrentSEHFinally.back())) {
2587     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2588   }
2589 }
2590
2591 StmtResult
2592 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2593   Scope *S = CurScope->getContinueParent();
2594   if (!S) {
2595     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2596     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2597   }
2598   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2599
2600   return new (Context) ContinueStmt(ContinueLoc);
2601 }
2602
2603 StmtResult
2604 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2605   Scope *S = CurScope->getBreakParent();
2606   if (!S) {
2607     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2608     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2609   }
2610   if (S->isOpenMPLoopScope())
2611     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2612                      << "break");
2613   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2614
2615   return new (Context) BreakStmt(BreakLoc);
2616 }
2617
2618 /// \brief Determine whether the given expression is a candidate for
2619 /// copy elision in either a return statement or a throw expression.
2620 ///
2621 /// \param ReturnType If we're determining the copy elision candidate for
2622 /// a return statement, this is the return type of the function. If we're
2623 /// determining the copy elision candidate for a throw expression, this will
2624 /// be a NULL type.
2625 ///
2626 /// \param E The expression being returned from the function or block, or
2627 /// being thrown.
2628 ///
2629 /// \param AllowFunctionParameter Whether we allow function parameters to
2630 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2631 /// we re-use this logic to determine whether we should try to move as part of
2632 /// a return or throw (which does allow function parameters).
2633 ///
2634 /// \returns The NRVO candidate variable, if the return statement may use the
2635 /// NRVO, or NULL if there is no such candidate.
2636 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2637                                        Expr *E,
2638                                        bool AllowFunctionParameter) {
2639   if (!getLangOpts().CPlusPlus)
2640     return nullptr;
2641
2642   // - in a return statement in a function [where] ...
2643   // ... the expression is the name of a non-volatile automatic object ...
2644   DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2645   if (!DR || DR->refersToEnclosingVariableOrCapture())
2646     return nullptr;
2647   VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2648   if (!VD)
2649     return nullptr;
2650
2651   if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
2652     return VD;
2653   return nullptr;
2654 }
2655
2656 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2657                                   bool AllowFunctionParameter) {
2658   QualType VDType = VD->getType();
2659   // - in a return statement in a function with ...
2660   // ... a class return type ...
2661   if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2662     if (!ReturnType->isRecordType())
2663       return false;
2664     // ... the same cv-unqualified type as the function return type ...
2665     if (!VDType->isDependentType() &&
2666         !Context.hasSameUnqualifiedType(ReturnType, VDType))
2667       return false;
2668   }
2669
2670   // ...object (other than a function or catch-clause parameter)...
2671   if (VD->getKind() != Decl::Var &&
2672       !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2673     return false;
2674   if (VD->isExceptionVariable()) return false;
2675
2676   // ...automatic...
2677   if (!VD->hasLocalStorage()) return false;
2678
2679   // ...non-volatile...
2680   if (VD->getType().isVolatileQualified()) return false;
2681
2682   // __block variables can't be allocated in a way that permits NRVO.
2683   if (VD->hasAttr<BlocksAttr>()) return false;
2684
2685   // Variables with higher required alignment than their type's ABI
2686   // alignment cannot use NRVO.
2687   if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2688       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2689     return false;
2690
2691   return true;
2692 }
2693
2694 /// \brief Perform the initialization of a potentially-movable value, which
2695 /// is the result of return value.
2696 ///
2697 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2698 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2699 /// then falls back to treating them as lvalues if that failed.
2700 ExprResult
2701 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2702                                       const VarDecl *NRVOCandidate,
2703                                       QualType ResultType,
2704                                       Expr *Value,
2705                                       bool AllowNRVO) {
2706   // C++0x [class.copy]p33:
2707   //   When the criteria for elision of a copy operation are met or would
2708   //   be met save for the fact that the source object is a function
2709   //   parameter, and the object to be copied is designated by an lvalue,
2710   //   overload resolution to select the constructor for the copy is first
2711   //   performed as if the object were designated by an rvalue.
2712   ExprResult Res = ExprError();
2713   if (AllowNRVO &&
2714       (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2715     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2716                               Value->getType(), CK_NoOp, Value, VK_XValue);
2717
2718     Expr *InitExpr = &AsRvalue;
2719     InitializationKind Kind
2720       = InitializationKind::CreateCopy(Value->getLocStart(),
2721                                        Value->getLocStart());
2722     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2723
2724     //   [...] If overload resolution fails, or if the type of the first
2725     //   parameter of the selected constructor is not an rvalue reference
2726     //   to the object's type (possibly cv-qualified), overload resolution
2727     //   is performed again, considering the object as an lvalue.
2728     if (Seq) {
2729       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2730            StepEnd = Seq.step_end();
2731            Step != StepEnd; ++Step) {
2732         if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2733           continue;
2734
2735         CXXConstructorDecl *Constructor
2736         = cast<CXXConstructorDecl>(Step->Function.Function);
2737
2738         const RValueReferenceType *RRefType
2739           = Constructor->getParamDecl(0)->getType()
2740                                                  ->getAs<RValueReferenceType>();
2741
2742         // If we don't meet the criteria, break out now.
2743         if (!RRefType ||
2744             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2745                             Context.getTypeDeclType(Constructor->getParent())))
2746           break;
2747
2748         // Promote "AsRvalue" to the heap, since we now need this
2749         // expression node to persist.
2750         Value = ImplicitCastExpr::Create(Context, Value->getType(),
2751                                          CK_NoOp, Value, nullptr, VK_XValue);
2752
2753         // Complete type-checking the initialization of the return type
2754         // using the constructor we found.
2755         Res = Seq.Perform(*this, Entity, Kind, Value);
2756       }
2757     }
2758   }
2759
2760   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2761   // above, or overload resolution failed. Either way, we need to try
2762   // (again) now with the return value expression as written.
2763   if (Res.isInvalid())
2764     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2765
2766   return Res;
2767 }
2768
2769 /// \brief Determine whether the declared return type of the specified function
2770 /// contains 'auto'.
2771 static bool hasDeducedReturnType(FunctionDecl *FD) {
2772   const FunctionProtoType *FPT =
2773       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
2774   return FPT->getReturnType()->isUndeducedType();
2775 }
2776
2777 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2778 /// for capturing scopes.
2779 ///
2780 StmtResult
2781 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2782   // If this is the first return we've seen, infer the return type.
2783   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
2784   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2785   QualType FnRetType = CurCap->ReturnType;
2786   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
2787
2788   if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
2789     // In C++1y, the return type may involve 'auto'.
2790     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
2791     FunctionDecl *FD = CurLambda->CallOperator;
2792     if (CurCap->ReturnType.isNull())
2793       CurCap->ReturnType = FD->getReturnType();
2794
2795     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
2796     assert(AT && "lost auto type from lambda return type");
2797     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2798       FD->setInvalidDecl();
2799       return StmtError();
2800     }
2801     CurCap->ReturnType = FnRetType = FD->getReturnType();
2802   } else if (CurCap->HasImplicitReturnType) {
2803     // For blocks/lambdas with implicit return types, we check each return
2804     // statement individually, and deduce the common return type when the block
2805     // or lambda is completed.
2806     // FIXME: Fold this into the 'auto' codepath above.
2807     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2808       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2809       if (Result.isInvalid())
2810         return StmtError();
2811       RetValExp = Result.get();
2812
2813       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
2814       // when deducing a return type for a lambda-expression (or by extension
2815       // for a block). These rules differ from the stated C++11 rules only in
2816       // that they remove top-level cv-qualifiers.
2817       if (!CurContext->isDependentContext())
2818         FnRetType = RetValExp->getType().getUnqualifiedType();
2819       else
2820         FnRetType = CurCap->ReturnType = Context.DependentTy;
2821     } else {
2822       if (RetValExp) {
2823         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2824         // initializer list, because it is not an expression (even
2825         // though we represent it as one). We still deduce 'void'.
2826         Diag(ReturnLoc, diag::err_lambda_return_init_list)
2827           << RetValExp->getSourceRange();
2828       }
2829
2830       FnRetType = Context.VoidTy;
2831     }
2832
2833     // Although we'll properly infer the type of the block once it's completed,
2834     // make sure we provide a return type now for better error recovery.
2835     if (CurCap->ReturnType.isNull())
2836       CurCap->ReturnType = FnRetType;
2837   }
2838   assert(!FnRetType.isNull());
2839
2840   if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2841     if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2842       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2843       return StmtError();
2844     }
2845   } else if (CapturedRegionScopeInfo *CurRegion =
2846                  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2847     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2848     return StmtError();
2849   } else {
2850     assert(CurLambda && "unknown kind of captured scope");
2851     if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
2852             ->getNoReturnAttr()) {
2853       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2854       return StmtError();
2855     }
2856   }
2857
2858   // Otherwise, verify that this result type matches the previous one.  We are
2859   // pickier with blocks than for normal functions because we don't have GCC
2860   // compatibility to worry about here.
2861   const VarDecl *NRVOCandidate = nullptr;
2862   if (FnRetType->isDependentType()) {
2863     // Delay processing for now.  TODO: there are lots of dependent
2864     // types we can conclusively prove aren't void.
2865   } else if (FnRetType->isVoidType()) {
2866     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2867         !(getLangOpts().CPlusPlus &&
2868           (RetValExp->isTypeDependent() ||
2869            RetValExp->getType()->isVoidType()))) {
2870       if (!getLangOpts().CPlusPlus &&
2871           RetValExp->getType()->isVoidType())
2872         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2873       else {
2874         Diag(ReturnLoc, diag::err_return_block_has_expr);
2875         RetValExp = nullptr;
2876       }
2877     }
2878   } else if (!RetValExp) {
2879     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2880   } else if (!RetValExp->isTypeDependent()) {
2881     // we have a non-void block with an expression, continue checking
2882
2883     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2884     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2885     // function return.
2886
2887     // In C++ the return statement is handled via a copy initialization.
2888     // the C version of which boils down to CheckSingleAssignmentConstraints.
2889     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2890     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2891                                                                    FnRetType,
2892                                                       NRVOCandidate != nullptr);
2893     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2894                                                      FnRetType, RetValExp);
2895     if (Res.isInvalid()) {
2896       // FIXME: Cleanup temporaries here, anyway?
2897       return StmtError();
2898     }
2899     RetValExp = Res.get();
2900     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
2901   } else {
2902     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2903   }
2904
2905   if (RetValExp) {
2906     ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2907     if (ER.isInvalid())
2908       return StmtError();
2909     RetValExp = ER.get();
2910   }
2911   ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2912                                                 NRVOCandidate);
2913
2914   // If we need to check for the named return value optimization,
2915   // or if we need to infer the return type,
2916   // save the return statement in our scope for later processing.
2917   if (CurCap->HasImplicitReturnType || NRVOCandidate)
2918     FunctionScopes.back()->Returns.push_back(Result);
2919
2920   return Result;
2921 }
2922
2923 namespace {
2924 /// \brief Marks all typedefs in all local classes in a type referenced.
2925 ///
2926 /// In a function like
2927 /// auto f() {
2928 ///   struct S { typedef int a; };
2929 ///   return S();
2930 /// }
2931 ///
2932 /// the local type escapes and could be referenced in some TUs but not in
2933 /// others. Pretend that all local typedefs are always referenced, to not warn
2934 /// on this. This isn't necessary if f has internal linkage, or the typedef
2935 /// is private.
2936 class LocalTypedefNameReferencer
2937     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
2938 public:
2939   LocalTypedefNameReferencer(Sema &S) : S(S) {}
2940   bool VisitRecordType(const RecordType *RT);
2941 private:
2942   Sema &S;
2943 };
2944 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
2945   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
2946   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
2947       R->isDependentType())
2948     return true;
2949   for (auto *TmpD : R->decls())
2950     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2951       if (T->getAccess() != AS_private || R->hasFriends())
2952         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
2953   return true;
2954 }
2955 }
2956
2957 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
2958   TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
2959   while (auto ATL = TL.getAs<AttributedTypeLoc>())
2960     TL = ATL.getModifiedLoc().IgnoreParens();
2961   return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
2962 }
2963
2964 /// Deduce the return type for a function from a returned expression, per
2965 /// C++1y [dcl.spec.auto]p6.
2966 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
2967                                             SourceLocation ReturnLoc,
2968                                             Expr *&RetExpr,
2969                                             AutoType *AT) {
2970   TypeLoc OrigResultType = getReturnTypeLoc(FD);
2971   QualType Deduced;
2972
2973   if (RetExpr && isa<InitListExpr>(RetExpr)) {
2974     //  If the deduction is for a return statement and the initializer is
2975     //  a braced-init-list, the program is ill-formed.
2976     Diag(RetExpr->getExprLoc(),
2977          getCurLambda() ? diag::err_lambda_return_init_list
2978                         : diag::err_auto_fn_return_init_list)
2979         << RetExpr->getSourceRange();
2980     return true;
2981   }
2982
2983   if (FD->isDependentContext()) {
2984     // C++1y [dcl.spec.auto]p12:
2985     //   Return type deduction [...] occurs when the definition is
2986     //   instantiated even if the function body contains a return
2987     //   statement with a non-type-dependent operand.
2988     assert(AT->isDeduced() && "should have deduced to dependent type");
2989     return false;
2990   } else if (RetExpr) {
2991     //  If the deduction is for a return statement and the initializer is
2992     //  a braced-init-list, the program is ill-formed.
2993     if (isa<InitListExpr>(RetExpr)) {
2994       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_return_init_list);
2995       return true;
2996     }
2997
2998     //  Otherwise, [...] deduce a value for U using the rules of template
2999     //  argument deduction.
3000     DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3001
3002     if (DAR == DAR_Failed && !FD->isInvalidDecl())
3003       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3004         << OrigResultType.getType() << RetExpr->getType();
3005
3006     if (DAR != DAR_Succeeded)
3007       return true;
3008
3009     // If a local type is part of the returned type, mark its fields as
3010     // referenced.
3011     LocalTypedefNameReferencer Referencer(*this);
3012     Referencer.TraverseType(RetExpr->getType());
3013   } else {
3014     //  In the case of a return with no operand, the initializer is considered
3015     //  to be void().
3016     //
3017     // Deduction here can only succeed if the return type is exactly 'cv auto'
3018     // or 'decltype(auto)', so just check for that case directly.
3019     if (!OrigResultType.getType()->getAs<AutoType>()) {
3020       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3021         << OrigResultType.getType();
3022       return true;
3023     }
3024     // We always deduce U = void in this case.
3025     Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3026     if (Deduced.isNull())
3027       return true;
3028   }
3029
3030   //  If a function with a declared return type that contains a placeholder type
3031   //  has multiple return statements, the return type is deduced for each return
3032   //  statement. [...] if the type deduced is not the same in each deduction,
3033   //  the program is ill-formed.
3034   if (AT->isDeduced() && !FD->isInvalidDecl()) {
3035     AutoType *NewAT = Deduced->getContainedAutoType();
3036     if (!FD->isDependentContext() &&
3037         !Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) {
3038       const LambdaScopeInfo *LambdaSI = getCurLambda();
3039       if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3040         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3041           << NewAT->getDeducedType() << AT->getDeducedType()
3042           << true /*IsLambda*/;
3043       } else {
3044         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3045           << (AT->isDecltypeAuto() ? 1 : 0)
3046           << NewAT->getDeducedType() << AT->getDeducedType();
3047       }
3048       return true;
3049     }
3050   } else if (!FD->isInvalidDecl()) {
3051     // Update all declarations of the function to have the deduced return type.
3052     Context.adjustDeducedFunctionResultType(FD, Deduced);
3053   }
3054
3055   return false;
3056 }
3057
3058 StmtResult
3059 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3060                       Scope *CurScope) {
3061   StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
3062   if (R.isInvalid()) {
3063     return R;
3064   }
3065
3066   if (VarDecl *VD =
3067       const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3068     CurScope->addNRVOCandidate(VD);
3069   } else {
3070     CurScope->setNoNRVO();
3071   }
3072
3073   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3074
3075   return R;
3076 }
3077
3078 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3079   // Check for unexpanded parameter packs.
3080   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3081     return StmtError();
3082
3083   if (isa<CapturingScopeInfo>(getCurFunction()))
3084     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3085
3086   QualType FnRetType;
3087   QualType RelatedRetType;
3088   const AttrVec *Attrs = nullptr;
3089   bool isObjCMethod = false;
3090
3091   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3092     FnRetType = FD->getReturnType();
3093     if (FD->hasAttrs())
3094       Attrs = &FD->getAttrs();
3095     if (FD->isNoReturn())
3096       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3097         << FD->getDeclName();
3098   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3099     FnRetType = MD->getReturnType();
3100     isObjCMethod = true;
3101     if (MD->hasAttrs())
3102       Attrs = &MD->getAttrs();
3103     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3104       // In the implementation of a method with a related return type, the
3105       // type used to type-check the validity of return statements within the
3106       // method body is a pointer to the type of the class being implemented.
3107       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3108       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3109     }
3110   } else // If we don't have a function/method context, bail.
3111     return StmtError();
3112
3113   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3114   // deduction.
3115   if (getLangOpts().CPlusPlus14) {
3116     if (AutoType *AT = FnRetType->getContainedAutoType()) {
3117       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3118       if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3119         FD->setInvalidDecl();
3120         return StmtError();
3121       } else {
3122         FnRetType = FD->getReturnType();
3123       }
3124     }
3125   }
3126
3127   bool HasDependentReturnType = FnRetType->isDependentType();
3128
3129   ReturnStmt *Result = nullptr;
3130   if (FnRetType->isVoidType()) {
3131     if (RetValExp) {
3132       if (isa<InitListExpr>(RetValExp)) {
3133         // We simply never allow init lists as the return value of void
3134         // functions. This is compatible because this was never allowed before,
3135         // so there's no legacy code to deal with.
3136         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3137         int FunctionKind = 0;
3138         if (isa<ObjCMethodDecl>(CurDecl))
3139           FunctionKind = 1;
3140         else if (isa<CXXConstructorDecl>(CurDecl))
3141           FunctionKind = 2;
3142         else if (isa<CXXDestructorDecl>(CurDecl))
3143           FunctionKind = 3;
3144
3145         Diag(ReturnLoc, diag::err_return_init_list)
3146           << CurDecl->getDeclName() << FunctionKind
3147           << RetValExp->getSourceRange();
3148
3149         // Drop the expression.
3150         RetValExp = nullptr;
3151       } else if (!RetValExp->isTypeDependent()) {
3152         // C99 6.8.6.4p1 (ext_ since GCC warns)
3153         unsigned D = diag::ext_return_has_expr;
3154         if (RetValExp->getType()->isVoidType()) {
3155           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3156           if (isa<CXXConstructorDecl>(CurDecl) ||
3157               isa<CXXDestructorDecl>(CurDecl))
3158             D = diag::err_ctor_dtor_returns_void;
3159           else
3160             D = diag::ext_return_has_void_expr;
3161         }
3162         else {
3163           ExprResult Result = RetValExp;
3164           Result = IgnoredValueConversions(Result.get());
3165           if (Result.isInvalid())
3166             return StmtError();
3167           RetValExp = Result.get();
3168           RetValExp = ImpCastExprToType(RetValExp,
3169                                         Context.VoidTy, CK_ToVoid).get();
3170         }
3171         // return of void in constructor/destructor is illegal in C++.
3172         if (D == diag::err_ctor_dtor_returns_void) {
3173           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3174           Diag(ReturnLoc, D)
3175             << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3176             << RetValExp->getSourceRange();
3177         }
3178         // return (some void expression); is legal in C++.
3179         else if (D != diag::ext_return_has_void_expr ||
3180             !getLangOpts().CPlusPlus) {
3181           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3182
3183           int FunctionKind = 0;
3184           if (isa<ObjCMethodDecl>(CurDecl))
3185             FunctionKind = 1;
3186           else if (isa<CXXConstructorDecl>(CurDecl))
3187             FunctionKind = 2;
3188           else if (isa<CXXDestructorDecl>(CurDecl))
3189             FunctionKind = 3;
3190
3191           Diag(ReturnLoc, D)
3192             << CurDecl->getDeclName() << FunctionKind
3193             << RetValExp->getSourceRange();
3194         }
3195       }
3196
3197       if (RetValExp) {
3198         ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3199         if (ER.isInvalid())
3200           return StmtError();
3201         RetValExp = ER.get();
3202       }
3203     }
3204
3205     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3206   } else if (!RetValExp && !HasDependentReturnType) {
3207     FunctionDecl *FD = getCurFunctionDecl();
3208
3209     unsigned DiagID;
3210     if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3211       // C++11 [stmt.return]p2
3212       DiagID = diag::err_constexpr_return_missing_expr;
3213       FD->setInvalidDecl();
3214     } else if (getLangOpts().C99) {
3215       // C99 6.8.6.4p1 (ext_ since GCC warns)
3216       DiagID = diag::ext_return_missing_expr;
3217     } else {
3218       // C90 6.6.6.4p4
3219       DiagID = diag::warn_return_missing_expr;
3220     }
3221
3222     if (FD)
3223       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3224     else
3225       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3226
3227     Result = new (Context) ReturnStmt(ReturnLoc);
3228   } else {
3229     assert(RetValExp || HasDependentReturnType);
3230     const VarDecl *NRVOCandidate = nullptr;
3231
3232     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3233
3234     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3235     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3236     // function return.
3237
3238     // In C++ the return statement is handled via a copy initialization,
3239     // the C version of which boils down to CheckSingleAssignmentConstraints.
3240     if (RetValExp)
3241       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
3242     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3243       // we have a non-void function with an expression, continue checking
3244       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3245                                                                      RetType,
3246                                                       NRVOCandidate != nullptr);
3247       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3248                                                        RetType, RetValExp);
3249       if (Res.isInvalid()) {
3250         // FIXME: Clean up temporaries here anyway?
3251         return StmtError();
3252       }
3253       RetValExp = Res.getAs<Expr>();
3254
3255       // If we have a related result type, we need to implicitly
3256       // convert back to the formal result type.  We can't pretend to
3257       // initialize the result again --- we might end double-retaining
3258       // --- so instead we initialize a notional temporary.
3259       if (!RelatedRetType.isNull()) {
3260         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3261                                                             FnRetType);
3262         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3263         if (Res.isInvalid()) {
3264           // FIXME: Clean up temporaries here anyway?
3265           return StmtError();
3266         }
3267         RetValExp = Res.getAs<Expr>();
3268       }
3269
3270       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3271                          getCurFunctionDecl());
3272     }
3273
3274     if (RetValExp) {
3275       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3276       if (ER.isInvalid())
3277         return StmtError();
3278       RetValExp = ER.get();
3279     }
3280     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
3281   }
3282
3283   // If we need to check for the named return value optimization, save the
3284   // return statement in our scope for later processing.
3285   if (Result->getNRVOCandidate())
3286     FunctionScopes.back()->Returns.push_back(Result);
3287
3288   return Result;
3289 }
3290
3291 StmtResult
3292 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3293                            SourceLocation RParen, Decl *Parm,
3294                            Stmt *Body) {
3295   VarDecl *Var = cast_or_null<VarDecl>(Parm);
3296   if (Var && Var->isInvalidDecl())
3297     return StmtError();
3298
3299   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3300 }
3301
3302 StmtResult
3303 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3304   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3305 }
3306
3307 StmtResult
3308 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3309                          MultiStmtArg CatchStmts, Stmt *Finally) {
3310   if (!getLangOpts().ObjCExceptions)
3311     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3312
3313   getCurFunction()->setHasBranchProtectedScope();
3314   unsigned NumCatchStmts = CatchStmts.size();
3315   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3316                                NumCatchStmts, Finally);
3317 }
3318
3319 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3320   if (Throw) {
3321     ExprResult Result = DefaultLvalueConversion(Throw);
3322     if (Result.isInvalid())
3323       return StmtError();
3324
3325     Result = ActOnFinishFullExpr(Result.get());
3326     if (Result.isInvalid())
3327       return StmtError();
3328     Throw = Result.get();
3329
3330     QualType ThrowType = Throw->getType();
3331     // Make sure the expression type is an ObjC pointer or "void *".
3332     if (!ThrowType->isDependentType() &&
3333         !ThrowType->isObjCObjectPointerType()) {
3334       const PointerType *PT = ThrowType->getAs<PointerType>();
3335       if (!PT || !PT->getPointeeType()->isVoidType())
3336         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
3337                          << Throw->getType() << Throw->getSourceRange());
3338     }
3339   }
3340
3341   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3342 }
3343
3344 StmtResult
3345 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3346                            Scope *CurScope) {
3347   if (!getLangOpts().ObjCExceptions)
3348     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3349
3350   if (!Throw) {
3351     // @throw without an expression designates a rethrow (which must occur
3352     // in the context of an @catch clause).
3353     Scope *AtCatchParent = CurScope;
3354     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3355       AtCatchParent = AtCatchParent->getParent();
3356     if (!AtCatchParent)
3357       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
3358   }
3359   return BuildObjCAtThrowStmt(AtLoc, Throw);
3360 }
3361
3362 ExprResult
3363 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3364   ExprResult result = DefaultLvalueConversion(operand);
3365   if (result.isInvalid())
3366     return ExprError();
3367   operand = result.get();
3368
3369   // Make sure the expression type is an ObjC pointer or "void *".
3370   QualType type = operand->getType();
3371   if (!type->isDependentType() &&
3372       !type->isObjCObjectPointerType()) {
3373     const PointerType *pointerType = type->getAs<PointerType>();
3374     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3375       if (getLangOpts().CPlusPlus) {
3376         if (RequireCompleteType(atLoc, type,
3377                                 diag::err_incomplete_receiver_type))
3378           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3379                    << type << operand->getSourceRange();
3380
3381         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3382         if (!result.isUsable())
3383           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3384                    << type << operand->getSourceRange();
3385
3386         operand = result.get();
3387       } else {
3388           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3389                    << type << operand->getSourceRange();
3390       }
3391     }
3392   }
3393
3394   // The operand to @synchronized is a full-expression.
3395   return ActOnFinishFullExpr(operand);
3396 }
3397
3398 StmtResult
3399 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3400                                   Stmt *SyncBody) {
3401   // We can't jump into or indirect-jump out of a @synchronized block.
3402   getCurFunction()->setHasBranchProtectedScope();
3403   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3404 }
3405
3406 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3407 /// and creates a proper catch handler from them.
3408 StmtResult
3409 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3410                          Stmt *HandlerBlock) {
3411   // There's nothing to test that ActOnExceptionDecl didn't already test.
3412   return new (Context)
3413       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3414 }
3415
3416 StmtResult
3417 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3418   getCurFunction()->setHasBranchProtectedScope();
3419   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3420 }
3421
3422 namespace {
3423 class CatchHandlerType {
3424   QualType QT;
3425   unsigned IsPointer : 1;
3426
3427   // This is a special constructor to be used only with DenseMapInfo's
3428   // getEmptyKey() and getTombstoneKey() functions.
3429   friend struct llvm::DenseMapInfo<CatchHandlerType>;
3430   enum Unique { ForDenseMap };
3431   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3432
3433 public:
3434   /// Used when creating a CatchHandlerType from a handler type; will determine
3435   /// whether the type is a pointer or reference and will strip off the the top
3436   /// level pointer and cv-qualifiers.
3437   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3438     if (QT->isPointerType())
3439       IsPointer = true;
3440
3441     if (IsPointer || QT->isReferenceType())
3442       QT = QT->getPointeeType();
3443     QT = QT.getUnqualifiedType();
3444   }
3445
3446   /// Used when creating a CatchHandlerType from a base class type; pretends the
3447   /// type passed in had the pointer qualifier, does not need to get an
3448   /// unqualified type.
3449   CatchHandlerType(QualType QT, bool IsPointer)
3450       : QT(QT), IsPointer(IsPointer) {}
3451
3452   QualType underlying() const { return QT; }
3453   bool isPointer() const { return IsPointer; }
3454
3455   friend bool operator==(const CatchHandlerType &LHS,
3456                          const CatchHandlerType &RHS) {
3457     // If the pointer qualification does not match, we can return early.
3458     if (LHS.IsPointer != RHS.IsPointer)
3459       return false;
3460     // Otherwise, check the underlying type without cv-qualifiers.
3461     return LHS.QT == RHS.QT;
3462   }
3463 };
3464 } // namespace
3465
3466 namespace llvm {
3467 template <> struct DenseMapInfo<CatchHandlerType> {
3468   static CatchHandlerType getEmptyKey() {
3469     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
3470                        CatchHandlerType::ForDenseMap);
3471   }
3472
3473   static CatchHandlerType getTombstoneKey() {
3474     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
3475                        CatchHandlerType::ForDenseMap);
3476   }
3477
3478   static unsigned getHashValue(const CatchHandlerType &Base) {
3479     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
3480   }
3481
3482   static bool isEqual(const CatchHandlerType &LHS,
3483                       const CatchHandlerType &RHS) {
3484     return LHS == RHS;
3485   }
3486 };
3487
3488 // It's OK to treat CatchHandlerType as a POD type.
3489 template <> struct isPodLike<CatchHandlerType> {
3490   static const bool value = true;
3491 };
3492 }
3493
3494 namespace {
3495 class CatchTypePublicBases {
3496   ASTContext &Ctx;
3497   const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
3498   const bool CheckAgainstPointer;
3499
3500   CXXCatchStmt *FoundHandler;
3501   CanQualType FoundHandlerType;
3502
3503 public:
3504   CatchTypePublicBases(
3505       ASTContext &Ctx,
3506       const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
3507       : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
3508         FoundHandler(nullptr) {}
3509
3510   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
3511   CanQualType getFoundHandlerType() const { return FoundHandlerType; }
3512
3513   static bool FindPublicBasesOfType(const CXXBaseSpecifier *S, CXXBasePath &,
3514                                     void *User) {
3515     auto &PBOT = *reinterpret_cast<CatchTypePublicBases *>(User);
3516     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
3517       CatchHandlerType Check(S->getType(), PBOT.CheckAgainstPointer);
3518       auto M = PBOT.TypesToCheck;
3519       auto I = M.find(Check);
3520       if (I != M.end()) {
3521         PBOT.FoundHandler = I->second;
3522         PBOT.FoundHandlerType = PBOT.Ctx.getCanonicalType(S->getType());
3523         return true;
3524       }
3525     }
3526     return false;
3527   }
3528 };
3529 }
3530
3531 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3532 /// handlers and creates a try statement from them.
3533 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3534                                   ArrayRef<Stmt *> Handlers) {
3535   // Don't report an error if 'try' is used in system headers.
3536   if (!getLangOpts().CXXExceptions &&
3537       !getSourceManager().isInSystemHeader(TryLoc))
3538     Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3539
3540   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
3541     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
3542
3543   sema::FunctionScopeInfo *FSI = getCurFunction();
3544
3545   // C++ try is incompatible with SEH __try.
3546   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
3547     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3548     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
3549   }
3550
3551   const unsigned NumHandlers = Handlers.size();
3552   assert(!Handlers.empty() &&
3553          "The parser shouldn't call this if there are no handlers.");
3554
3555   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
3556   for (unsigned i = 0; i < NumHandlers; ++i) {
3557     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
3558
3559     // Diagnose when the handler is a catch-all handler, but it isn't the last
3560     // handler for the try block. [except.handle]p5. Also, skip exception
3561     // declarations that are invalid, since we can't usefully report on them.
3562     if (!H->getExceptionDecl()) {
3563       if (i < NumHandlers - 1)
3564         return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
3565       continue;
3566     } else if (H->getExceptionDecl()->isInvalidDecl())
3567       continue;
3568
3569     // Walk the type hierarchy to diagnose when this type has already been
3570     // handled (duplication), or cannot be handled (derivation inversion). We
3571     // ignore top-level cv-qualifiers, per [except.handle]p3
3572     CatchHandlerType HandlerCHT =
3573         (QualType)Context.getCanonicalType(H->getCaughtType());
3574
3575     // We can ignore whether the type is a reference or a pointer; we need the
3576     // underlying declaration type in order to get at the underlying record
3577     // decl, if there is one.
3578     QualType Underlying = HandlerCHT.underlying();
3579     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
3580       if (!RD->hasDefinition())
3581         continue;
3582       // Check that none of the public, unambiguous base classes are in the
3583       // map ([except.handle]p1). Give the base classes the same pointer
3584       // qualification as the original type we are basing off of. This allows
3585       // comparison against the handler type using the same top-level pointer
3586       // as the original type.
3587       CXXBasePaths Paths;
3588       Paths.setOrigin(RD);
3589       CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
3590       if (RD->lookupInBases(CatchTypePublicBases::FindPublicBasesOfType, &CTPB,
3591                             Paths)) {
3592         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
3593         if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
3594           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
3595                diag::warn_exception_caught_by_earlier_handler)
3596               << H->getCaughtType();
3597           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
3598                 diag::note_previous_exception_handler)
3599               << Problem->getCaughtType();
3600         }
3601       }
3602     }
3603
3604     // Add the type the list of ones we have handled; diagnose if we've already
3605     // handled it.
3606     auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
3607     if (!R.second) {
3608       const CXXCatchStmt *Problem = R.first->second;
3609       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
3610            diag::warn_exception_caught_by_earlier_handler)
3611           << H->getCaughtType();
3612       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
3613            diag::note_previous_exception_handler)
3614           << Problem->getCaughtType();
3615     }
3616   }
3617
3618   FSI->setHasCXXTry(TryLoc);
3619
3620   return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
3621 }
3622
3623 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
3624                                   Stmt *TryBlock, Stmt *Handler) {
3625   assert(TryBlock && Handler);
3626
3627   sema::FunctionScopeInfo *FSI = getCurFunction();
3628
3629   // SEH __try is incompatible with C++ try. Borland appears to support this,
3630   // however.
3631   if (!getLangOpts().Borland) {
3632     if (FSI->FirstCXXTryLoc.isValid()) {
3633       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3634       Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
3635     }
3636   }
3637
3638   FSI->setHasSEHTry(TryLoc);
3639
3640   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
3641   // track if they use SEH.
3642   DeclContext *DC = CurContext;
3643   while (DC && !DC->isFunctionOrMethod())
3644     DC = DC->getParent();
3645   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
3646   if (FD)
3647     FD->setUsesSEHTry(true);
3648   else
3649     Diag(TryLoc, diag::err_seh_try_outside_functions);
3650
3651   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
3652 }
3653
3654 StmtResult
3655 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3656                           Expr *FilterExpr,
3657                           Stmt *Block) {
3658   assert(FilterExpr && Block);
3659
3660   if(!FilterExpr->getType()->isIntegerType()) {
3661     return StmtError(Diag(FilterExpr->getExprLoc(),
3662                      diag::err_filter_expression_integral)
3663                      << FilterExpr->getType());
3664   }
3665
3666   return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
3667 }
3668
3669 void Sema::ActOnStartSEHFinallyBlock() {
3670   CurrentSEHFinally.push_back(CurScope);
3671 }
3672
3673 void Sema::ActOnAbortSEHFinallyBlock() {
3674   CurrentSEHFinally.pop_back();
3675 }
3676
3677 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
3678   assert(Block);
3679   CurrentSEHFinally.pop_back();
3680   return SEHFinallyStmt::Create(Context, Loc, Block);
3681 }
3682
3683 StmtResult
3684 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
3685   Scope *SEHTryParent = CurScope;
3686   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
3687     SEHTryParent = SEHTryParent->getParent();
3688   if (!SEHTryParent)
3689     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
3690   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
3691
3692   return new (Context) SEHLeaveStmt(Loc);
3693 }
3694
3695 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3696                                             bool IsIfExists,
3697                                             NestedNameSpecifierLoc QualifierLoc,
3698                                             DeclarationNameInfo NameInfo,
3699                                             Stmt *Nested)
3700 {
3701   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3702                                              QualifierLoc, NameInfo,
3703                                              cast<CompoundStmt>(Nested));
3704 }
3705
3706
3707 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3708                                             bool IsIfExists,
3709                                             CXXScopeSpec &SS,
3710                                             UnqualifiedId &Name,
3711                                             Stmt *Nested) {
3712   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3713                                     SS.getWithLocInContext(Context),
3714                                     GetNameFromUnqualifiedId(Name),
3715                                     Nested);
3716 }
3717
3718 RecordDecl*
3719 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
3720                                    unsigned NumParams) {
3721   DeclContext *DC = CurContext;
3722   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3723     DC = DC->getParent();
3724
3725   RecordDecl *RD = nullptr;
3726   if (getLangOpts().CPlusPlus)
3727     RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
3728                                /*Id=*/nullptr);
3729   else
3730     RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
3731
3732   RD->setCapturedRecord();
3733   DC->addDecl(RD);
3734   RD->setImplicit();
3735   RD->startDefinition();
3736
3737   assert(NumParams > 0 && "CapturedStmt requires context parameter");
3738   CD = CapturedDecl::Create(Context, CurContext, NumParams);
3739   DC->addDecl(CD);
3740   return RD;
3741 }
3742
3743 static void buildCapturedStmtCaptureList(
3744     SmallVectorImpl<CapturedStmt::Capture> &Captures,
3745     SmallVectorImpl<Expr *> &CaptureInits,
3746     ArrayRef<CapturingScopeInfo::Capture> Candidates) {
3747
3748   typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
3749   for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
3750
3751     if (Cap->isThisCapture()) {
3752       Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3753                                                CapturedStmt::VCK_This));
3754       CaptureInits.push_back(Cap->getInitExpr());
3755       continue;
3756     } else if (Cap->isVLATypeCapture()) {
3757       Captures.push_back(
3758           CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
3759       CaptureInits.push_back(nullptr);
3760       continue;
3761     }
3762
3763     assert(Cap->isReferenceCapture() &&
3764            "non-reference capture not yet implemented");
3765
3766     Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3767                                              CapturedStmt::VCK_ByRef,
3768                                              Cap->getVariable()));
3769     CaptureInits.push_back(Cap->getInitExpr());
3770   }
3771 }
3772
3773 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3774                                     CapturedRegionKind Kind,
3775                                     unsigned NumParams) {
3776   CapturedDecl *CD = nullptr;
3777   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
3778
3779   // Build the context parameter
3780   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3781   IdentifierInfo *ParamName = &Context.Idents.get("__context");
3782   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3783   ImplicitParamDecl *Param
3784     = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3785   DC->addDecl(Param);
3786
3787   CD->setContextParam(0, Param);
3788
3789   // Enter the capturing scope for this captured region.
3790   PushCapturedRegionScope(CurScope, CD, RD, Kind);
3791
3792   if (CurScope)
3793     PushDeclContext(CurScope, CD);
3794   else
3795     CurContext = CD;
3796
3797   PushExpressionEvaluationContext(PotentiallyEvaluated);
3798 }
3799
3800 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3801                                     CapturedRegionKind Kind,
3802                                     ArrayRef<CapturedParamNameType> Params) {
3803   CapturedDecl *CD = nullptr;
3804   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
3805
3806   // Build the context parameter
3807   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3808   bool ContextIsFound = false;
3809   unsigned ParamNum = 0;
3810   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
3811                                                  E = Params.end();
3812        I != E; ++I, ++ParamNum) {
3813     if (I->second.isNull()) {
3814       assert(!ContextIsFound &&
3815              "null type has been found already for '__context' parameter");
3816       IdentifierInfo *ParamName = &Context.Idents.get("__context");
3817       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3818       ImplicitParamDecl *Param
3819         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3820       DC->addDecl(Param);
3821       CD->setContextParam(ParamNum, Param);
3822       ContextIsFound = true;
3823     } else {
3824       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
3825       ImplicitParamDecl *Param
3826         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
3827       DC->addDecl(Param);
3828       CD->setParam(ParamNum, Param);
3829     }
3830   }
3831   assert(ContextIsFound && "no null type for '__context' parameter");
3832   if (!ContextIsFound) {
3833     // Add __context implicitly if it is not specified.
3834     IdentifierInfo *ParamName = &Context.Idents.get("__context");
3835     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3836     ImplicitParamDecl *Param =
3837         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3838     DC->addDecl(Param);
3839     CD->setContextParam(ParamNum, Param);
3840   }
3841   // Enter the capturing scope for this captured region.
3842   PushCapturedRegionScope(CurScope, CD, RD, Kind);
3843
3844   if (CurScope)
3845     PushDeclContext(CurScope, CD);
3846   else
3847     CurContext = CD;
3848
3849   PushExpressionEvaluationContext(PotentiallyEvaluated);
3850 }
3851
3852 void Sema::ActOnCapturedRegionError() {
3853   DiscardCleanupsInEvaluationContext();
3854   PopExpressionEvaluationContext();
3855
3856   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3857   RecordDecl *Record = RSI->TheRecordDecl;
3858   Record->setInvalidDecl();
3859
3860   SmallVector<Decl*, 4> Fields(Record->fields());
3861   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
3862               SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
3863
3864   PopDeclContext();
3865   PopFunctionScopeInfo();
3866 }
3867
3868 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
3869   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3870
3871   SmallVector<CapturedStmt::Capture, 4> Captures;
3872   SmallVector<Expr *, 4> CaptureInits;
3873   buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3874
3875   CapturedDecl *CD = RSI->TheCapturedDecl;
3876   RecordDecl *RD = RSI->TheRecordDecl;
3877
3878   CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
3879                                            RSI->CapRegionKind, Captures,
3880                                            CaptureInits, CD, RD);
3881
3882   CD->setBody(Res->getCapturedStmt());
3883   RD->completeDefinition();
3884
3885   DiscardCleanupsInEvaluationContext();
3886   PopExpressionEvaluationContext();
3887
3888   PopDeclContext();
3889   PopFunctionScopeInfo();
3890
3891   return Res;
3892 }