]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Sema/SemaType.cpp
Vendor import of clang trunk r256633:
[FreeBSD/FreeBSD.git] / lib / Sema / SemaType.cpp
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements type-related semantic analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "clang/AST/TypeLocVisitor.h"
25 #include "clang/Lex/Preprocessor.h"
26 #include "clang/Basic/PartialDiagnostic.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/DelayedDiagnostic.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/ScopeInfo.h"
33 #include "clang/Sema/Template.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/Support/ErrorHandling.h"
37
38 using namespace clang;
39
40 enum TypeDiagSelector {
41   TDS_Function,
42   TDS_Pointer,
43   TDS_ObjCObjOrBlock
44 };
45
46 /// isOmittedBlockReturnType - Return true if this declarator is missing a
47 /// return type because this is a omitted return type on a block literal.
48 static bool isOmittedBlockReturnType(const Declarator &D) {
49   if (D.getContext() != Declarator::BlockLiteralContext ||
50       D.getDeclSpec().hasTypeSpecifier())
51     return false;
52
53   if (D.getNumTypeObjects() == 0)
54     return true;   // ^{ ... }
55
56   if (D.getNumTypeObjects() == 1 &&
57       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
58     return true;   // ^(int X, float Y) { ... }
59
60   return false;
61 }
62
63 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
64 /// doesn't apply to the given type.
65 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
66                                      QualType type) {
67   TypeDiagSelector WhichType;
68   bool useExpansionLoc = true;
69   switch (attr.getKind()) {
70   case AttributeList::AT_ObjCGC:        WhichType = TDS_Pointer; break;
71   case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
72   default:
73     // Assume everything else was a function attribute.
74     WhichType = TDS_Function;
75     useExpansionLoc = false;
76     break;
77   }
78
79   SourceLocation loc = attr.getLoc();
80   StringRef name = attr.getName()->getName();
81
82   // The GC attributes are usually written with macros;  special-case them.
83   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
84                                           : nullptr;
85   if (useExpansionLoc && loc.isMacroID() && II) {
86     if (II->isStr("strong")) {
87       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
88     } else if (II->isStr("weak")) {
89       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
90     }
91   }
92
93   S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
94     << type;
95 }
96
97 // objc_gc applies to Objective-C pointers or, otherwise, to the
98 // smallest available pointer type (i.e. 'void*' in 'void**').
99 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
100     case AttributeList::AT_ObjCGC: \
101     case AttributeList::AT_ObjCOwnership
102
103 // Function type attributes.
104 #define FUNCTION_TYPE_ATTRS_CASELIST \
105     case AttributeList::AT_NoReturn: \
106     case AttributeList::AT_CDecl: \
107     case AttributeList::AT_FastCall: \
108     case AttributeList::AT_StdCall: \
109     case AttributeList::AT_ThisCall: \
110     case AttributeList::AT_Pascal: \
111     case AttributeList::AT_VectorCall: \
112     case AttributeList::AT_MSABI: \
113     case AttributeList::AT_SysVABI: \
114     case AttributeList::AT_Regparm: \
115     case AttributeList::AT_Pcs: \
116     case AttributeList::AT_IntelOclBicc
117
118 // Microsoft-specific type qualifiers.
119 #define MS_TYPE_ATTRS_CASELIST  \
120     case AttributeList::AT_Ptr32: \
121     case AttributeList::AT_Ptr64: \
122     case AttributeList::AT_SPtr: \
123     case AttributeList::AT_UPtr
124
125 // Nullability qualifiers.
126 #define NULLABILITY_TYPE_ATTRS_CASELIST         \
127     case AttributeList::AT_TypeNonNull:         \
128     case AttributeList::AT_TypeNullable:        \
129     case AttributeList::AT_TypeNullUnspecified
130
131 namespace {
132   /// An object which stores processing state for the entire
133   /// GetTypeForDeclarator process.
134   class TypeProcessingState {
135     Sema &sema;
136
137     /// The declarator being processed.
138     Declarator &declarator;
139
140     /// The index of the declarator chunk we're currently processing.
141     /// May be the total number of valid chunks, indicating the
142     /// DeclSpec.
143     unsigned chunkIndex;
144
145     /// Whether there are non-trivial modifications to the decl spec.
146     bool trivial;
147
148     /// Whether we saved the attributes in the decl spec.
149     bool hasSavedAttrs;
150
151     /// The original set of attributes on the DeclSpec.
152     SmallVector<AttributeList*, 2> savedAttrs;
153
154     /// A list of attributes to diagnose the uselessness of when the
155     /// processing is complete.
156     SmallVector<AttributeList*, 2> ignoredTypeAttrs;
157
158   public:
159     TypeProcessingState(Sema &sema, Declarator &declarator)
160       : sema(sema), declarator(declarator),
161         chunkIndex(declarator.getNumTypeObjects()),
162         trivial(true), hasSavedAttrs(false) {}
163
164     Sema &getSema() const {
165       return sema;
166     }
167
168     Declarator &getDeclarator() const {
169       return declarator;
170     }
171
172     bool isProcessingDeclSpec() const {
173       return chunkIndex == declarator.getNumTypeObjects();
174     }
175
176     unsigned getCurrentChunkIndex() const {
177       return chunkIndex;
178     }
179
180     void setCurrentChunkIndex(unsigned idx) {
181       assert(idx <= declarator.getNumTypeObjects());
182       chunkIndex = idx;
183     }
184
185     AttributeList *&getCurrentAttrListRef() const {
186       if (isProcessingDeclSpec())
187         return getMutableDeclSpec().getAttributes().getListRef();
188       return declarator.getTypeObject(chunkIndex).getAttrListRef();
189     }
190
191     /// Save the current set of attributes on the DeclSpec.
192     void saveDeclSpecAttrs() {
193       // Don't try to save them multiple times.
194       if (hasSavedAttrs) return;
195
196       DeclSpec &spec = getMutableDeclSpec();
197       for (AttributeList *attr = spec.getAttributes().getList(); attr;
198              attr = attr->getNext())
199         savedAttrs.push_back(attr);
200       trivial &= savedAttrs.empty();
201       hasSavedAttrs = true;
202     }
203
204     /// Record that we had nowhere to put the given type attribute.
205     /// We will diagnose such attributes later.
206     void addIgnoredTypeAttr(AttributeList &attr) {
207       ignoredTypeAttrs.push_back(&attr);
208     }
209
210     /// Diagnose all the ignored type attributes, given that the
211     /// declarator worked out to the given type.
212     void diagnoseIgnoredTypeAttrs(QualType type) const {
213       for (auto *Attr : ignoredTypeAttrs)
214         diagnoseBadTypeAttribute(getSema(), *Attr, type);
215     }
216
217     ~TypeProcessingState() {
218       if (trivial) return;
219
220       restoreDeclSpecAttrs();
221     }
222
223   private:
224     DeclSpec &getMutableDeclSpec() const {
225       return const_cast<DeclSpec&>(declarator.getDeclSpec());
226     }
227
228     void restoreDeclSpecAttrs() {
229       assert(hasSavedAttrs);
230
231       if (savedAttrs.empty()) {
232         getMutableDeclSpec().getAttributes().set(nullptr);
233         return;
234       }
235
236       getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
237       for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
238         savedAttrs[i]->setNext(savedAttrs[i+1]);
239       savedAttrs.back()->setNext(nullptr);
240     }
241   };
242 }
243
244 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
245   attr.setNext(head);
246   head = &attr;
247 }
248
249 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
250   if (head == &attr) {
251     head = attr.getNext();
252     return;
253   }
254
255   AttributeList *cur = head;
256   while (true) {
257     assert(cur && cur->getNext() && "ran out of attrs?");
258     if (cur->getNext() == &attr) {
259       cur->setNext(attr.getNext());
260       return;
261     }
262     cur = cur->getNext();
263   }
264 }
265
266 static void moveAttrFromListToList(AttributeList &attr,
267                                    AttributeList *&fromList,
268                                    AttributeList *&toList) {
269   spliceAttrOutOfList(attr, fromList);
270   spliceAttrIntoList(attr, toList);
271 }
272
273 /// The location of a type attribute.
274 enum TypeAttrLocation {
275   /// The attribute is in the decl-specifier-seq.
276   TAL_DeclSpec,
277   /// The attribute is part of a DeclaratorChunk.
278   TAL_DeclChunk,
279   /// The attribute is immediately after the declaration's name.
280   TAL_DeclName
281 };
282
283 static void processTypeAttrs(TypeProcessingState &state,
284                              QualType &type, TypeAttrLocation TAL,
285                              AttributeList *attrs);
286
287 static bool handleFunctionTypeAttr(TypeProcessingState &state,
288                                    AttributeList &attr,
289                                    QualType &type);
290
291 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
292                                              AttributeList &attr,
293                                              QualType &type);
294
295 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
296                                  AttributeList &attr, QualType &type);
297
298 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
299                                        AttributeList &attr, QualType &type);
300
301 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
302                                       AttributeList &attr, QualType &type) {
303   if (attr.getKind() == AttributeList::AT_ObjCGC)
304     return handleObjCGCTypeAttr(state, attr, type);
305   assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
306   return handleObjCOwnershipTypeAttr(state, attr, type);
307 }
308
309 /// Given the index of a declarator chunk, check whether that chunk
310 /// directly specifies the return type of a function and, if so, find
311 /// an appropriate place for it.
312 ///
313 /// \param i - a notional index which the search will start
314 ///   immediately inside
315 ///
316 /// \param onlyBlockPointers Whether we should only look into block
317 /// pointer types (vs. all pointer types).
318 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
319                                                 unsigned i,
320                                                 bool onlyBlockPointers) {
321   assert(i <= declarator.getNumTypeObjects());
322
323   DeclaratorChunk *result = nullptr;
324
325   // First, look inwards past parens for a function declarator.
326   for (; i != 0; --i) {
327     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
328     switch (fnChunk.Kind) {
329     case DeclaratorChunk::Paren:
330       continue;
331
332     // If we find anything except a function, bail out.
333     case DeclaratorChunk::Pointer:
334     case DeclaratorChunk::BlockPointer:
335     case DeclaratorChunk::Array:
336     case DeclaratorChunk::Reference:
337     case DeclaratorChunk::MemberPointer:
338       return result;
339
340     // If we do find a function declarator, scan inwards from that,
341     // looking for a (block-)pointer declarator.
342     case DeclaratorChunk::Function:
343       for (--i; i != 0; --i) {
344         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
345         switch (ptrChunk.Kind) {
346         case DeclaratorChunk::Paren:
347         case DeclaratorChunk::Array:
348         case DeclaratorChunk::Function:
349         case DeclaratorChunk::Reference:
350           continue;
351
352         case DeclaratorChunk::MemberPointer:
353         case DeclaratorChunk::Pointer:
354           if (onlyBlockPointers)
355             continue;
356
357           // fallthrough
358
359         case DeclaratorChunk::BlockPointer:
360           result = &ptrChunk;
361           goto continue_outer;
362         }
363         llvm_unreachable("bad declarator chunk kind");
364       }
365
366       // If we run out of declarators doing that, we're done.
367       return result;
368     }
369     llvm_unreachable("bad declarator chunk kind");
370
371     // Okay, reconsider from our new point.
372   continue_outer: ;
373   }
374
375   // Ran out of chunks, bail out.
376   return result;
377 }
378
379 /// Given that an objc_gc attribute was written somewhere on a
380 /// declaration *other* than on the declarator itself (for which, use
381 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
382 /// didn't apply in whatever position it was written in, try to move
383 /// it to a more appropriate position.
384 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
385                                           AttributeList &attr,
386                                           QualType type) {
387   Declarator &declarator = state.getDeclarator();
388
389   // Move it to the outermost normal or block pointer declarator.
390   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
391     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
392     switch (chunk.Kind) {
393     case DeclaratorChunk::Pointer:
394     case DeclaratorChunk::BlockPointer: {
395       // But don't move an ARC ownership attribute to the return type
396       // of a block.
397       DeclaratorChunk *destChunk = nullptr;
398       if (state.isProcessingDeclSpec() &&
399           attr.getKind() == AttributeList::AT_ObjCOwnership)
400         destChunk = maybeMovePastReturnType(declarator, i - 1,
401                                             /*onlyBlockPointers=*/true);
402       if (!destChunk) destChunk = &chunk;
403
404       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
405                              destChunk->getAttrListRef());
406       return;
407     }
408
409     case DeclaratorChunk::Paren:
410     case DeclaratorChunk::Array:
411       continue;
412
413     // We may be starting at the return type of a block.
414     case DeclaratorChunk::Function:
415       if (state.isProcessingDeclSpec() &&
416           attr.getKind() == AttributeList::AT_ObjCOwnership) {
417         if (DeclaratorChunk *dest = maybeMovePastReturnType(
418                                       declarator, i,
419                                       /*onlyBlockPointers=*/true)) {
420           moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
421                                  dest->getAttrListRef());
422           return;
423         }
424       }
425       goto error;
426
427     // Don't walk through these.
428     case DeclaratorChunk::Reference:
429     case DeclaratorChunk::MemberPointer:
430       goto error;
431     }
432   }
433  error:
434
435   diagnoseBadTypeAttribute(state.getSema(), attr, type);
436 }
437
438 /// Distribute an objc_gc type attribute that was written on the
439 /// declarator.
440 static void
441 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
442                                             AttributeList &attr,
443                                             QualType &declSpecType) {
444   Declarator &declarator = state.getDeclarator();
445
446   // objc_gc goes on the innermost pointer to something that's not a
447   // pointer.
448   unsigned innermost = -1U;
449   bool considerDeclSpec = true;
450   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
451     DeclaratorChunk &chunk = declarator.getTypeObject(i);
452     switch (chunk.Kind) {
453     case DeclaratorChunk::Pointer:
454     case DeclaratorChunk::BlockPointer:
455       innermost = i;
456       continue;
457
458     case DeclaratorChunk::Reference:
459     case DeclaratorChunk::MemberPointer:
460     case DeclaratorChunk::Paren:
461     case DeclaratorChunk::Array:
462       continue;
463
464     case DeclaratorChunk::Function:
465       considerDeclSpec = false;
466       goto done;
467     }
468   }
469  done:
470
471   // That might actually be the decl spec if we weren't blocked by
472   // anything in the declarator.
473   if (considerDeclSpec) {
474     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
475       // Splice the attribute into the decl spec.  Prevents the
476       // attribute from being applied multiple times and gives
477       // the source-location-filler something to work with.
478       state.saveDeclSpecAttrs();
479       moveAttrFromListToList(attr, declarator.getAttrListRef(),
480                declarator.getMutableDeclSpec().getAttributes().getListRef());
481       return;
482     }
483   }
484
485   // Otherwise, if we found an appropriate chunk, splice the attribute
486   // into it.
487   if (innermost != -1U) {
488     moveAttrFromListToList(attr, declarator.getAttrListRef(),
489                        declarator.getTypeObject(innermost).getAttrListRef());
490     return;
491   }
492
493   // Otherwise, diagnose when we're done building the type.
494   spliceAttrOutOfList(attr, declarator.getAttrListRef());
495   state.addIgnoredTypeAttr(attr);
496 }
497
498 /// A function type attribute was written somewhere in a declaration
499 /// *other* than on the declarator itself or in the decl spec.  Given
500 /// that it didn't apply in whatever position it was written in, try
501 /// to move it to a more appropriate position.
502 static void distributeFunctionTypeAttr(TypeProcessingState &state,
503                                        AttributeList &attr,
504                                        QualType type) {
505   Declarator &declarator = state.getDeclarator();
506
507   // Try to push the attribute from the return type of a function to
508   // the function itself.
509   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
510     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
511     switch (chunk.Kind) {
512     case DeclaratorChunk::Function:
513       moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
514                              chunk.getAttrListRef());
515       return;
516
517     case DeclaratorChunk::Paren:
518     case DeclaratorChunk::Pointer:
519     case DeclaratorChunk::BlockPointer:
520     case DeclaratorChunk::Array:
521     case DeclaratorChunk::Reference:
522     case DeclaratorChunk::MemberPointer:
523       continue;
524     }
525   }
526
527   diagnoseBadTypeAttribute(state.getSema(), attr, type);
528 }
529
530 /// Try to distribute a function type attribute to the innermost
531 /// function chunk or type.  Returns true if the attribute was
532 /// distributed, false if no location was found.
533 static bool
534 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
535                                       AttributeList &attr,
536                                       AttributeList *&attrList,
537                                       QualType &declSpecType) {
538   Declarator &declarator = state.getDeclarator();
539
540   // Put it on the innermost function chunk, if there is one.
541   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
542     DeclaratorChunk &chunk = declarator.getTypeObject(i);
543     if (chunk.Kind != DeclaratorChunk::Function) continue;
544
545     moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
546     return true;
547   }
548
549   return handleFunctionTypeAttr(state, attr, declSpecType);
550 }
551
552 /// A function type attribute was written in the decl spec.  Try to
553 /// apply it somewhere.
554 static void
555 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
556                                        AttributeList &attr,
557                                        QualType &declSpecType) {
558   state.saveDeclSpecAttrs();
559
560   // C++11 attributes before the decl specifiers actually appertain to
561   // the declarators. Move them straight there. We don't support the
562   // 'put them wherever you like' semantics we allow for GNU attributes.
563   if (attr.isCXX11Attribute()) {
564     moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
565                            state.getDeclarator().getAttrListRef());
566     return;
567   }
568
569   // Try to distribute to the innermost.
570   if (distributeFunctionTypeAttrToInnermost(state, attr,
571                                             state.getCurrentAttrListRef(),
572                                             declSpecType))
573     return;
574
575   // If that failed, diagnose the bad attribute when the declarator is
576   // fully built.
577   state.addIgnoredTypeAttr(attr);
578 }
579
580 /// A function type attribute was written on the declarator.  Try to
581 /// apply it somewhere.
582 static void
583 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
584                                          AttributeList &attr,
585                                          QualType &declSpecType) {
586   Declarator &declarator = state.getDeclarator();
587
588   // Try to distribute to the innermost.
589   if (distributeFunctionTypeAttrToInnermost(state, attr,
590                                             declarator.getAttrListRef(),
591                                             declSpecType))
592     return;
593
594   // If that failed, diagnose the bad attribute when the declarator is
595   // fully built.
596   spliceAttrOutOfList(attr, declarator.getAttrListRef());
597   state.addIgnoredTypeAttr(attr);
598 }
599
600 /// \brief Given that there are attributes written on the declarator
601 /// itself, try to distribute any type attributes to the appropriate
602 /// declarator chunk.
603 ///
604 /// These are attributes like the following:
605 ///   int f ATTR;
606 ///   int (f ATTR)();
607 /// but not necessarily this:
608 ///   int f() ATTR;
609 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
610                                               QualType &declSpecType) {
611   // Collect all the type attributes from the declarator itself.
612   assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
613   AttributeList *attr = state.getDeclarator().getAttributes();
614   AttributeList *next;
615   do {
616     next = attr->getNext();
617
618     // Do not distribute C++11 attributes. They have strict rules for what
619     // they appertain to.
620     if (attr->isCXX11Attribute())
621       continue;
622
623     switch (attr->getKind()) {
624     OBJC_POINTER_TYPE_ATTRS_CASELIST:
625       distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
626       break;
627
628     case AttributeList::AT_NSReturnsRetained:
629       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
630         break;
631       // fallthrough
632
633     FUNCTION_TYPE_ATTRS_CASELIST:
634       distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
635       break;
636
637     MS_TYPE_ATTRS_CASELIST:
638       // Microsoft type attributes cannot go after the declarator-id.
639       continue;
640
641     NULLABILITY_TYPE_ATTRS_CASELIST:
642       // Nullability specifiers cannot go after the declarator-id.
643
644     // Objective-C __kindof does not get distributed.
645     case AttributeList::AT_ObjCKindOf:
646       continue;
647
648     default:
649       break;
650     }
651   } while ((attr = next));
652 }
653
654 /// Add a synthetic '()' to a block-literal declarator if it is
655 /// required, given the return type.
656 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
657                                           QualType declSpecType) {
658   Declarator &declarator = state.getDeclarator();
659
660   // First, check whether the declarator would produce a function,
661   // i.e. whether the innermost semantic chunk is a function.
662   if (declarator.isFunctionDeclarator()) {
663     // If so, make that declarator a prototyped declarator.
664     declarator.getFunctionTypeInfo().hasPrototype = true;
665     return;
666   }
667
668   // If there are any type objects, the type as written won't name a
669   // function, regardless of the decl spec type.  This is because a
670   // block signature declarator is always an abstract-declarator, and
671   // abstract-declarators can't just be parentheses chunks.  Therefore
672   // we need to build a function chunk unless there are no type
673   // objects and the decl spec type is a function.
674   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
675     return;
676
677   // Note that there *are* cases with invalid declarators where
678   // declarators consist solely of parentheses.  In general, these
679   // occur only in failed efforts to make function declarators, so
680   // faking up the function chunk is still the right thing to do.
681
682   // Otherwise, we need to fake up a function declarator.
683   SourceLocation loc = declarator.getLocStart();
684
685   // ...and *prepend* it to the declarator.
686   SourceLocation NoLoc;
687   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
688       /*HasProto=*/true,
689       /*IsAmbiguous=*/false,
690       /*LParenLoc=*/NoLoc,
691       /*ArgInfo=*/nullptr,
692       /*NumArgs=*/0,
693       /*EllipsisLoc=*/NoLoc,
694       /*RParenLoc=*/NoLoc,
695       /*TypeQuals=*/0,
696       /*RefQualifierIsLvalueRef=*/true,
697       /*RefQualifierLoc=*/NoLoc,
698       /*ConstQualifierLoc=*/NoLoc,
699       /*VolatileQualifierLoc=*/NoLoc,
700       /*RestrictQualifierLoc=*/NoLoc,
701       /*MutableLoc=*/NoLoc, EST_None,
702       /*ESpecRange=*/SourceRange(),
703       /*Exceptions=*/nullptr,
704       /*ExceptionRanges=*/nullptr,
705       /*NumExceptions=*/0,
706       /*NoexceptExpr=*/nullptr,
707       /*ExceptionSpecTokens=*/nullptr,
708       loc, loc, declarator));
709
710   // For consistency, make sure the state still has us as processing
711   // the decl spec.
712   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
713   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
714 }
715
716 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
717                                             unsigned &TypeQuals,
718                                             QualType TypeSoFar,
719                                             unsigned RemoveTQs,
720                                             unsigned DiagID) {
721   // If this occurs outside a template instantiation, warn the user about
722   // it; they probably didn't mean to specify a redundant qualifier.
723   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
724   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
725                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
726                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
727     if (!(RemoveTQs & Qual.first))
728       continue;
729
730     if (S.ActiveTemplateInstantiations.empty()) {
731       if (TypeQuals & Qual.first)
732         S.Diag(Qual.second, DiagID)
733           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
734           << FixItHint::CreateRemoval(Qual.second);
735     }
736
737     TypeQuals &= ~Qual.first;
738   }
739 }
740
741 /// Apply Objective-C type arguments to the given type.
742 static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
743                                   ArrayRef<TypeSourceInfo *> typeArgs,
744                                   SourceRange typeArgsRange,
745                                   bool failOnError = false) {
746   // We can only apply type arguments to an Objective-C class type.
747   const auto *objcObjectType = type->getAs<ObjCObjectType>();
748   if (!objcObjectType || !objcObjectType->getInterface()) {
749     S.Diag(loc, diag::err_objc_type_args_non_class)
750       << type
751       << typeArgsRange;
752
753     if (failOnError)
754       return QualType();
755     return type;
756   }
757
758   // The class type must be parameterized.
759   ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
760   ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
761   if (!typeParams) {
762     S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
763       << objcClass->getDeclName()
764       << FixItHint::CreateRemoval(typeArgsRange);
765
766     if (failOnError)
767       return QualType();
768
769     return type;
770   }
771
772   // The type must not already be specialized.
773   if (objcObjectType->isSpecialized()) {
774     S.Diag(loc, diag::err_objc_type_args_specialized_class)
775       << type
776       << FixItHint::CreateRemoval(typeArgsRange);
777
778     if (failOnError)
779       return QualType();
780
781     return type;
782   }
783
784   // Check the type arguments.
785   SmallVector<QualType, 4> finalTypeArgs;
786   unsigned numTypeParams = typeParams->size();
787   bool anyPackExpansions = false;
788   for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
789     TypeSourceInfo *typeArgInfo = typeArgs[i];
790     QualType typeArg = typeArgInfo->getType();
791
792     // Type arguments cannot have explicit qualifiers or nullability.
793     // We ignore indirect sources of these, e.g. behind typedefs or
794     // template arguments.
795     if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
796       bool diagnosed = false;
797       SourceRange rangeToRemove;
798       if (auto attr = qual.getAs<AttributedTypeLoc>()) {
799         rangeToRemove = attr.getLocalSourceRange();
800         if (attr.getTypePtr()->getImmediateNullability()) {
801           typeArg = attr.getTypePtr()->getModifiedType();
802           S.Diag(attr.getLocStart(),
803                  diag::err_objc_type_arg_explicit_nullability)
804             << typeArg << FixItHint::CreateRemoval(rangeToRemove);
805           diagnosed = true;
806         }
807       }
808
809       if (!diagnosed) {
810         S.Diag(qual.getLocStart(), diag::err_objc_type_arg_qualified)
811           << typeArg << typeArg.getQualifiers().getAsString()
812           << FixItHint::CreateRemoval(rangeToRemove);
813       }
814     }
815
816     // Remove qualifiers even if they're non-local.
817     typeArg = typeArg.getUnqualifiedType();
818
819     finalTypeArgs.push_back(typeArg);
820
821     if (typeArg->getAs<PackExpansionType>())
822       anyPackExpansions = true;
823
824     // Find the corresponding type parameter, if there is one.
825     ObjCTypeParamDecl *typeParam = nullptr;
826     if (!anyPackExpansions) {
827       if (i < numTypeParams) {
828         typeParam = typeParams->begin()[i];
829       } else {
830         // Too many arguments.
831         S.Diag(loc, diag::err_objc_type_args_wrong_arity)
832           << false
833           << objcClass->getDeclName()
834           << (unsigned)typeArgs.size()
835           << numTypeParams;
836         S.Diag(objcClass->getLocation(), diag::note_previous_decl)
837           << objcClass;
838
839         if (failOnError)
840           return QualType();
841
842         return type;
843       }
844     }
845
846     // Objective-C object pointer types must be substitutable for the bounds.
847     if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
848       // If we don't have a type parameter to match against, assume
849       // everything is fine. There was a prior pack expansion that
850       // means we won't be able to match anything.
851       if (!typeParam) {
852         assert(anyPackExpansions && "Too many arguments?");
853         continue;
854       }
855
856       // Retrieve the bound.
857       QualType bound = typeParam->getUnderlyingType();
858       const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
859
860       // Determine whether the type argument is substitutable for the bound.
861       if (typeArgObjC->isObjCIdType()) {
862         // When the type argument is 'id', the only acceptable type
863         // parameter bound is 'id'.
864         if (boundObjC->isObjCIdType())
865           continue;
866       } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
867         // Otherwise, we follow the assignability rules.
868         continue;
869       }
870
871       // Diagnose the mismatch.
872       S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
873              diag::err_objc_type_arg_does_not_match_bound)
874         << typeArg << bound << typeParam->getDeclName();
875       S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
876         << typeParam->getDeclName();
877
878       if (failOnError)
879         return QualType();
880
881       return type;
882     }
883
884     // Block pointer types are permitted for unqualified 'id' bounds.
885     if (typeArg->isBlockPointerType()) {
886       // If we don't have a type parameter to match against, assume
887       // everything is fine. There was a prior pack expansion that
888       // means we won't be able to match anything.
889       if (!typeParam) {
890         assert(anyPackExpansions && "Too many arguments?");
891         continue;
892       }
893
894       // Retrieve the bound.
895       QualType bound = typeParam->getUnderlyingType();
896       if (bound->isBlockCompatibleObjCPointerType(S.Context))
897         continue;
898
899       // Diagnose the mismatch.
900       S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
901              diag::err_objc_type_arg_does_not_match_bound)
902         << typeArg << bound << typeParam->getDeclName();
903       S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
904         << typeParam->getDeclName();
905
906       if (failOnError)
907         return QualType();
908
909       return type;
910     }
911
912     // Dependent types will be checked at instantiation time.
913     if (typeArg->isDependentType()) {
914       continue;
915     }
916
917     // Diagnose non-id-compatible type arguments.
918     S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
919            diag::err_objc_type_arg_not_id_compatible)
920       << typeArg
921       << typeArgInfo->getTypeLoc().getSourceRange();
922
923     if (failOnError)
924       return QualType();
925
926     return type;
927   }
928
929   // Make sure we didn't have the wrong number of arguments.
930   if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
931     S.Diag(loc, diag::err_objc_type_args_wrong_arity)
932       << (typeArgs.size() < typeParams->size())
933       << objcClass->getDeclName()
934       << (unsigned)finalTypeArgs.size()
935       << (unsigned)numTypeParams;
936     S.Diag(objcClass->getLocation(), diag::note_previous_decl)
937       << objcClass;
938
939     if (failOnError)
940       return QualType();
941
942     return type;
943   }
944
945   // Success. Form the specialized type.
946   return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
947 }
948
949 /// Apply Objective-C protocol qualifiers to the given type.
950 static QualType applyObjCProtocolQualifiers(
951                   Sema &S, SourceLocation loc, SourceRange range, QualType type,
952                   ArrayRef<ObjCProtocolDecl *> protocols,
953                   const SourceLocation *protocolLocs,
954                   bool failOnError = false) {
955   ASTContext &ctx = S.Context;
956   if (const ObjCObjectType *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
957     // FIXME: Check for protocols to which the class type is already
958     // known to conform.
959
960     return ctx.getObjCObjectType(objT->getBaseType(),
961                                  objT->getTypeArgsAsWritten(),
962                                  protocols,
963                                  objT->isKindOfTypeAsWritten());
964   }
965
966   if (type->isObjCObjectType()) {
967     // Silently overwrite any existing protocol qualifiers.
968     // TODO: determine whether that's the right thing to do.
969
970     // FIXME: Check for protocols to which the class type is already
971     // known to conform.
972     return ctx.getObjCObjectType(type, { }, protocols, false);
973   }
974
975   // id<protocol-list>
976   if (type->isObjCIdType()) {
977     const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
978     type = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, { }, protocols,
979                                  objPtr->isKindOfType());
980     return ctx.getObjCObjectPointerType(type);
981   }
982
983   // Class<protocol-list>
984   if (type->isObjCClassType()) {
985     const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
986     type = ctx.getObjCObjectType(ctx.ObjCBuiltinClassTy, { }, protocols,
987                                  objPtr->isKindOfType());
988     return ctx.getObjCObjectPointerType(type);
989   }
990
991   S.Diag(loc, diag::err_invalid_protocol_qualifiers)
992     << range;
993
994   if (failOnError)
995     return QualType();
996
997   return type;
998 }
999
1000 QualType Sema::BuildObjCObjectType(QualType BaseType,
1001                                    SourceLocation Loc,
1002                                    SourceLocation TypeArgsLAngleLoc,
1003                                    ArrayRef<TypeSourceInfo *> TypeArgs,
1004                                    SourceLocation TypeArgsRAngleLoc,
1005                                    SourceLocation ProtocolLAngleLoc,
1006                                    ArrayRef<ObjCProtocolDecl *> Protocols,
1007                                    ArrayRef<SourceLocation> ProtocolLocs,
1008                                    SourceLocation ProtocolRAngleLoc,
1009                                    bool FailOnError) {
1010   QualType Result = BaseType;
1011   if (!TypeArgs.empty()) {
1012     Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1013                                SourceRange(TypeArgsLAngleLoc,
1014                                            TypeArgsRAngleLoc),
1015                                FailOnError);
1016     if (FailOnError && Result.isNull())
1017       return QualType();
1018   }
1019
1020   if (!Protocols.empty()) {
1021     Result = applyObjCProtocolQualifiers(*this, Loc,
1022                                          SourceRange(ProtocolLAngleLoc,
1023                                                      ProtocolRAngleLoc),
1024                                          Result, Protocols,
1025                                          ProtocolLocs.data(),
1026                                          FailOnError);
1027     if (FailOnError && Result.isNull())
1028       return QualType();
1029   }
1030
1031   return Result;
1032 }
1033
1034 TypeResult Sema::actOnObjCProtocolQualifierType(
1035              SourceLocation lAngleLoc,
1036              ArrayRef<Decl *> protocols,
1037              ArrayRef<SourceLocation> protocolLocs,
1038              SourceLocation rAngleLoc) {
1039   // Form id<protocol-list>.
1040   QualType Result = Context.getObjCObjectType(
1041                       Context.ObjCBuiltinIdTy, { },
1042                       llvm::makeArrayRef(
1043                         (ObjCProtocolDecl * const *)protocols.data(),
1044                         protocols.size()),
1045                       false);
1046   Result = Context.getObjCObjectPointerType(Result);
1047
1048   TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1049   TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1050
1051   auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1052   ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1053
1054   auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1055                         .castAs<ObjCObjectTypeLoc>();
1056   ObjCObjectTL.setHasBaseTypeAsWritten(false);
1057   ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1058
1059   // No type arguments.
1060   ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1061   ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1062
1063   // Fill in protocol qualifiers.
1064   ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1065   ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1066   for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1067     ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1068
1069   // We're done. Return the completed type to the parser.
1070   return CreateParsedType(Result, ResultTInfo);
1071 }
1072
1073 TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1074              Scope *S,
1075              SourceLocation Loc,
1076              ParsedType BaseType,
1077              SourceLocation TypeArgsLAngleLoc,
1078              ArrayRef<ParsedType> TypeArgs,
1079              SourceLocation TypeArgsRAngleLoc,
1080              SourceLocation ProtocolLAngleLoc,
1081              ArrayRef<Decl *> Protocols,
1082              ArrayRef<SourceLocation> ProtocolLocs,
1083              SourceLocation ProtocolRAngleLoc) {
1084   TypeSourceInfo *BaseTypeInfo = nullptr;
1085   QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1086   if (T.isNull())
1087     return true;
1088
1089   // Handle missing type-source info.
1090   if (!BaseTypeInfo)
1091     BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1092
1093   // Extract type arguments.
1094   SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1095   for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1096     TypeSourceInfo *TypeArgInfo = nullptr;
1097     QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1098     if (TypeArg.isNull()) {
1099       ActualTypeArgInfos.clear();
1100       break;
1101     }
1102     
1103     assert(TypeArgInfo && "No type source info?");
1104     ActualTypeArgInfos.push_back(TypeArgInfo);
1105   }
1106
1107   // Build the object type.
1108   QualType Result = BuildObjCObjectType(
1109       T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1110       TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1111       ProtocolLAngleLoc,
1112       llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1113                          Protocols.size()),
1114       ProtocolLocs, ProtocolRAngleLoc,
1115       /*FailOnError=*/false);
1116
1117   if (Result == T)
1118     return BaseType;
1119     
1120   // Create source information for this type.
1121   TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1122   TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1123
1124   // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1125   // object pointer type. Fill in source information for it.
1126   if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1127     // The '*' is implicit.
1128     ObjCObjectPointerTL.setStarLoc(SourceLocation());
1129     ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1130   }
1131
1132   auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1133
1134   // Type argument information.
1135   if (ObjCObjectTL.getNumTypeArgs() > 0) {
1136     assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1137     ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1138     ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1139     for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1140       ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1141   } else {
1142     ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1143     ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1144   }
1145
1146   // Protocol qualifier information.
1147   if (ObjCObjectTL.getNumProtocols() > 0) {
1148     assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1149     ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1150     ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1151     for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1152       ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1153   } else {
1154     ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1155     ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1156   }
1157
1158   // Base type.
1159   ObjCObjectTL.setHasBaseTypeAsWritten(true);
1160   if (ObjCObjectTL.getType() == T)
1161     ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1162   else
1163     ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1164
1165   // We're done. Return the completed type to the parser.
1166   return CreateParsedType(Result, ResultTInfo);
1167 }
1168
1169 /// \brief Convert the specified declspec to the appropriate type
1170 /// object.
1171 /// \param state Specifies the declarator containing the declaration specifier
1172 /// to be converted, along with other associated processing state.
1173 /// \returns The type described by the declaration specifiers.  This function
1174 /// never returns null.
1175 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1176   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1177   // checking.
1178
1179   Sema &S = state.getSema();
1180   Declarator &declarator = state.getDeclarator();
1181   const DeclSpec &DS = declarator.getDeclSpec();
1182   SourceLocation DeclLoc = declarator.getIdentifierLoc();
1183   if (DeclLoc.isInvalid())
1184     DeclLoc = DS.getLocStart();
1185
1186   ASTContext &Context = S.Context;
1187
1188   QualType Result;
1189   switch (DS.getTypeSpecType()) {
1190   case DeclSpec::TST_void:
1191     Result = Context.VoidTy;
1192     break;
1193   case DeclSpec::TST_char:
1194     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1195       Result = Context.CharTy;
1196     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1197       Result = Context.SignedCharTy;
1198     else {
1199       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1200              "Unknown TSS value");
1201       Result = Context.UnsignedCharTy;
1202     }
1203     break;
1204   case DeclSpec::TST_wchar:
1205     if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1206       Result = Context.WCharTy;
1207     else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1208       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1209         << DS.getSpecifierName(DS.getTypeSpecType(),
1210                                Context.getPrintingPolicy());
1211       Result = Context.getSignedWCharType();
1212     } else {
1213       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1214         "Unknown TSS value");
1215       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1216         << DS.getSpecifierName(DS.getTypeSpecType(),
1217                                Context.getPrintingPolicy());
1218       Result = Context.getUnsignedWCharType();
1219     }
1220     break;
1221   case DeclSpec::TST_char16:
1222       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1223         "Unknown TSS value");
1224       Result = Context.Char16Ty;
1225     break;
1226   case DeclSpec::TST_char32:
1227       assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1228         "Unknown TSS value");
1229       Result = Context.Char32Ty;
1230     break;
1231   case DeclSpec::TST_unspecified:
1232     // If this is a missing declspec in a block literal return context, then it
1233     // is inferred from the return statements inside the block.
1234     // The declspec is always missing in a lambda expr context; it is either
1235     // specified with a trailing return type or inferred.
1236     if (S.getLangOpts().CPlusPlus14 &&
1237         declarator.getContext() == Declarator::LambdaExprContext) {
1238       // In C++1y, a lambda's implicit return type is 'auto'.
1239       Result = Context.getAutoDeductType();
1240       break;
1241     } else if (declarator.getContext() == Declarator::LambdaExprContext ||
1242                isOmittedBlockReturnType(declarator)) {
1243       Result = Context.DependentTy;
1244       break;
1245     }
1246
1247     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
1248     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1249     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
1250     // Note that the one exception to this is function definitions, which are
1251     // allowed to be completely missing a declspec.  This is handled in the
1252     // parser already though by it pretending to have seen an 'int' in this
1253     // case.
1254     if (S.getLangOpts().ImplicitInt) {
1255       // In C89 mode, we only warn if there is a completely missing declspec
1256       // when one is not allowed.
1257       if (DS.isEmpty()) {
1258         S.Diag(DeclLoc, diag::ext_missing_declspec)
1259           << DS.getSourceRange()
1260         << FixItHint::CreateInsertion(DS.getLocStart(), "int");
1261       }
1262     } else if (!DS.hasTypeSpecifier()) {
1263       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
1264       // "At least one type specifier shall be given in the declaration
1265       // specifiers in each declaration, and in the specifier-qualifier list in
1266       // each struct declaration and type name."
1267       if (S.getLangOpts().CPlusPlus) {
1268         S.Diag(DeclLoc, diag::err_missing_type_specifier)
1269           << DS.getSourceRange();
1270
1271         // When this occurs in C++ code, often something is very broken with the
1272         // value being declared, poison it as invalid so we don't get chains of
1273         // errors.
1274         declarator.setInvalidType(true);
1275       } else {
1276         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1277           << DS.getSourceRange();
1278       }
1279     }
1280
1281     // FALL THROUGH.
1282   case DeclSpec::TST_int: {
1283     if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
1284       switch (DS.getTypeSpecWidth()) {
1285       case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1286       case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
1287       case DeclSpec::TSW_long:        Result = Context.LongTy; break;
1288       case DeclSpec::TSW_longlong:
1289         Result = Context.LongLongTy;
1290
1291         // 'long long' is a C99 or C++11 feature.
1292         if (!S.getLangOpts().C99) {
1293           if (S.getLangOpts().CPlusPlus)
1294             S.Diag(DS.getTypeSpecWidthLoc(),
1295                    S.getLangOpts().CPlusPlus11 ?
1296                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1297           else
1298             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1299         }
1300         break;
1301       }
1302     } else {
1303       switch (DS.getTypeSpecWidth()) {
1304       case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1305       case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
1306       case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
1307       case DeclSpec::TSW_longlong:
1308         Result = Context.UnsignedLongLongTy;
1309
1310         // 'long long' is a C99 or C++11 feature.
1311         if (!S.getLangOpts().C99) {
1312           if (S.getLangOpts().CPlusPlus)
1313             S.Diag(DS.getTypeSpecWidthLoc(),
1314                    S.getLangOpts().CPlusPlus11 ?
1315                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1316           else
1317             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1318         }
1319         break;
1320       }
1321     }
1322     break;
1323   }
1324   case DeclSpec::TST_int128:
1325     if (!S.Context.getTargetInfo().hasInt128Type())
1326       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
1327     if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1328       Result = Context.UnsignedInt128Ty;
1329     else
1330       Result = Context.Int128Ty;
1331     break;
1332   case DeclSpec::TST_half: Result = Context.HalfTy; break;
1333   case DeclSpec::TST_float: Result = Context.FloatTy; break;
1334   case DeclSpec::TST_double:
1335     if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
1336       Result = Context.LongDoubleTy;
1337     else
1338       Result = Context.DoubleTy;
1339
1340     if (S.getLangOpts().OpenCL &&
1341         !((S.getLangOpts().OpenCLVersion >= 120) ||
1342           S.getOpenCLOptions().cl_khr_fp64)) {
1343       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1344           << Result << "cl_khr_fp64";
1345       declarator.setInvalidType(true);
1346     }
1347     break;
1348   case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1349   case DeclSpec::TST_decimal32:    // _Decimal32
1350   case DeclSpec::TST_decimal64:    // _Decimal64
1351   case DeclSpec::TST_decimal128:   // _Decimal128
1352     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1353     Result = Context.IntTy;
1354     declarator.setInvalidType(true);
1355     break;
1356   case DeclSpec::TST_class:
1357   case DeclSpec::TST_enum:
1358   case DeclSpec::TST_union:
1359   case DeclSpec::TST_struct:
1360   case DeclSpec::TST_interface: {
1361     TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
1362     if (!D) {
1363       // This can happen in C++ with ambiguous lookups.
1364       Result = Context.IntTy;
1365       declarator.setInvalidType(true);
1366       break;
1367     }
1368
1369     // If the type is deprecated or unavailable, diagnose it.
1370     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1371
1372     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1373            DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
1374
1375     // TypeQuals handled by caller.
1376     Result = Context.getTypeDeclType(D);
1377
1378     // In both C and C++, make an ElaboratedType.
1379     ElaboratedTypeKeyword Keyword
1380       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1381     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
1382     break;
1383   }
1384   case DeclSpec::TST_typename: {
1385     assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1386            DS.getTypeSpecSign() == 0 &&
1387            "Can't handle qualifiers on typedef names yet!");
1388     Result = S.GetTypeFromParser(DS.getRepAsType());
1389     if (Result.isNull()) {
1390       declarator.setInvalidType(true);
1391     } else if (S.getLangOpts().OpenCL) {
1392       if (Result->getAs<AtomicType>()) {
1393         StringRef TypeName = Result.getBaseTypeIdentifier()->getName();
1394         bool NoExtTypes =
1395             llvm::StringSwitch<bool>(TypeName)
1396                 .Cases("atomic_int", "atomic_uint", "atomic_float",
1397                        "atomic_flag", true)
1398                 .Default(false);
1399         if (!S.getOpenCLOptions().cl_khr_int64_base_atomics && !NoExtTypes) {
1400           S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1401               << Result << "cl_khr_int64_base_atomics";
1402           declarator.setInvalidType(true);
1403         }
1404         if (!S.getOpenCLOptions().cl_khr_int64_extended_atomics &&
1405             !NoExtTypes) {
1406           S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1407               << Result << "cl_khr_int64_extended_atomics";
1408           declarator.setInvalidType(true);
1409         }
1410         if (!S.getOpenCLOptions().cl_khr_fp64 &&
1411             !TypeName.compare("atomic_double")) {
1412           S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1413               << Result << "cl_khr_fp64";
1414           declarator.setInvalidType(true);
1415         }
1416       } else if (!S.getOpenCLOptions().cl_khr_gl_msaa_sharing &&
1417                  (Result->isImage2dMSAAT() || Result->isImage2dArrayMSAAT() ||
1418                   Result->isImage2dArrayMSAATDepth() ||
1419                   Result->isImage2dMSAATDepth())) {
1420         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1421             << Result << "cl_khr_gl_msaa_sharing";
1422         declarator.setInvalidType(true);
1423       }
1424     }
1425
1426     // TypeQuals handled by caller.
1427     break;
1428   }
1429   case DeclSpec::TST_typeofType:
1430     // FIXME: Preserve type source info.
1431     Result = S.GetTypeFromParser(DS.getRepAsType());
1432     assert(!Result.isNull() && "Didn't get a type for typeof?");
1433     if (!Result->isDependentType())
1434       if (const TagType *TT = Result->getAs<TagType>())
1435         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1436     // TypeQuals handled by caller.
1437     Result = Context.getTypeOfType(Result);
1438     break;
1439   case DeclSpec::TST_typeofExpr: {
1440     Expr *E = DS.getRepAsExpr();
1441     assert(E && "Didn't get an expression for typeof?");
1442     // TypeQuals handled by caller.
1443     Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1444     if (Result.isNull()) {
1445       Result = Context.IntTy;
1446       declarator.setInvalidType(true);
1447     }
1448     break;
1449   }
1450   case DeclSpec::TST_decltype: {
1451     Expr *E = DS.getRepAsExpr();
1452     assert(E && "Didn't get an expression for decltype?");
1453     // TypeQuals handled by caller.
1454     Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1455     if (Result.isNull()) {
1456       Result = Context.IntTy;
1457       declarator.setInvalidType(true);
1458     }
1459     break;
1460   }
1461   case DeclSpec::TST_underlyingType:
1462     Result = S.GetTypeFromParser(DS.getRepAsType());
1463     assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1464     Result = S.BuildUnaryTransformType(Result,
1465                                        UnaryTransformType::EnumUnderlyingType,
1466                                        DS.getTypeSpecTypeLoc());
1467     if (Result.isNull()) {
1468       Result = Context.IntTy;
1469       declarator.setInvalidType(true);
1470     }
1471     break;
1472
1473   case DeclSpec::TST_auto:
1474     // TypeQuals handled by caller.
1475     // If auto is mentioned in a lambda parameter context, convert it to a 
1476     // template parameter type immediately, with the appropriate depth and 
1477     // index, and update sema's state (LambdaScopeInfo) for the current lambda 
1478     // being analyzed (which tracks the invented type template parameter).
1479     if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
1480       sema::LambdaScopeInfo *LSI = S.getCurLambda();
1481       assert(LSI && "No LambdaScopeInfo on the stack!");
1482       const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
1483       const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
1484       const bool IsParameterPack = declarator.hasEllipsis();
1485
1486       // Turns out we must create the TemplateTypeParmDecl here to 
1487       // retrieve the corresponding template parameter type. 
1488       TemplateTypeParmDecl *CorrespondingTemplateParam =
1489         TemplateTypeParmDecl::Create(Context, 
1490         // Temporarily add to the TranslationUnit DeclContext.  When the 
1491         // associated TemplateParameterList is attached to a template
1492         // declaration (such as FunctionTemplateDecl), the DeclContext 
1493         // for each template parameter gets updated appropriately via
1494         // a call to AdoptTemplateParameterList. 
1495         Context.getTranslationUnitDecl(), 
1496         /*KeyLoc*/ SourceLocation(), 
1497         /*NameLoc*/ declarator.getLocStart(),  
1498         TemplateParameterDepth, 
1499         AutoParameterPosition,  // our template param index 
1500         /* Identifier*/ nullptr, false, IsParameterPack);
1501       LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
1502       // Replace the 'auto' in the function parameter with this invented 
1503       // template type parameter.
1504       Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
1505     } else {
1506       Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1507     }
1508     break;
1509
1510   case DeclSpec::TST_auto_type:
1511     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1512     break;
1513
1514   case DeclSpec::TST_decltype_auto:
1515     Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
1516                                  /*IsDependent*/ false);
1517     break;
1518
1519   case DeclSpec::TST_unknown_anytype:
1520     Result = Context.UnknownAnyTy;
1521     break;
1522
1523   case DeclSpec::TST_atomic:
1524     Result = S.GetTypeFromParser(DS.getRepAsType());
1525     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1526     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1527     if (Result.isNull()) {
1528       Result = Context.IntTy;
1529       declarator.setInvalidType(true);
1530     }
1531     break;
1532
1533   case DeclSpec::TST_error:
1534     Result = Context.IntTy;
1535     declarator.setInvalidType(true);
1536     break;
1537   }
1538
1539   // Handle complex types.
1540   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1541     if (S.getLangOpts().Freestanding)
1542       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1543     Result = Context.getComplexType(Result);
1544   } else if (DS.isTypeAltiVecVector()) {
1545     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1546     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1547     VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1548     if (DS.isTypeAltiVecPixel())
1549       VecKind = VectorType::AltiVecPixel;
1550     else if (DS.isTypeAltiVecBool())
1551       VecKind = VectorType::AltiVecBool;
1552     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1553   }
1554
1555   // FIXME: Imaginary.
1556   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1557     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1558
1559   // Before we process any type attributes, synthesize a block literal
1560   // function declarator if necessary.
1561   if (declarator.getContext() == Declarator::BlockLiteralContext)
1562     maybeSynthesizeBlockSignature(state, Result);
1563
1564   // Apply any type attributes from the decl spec.  This may cause the
1565   // list of type attributes to be temporarily saved while the type
1566   // attributes are pushed around.
1567   processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes().getList());
1568
1569   // Apply const/volatile/restrict qualifiers to T.
1570   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1571     // Warn about CV qualifiers on function types.
1572     // C99 6.7.3p8:
1573     //   If the specification of a function type includes any type qualifiers,
1574     //   the behavior is undefined.
1575     // C++11 [dcl.fct]p7:
1576     //   The effect of a cv-qualifier-seq in a function declarator is not the
1577     //   same as adding cv-qualification on top of the function type. In the
1578     //   latter case, the cv-qualifiers are ignored.
1579     if (TypeQuals && Result->isFunctionType()) {
1580       diagnoseAndRemoveTypeQualifiers(
1581           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1582           S.getLangOpts().CPlusPlus
1583               ? diag::warn_typecheck_function_qualifiers_ignored
1584               : diag::warn_typecheck_function_qualifiers_unspecified);
1585       // No diagnostic for 'restrict' or '_Atomic' applied to a
1586       // function type; we'll diagnose those later, in BuildQualifiedType.
1587     }
1588
1589     // C++11 [dcl.ref]p1:
1590     //   Cv-qualified references are ill-formed except when the
1591     //   cv-qualifiers are introduced through the use of a typedef-name
1592     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1593     //
1594     // There don't appear to be any other contexts in which a cv-qualified
1595     // reference type could be formed, so the 'ill-formed' clause here appears
1596     // to never happen.
1597     if (TypeQuals && Result->isReferenceType()) {
1598       diagnoseAndRemoveTypeQualifiers(
1599           S, DS, TypeQuals, Result,
1600           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1601           diag::warn_typecheck_reference_qualifiers);
1602     }
1603
1604     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1605     // than once in the same specifier-list or qualifier-list, either directly
1606     // or via one or more typedefs."
1607     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1608         && TypeQuals & Result.getCVRQualifiers()) {
1609       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1610         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1611           << "const";
1612       }
1613
1614       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1615         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1616           << "volatile";
1617       }
1618
1619       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1620       // produce a warning in this case.
1621     }
1622
1623     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1624
1625     // If adding qualifiers fails, just use the unqualified type.
1626     if (Qualified.isNull())
1627       declarator.setInvalidType(true);
1628     else
1629       Result = Qualified;
1630   }
1631
1632   assert(!Result.isNull() && "This function should not return a null type");
1633   return Result;
1634 }
1635
1636 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1637   if (Entity)
1638     return Entity.getAsString();
1639
1640   return "type name";
1641 }
1642
1643 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1644                                   Qualifiers Qs, const DeclSpec *DS) {
1645   if (T.isNull())
1646     return QualType();
1647
1648   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1649   // object or incomplete types shall not be restrict-qualified."
1650   if (Qs.hasRestrict()) {
1651     unsigned DiagID = 0;
1652     QualType ProblemTy;
1653
1654     if (T->isAnyPointerType() || T->isReferenceType() ||
1655         T->isMemberPointerType()) {
1656       QualType EltTy;
1657       if (T->isObjCObjectPointerType())
1658         EltTy = T;
1659       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1660         EltTy = PTy->getPointeeType();
1661       else
1662         EltTy = T->getPointeeType();
1663
1664       // If we have a pointer or reference, the pointee must have an object
1665       // incomplete type.
1666       if (!EltTy->isIncompleteOrObjectType()) {
1667         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1668         ProblemTy = EltTy;
1669       }
1670     } else if (!T->isDependentType()) {
1671       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1672       ProblemTy = T;
1673     }
1674
1675     if (DiagID) {
1676       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1677       Qs.removeRestrict();
1678     }
1679   }
1680
1681   return Context.getQualifiedType(T, Qs);
1682 }
1683
1684 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1685                                   unsigned CVRA, const DeclSpec *DS) {
1686   if (T.isNull())
1687     return QualType();
1688
1689   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1690   unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1691
1692   // C11 6.7.3/5:
1693   //   If the same qualifier appears more than once in the same
1694   //   specifier-qualifier-list, either directly or via one or more typedefs,
1695   //   the behavior is the same as if it appeared only once.
1696   //
1697   // It's not specified what happens when the _Atomic qualifier is applied to
1698   // a type specified with the _Atomic specifier, but we assume that this
1699   // should be treated as if the _Atomic qualifier appeared multiple times.
1700   if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1701     // C11 6.7.3/5:
1702     //   If other qualifiers appear along with the _Atomic qualifier in a
1703     //   specifier-qualifier-list, the resulting type is the so-qualified
1704     //   atomic type.
1705     //
1706     // Don't need to worry about array types here, since _Atomic can't be
1707     // applied to such types.
1708     SplitQualType Split = T.getSplitUnqualifiedType();
1709     T = BuildAtomicType(QualType(Split.Ty, 0),
1710                         DS ? DS->getAtomicSpecLoc() : Loc);
1711     if (T.isNull())
1712       return T;
1713     Split.Quals.addCVRQualifiers(CVR);
1714     return BuildQualifiedType(T, Loc, Split.Quals);
1715   }
1716
1717   return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1718 }
1719
1720 /// \brief Build a paren type including \p T.
1721 QualType Sema::BuildParenType(QualType T) {
1722   return Context.getParenType(T);
1723 }
1724
1725 /// Given that we're building a pointer or reference to the given
1726 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1727                                            SourceLocation loc,
1728                                            bool isReference) {
1729   // Bail out if retention is unrequired or already specified.
1730   if (!type->isObjCLifetimeType() ||
1731       type.getObjCLifetime() != Qualifiers::OCL_None)
1732     return type;
1733
1734   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1735
1736   // If the object type is const-qualified, we can safely use
1737   // __unsafe_unretained.  This is safe (because there are no read
1738   // barriers), and it'll be safe to coerce anything but __weak* to
1739   // the resulting type.
1740   if (type.isConstQualified()) {
1741     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1742
1743   // Otherwise, check whether the static type does not require
1744   // retaining.  This currently only triggers for Class (possibly
1745   // protocol-qualifed, and arrays thereof).
1746   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1747     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1748
1749   // If we are in an unevaluated context, like sizeof, skip adding a
1750   // qualification.
1751   } else if (S.isUnevaluatedContext()) {
1752     return type;
1753
1754   // If that failed, give an error and recover using __strong.  __strong
1755   // is the option most likely to prevent spurious second-order diagnostics,
1756   // like when binding a reference to a field.
1757   } else {
1758     // These types can show up in private ivars in system headers, so
1759     // we need this to not be an error in those cases.  Instead we
1760     // want to delay.
1761     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1762       S.DelayedDiagnostics.add(
1763           sema::DelayedDiagnostic::makeForbiddenType(loc,
1764               diag::err_arc_indirect_no_ownership, type, isReference));
1765     } else {
1766       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1767     }
1768     implicitLifetime = Qualifiers::OCL_Strong;
1769   }
1770   assert(implicitLifetime && "didn't infer any lifetime!");
1771
1772   Qualifiers qs;
1773   qs.addObjCLifetime(implicitLifetime);
1774   return S.Context.getQualifiedType(type, qs);
1775 }
1776
1777 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1778   std::string Quals =
1779     Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1780
1781   switch (FnTy->getRefQualifier()) {
1782   case RQ_None:
1783     break;
1784
1785   case RQ_LValue:
1786     if (!Quals.empty())
1787       Quals += ' ';
1788     Quals += '&';
1789     break;
1790
1791   case RQ_RValue:
1792     if (!Quals.empty())
1793       Quals += ' ';
1794     Quals += "&&";
1795     break;
1796   }
1797
1798   return Quals;
1799 }
1800
1801 namespace {
1802 /// Kinds of declarator that cannot contain a qualified function type.
1803 ///
1804 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1805 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1806 ///     at the topmost level of a type.
1807 ///
1808 /// Parens and member pointers are permitted. We don't diagnose array and
1809 /// function declarators, because they don't allow function types at all.
1810 ///
1811 /// The values of this enum are used in diagnostics.
1812 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1813 }
1814
1815 /// Check whether the type T is a qualified function type, and if it is,
1816 /// diagnose that it cannot be contained within the given kind of declarator.
1817 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1818                                    QualifiedFunctionKind QFK) {
1819   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1820   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1821   if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
1822     return false;
1823
1824   S.Diag(Loc, diag::err_compound_qualified_function_type)
1825     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1826     << getFunctionQualifiersAsString(FPT);
1827   return true;
1828 }
1829
1830 /// \brief Build a pointer type.
1831 ///
1832 /// \param T The type to which we'll be building a pointer.
1833 ///
1834 /// \param Loc The location of the entity whose type involves this
1835 /// pointer type or, if there is no such entity, the location of the
1836 /// type that will have pointer type.
1837 ///
1838 /// \param Entity The name of the entity that involves the pointer
1839 /// type, if known.
1840 ///
1841 /// \returns A suitable pointer type, if there are no
1842 /// errors. Otherwise, returns a NULL type.
1843 QualType Sema::BuildPointerType(QualType T,
1844                                 SourceLocation Loc, DeclarationName Entity) {
1845   if (T->isReferenceType()) {
1846     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1847     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1848       << getPrintableNameForEntity(Entity) << T;
1849     return QualType();
1850   }
1851
1852   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1853     return QualType();
1854
1855   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1856
1857   // In ARC, it is forbidden to build pointers to unqualified pointers.
1858   if (getLangOpts().ObjCAutoRefCount)
1859     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1860
1861   // Build the pointer type.
1862   return Context.getPointerType(T);
1863 }
1864
1865 /// \brief Build a reference type.
1866 ///
1867 /// \param T The type to which we'll be building a reference.
1868 ///
1869 /// \param Loc The location of the entity whose type involves this
1870 /// reference type or, if there is no such entity, the location of the
1871 /// type that will have reference type.
1872 ///
1873 /// \param Entity The name of the entity that involves the reference
1874 /// type, if known.
1875 ///
1876 /// \returns A suitable reference type, if there are no
1877 /// errors. Otherwise, returns a NULL type.
1878 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1879                                   SourceLocation Loc,
1880                                   DeclarationName Entity) {
1881   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1882          "Unresolved overloaded function type");
1883
1884   // C++0x [dcl.ref]p6:
1885   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1886   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1887   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1888   //   the type "lvalue reference to T", while an attempt to create the type
1889   //   "rvalue reference to cv TR" creates the type TR.
1890   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1891
1892   // C++ [dcl.ref]p4: There shall be no references to references.
1893   //
1894   // According to C++ DR 106, references to references are only
1895   // diagnosed when they are written directly (e.g., "int & &"),
1896   // but not when they happen via a typedef:
1897   //
1898   //   typedef int& intref;
1899   //   typedef intref& intref2;
1900   //
1901   // Parser::ParseDeclaratorInternal diagnoses the case where
1902   // references are written directly; here, we handle the
1903   // collapsing of references-to-references as described in C++0x.
1904   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1905
1906   // C++ [dcl.ref]p1:
1907   //   A declarator that specifies the type "reference to cv void"
1908   //   is ill-formed.
1909   if (T->isVoidType()) {
1910     Diag(Loc, diag::err_reference_to_void);
1911     return QualType();
1912   }
1913
1914   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1915     return QualType();
1916
1917   // In ARC, it is forbidden to build references to unqualified pointers.
1918   if (getLangOpts().ObjCAutoRefCount)
1919     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1920
1921   // Handle restrict on references.
1922   if (LValueRef)
1923     return Context.getLValueReferenceType(T, SpelledAsLValue);
1924   return Context.getRValueReferenceType(T);
1925 }
1926
1927 /// Check whether the specified array size makes the array type a VLA.  If so,
1928 /// return true, if not, return the size of the array in SizeVal.
1929 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1930   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1931   // (like gnu99, but not c99) accept any evaluatable value as an extension.
1932   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1933   public:
1934     VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1935
1936     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
1937     }
1938
1939     void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
1940       S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1941     }
1942   } Diagnoser;
1943
1944   return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1945                                            S.LangOpts.GNUMode).isInvalid();
1946 }
1947
1948
1949 /// \brief Build an array type.
1950 ///
1951 /// \param T The type of each element in the array.
1952 ///
1953 /// \param ASM C99 array size modifier (e.g., '*', 'static').
1954 ///
1955 /// \param ArraySize Expression describing the size of the array.
1956 ///
1957 /// \param Brackets The range from the opening '[' to the closing ']'.
1958 ///
1959 /// \param Entity The name of the entity that involves the array
1960 /// type, if known.
1961 ///
1962 /// \returns A suitable array type, if there are no errors. Otherwise,
1963 /// returns a NULL type.
1964 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1965                               Expr *ArraySize, unsigned Quals,
1966                               SourceRange Brackets, DeclarationName Entity) {
1967
1968   SourceLocation Loc = Brackets.getBegin();
1969   if (getLangOpts().CPlusPlus) {
1970     // C++ [dcl.array]p1:
1971     //   T is called the array element type; this type shall not be a reference
1972     //   type, the (possibly cv-qualified) type void, a function type or an
1973     //   abstract class type.
1974     //
1975     // C++ [dcl.array]p3:
1976     //   When several "array of" specifications are adjacent, [...] only the
1977     //   first of the constant expressions that specify the bounds of the arrays
1978     //   may be omitted.
1979     //
1980     // Note: function types are handled in the common path with C.
1981     if (T->isReferenceType()) {
1982       Diag(Loc, diag::err_illegal_decl_array_of_references)
1983       << getPrintableNameForEntity(Entity) << T;
1984       return QualType();
1985     }
1986
1987     if (T->isVoidType() || T->isIncompleteArrayType()) {
1988       Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1989       return QualType();
1990     }
1991
1992     if (RequireNonAbstractType(Brackets.getBegin(), T,
1993                                diag::err_array_of_abstract_type))
1994       return QualType();
1995
1996     // Mentioning a member pointer type for an array type causes us to lock in
1997     // an inheritance model, even if it's inside an unused typedef.
1998     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
1999       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2000         if (!MPTy->getClass()->isDependentType())
2001           (void)isCompleteType(Loc, T);
2002
2003   } else {
2004     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2005     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2006     if (RequireCompleteType(Loc, T,
2007                             diag::err_illegal_decl_array_incomplete_type))
2008       return QualType();
2009   }
2010
2011   if (T->isFunctionType()) {
2012     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2013       << getPrintableNameForEntity(Entity) << T;
2014     return QualType();
2015   }
2016
2017   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2018     // If the element type is a struct or union that contains a variadic
2019     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2020     if (EltTy->getDecl()->hasFlexibleArrayMember())
2021       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2022   } else if (T->isObjCObjectType()) {
2023     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2024     return QualType();
2025   }
2026
2027   // Do placeholder conversions on the array size expression.
2028   if (ArraySize && ArraySize->hasPlaceholderType()) {
2029     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2030     if (Result.isInvalid()) return QualType();
2031     ArraySize = Result.get();
2032   }
2033
2034   // Do lvalue-to-rvalue conversions on the array size expression.
2035   if (ArraySize && !ArraySize->isRValue()) {
2036     ExprResult Result = DefaultLvalueConversion(ArraySize);
2037     if (Result.isInvalid())
2038       return QualType();
2039
2040     ArraySize = Result.get();
2041   }
2042
2043   // C99 6.7.5.2p1: The size expression shall have integer type.
2044   // C++11 allows contextual conversions to such types.
2045   if (!getLangOpts().CPlusPlus11 &&
2046       ArraySize && !ArraySize->isTypeDependent() &&
2047       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2048     Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
2049       << ArraySize->getType() << ArraySize->getSourceRange();
2050     return QualType();
2051   }
2052
2053   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2054   if (!ArraySize) {
2055     if (ASM == ArrayType::Star)
2056       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2057     else
2058       T = Context.getIncompleteArrayType(T, ASM, Quals);
2059   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2060     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2061   } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2062               !T->isConstantSizeType()) ||
2063              isArraySizeVLA(*this, ArraySize, ConstVal)) {
2064     // Even in C++11, don't allow contextual conversions in the array bound
2065     // of a VLA.
2066     if (getLangOpts().CPlusPlus11 &&
2067         !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2068       Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
2069         << ArraySize->getType() << ArraySize->getSourceRange();
2070       return QualType();
2071     }
2072
2073     // C99: an array with an element type that has a non-constant-size is a VLA.
2074     // C99: an array with a non-ICE size is a VLA.  We accept any expression
2075     // that we can fold to a non-zero positive value as an extension.
2076     T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2077   } else {
2078     // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2079     // have a value greater than zero.
2080     if (ConstVal.isSigned() && ConstVal.isNegative()) {
2081       if (Entity)
2082         Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
2083           << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2084       else
2085         Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
2086           << ArraySize->getSourceRange();
2087       return QualType();
2088     }
2089     if (ConstVal == 0) {
2090       // GCC accepts zero sized static arrays. We allow them when
2091       // we're not in a SFINAE context.
2092       Diag(ArraySize->getLocStart(),
2093            isSFINAEContext()? diag::err_typecheck_zero_array_size
2094                             : diag::ext_typecheck_zero_array_size)
2095         << ArraySize->getSourceRange();
2096
2097       if (ASM == ArrayType::Static) {
2098         Diag(ArraySize->getLocStart(),
2099              diag::warn_typecheck_zero_static_array_size)
2100           << ArraySize->getSourceRange();
2101         ASM = ArrayType::Normal;
2102       }
2103     } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2104                !T->isIncompleteType() && !T->isUndeducedType()) {
2105       // Is the array too large?
2106       unsigned ActiveSizeBits
2107         = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2108       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2109         Diag(ArraySize->getLocStart(), diag::err_array_too_large)
2110           << ConstVal.toString(10)
2111           << ArraySize->getSourceRange();
2112         return QualType();
2113       }
2114     }
2115
2116     T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
2117   }
2118
2119   // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2120   if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2121     Diag(Loc, diag::err_opencl_vla);
2122     return QualType();
2123   }
2124   // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2125   if (!getLangOpts().C99) {
2126     if (T->isVariableArrayType()) {
2127       // Prohibit the use of non-POD types in VLAs.
2128       QualType BaseT = Context.getBaseElementType(T);
2129       if (!T->isDependentType() && isCompleteType(Loc, BaseT) &&
2130           !BaseT.isPODType(Context) && !BaseT->isObjCLifetimeType()) {
2131         Diag(Loc, diag::err_vla_non_pod) << BaseT;
2132         return QualType();
2133       }
2134       // Prohibit the use of VLAs during template argument deduction.
2135       else if (isSFINAEContext()) {
2136         Diag(Loc, diag::err_vla_in_sfinae);
2137         return QualType();
2138       }
2139       // Just extwarn about VLAs.
2140       else
2141         Diag(Loc, diag::ext_vla);
2142     } else if (ASM != ArrayType::Normal || Quals != 0)
2143       Diag(Loc,
2144            getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2145                                   : diag::ext_c99_array_usage) << ASM;
2146   }
2147
2148   if (T->isVariableArrayType()) {
2149     // Warn about VLAs for -Wvla.
2150     Diag(Loc, diag::warn_vla_used);
2151   }
2152
2153   return T;
2154 }
2155
2156 /// \brief Build an ext-vector type.
2157 ///
2158 /// Run the required checks for the extended vector type.
2159 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2160                                   SourceLocation AttrLoc) {
2161   // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2162   // in conjunction with complex types (pointers, arrays, functions, etc.).
2163   if (!T->isDependentType() &&
2164       !T->isIntegerType() && !T->isRealFloatingType()) {
2165     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2166     return QualType();
2167   }
2168
2169   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2170     llvm::APSInt vecSize(32);
2171     if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2172       Diag(AttrLoc, diag::err_attribute_argument_type)
2173         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2174         << ArraySize->getSourceRange();
2175       return QualType();
2176     }
2177
2178     // unlike gcc's vector_size attribute, the size is specified as the
2179     // number of elements, not the number of bytes.
2180     unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2181
2182     if (vectorSize == 0) {
2183       Diag(AttrLoc, diag::err_attribute_zero_size)
2184       << ArraySize->getSourceRange();
2185       return QualType();
2186     }
2187
2188     if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2189       Diag(AttrLoc, diag::err_attribute_size_too_large)
2190         << ArraySize->getSourceRange();
2191       return QualType();
2192     }
2193
2194     return Context.getExtVectorType(T, vectorSize);
2195   }
2196
2197   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2198 }
2199
2200 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2201   if (T->isArrayType() || T->isFunctionType()) {
2202     Diag(Loc, diag::err_func_returning_array_function)
2203       << T->isFunctionType() << T;
2204     return true;
2205   }
2206
2207   // Functions cannot return half FP.
2208   if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2209     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2210       FixItHint::CreateInsertion(Loc, "*");
2211     return true;
2212   }
2213
2214   // Methods cannot return interface types. All ObjC objects are
2215   // passed by reference.
2216   if (T->isObjCObjectType()) {
2217     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
2218     return 0;
2219   }
2220
2221   return false;
2222 }
2223
2224 QualType Sema::BuildFunctionType(QualType T,
2225                                  MutableArrayRef<QualType> ParamTypes,
2226                                  SourceLocation Loc, DeclarationName Entity,
2227                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2228   bool Invalid = false;
2229
2230   Invalid |= CheckFunctionReturnType(T, Loc);
2231
2232   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2233     // FIXME: Loc is too inprecise here, should use proper locations for args.
2234     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2235     if (ParamType->isVoidType()) {
2236       Diag(Loc, diag::err_param_with_void_type);
2237       Invalid = true;
2238     } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2239       // Disallow half FP arguments.
2240       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2241         FixItHint::CreateInsertion(Loc, "*");
2242       Invalid = true;
2243     }
2244
2245     ParamTypes[Idx] = ParamType;
2246   }
2247
2248   if (Invalid)
2249     return QualType();
2250
2251   return Context.getFunctionType(T, ParamTypes, EPI);
2252 }
2253
2254 /// \brief Build a member pointer type \c T Class::*.
2255 ///
2256 /// \param T the type to which the member pointer refers.
2257 /// \param Class the class type into which the member pointer points.
2258 /// \param Loc the location where this type begins
2259 /// \param Entity the name of the entity that will have this member pointer type
2260 ///
2261 /// \returns a member pointer type, if successful, or a NULL type if there was
2262 /// an error.
2263 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2264                                       SourceLocation Loc,
2265                                       DeclarationName Entity) {
2266   // Verify that we're not building a pointer to pointer to function with
2267   // exception specification.
2268   if (CheckDistantExceptionSpec(T)) {
2269     Diag(Loc, diag::err_distant_exception_spec);
2270     return QualType();
2271   }
2272
2273   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2274   //   with reference type, or "cv void."
2275   if (T->isReferenceType()) {
2276     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2277       << getPrintableNameForEntity(Entity) << T;
2278     return QualType();
2279   }
2280
2281   if (T->isVoidType()) {
2282     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2283       << getPrintableNameForEntity(Entity);
2284     return QualType();
2285   }
2286
2287   if (!Class->isDependentType() && !Class->isRecordType()) {
2288     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2289     return QualType();
2290   }
2291
2292   // Adjust the default free function calling convention to the default method
2293   // calling convention.
2294   bool IsCtorOrDtor =
2295       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2296       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2297   if (T->isFunctionType())
2298     adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2299
2300   return Context.getMemberPointerType(T, Class.getTypePtr());
2301 }
2302
2303 /// \brief Build a block pointer type.
2304 ///
2305 /// \param T The type to which we'll be building a block pointer.
2306 ///
2307 /// \param Loc The source location, used for diagnostics.
2308 ///
2309 /// \param Entity The name of the entity that involves the block pointer
2310 /// type, if known.
2311 ///
2312 /// \returns A suitable block pointer type, if there are no
2313 /// errors. Otherwise, returns a NULL type.
2314 QualType Sema::BuildBlockPointerType(QualType T,
2315                                      SourceLocation Loc,
2316                                      DeclarationName Entity) {
2317   if (!T->isFunctionType()) {
2318     Diag(Loc, diag::err_nonfunction_block_type);
2319     return QualType();
2320   }
2321
2322   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2323     return QualType();
2324
2325   return Context.getBlockPointerType(T);
2326 }
2327
2328 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2329   QualType QT = Ty.get();
2330   if (QT.isNull()) {
2331     if (TInfo) *TInfo = nullptr;
2332     return QualType();
2333   }
2334
2335   TypeSourceInfo *DI = nullptr;
2336   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2337     QT = LIT->getType();
2338     DI = LIT->getTypeSourceInfo();
2339   }
2340
2341   if (TInfo) *TInfo = DI;
2342   return QT;
2343 }
2344
2345 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2346                                             Qualifiers::ObjCLifetime ownership,
2347                                             unsigned chunkIndex);
2348
2349 /// Given that this is the declaration of a parameter under ARC,
2350 /// attempt to infer attributes and such for pointer-to-whatever
2351 /// types.
2352 static void inferARCWriteback(TypeProcessingState &state,
2353                               QualType &declSpecType) {
2354   Sema &S = state.getSema();
2355   Declarator &declarator = state.getDeclarator();
2356
2357   // TODO: should we care about decl qualifiers?
2358
2359   // Check whether the declarator has the expected form.  We walk
2360   // from the inside out in order to make the block logic work.
2361   unsigned outermostPointerIndex = 0;
2362   bool isBlockPointer = false;
2363   unsigned numPointers = 0;
2364   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2365     unsigned chunkIndex = i;
2366     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2367     switch (chunk.Kind) {
2368     case DeclaratorChunk::Paren:
2369       // Ignore parens.
2370       break;
2371
2372     case DeclaratorChunk::Reference:
2373     case DeclaratorChunk::Pointer:
2374       // Count the number of pointers.  Treat references
2375       // interchangeably as pointers; if they're mis-ordered, normal
2376       // type building will discover that.
2377       outermostPointerIndex = chunkIndex;
2378       numPointers++;
2379       break;
2380
2381     case DeclaratorChunk::BlockPointer:
2382       // If we have a pointer to block pointer, that's an acceptable
2383       // indirect reference; anything else is not an application of
2384       // the rules.
2385       if (numPointers != 1) return;
2386       numPointers++;
2387       outermostPointerIndex = chunkIndex;
2388       isBlockPointer = true;
2389
2390       // We don't care about pointer structure in return values here.
2391       goto done;
2392
2393     case DeclaratorChunk::Array: // suppress if written (id[])?
2394     case DeclaratorChunk::Function:
2395     case DeclaratorChunk::MemberPointer:
2396       return;
2397     }
2398   }
2399  done:
2400
2401   // If we have *one* pointer, then we want to throw the qualifier on
2402   // the declaration-specifiers, which means that it needs to be a
2403   // retainable object type.
2404   if (numPointers == 1) {
2405     // If it's not a retainable object type, the rule doesn't apply.
2406     if (!declSpecType->isObjCRetainableType()) return;
2407
2408     // If it already has lifetime, don't do anything.
2409     if (declSpecType.getObjCLifetime()) return;
2410
2411     // Otherwise, modify the type in-place.
2412     Qualifiers qs;
2413
2414     if (declSpecType->isObjCARCImplicitlyUnretainedType())
2415       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2416     else
2417       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2418     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2419
2420   // If we have *two* pointers, then we want to throw the qualifier on
2421   // the outermost pointer.
2422   } else if (numPointers == 2) {
2423     // If we don't have a block pointer, we need to check whether the
2424     // declaration-specifiers gave us something that will turn into a
2425     // retainable object pointer after we slap the first pointer on it.
2426     if (!isBlockPointer && !declSpecType->isObjCObjectType())
2427       return;
2428
2429     // Look for an explicit lifetime attribute there.
2430     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2431     if (chunk.Kind != DeclaratorChunk::Pointer &&
2432         chunk.Kind != DeclaratorChunk::BlockPointer)
2433       return;
2434     for (const AttributeList *attr = chunk.getAttrs(); attr;
2435            attr = attr->getNext())
2436       if (attr->getKind() == AttributeList::AT_ObjCOwnership)
2437         return;
2438
2439     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2440                                           outermostPointerIndex);
2441
2442   // Any other number of pointers/references does not trigger the rule.
2443   } else return;
2444
2445   // TODO: mark whether we did this inference?
2446 }
2447
2448 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2449                                      SourceLocation FallbackLoc,
2450                                      SourceLocation ConstQualLoc,
2451                                      SourceLocation VolatileQualLoc,
2452                                      SourceLocation RestrictQualLoc,
2453                                      SourceLocation AtomicQualLoc) {
2454   if (!Quals)
2455     return;
2456
2457   struct Qual {
2458     const char *Name;
2459     unsigned Mask;
2460     SourceLocation Loc;
2461   } const QualKinds[4] = {
2462     { "const", DeclSpec::TQ_const, ConstQualLoc },
2463     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2464     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2465     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2466   };
2467
2468   SmallString<32> QualStr;
2469   unsigned NumQuals = 0;
2470   SourceLocation Loc;
2471   FixItHint FixIts[4];
2472
2473   // Build a string naming the redundant qualifiers.
2474   for (unsigned I = 0; I != 4; ++I) {
2475     if (Quals & QualKinds[I].Mask) {
2476       if (!QualStr.empty()) QualStr += ' ';
2477       QualStr += QualKinds[I].Name;
2478
2479       // If we have a location for the qualifier, offer a fixit.
2480       SourceLocation QualLoc = QualKinds[I].Loc;
2481       if (QualLoc.isValid()) {
2482         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2483         if (Loc.isInvalid() ||
2484             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2485           Loc = QualLoc;
2486       }
2487
2488       ++NumQuals;
2489     }
2490   }
2491
2492   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2493     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2494 }
2495
2496 // Diagnose pointless type qualifiers on the return type of a function.
2497 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2498                                                   Declarator &D,
2499                                                   unsigned FunctionChunkIndex) {
2500   if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2501     // FIXME: TypeSourceInfo doesn't preserve location information for
2502     // qualifiers.
2503     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2504                                 RetTy.getLocalCVRQualifiers(),
2505                                 D.getIdentifierLoc());
2506     return;
2507   }
2508
2509   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2510                 End = D.getNumTypeObjects();
2511        OuterChunkIndex != End; ++OuterChunkIndex) {
2512     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2513     switch (OuterChunk.Kind) {
2514     case DeclaratorChunk::Paren:
2515       continue;
2516
2517     case DeclaratorChunk::Pointer: {
2518       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2519       S.diagnoseIgnoredQualifiers(
2520           diag::warn_qual_return_type,
2521           PTI.TypeQuals,
2522           SourceLocation(),
2523           SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2524           SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2525           SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2526           SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
2527       return;
2528     }
2529
2530     case DeclaratorChunk::Function:
2531     case DeclaratorChunk::BlockPointer:
2532     case DeclaratorChunk::Reference:
2533     case DeclaratorChunk::Array:
2534     case DeclaratorChunk::MemberPointer:
2535       // FIXME: We can't currently provide an accurate source location and a
2536       // fix-it hint for these.
2537       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2538       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2539                                   RetTy.getCVRQualifiers() | AtomicQual,
2540                                   D.getIdentifierLoc());
2541       return;
2542     }
2543
2544     llvm_unreachable("unknown declarator chunk kind");
2545   }
2546
2547   // If the qualifiers come from a conversion function type, don't diagnose
2548   // them -- they're not necessarily redundant, since such a conversion
2549   // operator can be explicitly called as "x.operator const int()".
2550   if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2551     return;
2552
2553   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2554   // which are present there.
2555   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2556                               D.getDeclSpec().getTypeQualifiers(),
2557                               D.getIdentifierLoc(),
2558                               D.getDeclSpec().getConstSpecLoc(),
2559                               D.getDeclSpec().getVolatileSpecLoc(),
2560                               D.getDeclSpec().getRestrictSpecLoc(),
2561                               D.getDeclSpec().getAtomicSpecLoc());
2562 }
2563
2564 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2565                                              TypeSourceInfo *&ReturnTypeInfo) {
2566   Sema &SemaRef = state.getSema();
2567   Declarator &D = state.getDeclarator();
2568   QualType T;
2569   ReturnTypeInfo = nullptr;
2570
2571   // The TagDecl owned by the DeclSpec.
2572   TagDecl *OwnedTagDecl = nullptr;
2573
2574   switch (D.getName().getKind()) {
2575   case UnqualifiedId::IK_ImplicitSelfParam:
2576   case UnqualifiedId::IK_OperatorFunctionId:
2577   case UnqualifiedId::IK_Identifier:
2578   case UnqualifiedId::IK_LiteralOperatorId:
2579   case UnqualifiedId::IK_TemplateId:
2580     T = ConvertDeclSpecToType(state);
2581
2582     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2583       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2584       // Owned declaration is embedded in declarator.
2585       OwnedTagDecl->setEmbeddedInDeclarator(true);
2586     }
2587     break;
2588
2589   case UnqualifiedId::IK_ConstructorName:
2590   case UnqualifiedId::IK_ConstructorTemplateId:
2591   case UnqualifiedId::IK_DestructorName:
2592     // Constructors and destructors don't have return types. Use
2593     // "void" instead.
2594     T = SemaRef.Context.VoidTy;
2595     processTypeAttrs(state, T, TAL_DeclSpec,
2596                      D.getDeclSpec().getAttributes().getList());
2597     break;
2598
2599   case UnqualifiedId::IK_ConversionFunctionId:
2600     // The result type of a conversion function is the type that it
2601     // converts to.
2602     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2603                                   &ReturnTypeInfo);
2604     break;
2605   }
2606
2607   if (D.getAttributes())
2608     distributeTypeAttrsFromDeclarator(state, T);
2609
2610   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2611   if (D.getDeclSpec().containsPlaceholderType()) {
2612     int Error = -1;
2613
2614     switch (D.getContext()) {
2615     case Declarator::LambdaExprContext:
2616       llvm_unreachable("Can't specify a type specifier in lambda grammar");
2617     case Declarator::ObjCParameterContext:
2618     case Declarator::ObjCResultContext:
2619     case Declarator::PrototypeContext:
2620       Error = 0;  
2621       break;
2622     case Declarator::LambdaExprParameterContext:
2623       // In C++14, generic lambdas allow 'auto' in their parameters.
2624       if (!(SemaRef.getLangOpts().CPlusPlus14 
2625               && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
2626         Error = 16;
2627       break;
2628     case Declarator::MemberContext: {
2629       if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
2630           D.isFunctionDeclarator())
2631         break;
2632       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
2633       switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2634       case TTK_Enum: llvm_unreachable("unhandled tag kind");
2635       case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
2636       case TTK_Union:  Error = Cxx ? 3 : 4; /* Union member */ break;
2637       case TTK_Class:  Error = 5; /* Class member */ break;
2638       case TTK_Interface: Error = 6; /* Interface member */ break;
2639       }
2640       break;
2641     }
2642     case Declarator::CXXCatchContext:
2643     case Declarator::ObjCCatchContext:
2644       Error = 7; // Exception declaration
2645       break;
2646     case Declarator::TemplateParamContext:
2647       Error = 8; // Template parameter
2648       break;
2649     case Declarator::BlockLiteralContext:
2650       Error = 9; // Block literal
2651       break;
2652     case Declarator::TemplateTypeArgContext:
2653       Error = 10; // Template type argument
2654       break;
2655     case Declarator::AliasDeclContext:
2656     case Declarator::AliasTemplateContext:
2657       Error = 12; // Type alias
2658       break;
2659     case Declarator::TrailingReturnContext:
2660       if (!SemaRef.getLangOpts().CPlusPlus14 ||
2661           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
2662         Error = 13; // Function return type
2663       break;
2664     case Declarator::ConversionIdContext:
2665       if (!SemaRef.getLangOpts().CPlusPlus14 ||
2666           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
2667         Error = 14; // conversion-type-id
2668       break;
2669     case Declarator::TypeNameContext:
2670       Error = 15; // Generic
2671       break;
2672     case Declarator::FileContext:
2673     case Declarator::BlockContext:
2674     case Declarator::ForContext:
2675     case Declarator::ConditionContext:
2676       break;
2677     case Declarator::CXXNewContext:
2678       if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
2679         Error = 17; // 'new' type
2680       break;
2681     case Declarator::KNRTypeListContext:
2682       Error = 18; // K&R function parameter
2683       break;
2684     }
2685
2686     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2687       Error = 11;
2688
2689     // In Objective-C it is an error to use 'auto' on a function declarator
2690     // (and everywhere for '__auto_type').
2691     if (D.isFunctionDeclarator() &&
2692         (!SemaRef.getLangOpts().CPlusPlus11 ||
2693          D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type))
2694       Error = 13;
2695
2696     bool HaveTrailing = false;
2697
2698     // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2699     // contains a trailing return type. That is only legal at the outermost
2700     // level. Check all declarator chunks (outermost first) anyway, to give
2701     // better diagnostics.
2702     // We don't support '__auto_type' with trailing return types.
2703     if (SemaRef.getLangOpts().CPlusPlus11 &&
2704         D.getDeclSpec().getTypeSpecType() != DeclSpec::TST_auto_type) {
2705       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2706         unsigned chunkIndex = e - i - 1;
2707         state.setCurrentChunkIndex(chunkIndex);
2708         DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2709         if (DeclType.Kind == DeclaratorChunk::Function) {
2710           const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2711           if (FTI.hasTrailingReturnType()) {
2712             HaveTrailing = true;
2713             Error = -1;
2714             break;
2715           }
2716         }
2717       }
2718     }
2719
2720     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2721     if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2722       AutoRange = D.getName().getSourceRange();
2723
2724     if (Error != -1) {
2725       unsigned Keyword;
2726       switch (D.getDeclSpec().getTypeSpecType()) {
2727       case DeclSpec::TST_auto: Keyword = 0; break;
2728       case DeclSpec::TST_decltype_auto: Keyword = 1; break;
2729       case DeclSpec::TST_auto_type: Keyword = 2; break;
2730       default: llvm_unreachable("unknown auto TypeSpecType");
2731       }
2732       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2733         << Keyword << Error << AutoRange;
2734       T = SemaRef.Context.IntTy;
2735       D.setInvalidType(true);
2736     } else if (!HaveTrailing) {
2737       // If there was a trailing return type, we already got
2738       // warn_cxx98_compat_trailing_return_type in the parser.
2739       SemaRef.Diag(AutoRange.getBegin(),
2740                    diag::warn_cxx98_compat_auto_type_specifier)
2741         << AutoRange;
2742     }
2743   }
2744
2745   if (SemaRef.getLangOpts().CPlusPlus &&
2746       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2747     // Check the contexts where C++ forbids the declaration of a new class
2748     // or enumeration in a type-specifier-seq.
2749     unsigned DiagID = 0;
2750     switch (D.getContext()) {
2751     case Declarator::TrailingReturnContext:
2752       // Class and enumeration definitions are syntactically not allowed in
2753       // trailing return types.
2754       llvm_unreachable("parser should not have allowed this");
2755       break;
2756     case Declarator::FileContext:
2757     case Declarator::MemberContext:
2758     case Declarator::BlockContext:
2759     case Declarator::ForContext:
2760     case Declarator::BlockLiteralContext:
2761     case Declarator::LambdaExprContext:
2762       // C++11 [dcl.type]p3:
2763       //   A type-specifier-seq shall not define a class or enumeration unless
2764       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
2765       //   the declaration of a template-declaration.
2766     case Declarator::AliasDeclContext:
2767       break;
2768     case Declarator::AliasTemplateContext:
2769       DiagID = diag::err_type_defined_in_alias_template;
2770       break;
2771     case Declarator::TypeNameContext:
2772     case Declarator::ConversionIdContext:
2773     case Declarator::TemplateParamContext:
2774     case Declarator::CXXNewContext:
2775     case Declarator::CXXCatchContext:
2776     case Declarator::ObjCCatchContext:
2777     case Declarator::TemplateTypeArgContext:
2778       DiagID = diag::err_type_defined_in_type_specifier;
2779       break;
2780     case Declarator::PrototypeContext:
2781     case Declarator::LambdaExprParameterContext:
2782     case Declarator::ObjCParameterContext:
2783     case Declarator::ObjCResultContext:
2784     case Declarator::KNRTypeListContext:
2785       // C++ [dcl.fct]p6:
2786       //   Types shall not be defined in return or parameter types.
2787       DiagID = diag::err_type_defined_in_param_type;
2788       break;
2789     case Declarator::ConditionContext:
2790       // C++ 6.4p2:
2791       // The type-specifier-seq shall not contain typedef and shall not declare
2792       // a new class or enumeration.
2793       DiagID = diag::err_type_defined_in_condition;
2794       break;
2795     }
2796
2797     if (DiagID != 0) {
2798       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
2799           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2800       D.setInvalidType(true);
2801     }
2802   }
2803
2804   assert(!T.isNull() && "This function should not return a null type");
2805   return T;
2806 }
2807
2808 /// Produce an appropriate diagnostic for an ambiguity between a function
2809 /// declarator and a C++ direct-initializer.
2810 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2811                                        DeclaratorChunk &DeclType, QualType RT) {
2812   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2813   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2814
2815   // If the return type is void there is no ambiguity.
2816   if (RT->isVoidType())
2817     return;
2818
2819   // An initializer for a non-class type can have at most one argument.
2820   if (!RT->isRecordType() && FTI.NumParams > 1)
2821     return;
2822
2823   // An initializer for a reference must have exactly one argument.
2824   if (RT->isReferenceType() && FTI.NumParams != 1)
2825     return;
2826
2827   // Only warn if this declarator is declaring a function at block scope, and
2828   // doesn't have a storage class (such as 'extern') specified.
2829   if (!D.isFunctionDeclarator() ||
2830       D.getFunctionDefinitionKind() != FDK_Declaration ||
2831       !S.CurContext->isFunctionOrMethod() ||
2832       D.getDeclSpec().getStorageClassSpec()
2833         != DeclSpec::SCS_unspecified)
2834     return;
2835
2836   // Inside a condition, a direct initializer is not permitted. We allow one to
2837   // be parsed in order to give better diagnostics in condition parsing.
2838   if (D.getContext() == Declarator::ConditionContext)
2839     return;
2840
2841   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2842
2843   S.Diag(DeclType.Loc,
2844          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
2845                        : diag::warn_empty_parens_are_function_decl)
2846       << ParenRange;
2847
2848   // If the declaration looks like:
2849   //   T var1,
2850   //   f();
2851   // and name lookup finds a function named 'f', then the ',' was
2852   // probably intended to be a ';'.
2853   if (!D.isFirstDeclarator() && D.getIdentifier()) {
2854     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2855     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2856     if (Comma.getFileID() != Name.getFileID() ||
2857         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2858       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2859                           Sema::LookupOrdinaryName);
2860       if (S.LookupName(Result, S.getCurScope()))
2861         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2862           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2863           << D.getIdentifier();
2864     }
2865   }
2866
2867   if (FTI.NumParams > 0) {
2868     // For a declaration with parameters, eg. "T var(T());", suggest adding
2869     // parens around the first parameter to turn the declaration into a
2870     // variable declaration.
2871     SourceRange Range = FTI.Params[0].Param->getSourceRange();
2872     SourceLocation B = Range.getBegin();
2873     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
2874     // FIXME: Maybe we should suggest adding braces instead of parens
2875     // in C++11 for classes that don't have an initializer_list constructor.
2876     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2877       << FixItHint::CreateInsertion(B, "(")
2878       << FixItHint::CreateInsertion(E, ")");
2879   } else {
2880     // For a declaration without parameters, eg. "T var();", suggest replacing
2881     // the parens with an initializer to turn the declaration into a variable
2882     // declaration.
2883     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2884
2885     // Empty parens mean value-initialization, and no parens mean
2886     // default initialization. These are equivalent if the default
2887     // constructor is user-provided or if zero-initialization is a
2888     // no-op.
2889     if (RD && RD->hasDefinition() &&
2890         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2891       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2892         << FixItHint::CreateRemoval(ParenRange);
2893     else {
2894       std::string Init =
2895           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
2896       if (Init.empty() && S.LangOpts.CPlusPlus11)
2897         Init = "{}";
2898       if (!Init.empty())
2899         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2900           << FixItHint::CreateReplacement(ParenRange, Init);
2901     }
2902   }
2903 }
2904
2905 /// Helper for figuring out the default CC for a function declarator type.  If
2906 /// this is the outermost chunk, then we can determine the CC from the
2907 /// declarator context.  If not, then this could be either a member function
2908 /// type or normal function type.
2909 static CallingConv
2910 getCCForDeclaratorChunk(Sema &S, Declarator &D,
2911                         const DeclaratorChunk::FunctionTypeInfo &FTI,
2912                         unsigned ChunkIndex) {
2913   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
2914
2915   bool IsCXXInstanceMethod = false;
2916
2917   if (S.getLangOpts().CPlusPlus) {
2918     // Look inwards through parentheses to see if this chunk will form a
2919     // member pointer type or if we're the declarator.  Any type attributes
2920     // between here and there will override the CC we choose here.
2921     unsigned I = ChunkIndex;
2922     bool FoundNonParen = false;
2923     while (I && !FoundNonParen) {
2924       --I;
2925       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
2926         FoundNonParen = true;
2927     }
2928
2929     if (FoundNonParen) {
2930       // If we're not the declarator, we're a regular function type unless we're
2931       // in a member pointer.
2932       IsCXXInstanceMethod =
2933           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
2934     } else if (D.getContext() == Declarator::LambdaExprContext) {
2935       // This can only be a call operator for a lambda, which is an instance
2936       // method.
2937       IsCXXInstanceMethod = true;
2938     } else {
2939       // We're the innermost decl chunk, so must be a function declarator.
2940       assert(D.isFunctionDeclarator());
2941
2942       // If we're inside a record, we're declaring a method, but it could be
2943       // explicitly or implicitly static.
2944       IsCXXInstanceMethod =
2945           D.isFirstDeclarationOfMember() &&
2946           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
2947           !D.isStaticMember();
2948     }
2949   }
2950
2951   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
2952                                                          IsCXXInstanceMethod);
2953
2954   // Attribute AT_OpenCLKernel affects the calling convention only on
2955   // the SPIR target, hence it cannot be treated as a calling
2956   // convention attribute. This is the simplest place to infer
2957   // "spir_kernel" for OpenCL kernels on SPIR.
2958   if (CC == CC_SpirFunction) {
2959     for (const AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
2960          Attr; Attr = Attr->getNext()) {
2961       if (Attr->getKind() == AttributeList::AT_OpenCLKernel) {
2962         CC = CC_SpirKernel;
2963         break;
2964       }
2965     }
2966   }
2967
2968   return CC;
2969 }
2970
2971 namespace {
2972   /// A simple notion of pointer kinds, which matches up with the various
2973   /// pointer declarators.
2974   enum class SimplePointerKind {
2975     Pointer,
2976     BlockPointer,
2977     MemberPointer,
2978   };
2979 }
2980
2981 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
2982   switch (nullability) {
2983   case NullabilityKind::NonNull:
2984     if (!Ident__Nonnull)
2985       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
2986     return Ident__Nonnull;
2987
2988   case NullabilityKind::Nullable:
2989     if (!Ident__Nullable)
2990       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
2991     return Ident__Nullable;
2992
2993   case NullabilityKind::Unspecified:
2994     if (!Ident__Null_unspecified)
2995       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
2996     return Ident__Null_unspecified;
2997   }
2998   llvm_unreachable("Unknown nullability kind.");
2999 }
3000
3001 /// Retrieve the identifier "NSError".
3002 IdentifierInfo *Sema::getNSErrorIdent() {
3003   if (!Ident_NSError)
3004     Ident_NSError = PP.getIdentifierInfo("NSError");
3005
3006   return Ident_NSError;
3007 }
3008
3009 /// Check whether there is a nullability attribute of any kind in the given
3010 /// attribute list.
3011 static bool hasNullabilityAttr(const AttributeList *attrs) {
3012   for (const AttributeList *attr = attrs; attr;
3013        attr = attr->getNext()) {
3014     if (attr->getKind() == AttributeList::AT_TypeNonNull ||
3015         attr->getKind() == AttributeList::AT_TypeNullable ||
3016         attr->getKind() == AttributeList::AT_TypeNullUnspecified)
3017       return true;
3018   }
3019
3020   return false;
3021 }
3022
3023 namespace {
3024   /// Describes the kind of a pointer a declarator describes.
3025   enum class PointerDeclaratorKind {
3026     // Not a pointer.
3027     NonPointer,
3028     // Single-level pointer.
3029     SingleLevelPointer,
3030     // Multi-level pointer (of any pointer kind).
3031     MultiLevelPointer,
3032     // CFFooRef*
3033     MaybePointerToCFRef,
3034     // CFErrorRef*
3035     CFErrorRefPointer,
3036     // NSError**
3037     NSErrorPointerPointer,
3038   };
3039 }
3040
3041 /// Classify the given declarator, whose type-specified is \c type, based on
3042 /// what kind of pointer it refers to.
3043 ///
3044 /// This is used to determine the default nullability.
3045 static PointerDeclaratorKind classifyPointerDeclarator(Sema &S,
3046                                                        QualType type,
3047                                                        Declarator &declarator) {
3048   unsigned numNormalPointers = 0;
3049
3050   // For any dependent type, we consider it a non-pointer.
3051   if (type->isDependentType())
3052     return PointerDeclaratorKind::NonPointer;
3053
3054   // Look through the declarator chunks to identify pointers.
3055   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3056     DeclaratorChunk &chunk = declarator.getTypeObject(i);
3057     switch (chunk.Kind) {
3058     case DeclaratorChunk::Array:
3059     case DeclaratorChunk::Function:
3060       break;
3061
3062     case DeclaratorChunk::BlockPointer:
3063     case DeclaratorChunk::MemberPointer:
3064       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3065                                    : PointerDeclaratorKind::SingleLevelPointer;
3066
3067     case DeclaratorChunk::Paren:
3068     case DeclaratorChunk::Reference:
3069       continue;
3070
3071     case DeclaratorChunk::Pointer:
3072       ++numNormalPointers;
3073       if (numNormalPointers > 2)
3074         return PointerDeclaratorKind::MultiLevelPointer;
3075       continue;
3076     }
3077   }
3078
3079   // Then, dig into the type specifier itself.
3080   unsigned numTypeSpecifierPointers = 0;
3081   do {
3082     // Decompose normal pointers.
3083     if (auto ptrType = type->getAs<PointerType>()) {
3084       ++numNormalPointers;
3085
3086       if (numNormalPointers > 2)
3087         return PointerDeclaratorKind::MultiLevelPointer;
3088
3089       type = ptrType->getPointeeType();
3090       ++numTypeSpecifierPointers;
3091       continue;
3092     }
3093
3094     // Decompose block pointers.
3095     if (type->getAs<BlockPointerType>()) {
3096       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3097                                    : PointerDeclaratorKind::SingleLevelPointer;
3098     }
3099
3100     // Decompose member pointers.
3101     if (type->getAs<MemberPointerType>()) {
3102       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3103                                    : PointerDeclaratorKind::SingleLevelPointer;
3104     }
3105
3106     // Look at Objective-C object pointers.
3107     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3108       ++numNormalPointers;
3109       ++numTypeSpecifierPointers;
3110
3111       // If this is NSError**, report that.
3112       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3113         if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3114             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3115           return PointerDeclaratorKind::NSErrorPointerPointer;
3116         }
3117       }
3118
3119       break;
3120     }
3121
3122     // Look at Objective-C class types.
3123     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3124       if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3125         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3126           return PointerDeclaratorKind::NSErrorPointerPointer;;
3127       }
3128
3129       break;
3130     }
3131
3132     // If at this point we haven't seen a pointer, we won't see one.
3133     if (numNormalPointers == 0)
3134       return PointerDeclaratorKind::NonPointer;
3135
3136     if (auto recordType = type->getAs<RecordType>()) {
3137       RecordDecl *recordDecl = recordType->getDecl();
3138
3139       bool isCFError = false;
3140       if (S.CFError) {
3141         // If we already know about CFError, test it directly.
3142         isCFError = (S.CFError == recordDecl);
3143       } else {
3144         // Check whether this is CFError, which we identify based on its bridge
3145         // to NSError.
3146         if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3147           if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>()) {
3148             if (bridgeAttr->getBridgedType() == S.getNSErrorIdent()) {
3149               S.CFError = recordDecl;
3150               isCFError = true;
3151             }
3152           }
3153         }
3154       }
3155
3156       // If this is CFErrorRef*, report it as such.
3157       if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3158         return PointerDeclaratorKind::CFErrorRefPointer;
3159       }
3160       break;
3161     }
3162
3163     break;
3164   } while (true);
3165
3166
3167   switch (numNormalPointers) {
3168   case 0:
3169     return PointerDeclaratorKind::NonPointer;
3170
3171   case 1:
3172     return PointerDeclaratorKind::SingleLevelPointer;
3173
3174   case 2:
3175     return PointerDeclaratorKind::MaybePointerToCFRef;
3176
3177   default:
3178     return PointerDeclaratorKind::MultiLevelPointer;
3179   }
3180 }
3181
3182 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3183                                                     SourceLocation loc) {
3184   // If we're anywhere in a function, method, or closure context, don't perform
3185   // completeness checks.
3186   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3187     if (ctx->isFunctionOrMethod())
3188       return FileID();
3189
3190     if (ctx->isFileContext())
3191       break;
3192   }
3193
3194   // We only care about the expansion location.
3195   loc = S.SourceMgr.getExpansionLoc(loc);
3196   FileID file = S.SourceMgr.getFileID(loc);
3197   if (file.isInvalid())
3198     return FileID();
3199
3200   // Retrieve file information.
3201   bool invalid = false;
3202   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3203   if (invalid || !sloc.isFile())
3204     return FileID();
3205
3206   // We don't want to perform completeness checks on the main file or in
3207   // system headers.
3208   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3209   if (fileInfo.getIncludeLoc().isInvalid())
3210     return FileID();
3211   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3212       S.Diags.getSuppressSystemWarnings()) {
3213     return FileID();
3214   }
3215
3216   return file;
3217 }
3218
3219 /// Check for consistent use of nullability.
3220 static void checkNullabilityConsistency(TypeProcessingState &state,
3221                                         SimplePointerKind pointerKind,
3222                                         SourceLocation pointerLoc) {
3223   Sema &S = state.getSema();
3224
3225   // Determine which file we're performing consistency checking for.
3226   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
3227   if (file.isInvalid())
3228     return;
3229
3230   // If we haven't seen any type nullability in this file, we won't warn now
3231   // about anything.
3232   FileNullability &fileNullability = S.NullabilityMap[file];
3233   if (!fileNullability.SawTypeNullability) {
3234     // If this is the first pointer declarator in the file, record it.
3235     if (fileNullability.PointerLoc.isInvalid() &&
3236         !S.Context.getDiagnostics().isIgnored(diag::warn_nullability_missing,
3237                                               pointerLoc)) {
3238       fileNullability.PointerLoc = pointerLoc;
3239       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
3240     }
3241
3242     return;
3243   }
3244
3245   // Complain about missing nullability.
3246   S.Diag(pointerLoc, diag::warn_nullability_missing)
3247     << static_cast<unsigned>(pointerKind);
3248 }
3249
3250 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
3251                                                 QualType declSpecType,
3252                                                 TypeSourceInfo *TInfo) {
3253   // The TypeSourceInfo that this function returns will not be a null type.
3254   // If there is an error, this function will fill in a dummy type as fallback.
3255   QualType T = declSpecType;
3256   Declarator &D = state.getDeclarator();
3257   Sema &S = state.getSema();
3258   ASTContext &Context = S.Context;
3259   const LangOptions &LangOpts = S.getLangOpts();
3260
3261   // The name we're declaring, if any.
3262   DeclarationName Name;
3263   if (D.getIdentifier())
3264     Name = D.getIdentifier();
3265
3266   // Does this declaration declare a typedef-name?
3267   bool IsTypedefName =
3268     D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
3269     D.getContext() == Declarator::AliasDeclContext ||
3270     D.getContext() == Declarator::AliasTemplateContext;
3271
3272   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
3273   bool IsQualifiedFunction = T->isFunctionProtoType() &&
3274       (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
3275        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
3276
3277   // If T is 'decltype(auto)', the only declarators we can have are parens
3278   // and at most one function declarator if this is a function declaration.
3279   if (const AutoType *AT = T->getAs<AutoType>()) {
3280     if (AT->isDecltypeAuto()) {
3281       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3282         unsigned Index = E - I - 1;
3283         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
3284         unsigned DiagId = diag::err_decltype_auto_compound_type;
3285         unsigned DiagKind = 0;
3286         switch (DeclChunk.Kind) {
3287         case DeclaratorChunk::Paren:
3288           continue;
3289         case DeclaratorChunk::Function: {
3290           unsigned FnIndex;
3291           if (D.isFunctionDeclarationContext() &&
3292               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
3293             continue;
3294           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
3295           break;
3296         }
3297         case DeclaratorChunk::Pointer:
3298         case DeclaratorChunk::BlockPointer:
3299         case DeclaratorChunk::MemberPointer:
3300           DiagKind = 0;
3301           break;
3302         case DeclaratorChunk::Reference:
3303           DiagKind = 1;
3304           break;
3305         case DeclaratorChunk::Array:
3306           DiagKind = 2;
3307           break;
3308         }
3309
3310         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
3311         D.setInvalidType(true);
3312         break;
3313       }
3314     }
3315   }
3316
3317   // Determine whether we should infer _Nonnull on pointer types.
3318   Optional<NullabilityKind> inferNullability;
3319   bool inferNullabilityCS = false;
3320   bool inferNullabilityInnerOnly = false;
3321   bool inferNullabilityInnerOnlyComplete = false;
3322
3323   // Are we in an assume-nonnull region?
3324   bool inAssumeNonNullRegion = false;
3325   if (S.PP.getPragmaAssumeNonNullLoc().isValid()) {
3326     inAssumeNonNullRegion = true;
3327     // Determine which file we saw the assume-nonnull region in.
3328     FileID file = getNullabilityCompletenessCheckFileID(
3329                     S, S.PP.getPragmaAssumeNonNullLoc());
3330     if (file.isValid()) {
3331       FileNullability &fileNullability = S.NullabilityMap[file];
3332
3333       // If we haven't seen any type nullability before, now we have.
3334       if (!fileNullability.SawTypeNullability) {
3335         if (fileNullability.PointerLoc.isValid()) {
3336           S.Diag(fileNullability.PointerLoc, diag::warn_nullability_missing)
3337             << static_cast<unsigned>(fileNullability.PointerKind);
3338         }
3339
3340         fileNullability.SawTypeNullability = true;
3341       }
3342     }
3343   }
3344
3345   // Whether to complain about missing nullability specifiers or not.
3346   enum {
3347     /// Never complain.
3348     CAMN_No,
3349     /// Complain on the inner pointers (but not the outermost
3350     /// pointer).
3351     CAMN_InnerPointers,
3352     /// Complain about any pointers that don't have nullability
3353     /// specified or inferred.
3354     CAMN_Yes
3355   } complainAboutMissingNullability = CAMN_No;
3356   unsigned NumPointersRemaining = 0;
3357
3358   if (IsTypedefName) {
3359     // For typedefs, we do not infer any nullability (the default),
3360     // and we only complain about missing nullability specifiers on
3361     // inner pointers.
3362     complainAboutMissingNullability = CAMN_InnerPointers;
3363
3364     if (T->canHaveNullability() && !T->getNullability(S.Context)) {
3365       ++NumPointersRemaining;
3366     }
3367
3368     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
3369       DeclaratorChunk &chunk = D.getTypeObject(i);
3370       switch (chunk.Kind) {
3371       case DeclaratorChunk::Array:
3372       case DeclaratorChunk::Function:
3373         break;
3374
3375       case DeclaratorChunk::BlockPointer:
3376       case DeclaratorChunk::MemberPointer:
3377         ++NumPointersRemaining;
3378         break;
3379
3380       case DeclaratorChunk::Paren:
3381       case DeclaratorChunk::Reference:
3382         continue;
3383
3384       case DeclaratorChunk::Pointer:
3385         ++NumPointersRemaining;
3386         continue;
3387       }
3388     }
3389   } else {
3390     bool isFunctionOrMethod = false;
3391     switch (auto context = state.getDeclarator().getContext()) {
3392     case Declarator::ObjCParameterContext:
3393     case Declarator::ObjCResultContext:
3394     case Declarator::PrototypeContext:
3395     case Declarator::TrailingReturnContext:
3396       isFunctionOrMethod = true;
3397       // fallthrough
3398
3399     case Declarator::MemberContext:
3400       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
3401         complainAboutMissingNullability = CAMN_No;
3402         break;
3403       }
3404
3405       // Weak properties are inferred to be nullable.
3406       if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
3407         inferNullability = NullabilityKind::Nullable;
3408         break;
3409       }
3410
3411       // fallthrough
3412
3413     case Declarator::FileContext:
3414     case Declarator::KNRTypeListContext:
3415       complainAboutMissingNullability = CAMN_Yes;
3416
3417       // Nullability inference depends on the type and declarator.
3418       switch (classifyPointerDeclarator(S, T, D)) {
3419       case PointerDeclaratorKind::NonPointer:
3420       case PointerDeclaratorKind::MultiLevelPointer:
3421         // Cannot infer nullability.
3422         break;
3423
3424       case PointerDeclaratorKind::SingleLevelPointer:
3425         // Infer _Nonnull if we are in an assumes-nonnull region.
3426         if (inAssumeNonNullRegion) {
3427           inferNullability = NullabilityKind::NonNull;
3428           inferNullabilityCS = (context == Declarator::ObjCParameterContext ||
3429                                 context == Declarator::ObjCResultContext);
3430         }
3431         break;
3432
3433       case PointerDeclaratorKind::CFErrorRefPointer:
3434       case PointerDeclaratorKind::NSErrorPointerPointer:
3435         // Within a function or method signature, infer _Nullable at both
3436         // levels.
3437         if (isFunctionOrMethod && inAssumeNonNullRegion)
3438           inferNullability = NullabilityKind::Nullable;
3439         break;
3440
3441       case PointerDeclaratorKind::MaybePointerToCFRef:
3442         if (isFunctionOrMethod) {
3443           // On pointer-to-pointer parameters marked cf_returns_retained or
3444           // cf_returns_not_retained, if the outer pointer is explicit then
3445           // infer the inner pointer as _Nullable.
3446           auto hasCFReturnsAttr = [](const AttributeList *NextAttr) -> bool {
3447             while (NextAttr) {
3448               if (NextAttr->getKind() == AttributeList::AT_CFReturnsRetained ||
3449                   NextAttr->getKind() == AttributeList::AT_CFReturnsNotRetained)
3450                 return true;
3451               NextAttr = NextAttr->getNext();
3452             }
3453             return false;
3454           };
3455           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
3456             if (hasCFReturnsAttr(D.getAttributes()) ||
3457                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
3458                 hasCFReturnsAttr(D.getDeclSpec().getAttributes().getList())) {
3459               inferNullability = NullabilityKind::Nullable;
3460               inferNullabilityInnerOnly = true;
3461             }
3462           }
3463         }
3464         break;
3465       }
3466       break;
3467
3468     case Declarator::ConversionIdContext:
3469       complainAboutMissingNullability = CAMN_Yes;
3470       break;
3471
3472     case Declarator::AliasDeclContext:
3473     case Declarator::AliasTemplateContext:
3474     case Declarator::BlockContext:
3475     case Declarator::BlockLiteralContext:
3476     case Declarator::ConditionContext:
3477     case Declarator::CXXCatchContext:
3478     case Declarator::CXXNewContext:
3479     case Declarator::ForContext:
3480     case Declarator::LambdaExprContext:
3481     case Declarator::LambdaExprParameterContext:
3482     case Declarator::ObjCCatchContext:
3483     case Declarator::TemplateParamContext:
3484     case Declarator::TemplateTypeArgContext:
3485     case Declarator::TypeNameContext:
3486       // Don't infer in these contexts.
3487       break;
3488     }
3489   }
3490
3491   // Local function that checks the nullability for a given pointer declarator.
3492   // Returns true if _Nonnull was inferred.
3493   auto inferPointerNullability = [&](SimplePointerKind pointerKind,
3494                                      SourceLocation pointerLoc,
3495                                      AttributeList *&attrs) -> AttributeList * {
3496     // We've seen a pointer.
3497     if (NumPointersRemaining > 0)
3498       --NumPointersRemaining;
3499
3500     // If a nullability attribute is present, there's nothing to do.
3501     if (hasNullabilityAttr(attrs))
3502       return nullptr;
3503
3504     // If we're supposed to infer nullability, do so now.
3505     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
3506       AttributeList::Syntax syntax
3507         = inferNullabilityCS ? AttributeList::AS_ContextSensitiveKeyword
3508                              : AttributeList::AS_Keyword;
3509       AttributeList *nullabilityAttr = state.getDeclarator().getAttributePool()
3510                                          .create(
3511                                            S.getNullabilityKeyword(
3512                                              *inferNullability),
3513                                            SourceRange(pointerLoc),
3514                                            nullptr, SourceLocation(),
3515                                            nullptr, 0, syntax);
3516
3517       spliceAttrIntoList(*nullabilityAttr, attrs);
3518
3519       if (inferNullabilityCS) {
3520         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
3521           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
3522       }
3523
3524       if (inferNullabilityInnerOnly)
3525         inferNullabilityInnerOnlyComplete = true;
3526       return nullabilityAttr;
3527     }
3528
3529     // If we're supposed to complain about missing nullability, do so
3530     // now if it's truly missing.
3531     switch (complainAboutMissingNullability) {
3532     case CAMN_No:
3533       break;
3534
3535     case CAMN_InnerPointers:
3536       if (NumPointersRemaining == 0)
3537         break;
3538       // Fallthrough.
3539
3540     case CAMN_Yes:
3541       checkNullabilityConsistency(state, pointerKind, pointerLoc);
3542     }
3543     return nullptr;
3544   };
3545
3546   // If the type itself could have nullability but does not, infer pointer
3547   // nullability and perform consistency checking.
3548   if (T->canHaveNullability() && S.ActiveTemplateInstantiations.empty() &&
3549       !T->getNullability(S.Context)) {
3550     SimplePointerKind pointerKind = SimplePointerKind::Pointer;
3551     if (T->isBlockPointerType())
3552       pointerKind = SimplePointerKind::BlockPointer;
3553     else if (T->isMemberPointerType())
3554       pointerKind = SimplePointerKind::MemberPointer;
3555
3556     if (auto *attr = inferPointerNullability(
3557                        pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
3558                        D.getMutableDeclSpec().getAttributes().getListRef())) {
3559       T = Context.getAttributedType(
3560             AttributedType::getNullabilityAttrKind(*inferNullability), T, T);
3561       attr->setUsedAsTypeAttr();
3562     }
3563   }
3564
3565   // Walk the DeclTypeInfo, building the recursive type as we go.
3566   // DeclTypeInfos are ordered from the identifier out, which is
3567   // opposite of what we want :).
3568   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3569     unsigned chunkIndex = e - i - 1;
3570     state.setCurrentChunkIndex(chunkIndex);
3571     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
3572     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
3573     switch (DeclType.Kind) {
3574     case DeclaratorChunk::Paren:
3575       T = S.BuildParenType(T);
3576       break;
3577     case DeclaratorChunk::BlockPointer:
3578       // If blocks are disabled, emit an error.
3579       if (!LangOpts.Blocks)
3580         S.Diag(DeclType.Loc, diag::err_blocks_disable);
3581
3582       // Handle pointer nullability.
3583       inferPointerNullability(SimplePointerKind::BlockPointer,
3584                               DeclType.Loc, DeclType.getAttrListRef());
3585
3586       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
3587       if (DeclType.Cls.TypeQuals)
3588         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
3589       break;
3590     case DeclaratorChunk::Pointer:
3591       // Verify that we're not building a pointer to pointer to function with
3592       // exception specification.
3593       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
3594         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
3595         D.setInvalidType(true);
3596         // Build the type anyway.
3597       }
3598
3599       // Handle pointer nullability
3600       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
3601                               DeclType.getAttrListRef());
3602
3603       if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
3604         T = Context.getObjCObjectPointerType(T);
3605         if (DeclType.Ptr.TypeQuals)
3606           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
3607         break;
3608       }
3609       T = S.BuildPointerType(T, DeclType.Loc, Name);
3610       if (DeclType.Ptr.TypeQuals)
3611         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
3612
3613       break;
3614     case DeclaratorChunk::Reference: {
3615       // Verify that we're not building a reference to pointer to function with
3616       // exception specification.
3617       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
3618         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
3619         D.setInvalidType(true);
3620         // Build the type anyway.
3621       }
3622       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
3623
3624       if (DeclType.Ref.HasRestrict)
3625         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
3626       break;
3627     }
3628     case DeclaratorChunk::Array: {
3629       // Verify that we're not building an array of pointers to function with
3630       // exception specification.
3631       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
3632         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
3633         D.setInvalidType(true);
3634         // Build the type anyway.
3635       }
3636       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
3637       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
3638       ArrayType::ArraySizeModifier ASM;
3639       if (ATI.isStar)
3640         ASM = ArrayType::Star;
3641       else if (ATI.hasStatic)
3642         ASM = ArrayType::Static;
3643       else
3644         ASM = ArrayType::Normal;
3645       if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
3646         // FIXME: This check isn't quite right: it allows star in prototypes
3647         // for function definitions, and disallows some edge cases detailed
3648         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
3649         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
3650         ASM = ArrayType::Normal;
3651         D.setInvalidType(true);
3652       }
3653
3654       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
3655       // shall appear only in a declaration of a function parameter with an
3656       // array type, ...
3657       if (ASM == ArrayType::Static || ATI.TypeQuals) {
3658         if (!(D.isPrototypeContext() ||
3659               D.getContext() == Declarator::KNRTypeListContext)) {
3660           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
3661               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
3662           // Remove the 'static' and the type qualifiers.
3663           if (ASM == ArrayType::Static)
3664             ASM = ArrayType::Normal;
3665           ATI.TypeQuals = 0;
3666           D.setInvalidType(true);
3667         }
3668
3669         // C99 6.7.5.2p1: ... and then only in the outermost array type
3670         // derivation.
3671         unsigned x = chunkIndex;
3672         while (x != 0) {
3673           // Walk outwards along the declarator chunks.
3674           x--;
3675           const DeclaratorChunk &DC = D.getTypeObject(x);
3676           switch (DC.Kind) {
3677           case DeclaratorChunk::Paren:
3678             continue;
3679           case DeclaratorChunk::Array:
3680           case DeclaratorChunk::Pointer:
3681           case DeclaratorChunk::Reference:
3682           case DeclaratorChunk::MemberPointer:
3683             S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
3684               (ASM == ArrayType::Static ? "'static'" : "type qualifier");
3685             if (ASM == ArrayType::Static)
3686               ASM = ArrayType::Normal;
3687             ATI.TypeQuals = 0;
3688             D.setInvalidType(true);
3689             break;
3690           case DeclaratorChunk::Function:
3691           case DeclaratorChunk::BlockPointer:
3692             // These are invalid anyway, so just ignore.
3693             break;
3694           }
3695         }
3696       }
3697       const AutoType *AT = T->getContainedAutoType();
3698       // Allow arrays of auto if we are a generic lambda parameter.
3699       // i.e. [](auto (&array)[5]) { return array[0]; }; OK
3700       if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
3701         // We've already diagnosed this for decltype(auto).
3702         if (!AT->isDecltypeAuto())
3703           S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
3704             << getPrintableNameForEntity(Name) << T;
3705         T = QualType();
3706         break;
3707       }
3708
3709       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
3710                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
3711       break;
3712     }
3713     case DeclaratorChunk::Function: {
3714       // If the function declarator has a prototype (i.e. it is not () and
3715       // does not have a K&R-style identifier list), then the arguments are part
3716       // of the type, otherwise the argument list is ().
3717       const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3718       IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
3719
3720       // Check for auto functions and trailing return type and adjust the
3721       // return type accordingly.
3722       if (!D.isInvalidType()) {
3723         // trailing-return-type is only required if we're declaring a function,
3724         // and not, for instance, a pointer to a function.
3725         if (D.getDeclSpec().containsPlaceholderType() &&
3726             !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
3727             !S.getLangOpts().CPlusPlus14) {
3728           S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
3729                  D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
3730                      ? diag::err_auto_missing_trailing_return
3731                      : diag::err_deduced_return_type);
3732           T = Context.IntTy;
3733           D.setInvalidType(true);
3734         } else if (FTI.hasTrailingReturnType()) {
3735           // T must be exactly 'auto' at this point. See CWG issue 681.
3736           if (isa<ParenType>(T)) {
3737             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
3738                  diag::err_trailing_return_in_parens)
3739               << T << D.getDeclSpec().getSourceRange();
3740             D.setInvalidType(true);
3741           } else if (D.getContext() != Declarator::LambdaExprContext &&
3742                      (T.hasQualifiers() || !isa<AutoType>(T) ||
3743                       cast<AutoType>(T)->getKeyword() != AutoTypeKeyword::Auto)) {
3744             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
3745                  diag::err_trailing_return_without_auto)
3746               << T << D.getDeclSpec().getSourceRange();
3747             D.setInvalidType(true);
3748           }
3749           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
3750           if (T.isNull()) {
3751             // An error occurred parsing the trailing return type.
3752             T = Context.IntTy;
3753             D.setInvalidType(true);
3754           }
3755         }
3756       }
3757
3758       // C99 6.7.5.3p1: The return type may not be a function or array type.
3759       // For conversion functions, we'll diagnose this particular error later.
3760       if ((T->isArrayType() || T->isFunctionType()) &&
3761           (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
3762         unsigned diagID = diag::err_func_returning_array_function;
3763         // Last processing chunk in block context means this function chunk
3764         // represents the block.
3765         if (chunkIndex == 0 &&
3766             D.getContext() == Declarator::BlockLiteralContext)
3767           diagID = diag::err_block_returning_array_function;
3768         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
3769         T = Context.IntTy;
3770         D.setInvalidType(true);
3771       }
3772
3773       // Do not allow returning half FP value.
3774       // FIXME: This really should be in BuildFunctionType.
3775       if (T->isHalfType()) {
3776         if (S.getLangOpts().OpenCL) {
3777           if (!S.getOpenCLOptions().cl_khr_fp16) {
3778             S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
3779             D.setInvalidType(true);
3780           } 
3781         } else if (!S.getLangOpts().HalfArgsAndReturns) {
3782           S.Diag(D.getIdentifierLoc(),
3783             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
3784           D.setInvalidType(true);
3785         }
3786       }
3787
3788       // Methods cannot return interface types. All ObjC objects are
3789       // passed by reference.
3790       if (T->isObjCObjectType()) {
3791         SourceLocation DiagLoc, FixitLoc;
3792         if (TInfo) {
3793           DiagLoc = TInfo->getTypeLoc().getLocStart();
3794           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
3795         } else {
3796           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
3797           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
3798         }
3799         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
3800           << 0 << T
3801           << FixItHint::CreateInsertion(FixitLoc, "*");
3802
3803         T = Context.getObjCObjectPointerType(T);
3804         if (TInfo) {
3805           TypeLocBuilder TLB;
3806           TLB.pushFullCopy(TInfo->getTypeLoc());
3807           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
3808           TLoc.setStarLoc(FixitLoc);
3809           TInfo = TLB.getTypeSourceInfo(Context, T);
3810         }
3811
3812         D.setInvalidType(true);
3813       }
3814
3815       // cv-qualifiers on return types are pointless except when the type is a
3816       // class type in C++.
3817       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
3818           !(S.getLangOpts().CPlusPlus &&
3819             (T->isDependentType() || T->isRecordType()))) {
3820         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
3821             D.getFunctionDefinitionKind() == FDK_Definition) {
3822           // [6.9.1/3] qualified void return is invalid on a C
3823           // function definition.  Apparently ok on declarations and
3824           // in C++ though (!)
3825           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
3826         } else
3827           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
3828       }
3829
3830       // Objective-C ARC ownership qualifiers are ignored on the function
3831       // return type (by type canonicalization). Complain if this attribute
3832       // was written here.
3833       if (T.getQualifiers().hasObjCLifetime()) {
3834         SourceLocation AttrLoc;
3835         if (chunkIndex + 1 < D.getNumTypeObjects()) {
3836           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
3837           for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
3838                Attr; Attr = Attr->getNext()) {
3839             if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
3840               AttrLoc = Attr->getLoc();
3841               break;
3842             }
3843           }
3844         }
3845         if (AttrLoc.isInvalid()) {
3846           for (const AttributeList *Attr
3847                  = D.getDeclSpec().getAttributes().getList();
3848                Attr; Attr = Attr->getNext()) {
3849             if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
3850               AttrLoc = Attr->getLoc();
3851               break;
3852             }
3853           }
3854         }
3855
3856         if (AttrLoc.isValid()) {
3857           // The ownership attributes are almost always written via
3858           // the predefined
3859           // __strong/__weak/__autoreleasing/__unsafe_unretained.
3860           if (AttrLoc.isMacroID())
3861             AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
3862
3863           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
3864             << T.getQualifiers().getObjCLifetime();
3865         }
3866       }
3867
3868       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
3869         // C++ [dcl.fct]p6:
3870         //   Types shall not be defined in return or parameter types.
3871         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3872         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
3873           << Context.getTypeDeclType(Tag);
3874       }
3875
3876       // Exception specs are not allowed in typedefs. Complain, but add it
3877       // anyway.
3878       if (IsTypedefName && FTI.getExceptionSpecType())
3879         S.Diag(FTI.getExceptionSpecLocBeg(),
3880                diag::err_exception_spec_in_typedef)
3881             << (D.getContext() == Declarator::AliasDeclContext ||
3882                 D.getContext() == Declarator::AliasTemplateContext);
3883
3884       // If we see "T var();" or "T var(T());" at block scope, it is probably
3885       // an attempt to initialize a variable, not a function declaration.
3886       if (FTI.isAmbiguous)
3887         warnAboutAmbiguousFunction(S, D, DeclType, T);
3888
3889       FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
3890
3891       if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
3892         // Simple void foo(), where the incoming T is the result type.
3893         T = Context.getFunctionNoProtoType(T, EI);
3894       } else {
3895         // We allow a zero-parameter variadic function in C if the
3896         // function is marked with the "overloadable" attribute. Scan
3897         // for this attribute now.
3898         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
3899           bool Overloadable = false;
3900           for (const AttributeList *Attrs = D.getAttributes();
3901                Attrs; Attrs = Attrs->getNext()) {
3902             if (Attrs->getKind() == AttributeList::AT_Overloadable) {
3903               Overloadable = true;
3904               break;
3905             }
3906           }
3907
3908           if (!Overloadable)
3909             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
3910         }
3911
3912         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
3913           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
3914           // definition.
3915           S.Diag(FTI.Params[0].IdentLoc,
3916                  diag::err_ident_list_in_fn_declaration);
3917           D.setInvalidType(true);
3918           // Recover by creating a K&R-style function type.
3919           T = Context.getFunctionNoProtoType(T, EI);
3920           break;
3921         }
3922
3923         FunctionProtoType::ExtProtoInfo EPI;
3924         EPI.ExtInfo = EI;
3925         EPI.Variadic = FTI.isVariadic;
3926         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
3927         EPI.TypeQuals = FTI.TypeQuals;
3928         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
3929                     : FTI.RefQualifierIsLValueRef? RQ_LValue
3930                     : RQ_RValue;
3931
3932         // Otherwise, we have a function with a parameter list that is
3933         // potentially variadic.
3934         SmallVector<QualType, 16> ParamTys;
3935         ParamTys.reserve(FTI.NumParams);
3936
3937         SmallVector<bool, 16> ConsumedParameters;
3938         ConsumedParameters.reserve(FTI.NumParams);
3939         bool HasAnyConsumedParameters = false;
3940
3941         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
3942           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
3943           QualType ParamTy = Param->getType();
3944           assert(!ParamTy.isNull() && "Couldn't parse type?");
3945
3946           // Look for 'void'.  void is allowed only as a single parameter to a
3947           // function with no other parameters (C99 6.7.5.3p10).  We record
3948           // int(void) as a FunctionProtoType with an empty parameter list.
3949           if (ParamTy->isVoidType()) {
3950             // If this is something like 'float(int, void)', reject it.  'void'
3951             // is an incomplete type (C99 6.2.5p19) and function decls cannot
3952             // have parameters of incomplete type.
3953             if (FTI.NumParams != 1 || FTI.isVariadic) {
3954               S.Diag(DeclType.Loc, diag::err_void_only_param);
3955               ParamTy = Context.IntTy;
3956               Param->setType(ParamTy);
3957             } else if (FTI.Params[i].Ident) {
3958               // Reject, but continue to parse 'int(void abc)'.
3959               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
3960               ParamTy = Context.IntTy;
3961               Param->setType(ParamTy);
3962             } else {
3963               // Reject, but continue to parse 'float(const void)'.
3964               if (ParamTy.hasQualifiers())
3965                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
3966
3967               // Do not add 'void' to the list.
3968               break;
3969             }
3970           } else if (ParamTy->isHalfType()) {
3971             // Disallow half FP parameters.
3972             // FIXME: This really should be in BuildFunctionType.
3973             if (S.getLangOpts().OpenCL) {
3974               if (!S.getOpenCLOptions().cl_khr_fp16) {
3975                 S.Diag(Param->getLocation(),
3976                   diag::err_opencl_half_param) << ParamTy;
3977                 D.setInvalidType();
3978                 Param->setInvalidDecl();
3979               }
3980             } else if (!S.getLangOpts().HalfArgsAndReturns) {
3981               S.Diag(Param->getLocation(),
3982                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
3983               D.setInvalidType();
3984             }
3985           } else if (!FTI.hasPrototype) {
3986             if (ParamTy->isPromotableIntegerType()) {
3987               ParamTy = Context.getPromotedIntegerType(ParamTy);
3988               Param->setKNRPromoted(true);
3989             } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
3990               if (BTy->getKind() == BuiltinType::Float) {
3991                 ParamTy = Context.DoubleTy;
3992                 Param->setKNRPromoted(true);
3993               }
3994             }
3995           }
3996
3997           if (LangOpts.ObjCAutoRefCount) {
3998             bool Consumed = Param->hasAttr<NSConsumedAttr>();
3999             ConsumedParameters.push_back(Consumed);
4000             HasAnyConsumedParameters |= Consumed;
4001           }
4002
4003           ParamTys.push_back(ParamTy);
4004         }
4005
4006         if (HasAnyConsumedParameters)
4007           EPI.ConsumedParameters = ConsumedParameters.data();
4008
4009         SmallVector<QualType, 4> Exceptions;
4010         SmallVector<ParsedType, 2> DynamicExceptions;
4011         SmallVector<SourceRange, 2> DynamicExceptionRanges;
4012         Expr *NoexceptExpr = nullptr;
4013
4014         if (FTI.getExceptionSpecType() == EST_Dynamic) {
4015           // FIXME: It's rather inefficient to have to split into two vectors
4016           // here.
4017           unsigned N = FTI.NumExceptions;
4018           DynamicExceptions.reserve(N);
4019           DynamicExceptionRanges.reserve(N);
4020           for (unsigned I = 0; I != N; ++I) {
4021             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
4022             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
4023           }
4024         } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
4025           NoexceptExpr = FTI.NoexceptExpr;
4026         }
4027
4028         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
4029                                       FTI.getExceptionSpecType(),
4030                                       DynamicExceptions,
4031                                       DynamicExceptionRanges,
4032                                       NoexceptExpr,
4033                                       Exceptions,
4034                                       EPI.ExceptionSpec);
4035
4036         T = Context.getFunctionType(T, ParamTys, EPI);
4037       }
4038
4039       break;
4040     }
4041     case DeclaratorChunk::MemberPointer:
4042       // The scope spec must refer to a class, or be dependent.
4043       CXXScopeSpec &SS = DeclType.Mem.Scope();
4044       QualType ClsType;
4045
4046       // Handle pointer nullability.
4047       inferPointerNullability(SimplePointerKind::MemberPointer,
4048                               DeclType.Loc, DeclType.getAttrListRef());
4049
4050       if (SS.isInvalid()) {
4051         // Avoid emitting extra errors if we already errored on the scope.
4052         D.setInvalidType(true);
4053       } else if (S.isDependentScopeSpecifier(SS) ||
4054                  dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
4055         NestedNameSpecifier *NNS = SS.getScopeRep();
4056         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
4057         switch (NNS->getKind()) {
4058         case NestedNameSpecifier::Identifier:
4059           ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
4060                                                  NNS->getAsIdentifier());
4061           break;
4062
4063         case NestedNameSpecifier::Namespace:
4064         case NestedNameSpecifier::NamespaceAlias:
4065         case NestedNameSpecifier::Global:
4066         case NestedNameSpecifier::Super:
4067           llvm_unreachable("Nested-name-specifier must name a type");
4068
4069         case NestedNameSpecifier::TypeSpec:
4070         case NestedNameSpecifier::TypeSpecWithTemplate:
4071           ClsType = QualType(NNS->getAsType(), 0);
4072           // Note: if the NNS has a prefix and ClsType is a nondependent
4073           // TemplateSpecializationType, then the NNS prefix is NOT included
4074           // in ClsType; hence we wrap ClsType into an ElaboratedType.
4075           // NOTE: in particular, no wrap occurs if ClsType already is an
4076           // Elaborated, DependentName, or DependentTemplateSpecialization.
4077           if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
4078             ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
4079           break;
4080         }
4081       } else {
4082         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
4083              diag::err_illegal_decl_mempointer_in_nonclass)
4084           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
4085           << DeclType.Mem.Scope().getRange();
4086         D.setInvalidType(true);
4087       }
4088
4089       if (!ClsType.isNull())
4090         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
4091                                      D.getIdentifier());
4092       if (T.isNull()) {
4093         T = Context.IntTy;
4094         D.setInvalidType(true);
4095       } else if (DeclType.Mem.TypeQuals) {
4096         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
4097       }
4098       break;
4099     }
4100
4101     if (T.isNull()) {
4102       D.setInvalidType(true);
4103       T = Context.IntTy;
4104     }
4105
4106     // See if there are any attributes on this declarator chunk.
4107     processTypeAttrs(state, T, TAL_DeclChunk,
4108                      const_cast<AttributeList *>(DeclType.getAttrs()));
4109   }
4110
4111   assert(!T.isNull() && "T must not be null after this point");
4112
4113   if (LangOpts.CPlusPlus && T->isFunctionType()) {
4114     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
4115     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
4116
4117     // C++ 8.3.5p4:
4118     //   A cv-qualifier-seq shall only be part of the function type
4119     //   for a nonstatic member function, the function type to which a pointer
4120     //   to member refers, or the top-level function type of a function typedef
4121     //   declaration.
4122     //
4123     // Core issue 547 also allows cv-qualifiers on function types that are
4124     // top-level template type arguments.
4125     bool FreeFunction;
4126     if (!D.getCXXScopeSpec().isSet()) {
4127       FreeFunction = ((D.getContext() != Declarator::MemberContext &&
4128                        D.getContext() != Declarator::LambdaExprContext) ||
4129                       D.getDeclSpec().isFriendSpecified());
4130     } else {
4131       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
4132       FreeFunction = (DC && !DC->isRecord());
4133     }
4134
4135     // C++11 [dcl.fct]p6 (w/DR1417):
4136     // An attempt to specify a function type with a cv-qualifier-seq or a
4137     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
4138     //  - the function type for a non-static member function,
4139     //  - the function type to which a pointer to member refers,
4140     //  - the top-level function type of a function typedef declaration or
4141     //    alias-declaration,
4142     //  - the type-id in the default argument of a type-parameter, or
4143     //  - the type-id of a template-argument for a type-parameter
4144     //
4145     // FIXME: Checking this here is insufficient. We accept-invalid on:
4146     //
4147     //   template<typename T> struct S { void f(T); };
4148     //   S<int() const> s;
4149     //
4150     // ... for instance.
4151     if (IsQualifiedFunction &&
4152         !(!FreeFunction &&
4153           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
4154         !IsTypedefName &&
4155         D.getContext() != Declarator::TemplateTypeArgContext) {
4156       SourceLocation Loc = D.getLocStart();
4157       SourceRange RemovalRange;
4158       unsigned I;
4159       if (D.isFunctionDeclarator(I)) {
4160         SmallVector<SourceLocation, 4> RemovalLocs;
4161         const DeclaratorChunk &Chunk = D.getTypeObject(I);
4162         assert(Chunk.Kind == DeclaratorChunk::Function);
4163         if (Chunk.Fun.hasRefQualifier())
4164           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
4165         if (Chunk.Fun.TypeQuals & Qualifiers::Const)
4166           RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
4167         if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
4168           RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
4169         if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
4170           RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
4171         if (!RemovalLocs.empty()) {
4172           std::sort(RemovalLocs.begin(), RemovalLocs.end(),
4173                     BeforeThanCompare<SourceLocation>(S.getSourceManager()));
4174           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
4175           Loc = RemovalLocs.front();
4176         }
4177       }
4178
4179       S.Diag(Loc, diag::err_invalid_qualified_function_type)
4180         << FreeFunction << D.isFunctionDeclarator() << T
4181         << getFunctionQualifiersAsString(FnTy)
4182         << FixItHint::CreateRemoval(RemovalRange);
4183
4184       // Strip the cv-qualifiers and ref-qualifiers from the type.
4185       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
4186       EPI.TypeQuals = 0;
4187       EPI.RefQualifier = RQ_None;
4188
4189       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
4190                                   EPI);
4191       // Rebuild any parens around the identifier in the function type.
4192       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4193         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
4194           break;
4195         T = S.BuildParenType(T);
4196       }
4197     }
4198   }
4199
4200   // Apply any undistributed attributes from the declarator.
4201   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
4202
4203   // Diagnose any ignored type attributes.
4204   state.diagnoseIgnoredTypeAttrs(T);
4205
4206   // C++0x [dcl.constexpr]p9:
4207   //  A constexpr specifier used in an object declaration declares the object
4208   //  as const.
4209   if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
4210     T.addConst();
4211   }
4212
4213   // If there was an ellipsis in the declarator, the declaration declares a
4214   // parameter pack whose type may be a pack expansion type.
4215   if (D.hasEllipsis()) {
4216     // C++0x [dcl.fct]p13:
4217     //   A declarator-id or abstract-declarator containing an ellipsis shall
4218     //   only be used in a parameter-declaration. Such a parameter-declaration
4219     //   is a parameter pack (14.5.3). [...]
4220     switch (D.getContext()) {
4221     case Declarator::PrototypeContext:
4222     case Declarator::LambdaExprParameterContext:
4223       // C++0x [dcl.fct]p13:
4224       //   [...] When it is part of a parameter-declaration-clause, the
4225       //   parameter pack is a function parameter pack (14.5.3). The type T
4226       //   of the declarator-id of the function parameter pack shall contain
4227       //   a template parameter pack; each template parameter pack in T is
4228       //   expanded by the function parameter pack.
4229       //
4230       // We represent function parameter packs as function parameters whose
4231       // type is a pack expansion.
4232       if (!T->containsUnexpandedParameterPack()) {
4233         S.Diag(D.getEllipsisLoc(),
4234              diag::err_function_parameter_pack_without_parameter_packs)
4235           << T <<  D.getSourceRange();
4236         D.setEllipsisLoc(SourceLocation());
4237       } else {
4238         T = Context.getPackExpansionType(T, None);
4239       }
4240       break;
4241     case Declarator::TemplateParamContext:
4242       // C++0x [temp.param]p15:
4243       //   If a template-parameter is a [...] is a parameter-declaration that
4244       //   declares a parameter pack (8.3.5), then the template-parameter is a
4245       //   template parameter pack (14.5.3).
4246       //
4247       // Note: core issue 778 clarifies that, if there are any unexpanded
4248       // parameter packs in the type of the non-type template parameter, then
4249       // it expands those parameter packs.
4250       if (T->containsUnexpandedParameterPack())
4251         T = Context.getPackExpansionType(T, None);
4252       else
4253         S.Diag(D.getEllipsisLoc(),
4254                LangOpts.CPlusPlus11
4255                  ? diag::warn_cxx98_compat_variadic_templates
4256                  : diag::ext_variadic_templates);
4257       break;
4258
4259     case Declarator::FileContext:
4260     case Declarator::KNRTypeListContext:
4261     case Declarator::ObjCParameterContext:  // FIXME: special diagnostic here?
4262     case Declarator::ObjCResultContext:     // FIXME: special diagnostic here?
4263     case Declarator::TypeNameContext:
4264     case Declarator::CXXNewContext:
4265     case Declarator::AliasDeclContext:
4266     case Declarator::AliasTemplateContext:
4267     case Declarator::MemberContext:
4268     case Declarator::BlockContext:
4269     case Declarator::ForContext:
4270     case Declarator::ConditionContext:
4271     case Declarator::CXXCatchContext:
4272     case Declarator::ObjCCatchContext:
4273     case Declarator::BlockLiteralContext:
4274     case Declarator::LambdaExprContext:
4275     case Declarator::ConversionIdContext:
4276     case Declarator::TrailingReturnContext:
4277     case Declarator::TemplateTypeArgContext:
4278       // FIXME: We may want to allow parameter packs in block-literal contexts
4279       // in the future.
4280       S.Diag(D.getEllipsisLoc(),
4281              diag::err_ellipsis_in_declarator_not_parameter);
4282       D.setEllipsisLoc(SourceLocation());
4283       break;
4284     }
4285   }
4286
4287   assert(!T.isNull() && "T must not be null at the end of this function");
4288   if (D.isInvalidType())
4289     return Context.getTrivialTypeSourceInfo(T);
4290
4291   return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
4292 }
4293
4294 /// GetTypeForDeclarator - Convert the type for the specified
4295 /// declarator to Type instances.
4296 ///
4297 /// The result of this call will never be null, but the associated
4298 /// type may be a null type if there's an unrecoverable error.
4299 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
4300   // Determine the type of the declarator. Not all forms of declarator
4301   // have a type.
4302
4303   TypeProcessingState state(*this, D);
4304
4305   TypeSourceInfo *ReturnTypeInfo = nullptr;
4306   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
4307
4308   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
4309     inferARCWriteback(state, T);
4310
4311   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
4312 }
4313
4314 static void transferARCOwnershipToDeclSpec(Sema &S,
4315                                            QualType &declSpecTy,
4316                                            Qualifiers::ObjCLifetime ownership) {
4317   if (declSpecTy->isObjCRetainableType() &&
4318       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
4319     Qualifiers qs;
4320     qs.addObjCLifetime(ownership);
4321     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
4322   }
4323 }
4324
4325 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
4326                                             Qualifiers::ObjCLifetime ownership,
4327                                             unsigned chunkIndex) {
4328   Sema &S = state.getSema();
4329   Declarator &D = state.getDeclarator();
4330
4331   // Look for an explicit lifetime attribute.
4332   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
4333   for (const AttributeList *attr = chunk.getAttrs(); attr;
4334          attr = attr->getNext())
4335     if (attr->getKind() == AttributeList::AT_ObjCOwnership)
4336       return;
4337
4338   const char *attrStr = nullptr;
4339   switch (ownership) {
4340   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
4341   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
4342   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
4343   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
4344   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
4345   }
4346
4347   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
4348   Arg->Ident = &S.Context.Idents.get(attrStr);
4349   Arg->Loc = SourceLocation();
4350
4351   ArgsUnion Args(Arg);
4352
4353   // If there wasn't one, add one (with an invalid source location
4354   // so that we don't make an AttributedType for it).
4355   AttributeList *attr = D.getAttributePool()
4356     .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
4357             /*scope*/ nullptr, SourceLocation(),
4358             /*args*/ &Args, 1, AttributeList::AS_GNU);
4359   spliceAttrIntoList(*attr, chunk.getAttrListRef());
4360
4361   // TODO: mark whether we did this inference?
4362 }
4363
4364 /// \brief Used for transferring ownership in casts resulting in l-values.
4365 static void transferARCOwnership(TypeProcessingState &state,
4366                                  QualType &declSpecTy,
4367                                  Qualifiers::ObjCLifetime ownership) {
4368   Sema &S = state.getSema();
4369   Declarator &D = state.getDeclarator();
4370
4371   int inner = -1;
4372   bool hasIndirection = false;
4373   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4374     DeclaratorChunk &chunk = D.getTypeObject(i);
4375     switch (chunk.Kind) {
4376     case DeclaratorChunk::Paren:
4377       // Ignore parens.
4378       break;
4379
4380     case DeclaratorChunk::Array:
4381     case DeclaratorChunk::Reference:
4382     case DeclaratorChunk::Pointer:
4383       if (inner != -1)
4384         hasIndirection = true;
4385       inner = i;
4386       break;
4387
4388     case DeclaratorChunk::BlockPointer:
4389       if (inner != -1)
4390         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
4391       return;
4392
4393     case DeclaratorChunk::Function:
4394     case DeclaratorChunk::MemberPointer:
4395       return;
4396     }
4397   }
4398
4399   if (inner == -1)
4400     return;
4401
4402   DeclaratorChunk &chunk = D.getTypeObject(inner);
4403   if (chunk.Kind == DeclaratorChunk::Pointer) {
4404     if (declSpecTy->isObjCRetainableType())
4405       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
4406     if (declSpecTy->isObjCObjectType() && hasIndirection)
4407       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
4408   } else {
4409     assert(chunk.Kind == DeclaratorChunk::Array ||
4410            chunk.Kind == DeclaratorChunk::Reference);
4411     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
4412   }
4413 }
4414
4415 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
4416   TypeProcessingState state(*this, D);
4417
4418   TypeSourceInfo *ReturnTypeInfo = nullptr;
4419   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
4420
4421   if (getLangOpts().ObjC1) {
4422     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
4423     if (ownership != Qualifiers::OCL_None)
4424       transferARCOwnership(state, declSpecTy, ownership);
4425   }
4426
4427   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
4428 }
4429
4430 /// Map an AttributedType::Kind to an AttributeList::Kind.
4431 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
4432   switch (kind) {
4433   case AttributedType::attr_address_space:
4434     return AttributeList::AT_AddressSpace;
4435   case AttributedType::attr_regparm:
4436     return AttributeList::AT_Regparm;
4437   case AttributedType::attr_vector_size:
4438     return AttributeList::AT_VectorSize;
4439   case AttributedType::attr_neon_vector_type:
4440     return AttributeList::AT_NeonVectorType;
4441   case AttributedType::attr_neon_polyvector_type:
4442     return AttributeList::AT_NeonPolyVectorType;
4443   case AttributedType::attr_objc_gc:
4444     return AttributeList::AT_ObjCGC;
4445   case AttributedType::attr_objc_ownership:
4446   case AttributedType::attr_objc_inert_unsafe_unretained:
4447     return AttributeList::AT_ObjCOwnership;
4448   case AttributedType::attr_noreturn:
4449     return AttributeList::AT_NoReturn;
4450   case AttributedType::attr_cdecl:
4451     return AttributeList::AT_CDecl;
4452   case AttributedType::attr_fastcall:
4453     return AttributeList::AT_FastCall;
4454   case AttributedType::attr_stdcall:
4455     return AttributeList::AT_StdCall;
4456   case AttributedType::attr_thiscall:
4457     return AttributeList::AT_ThisCall;
4458   case AttributedType::attr_pascal:
4459     return AttributeList::AT_Pascal;
4460   case AttributedType::attr_vectorcall:
4461     return AttributeList::AT_VectorCall;
4462   case AttributedType::attr_pcs:
4463   case AttributedType::attr_pcs_vfp:
4464     return AttributeList::AT_Pcs;
4465   case AttributedType::attr_inteloclbicc:
4466     return AttributeList::AT_IntelOclBicc;
4467   case AttributedType::attr_ms_abi:
4468     return AttributeList::AT_MSABI;
4469   case AttributedType::attr_sysv_abi:
4470     return AttributeList::AT_SysVABI;
4471   case AttributedType::attr_ptr32:
4472     return AttributeList::AT_Ptr32;
4473   case AttributedType::attr_ptr64:
4474     return AttributeList::AT_Ptr64;
4475   case AttributedType::attr_sptr:
4476     return AttributeList::AT_SPtr;
4477   case AttributedType::attr_uptr:
4478     return AttributeList::AT_UPtr;
4479   case AttributedType::attr_nonnull:
4480     return AttributeList::AT_TypeNonNull;
4481   case AttributedType::attr_nullable:
4482     return AttributeList::AT_TypeNullable;
4483   case AttributedType::attr_null_unspecified:
4484     return AttributeList::AT_TypeNullUnspecified;
4485   case AttributedType::attr_objc_kindof:
4486     return AttributeList::AT_ObjCKindOf;
4487   }
4488   llvm_unreachable("unexpected attribute kind!");
4489 }
4490
4491 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
4492                                   const AttributeList *attrs,
4493                                   const AttributeList *DeclAttrs = nullptr) {
4494   // DeclAttrs and attrs cannot be both empty.
4495   assert((attrs || DeclAttrs) &&
4496          "no type attributes in the expected location!");
4497
4498   AttributeList::Kind parsedKind = getAttrListKind(TL.getAttrKind());
4499   // Try to search for an attribute of matching kind in attrs list.
4500   while (attrs && attrs->getKind() != parsedKind)
4501     attrs = attrs->getNext();
4502   if (!attrs) {
4503     // No matching type attribute in attrs list found.
4504     // Try searching through C++11 attributes in the declarator attribute list.
4505     while (DeclAttrs && (!DeclAttrs->isCXX11Attribute() ||
4506                          DeclAttrs->getKind() != parsedKind))
4507       DeclAttrs = DeclAttrs->getNext();
4508     attrs = DeclAttrs;
4509   }
4510
4511   assert(attrs && "no matching type attribute in expected location!");
4512
4513   TL.setAttrNameLoc(attrs->getLoc());
4514   if (TL.hasAttrExprOperand()) {
4515     assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
4516     TL.setAttrExprOperand(attrs->getArgAsExpr(0));
4517   } else if (TL.hasAttrEnumOperand()) {
4518     assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
4519            "unexpected attribute operand kind");
4520     if (attrs->isArgIdent(0))
4521       TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
4522     else
4523       TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
4524   }
4525
4526   // FIXME: preserve this information to here.
4527   if (TL.hasAttrOperand())
4528     TL.setAttrOperandParensRange(SourceRange());
4529 }
4530
4531 namespace {
4532   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
4533     ASTContext &Context;
4534     const DeclSpec &DS;
4535
4536   public:
4537     TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
4538       : Context(Context), DS(DS) {}
4539
4540     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
4541       fillAttributedTypeLoc(TL, DS.getAttributes().getList());
4542       Visit(TL.getModifiedLoc());
4543     }
4544     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
4545       Visit(TL.getUnqualifiedLoc());
4546     }
4547     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
4548       TL.setNameLoc(DS.getTypeSpecTypeLoc());
4549     }
4550     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
4551       TL.setNameLoc(DS.getTypeSpecTypeLoc());
4552       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
4553       // addition field. What we have is good enough for dispay of location
4554       // of 'fixit' on interface name.
4555       TL.setNameEndLoc(DS.getLocEnd());
4556     }
4557     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
4558       TypeSourceInfo *RepTInfo = nullptr;
4559       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
4560       TL.copy(RepTInfo->getTypeLoc());
4561     }
4562     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
4563       TypeSourceInfo *RepTInfo = nullptr;
4564       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
4565       TL.copy(RepTInfo->getTypeLoc());
4566     }
4567     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
4568       TypeSourceInfo *TInfo = nullptr;
4569       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4570
4571       // If we got no declarator info from previous Sema routines,
4572       // just fill with the typespec loc.
4573       if (!TInfo) {
4574         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
4575         return;
4576       }
4577
4578       TypeLoc OldTL = TInfo->getTypeLoc();
4579       if (TInfo->getType()->getAs<ElaboratedType>()) {
4580         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
4581         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
4582             .castAs<TemplateSpecializationTypeLoc>();
4583         TL.copy(NamedTL);
4584       } else {
4585         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
4586         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
4587       }
4588         
4589     }
4590     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
4591       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
4592       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
4593       TL.setParensRange(DS.getTypeofParensRange());
4594     }
4595     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
4596       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
4597       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
4598       TL.setParensRange(DS.getTypeofParensRange());
4599       assert(DS.getRepAsType());
4600       TypeSourceInfo *TInfo = nullptr;
4601       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4602       TL.setUnderlyingTInfo(TInfo);
4603     }
4604     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
4605       // FIXME: This holds only because we only have one unary transform.
4606       assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
4607       TL.setKWLoc(DS.getTypeSpecTypeLoc());
4608       TL.setParensRange(DS.getTypeofParensRange());
4609       assert(DS.getRepAsType());
4610       TypeSourceInfo *TInfo = nullptr;
4611       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4612       TL.setUnderlyingTInfo(TInfo);
4613     }
4614     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
4615       // By default, use the source location of the type specifier.
4616       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
4617       if (TL.needsExtraLocalData()) {
4618         // Set info for the written builtin specifiers.
4619         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
4620         // Try to have a meaningful source location.
4621         if (TL.getWrittenSignSpec() != TSS_unspecified)
4622           // Sign spec loc overrides the others (e.g., 'unsigned long').
4623           TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
4624         else if (TL.getWrittenWidthSpec() != TSW_unspecified)
4625           // Width spec loc overrides type spec loc (e.g., 'short int').
4626           TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
4627       }
4628     }
4629     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
4630       ElaboratedTypeKeyword Keyword
4631         = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
4632       if (DS.getTypeSpecType() == TST_typename) {
4633         TypeSourceInfo *TInfo = nullptr;
4634         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4635         if (TInfo) {
4636           TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
4637           return;
4638         }
4639       }
4640       TL.setElaboratedKeywordLoc(Keyword != ETK_None
4641                                  ? DS.getTypeSpecTypeLoc()
4642                                  : SourceLocation());
4643       const CXXScopeSpec& SS = DS.getTypeSpecScope();
4644       TL.setQualifierLoc(SS.getWithLocInContext(Context));
4645       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
4646     }
4647     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
4648       assert(DS.getTypeSpecType() == TST_typename);
4649       TypeSourceInfo *TInfo = nullptr;
4650       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4651       assert(TInfo);
4652       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
4653     }
4654     void VisitDependentTemplateSpecializationTypeLoc(
4655                                  DependentTemplateSpecializationTypeLoc TL) {
4656       assert(DS.getTypeSpecType() == TST_typename);
4657       TypeSourceInfo *TInfo = nullptr;
4658       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4659       assert(TInfo);
4660       TL.copy(
4661           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
4662     }
4663     void VisitTagTypeLoc(TagTypeLoc TL) {
4664       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
4665     }
4666     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
4667       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
4668       // or an _Atomic qualifier.
4669       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
4670         TL.setKWLoc(DS.getTypeSpecTypeLoc());
4671         TL.setParensRange(DS.getTypeofParensRange());
4672
4673         TypeSourceInfo *TInfo = nullptr;
4674         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4675         assert(TInfo);
4676         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
4677       } else {
4678         TL.setKWLoc(DS.getAtomicSpecLoc());
4679         // No parens, to indicate this was spelled as an _Atomic qualifier.
4680         TL.setParensRange(SourceRange());
4681         Visit(TL.getValueLoc());
4682       }
4683     }
4684
4685     void VisitTypeLoc(TypeLoc TL) {
4686       // FIXME: add other typespec types and change this to an assert.
4687       TL.initialize(Context, DS.getTypeSpecTypeLoc());
4688     }
4689   };
4690
4691   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
4692     ASTContext &Context;
4693     const DeclaratorChunk &Chunk;
4694
4695   public:
4696     DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
4697       : Context(Context), Chunk(Chunk) {}
4698
4699     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
4700       llvm_unreachable("qualified type locs not expected here!");
4701     }
4702     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
4703       llvm_unreachable("decayed type locs not expected here!");
4704     }
4705
4706     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
4707       fillAttributedTypeLoc(TL, Chunk.getAttrs());
4708     }
4709     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
4710       // nothing
4711     }
4712     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
4713       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
4714       TL.setCaretLoc(Chunk.Loc);
4715     }
4716     void VisitPointerTypeLoc(PointerTypeLoc TL) {
4717       assert(Chunk.Kind == DeclaratorChunk::Pointer);
4718       TL.setStarLoc(Chunk.Loc);
4719     }
4720     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
4721       assert(Chunk.Kind == DeclaratorChunk::Pointer);
4722       TL.setStarLoc(Chunk.Loc);
4723     }
4724     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
4725       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
4726       const CXXScopeSpec& SS = Chunk.Mem.Scope();
4727       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
4728
4729       const Type* ClsTy = TL.getClass();
4730       QualType ClsQT = QualType(ClsTy, 0);
4731       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
4732       // Now copy source location info into the type loc component.
4733       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
4734       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
4735       case NestedNameSpecifier::Identifier:
4736         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
4737         {
4738           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
4739           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
4740           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
4741           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
4742         }
4743         break;
4744
4745       case NestedNameSpecifier::TypeSpec:
4746       case NestedNameSpecifier::TypeSpecWithTemplate:
4747         if (isa<ElaboratedType>(ClsTy)) {
4748           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
4749           ETLoc.setElaboratedKeywordLoc(SourceLocation());
4750           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
4751           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
4752           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
4753         } else {
4754           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
4755         }
4756         break;
4757
4758       case NestedNameSpecifier::Namespace:
4759       case NestedNameSpecifier::NamespaceAlias:
4760       case NestedNameSpecifier::Global:
4761       case NestedNameSpecifier::Super:
4762         llvm_unreachable("Nested-name-specifier must name a type");
4763       }
4764
4765       // Finally fill in MemberPointerLocInfo fields.
4766       TL.setStarLoc(Chunk.Loc);
4767       TL.setClassTInfo(ClsTInfo);
4768     }
4769     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
4770       assert(Chunk.Kind == DeclaratorChunk::Reference);
4771       // 'Amp' is misleading: this might have been originally
4772       /// spelled with AmpAmp.
4773       TL.setAmpLoc(Chunk.Loc);
4774     }
4775     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
4776       assert(Chunk.Kind == DeclaratorChunk::Reference);
4777       assert(!Chunk.Ref.LValueRef);
4778       TL.setAmpAmpLoc(Chunk.Loc);
4779     }
4780     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
4781       assert(Chunk.Kind == DeclaratorChunk::Array);
4782       TL.setLBracketLoc(Chunk.Loc);
4783       TL.setRBracketLoc(Chunk.EndLoc);
4784       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
4785     }
4786     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
4787       assert(Chunk.Kind == DeclaratorChunk::Function);
4788       TL.setLocalRangeBegin(Chunk.Loc);
4789       TL.setLocalRangeEnd(Chunk.EndLoc);
4790
4791       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
4792       TL.setLParenLoc(FTI.getLParenLoc());
4793       TL.setRParenLoc(FTI.getRParenLoc());
4794       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
4795         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4796         TL.setParam(tpi++, Param);
4797       }
4798       // FIXME: exception specs
4799     }
4800     void VisitParenTypeLoc(ParenTypeLoc TL) {
4801       assert(Chunk.Kind == DeclaratorChunk::Paren);
4802       TL.setLParenLoc(Chunk.Loc);
4803       TL.setRParenLoc(Chunk.EndLoc);
4804     }
4805
4806     void VisitTypeLoc(TypeLoc TL) {
4807       llvm_unreachable("unsupported TypeLoc kind in declarator!");
4808     }
4809   };
4810 }
4811
4812 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
4813   SourceLocation Loc;
4814   switch (Chunk.Kind) {
4815   case DeclaratorChunk::Function:
4816   case DeclaratorChunk::Array:
4817   case DeclaratorChunk::Paren:
4818     llvm_unreachable("cannot be _Atomic qualified");
4819
4820   case DeclaratorChunk::Pointer:
4821     Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
4822     break;
4823
4824   case DeclaratorChunk::BlockPointer:
4825   case DeclaratorChunk::Reference:
4826   case DeclaratorChunk::MemberPointer:
4827     // FIXME: Provide a source location for the _Atomic keyword.
4828     break;
4829   }
4830
4831   ATL.setKWLoc(Loc);
4832   ATL.setParensRange(SourceRange());
4833 }
4834
4835 /// \brief Create and instantiate a TypeSourceInfo with type source information.
4836 ///
4837 /// \param T QualType referring to the type as written in source code.
4838 ///
4839 /// \param ReturnTypeInfo For declarators whose return type does not show
4840 /// up in the normal place in the declaration specifiers (such as a C++
4841 /// conversion function), this pointer will refer to a type source information
4842 /// for that return type.
4843 TypeSourceInfo *
4844 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
4845                                      TypeSourceInfo *ReturnTypeInfo) {
4846   TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
4847   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
4848   const AttributeList *DeclAttrs = D.getAttributes();
4849
4850   // Handle parameter packs whose type is a pack expansion.
4851   if (isa<PackExpansionType>(T)) {
4852     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
4853     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
4854   }
4855
4856   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4857     // An AtomicTypeLoc might be produced by an atomic qualifier in this
4858     // declarator chunk.
4859     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
4860       fillAtomicQualLoc(ATL, D.getTypeObject(i));
4861       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
4862     }
4863
4864     while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
4865       fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs(), DeclAttrs);
4866       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
4867     }
4868
4869     // FIXME: Ordering here?
4870     while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
4871       CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
4872
4873     DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
4874     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
4875   }
4876
4877   // If we have different source information for the return type, use
4878   // that.  This really only applies to C++ conversion functions.
4879   if (ReturnTypeInfo) {
4880     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
4881     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
4882     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
4883   } else {
4884     TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
4885   }
4886
4887   return TInfo;
4888 }
4889
4890 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
4891 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
4892   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
4893   // and Sema during declaration parsing. Try deallocating/caching them when
4894   // it's appropriate, instead of allocating them and keeping them around.
4895   LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
4896                                                        TypeAlignment);
4897   new (LocT) LocInfoType(T, TInfo);
4898   assert(LocT->getTypeClass() != T->getTypeClass() &&
4899          "LocInfoType's TypeClass conflicts with an existing Type class");
4900   return ParsedType::make(QualType(LocT, 0));
4901 }
4902
4903 void LocInfoType::getAsStringInternal(std::string &Str,
4904                                       const PrintingPolicy &Policy) const {
4905   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
4906          " was used directly instead of getting the QualType through"
4907          " GetTypeFromParser");
4908 }
4909
4910 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
4911   // C99 6.7.6: Type names have no identifier.  This is already validated by
4912   // the parser.
4913   assert(D.getIdentifier() == nullptr &&
4914          "Type name should have no identifier!");
4915
4916   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4917   QualType T = TInfo->getType();
4918   if (D.isInvalidType())
4919     return true;
4920
4921   // Make sure there are no unused decl attributes on the declarator.
4922   // We don't want to do this for ObjC parameters because we're going
4923   // to apply them to the actual parameter declaration.
4924   // Likewise, we don't want to do this for alias declarations, because
4925   // we are actually going to build a declaration from this eventually.
4926   if (D.getContext() != Declarator::ObjCParameterContext &&
4927       D.getContext() != Declarator::AliasDeclContext &&
4928       D.getContext() != Declarator::AliasTemplateContext)
4929     checkUnusedDeclAttributes(D);
4930
4931   if (getLangOpts().CPlusPlus) {
4932     // Check that there are no default arguments (C++ only).
4933     CheckExtraCXXDefaultArguments(D);
4934   }
4935
4936   return CreateParsedType(T, TInfo);
4937 }
4938
4939 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
4940   QualType T = Context.getObjCInstanceType();
4941   TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
4942   return CreateParsedType(T, TInfo);
4943 }
4944
4945
4946 //===----------------------------------------------------------------------===//
4947 // Type Attribute Processing
4948 //===----------------------------------------------------------------------===//
4949
4950 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
4951 /// specified type.  The attribute contains 1 argument, the id of the address
4952 /// space for the type.
4953 static void HandleAddressSpaceTypeAttribute(QualType &Type,
4954                                             const AttributeList &Attr, Sema &S){
4955
4956   // If this type is already address space qualified, reject it.
4957   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
4958   // qualifiers for two or more different address spaces."
4959   if (Type.getAddressSpace()) {
4960     S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
4961     Attr.setInvalid();
4962     return;
4963   }
4964
4965   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
4966   // qualified by an address-space qualifier."
4967   if (Type->isFunctionType()) {
4968     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
4969     Attr.setInvalid();
4970     return;
4971   }
4972
4973   unsigned ASIdx;
4974   if (Attr.getKind() == AttributeList::AT_AddressSpace) {
4975     // Check the attribute arguments.
4976     if (Attr.getNumArgs() != 1) {
4977       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4978         << Attr.getName() << 1;
4979       Attr.setInvalid();
4980       return;
4981     }
4982     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4983     llvm::APSInt addrSpace(32);
4984     if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
4985         !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
4986       S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4987         << Attr.getName() << AANT_ArgumentIntegerConstant
4988         << ASArgExpr->getSourceRange();
4989       Attr.setInvalid();
4990       return;
4991     }
4992
4993     // Bounds checking.
4994     if (addrSpace.isSigned()) {
4995       if (addrSpace.isNegative()) {
4996         S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
4997           << ASArgExpr->getSourceRange();
4998         Attr.setInvalid();
4999         return;
5000       }
5001       addrSpace.setIsSigned(false);
5002     }
5003     llvm::APSInt max(addrSpace.getBitWidth());
5004     max = Qualifiers::MaxAddressSpace;
5005     if (addrSpace > max) {
5006       S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
5007         << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
5008       Attr.setInvalid();
5009       return;
5010     }
5011     ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
5012   } else {
5013     // The keyword-based type attributes imply which address space to use.
5014     switch (Attr.getKind()) {
5015     case AttributeList::AT_OpenCLGlobalAddressSpace:
5016       ASIdx = LangAS::opencl_global; break;
5017     case AttributeList::AT_OpenCLLocalAddressSpace:
5018       ASIdx = LangAS::opencl_local; break;
5019     case AttributeList::AT_OpenCLConstantAddressSpace:
5020       ASIdx = LangAS::opencl_constant; break;
5021     case AttributeList::AT_OpenCLGenericAddressSpace:
5022       ASIdx = LangAS::opencl_generic; break;
5023     default:
5024       assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
5025       ASIdx = 0; break;
5026     }
5027   }
5028   
5029   Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
5030 }
5031
5032 /// Does this type have a "direct" ownership qualifier?  That is,
5033 /// is it written like "__strong id", as opposed to something like
5034 /// "typeof(foo)", where that happens to be strong?
5035 static bool hasDirectOwnershipQualifier(QualType type) {
5036   // Fast path: no qualifier at all.
5037   assert(type.getQualifiers().hasObjCLifetime());
5038
5039   while (true) {
5040     // __strong id
5041     if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
5042       if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
5043         return true;
5044
5045       type = attr->getModifiedType();
5046
5047     // X *__strong (...)
5048     } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
5049       type = paren->getInnerType();
5050
5051     // That's it for things we want to complain about.  In particular,
5052     // we do not want to look through typedefs, typeof(expr),
5053     // typeof(type), or any other way that the type is somehow
5054     // abstracted.
5055     } else {
5056
5057       return false;
5058     }
5059   }
5060 }
5061
5062 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
5063 /// attribute on the specified type.
5064 ///
5065 /// Returns 'true' if the attribute was handled.
5066 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
5067                                        AttributeList &attr,
5068                                        QualType &type) {
5069   bool NonObjCPointer = false;
5070
5071   if (!type->isDependentType() && !type->isUndeducedType()) {
5072     if (const PointerType *ptr = type->getAs<PointerType>()) {
5073       QualType pointee = ptr->getPointeeType();
5074       if (pointee->isObjCRetainableType() || pointee->isPointerType())
5075         return false;
5076       // It is important not to lose the source info that there was an attribute
5077       // applied to non-objc pointer. We will create an attributed type but
5078       // its type will be the same as the original type.
5079       NonObjCPointer = true;
5080     } else if (!type->isObjCRetainableType()) {
5081       return false;
5082     }
5083
5084     // Don't accept an ownership attribute in the declspec if it would
5085     // just be the return type of a block pointer.
5086     if (state.isProcessingDeclSpec()) {
5087       Declarator &D = state.getDeclarator();
5088       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
5089                                   /*onlyBlockPointers=*/true))
5090         return false;
5091     }
5092   }
5093
5094   Sema &S = state.getSema();
5095   SourceLocation AttrLoc = attr.getLoc();
5096   if (AttrLoc.isMacroID())
5097     AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
5098
5099   if (!attr.isArgIdent(0)) {
5100     S.Diag(AttrLoc, diag::err_attribute_argument_type)
5101       << attr.getName() << AANT_ArgumentString;
5102     attr.setInvalid();
5103     return true;
5104   }
5105
5106   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
5107   Qualifiers::ObjCLifetime lifetime;
5108   if (II->isStr("none"))
5109     lifetime = Qualifiers::OCL_ExplicitNone;
5110   else if (II->isStr("strong"))
5111     lifetime = Qualifiers::OCL_Strong;
5112   else if (II->isStr("weak"))
5113     lifetime = Qualifiers::OCL_Weak;
5114   else if (II->isStr("autoreleasing"))
5115     lifetime = Qualifiers::OCL_Autoreleasing;
5116   else {
5117     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
5118       << attr.getName() << II;
5119     attr.setInvalid();
5120     return true;
5121   }
5122
5123   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
5124   // outside of ARC mode.
5125   if (!S.getLangOpts().ObjCAutoRefCount &&
5126       lifetime != Qualifiers::OCL_Weak &&
5127       lifetime != Qualifiers::OCL_ExplicitNone) {
5128     return true;
5129   }
5130
5131   SplitQualType underlyingType = type.split();
5132
5133   // Check for redundant/conflicting ownership qualifiers.
5134   if (Qualifiers::ObjCLifetime previousLifetime
5135         = type.getQualifiers().getObjCLifetime()) {
5136     // If it's written directly, that's an error.
5137     if (hasDirectOwnershipQualifier(type)) {
5138       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
5139         << type;
5140       return true;
5141     }
5142
5143     // Otherwise, if the qualifiers actually conflict, pull sugar off
5144     // until we reach a type that is directly qualified.
5145     if (previousLifetime != lifetime) {
5146       // This should always terminate: the canonical type is
5147       // qualified, so some bit of sugar must be hiding it.
5148       while (!underlyingType.Quals.hasObjCLifetime()) {
5149         underlyingType = underlyingType.getSingleStepDesugaredType();
5150       }
5151       underlyingType.Quals.removeObjCLifetime();
5152     }
5153   }
5154
5155   underlyingType.Quals.addObjCLifetime(lifetime);
5156
5157   if (NonObjCPointer) {
5158     StringRef name = attr.getName()->getName();
5159     switch (lifetime) {
5160     case Qualifiers::OCL_None:
5161     case Qualifiers::OCL_ExplicitNone:
5162       break;
5163     case Qualifiers::OCL_Strong: name = "__strong"; break;
5164     case Qualifiers::OCL_Weak: name = "__weak"; break;
5165     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
5166     }
5167     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
5168       << TDS_ObjCObjOrBlock << type;
5169   }
5170
5171   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
5172   // because having both 'T' and '__unsafe_unretained T' exist in the type
5173   // system causes unfortunate widespread consistency problems.  (For example,
5174   // they're not considered compatible types, and we mangle them identicially
5175   // as template arguments.)  These problems are all individually fixable,
5176   // but it's easier to just not add the qualifier and instead sniff it out
5177   // in specific places using isObjCInertUnsafeUnretainedType().
5178   //
5179   // Doing this does means we miss some trivial consistency checks that
5180   // would've triggered in ARC, but that's better than trying to solve all
5181   // the coexistence problems with __unsafe_unretained.
5182   if (!S.getLangOpts().ObjCAutoRefCount &&
5183       lifetime == Qualifiers::OCL_ExplicitNone) {
5184     type = S.Context.getAttributedType(
5185                              AttributedType::attr_objc_inert_unsafe_unretained,
5186                                        type, type);
5187     return true;
5188   }
5189
5190   QualType origType = type;
5191   if (!NonObjCPointer)
5192     type = S.Context.getQualifiedType(underlyingType);
5193
5194   // If we have a valid source location for the attribute, use an
5195   // AttributedType instead.
5196   if (AttrLoc.isValid())
5197     type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
5198                                        origType, type);
5199
5200   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
5201                             unsigned diagnostic, QualType type) {
5202     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
5203       S.DelayedDiagnostics.add(
5204           sema::DelayedDiagnostic::makeForbiddenType(
5205               S.getSourceManager().getExpansionLoc(loc),
5206               diagnostic, type, /*ignored*/ 0));
5207     } else {
5208       S.Diag(loc, diagnostic);
5209     }
5210   };
5211
5212   // Sometimes, __weak isn't allowed.
5213   if (lifetime == Qualifiers::OCL_Weak &&
5214       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
5215
5216     // Use a specialized diagnostic if the runtime just doesn't support them.
5217     unsigned diagnostic =
5218       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
5219                                        : diag::err_arc_weak_no_runtime);
5220
5221     // In any case, delay the diagnostic until we know what we're parsing.
5222     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
5223
5224     attr.setInvalid();
5225     return true;
5226   }
5227
5228   // Forbid __weak for class objects marked as
5229   // objc_arc_weak_reference_unavailable
5230   if (lifetime == Qualifiers::OCL_Weak) {
5231     if (const ObjCObjectPointerType *ObjT =
5232           type->getAs<ObjCObjectPointerType>()) {
5233       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
5234         if (Class->isArcWeakrefUnavailable()) {
5235           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
5236           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
5237                   diag::note_class_declared);
5238         }
5239       }
5240     }
5241   }
5242
5243   return true;
5244 }
5245
5246 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
5247 /// attribute on the specified type.  Returns true to indicate that
5248 /// the attribute was handled, false to indicate that the type does
5249 /// not permit the attribute.
5250 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
5251                                  AttributeList &attr,
5252                                  QualType &type) {
5253   Sema &S = state.getSema();
5254
5255   // Delay if this isn't some kind of pointer.
5256   if (!type->isPointerType() &&
5257       !type->isObjCObjectPointerType() &&
5258       !type->isBlockPointerType())
5259     return false;
5260
5261   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
5262     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
5263     attr.setInvalid();
5264     return true;
5265   }
5266   
5267   // Check the attribute arguments.
5268   if (!attr.isArgIdent(0)) {
5269     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
5270       << attr.getName() << AANT_ArgumentString;
5271     attr.setInvalid();
5272     return true;
5273   }
5274   Qualifiers::GC GCAttr;
5275   if (attr.getNumArgs() > 1) {
5276     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
5277       << attr.getName() << 1;
5278     attr.setInvalid();
5279     return true;
5280   }
5281
5282   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
5283   if (II->isStr("weak"))
5284     GCAttr = Qualifiers::Weak;
5285   else if (II->isStr("strong"))
5286     GCAttr = Qualifiers::Strong;
5287   else {
5288     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
5289       << attr.getName() << II;
5290     attr.setInvalid();
5291     return true;
5292   }
5293
5294   QualType origType = type;
5295   type = S.Context.getObjCGCQualType(origType, GCAttr);
5296
5297   // Make an attributed type to preserve the source information.
5298   if (attr.getLoc().isValid())
5299     type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
5300                                        origType, type);
5301
5302   return true;
5303 }
5304
5305 namespace {
5306   /// A helper class to unwrap a type down to a function for the
5307   /// purposes of applying attributes there.
5308   ///
5309   /// Use:
5310   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
5311   ///   if (unwrapped.isFunctionType()) {
5312   ///     const FunctionType *fn = unwrapped.get();
5313   ///     // change fn somehow
5314   ///     T = unwrapped.wrap(fn);
5315   ///   }
5316   struct FunctionTypeUnwrapper {
5317     enum WrapKind {
5318       Desugar,
5319       Parens,
5320       Pointer,
5321       BlockPointer,
5322       Reference,
5323       MemberPointer
5324     };
5325
5326     QualType Original;
5327     const FunctionType *Fn;
5328     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
5329
5330     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
5331       while (true) {
5332         const Type *Ty = T.getTypePtr();
5333         if (isa<FunctionType>(Ty)) {
5334           Fn = cast<FunctionType>(Ty);
5335           return;
5336         } else if (isa<ParenType>(Ty)) {
5337           T = cast<ParenType>(Ty)->getInnerType();
5338           Stack.push_back(Parens);
5339         } else if (isa<PointerType>(Ty)) {
5340           T = cast<PointerType>(Ty)->getPointeeType();
5341           Stack.push_back(Pointer);
5342         } else if (isa<BlockPointerType>(Ty)) {
5343           T = cast<BlockPointerType>(Ty)->getPointeeType();
5344           Stack.push_back(BlockPointer);
5345         } else if (isa<MemberPointerType>(Ty)) {
5346           T = cast<MemberPointerType>(Ty)->getPointeeType();
5347           Stack.push_back(MemberPointer);
5348         } else if (isa<ReferenceType>(Ty)) {
5349           T = cast<ReferenceType>(Ty)->getPointeeType();
5350           Stack.push_back(Reference);
5351         } else {
5352           const Type *DTy = Ty->getUnqualifiedDesugaredType();
5353           if (Ty == DTy) {
5354             Fn = nullptr;
5355             return;
5356           }
5357
5358           T = QualType(DTy, 0);
5359           Stack.push_back(Desugar);
5360         }
5361       }
5362     }
5363
5364     bool isFunctionType() const { return (Fn != nullptr); }
5365     const FunctionType *get() const { return Fn; }
5366
5367     QualType wrap(Sema &S, const FunctionType *New) {
5368       // If T wasn't modified from the unwrapped type, do nothing.
5369       if (New == get()) return Original;
5370
5371       Fn = New;
5372       return wrap(S.Context, Original, 0);
5373     }
5374
5375   private:
5376     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
5377       if (I == Stack.size())
5378         return C.getQualifiedType(Fn, Old.getQualifiers());
5379
5380       // Build up the inner type, applying the qualifiers from the old
5381       // type to the new type.
5382       SplitQualType SplitOld = Old.split();
5383
5384       // As a special case, tail-recurse if there are no qualifiers.
5385       if (SplitOld.Quals.empty())
5386         return wrap(C, SplitOld.Ty, I);
5387       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
5388     }
5389
5390     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
5391       if (I == Stack.size()) return QualType(Fn, 0);
5392
5393       switch (static_cast<WrapKind>(Stack[I++])) {
5394       case Desugar:
5395         // This is the point at which we potentially lose source
5396         // information.
5397         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
5398
5399       case Parens: {
5400         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
5401         return C.getParenType(New);
5402       }
5403
5404       case Pointer: {
5405         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
5406         return C.getPointerType(New);
5407       }
5408
5409       case BlockPointer: {
5410         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
5411         return C.getBlockPointerType(New);
5412       }
5413
5414       case MemberPointer: {
5415         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
5416         QualType New = wrap(C, OldMPT->getPointeeType(), I);
5417         return C.getMemberPointerType(New, OldMPT->getClass());
5418       }
5419
5420       case Reference: {
5421         const ReferenceType *OldRef = cast<ReferenceType>(Old);
5422         QualType New = wrap(C, OldRef->getPointeeType(), I);
5423         if (isa<LValueReferenceType>(OldRef))
5424           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
5425         else
5426           return C.getRValueReferenceType(New);
5427       }
5428       }
5429
5430       llvm_unreachable("unknown wrapping kind");
5431     }
5432   };
5433 }
5434
5435 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
5436                                              AttributeList &Attr,
5437                                              QualType &Type) {
5438   Sema &S = State.getSema();
5439
5440   AttributeList::Kind Kind = Attr.getKind();
5441   QualType Desugared = Type;
5442   const AttributedType *AT = dyn_cast<AttributedType>(Type);
5443   while (AT) {
5444     AttributedType::Kind CurAttrKind = AT->getAttrKind();
5445
5446     // You cannot specify duplicate type attributes, so if the attribute has
5447     // already been applied, flag it.
5448     if (getAttrListKind(CurAttrKind) == Kind) {
5449       S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
5450         << Attr.getName();
5451       return true;
5452     }
5453
5454     // You cannot have both __sptr and __uptr on the same type, nor can you
5455     // have __ptr32 and __ptr64.
5456     if ((CurAttrKind == AttributedType::attr_ptr32 &&
5457          Kind == AttributeList::AT_Ptr64) ||
5458         (CurAttrKind == AttributedType::attr_ptr64 &&
5459          Kind == AttributeList::AT_Ptr32)) {
5460       S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
5461         << "'__ptr32'" << "'__ptr64'";
5462       return true;
5463     } else if ((CurAttrKind == AttributedType::attr_sptr &&
5464                 Kind == AttributeList::AT_UPtr) ||
5465                (CurAttrKind == AttributedType::attr_uptr &&
5466                 Kind == AttributeList::AT_SPtr)) {
5467       S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
5468         << "'__sptr'" << "'__uptr'";
5469       return true;
5470     }
5471     
5472     Desugared = AT->getEquivalentType();
5473     AT = dyn_cast<AttributedType>(Desugared);
5474   }
5475
5476   // Pointer type qualifiers can only operate on pointer types, but not
5477   // pointer-to-member types.
5478   if (!isa<PointerType>(Desugared)) {
5479     if (Type->isMemberPointerType())
5480       S.Diag(Attr.getLoc(), diag::err_attribute_no_member_pointers)
5481           << Attr.getName();
5482     else
5483       S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
5484           << Attr.getName() << 0;
5485     return true;
5486   }
5487
5488   AttributedType::Kind TAK;
5489   switch (Kind) {
5490   default: llvm_unreachable("Unknown attribute kind");
5491   case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
5492   case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
5493   case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
5494   case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
5495   }
5496
5497   Type = S.Context.getAttributedType(TAK, Type, Type);
5498   return false;
5499 }
5500
5501 bool Sema::checkNullabilityTypeSpecifier(QualType &type,
5502                                          NullabilityKind nullability,
5503                                          SourceLocation nullabilityLoc,
5504                                          bool isContextSensitive) {
5505   // We saw a nullability type specifier. If this is the first one for
5506   // this file, note that.
5507   FileID file = getNullabilityCompletenessCheckFileID(*this, nullabilityLoc);
5508   if (!file.isInvalid()) {
5509     FileNullability &fileNullability = NullabilityMap[file];
5510     if (!fileNullability.SawTypeNullability) {
5511       // If we have already seen a pointer declarator without a nullability
5512       // annotation, complain about it.
5513       if (fileNullability.PointerLoc.isValid()) {
5514         Diag(fileNullability.PointerLoc, diag::warn_nullability_missing)
5515           << static_cast<unsigned>(fileNullability.PointerKind);
5516       }
5517
5518       fileNullability.SawTypeNullability = true;
5519     }
5520   }
5521
5522   // Check for existing nullability attributes on the type.
5523   QualType desugared = type;
5524   while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
5525     // Check whether there is already a null
5526     if (auto existingNullability = attributed->getImmediateNullability()) {
5527       // Duplicated nullability.
5528       if (nullability == *existingNullability) {
5529         Diag(nullabilityLoc, diag::warn_nullability_duplicate)
5530           << DiagNullabilityKind(nullability, isContextSensitive)
5531           << FixItHint::CreateRemoval(nullabilityLoc);
5532
5533         break;
5534       } 
5535
5536       // Conflicting nullability.
5537       Diag(nullabilityLoc, diag::err_nullability_conflicting)
5538         << DiagNullabilityKind(nullability, isContextSensitive)
5539         << DiagNullabilityKind(*existingNullability, false);
5540       return true;
5541     }
5542
5543     desugared = attributed->getModifiedType();
5544   }
5545
5546   // If there is already a different nullability specifier, complain.
5547   // This (unlike the code above) looks through typedefs that might
5548   // have nullability specifiers on them, which means we cannot
5549   // provide a useful Fix-It.
5550   if (auto existingNullability = desugared->getNullability(Context)) {
5551     if (nullability != *existingNullability) {
5552       Diag(nullabilityLoc, diag::err_nullability_conflicting)
5553         << DiagNullabilityKind(nullability, isContextSensitive)
5554         << DiagNullabilityKind(*existingNullability, false);
5555
5556       // Try to find the typedef with the existing nullability specifier.
5557       if (auto typedefType = desugared->getAs<TypedefType>()) {
5558         TypedefNameDecl *typedefDecl = typedefType->getDecl();
5559         QualType underlyingType = typedefDecl->getUnderlyingType();
5560         if (auto typedefNullability
5561               = AttributedType::stripOuterNullability(underlyingType)) {
5562           if (*typedefNullability == *existingNullability) {
5563             Diag(typedefDecl->getLocation(), diag::note_nullability_here)
5564               << DiagNullabilityKind(*existingNullability, false);
5565           }
5566         }
5567       }
5568
5569       return true;
5570     }
5571   }
5572
5573   // If this definitely isn't a pointer type, reject the specifier.
5574   if (!desugared->canHaveNullability()) {
5575     Diag(nullabilityLoc, diag::err_nullability_nonpointer)
5576       << DiagNullabilityKind(nullability, isContextSensitive) << type;
5577     return true;
5578   }
5579   
5580   // For the context-sensitive keywords/Objective-C property
5581   // attributes, require that the type be a single-level pointer.
5582   if (isContextSensitive) {
5583     // Make sure that the pointee isn't itself a pointer type.
5584     QualType pointeeType = desugared->getPointeeType();
5585     if (pointeeType->isAnyPointerType() ||
5586         pointeeType->isObjCObjectPointerType() ||
5587         pointeeType->isMemberPointerType()) {
5588       Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
5589         << DiagNullabilityKind(nullability, true)
5590         << type;
5591       Diag(nullabilityLoc, diag::note_nullability_type_specifier)
5592         << DiagNullabilityKind(nullability, false)
5593         << type
5594         << FixItHint::CreateReplacement(nullabilityLoc,
5595                                         getNullabilitySpelling(nullability));
5596       return true;
5597     }
5598   }
5599
5600   // Form the attributed type.
5601   type = Context.getAttributedType(
5602            AttributedType::getNullabilityAttrKind(nullability), type, type);
5603   return false;
5604 }
5605
5606 bool Sema::checkObjCKindOfType(QualType &type, SourceLocation loc) {
5607   // Find out if it's an Objective-C object or object pointer type;
5608   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
5609   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType() 
5610                                           : type->getAs<ObjCObjectType>();
5611
5612   // If not, we can't apply __kindof.
5613   if (!objType) {
5614     // FIXME: Handle dependent types that aren't yet object types.
5615     Diag(loc, diag::err_objc_kindof_nonobject)
5616       << type;
5617     return true;
5618   }
5619
5620   // Rebuild the "equivalent" type, which pushes __kindof down into
5621   // the object type.
5622   QualType equivType = Context.getObjCObjectType(objType->getBaseType(),
5623                                                  objType->getTypeArgsAsWritten(),
5624                                                  objType->getProtocols(),
5625                                                  /*isKindOf=*/true);
5626
5627   // If we started with an object pointer type, rebuild it.
5628   if (ptrType) {
5629     equivType = Context.getObjCObjectPointerType(equivType);
5630     if (auto nullability = type->getNullability(Context)) {
5631       auto attrKind = AttributedType::getNullabilityAttrKind(*nullability);
5632       equivType = Context.getAttributedType(attrKind, equivType, equivType);
5633     }
5634   }
5635
5636   // Build the attributed type to record where __kindof occurred.
5637   type = Context.getAttributedType(AttributedType::attr_objc_kindof, 
5638                                    type,
5639                                    equivType);
5640
5641   return false;
5642 }
5643
5644 /// Map a nullability attribute kind to a nullability kind.
5645 static NullabilityKind mapNullabilityAttrKind(AttributeList::Kind kind) {
5646   switch (kind) {
5647   case AttributeList::AT_TypeNonNull:
5648     return NullabilityKind::NonNull;
5649
5650   case AttributeList::AT_TypeNullable:
5651     return NullabilityKind::Nullable;
5652
5653   case AttributeList::AT_TypeNullUnspecified:
5654     return NullabilityKind::Unspecified;
5655
5656   default:
5657     llvm_unreachable("not a nullability attribute kind");
5658   }
5659 }
5660
5661 /// Distribute a nullability type attribute that cannot be applied to
5662 /// the type specifier to a pointer, block pointer, or member pointer
5663 /// declarator, complaining if necessary.
5664 ///
5665 /// \returns true if the nullability annotation was distributed, false
5666 /// otherwise.
5667 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
5668                                           QualType type,
5669                                           AttributeList &attr) {
5670   Declarator &declarator = state.getDeclarator();
5671
5672   /// Attempt to move the attribute to the specified chunk.
5673   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
5674     // If there is already a nullability attribute there, don't add
5675     // one.
5676     if (hasNullabilityAttr(chunk.getAttrListRef()))
5677       return false;
5678
5679     // Complain about the nullability qualifier being in the wrong
5680     // place.
5681     enum {
5682       PK_Pointer,
5683       PK_BlockPointer,
5684       PK_MemberPointer,
5685       PK_FunctionPointer,
5686       PK_MemberFunctionPointer,
5687     } pointerKind
5688       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
5689                                                              : PK_Pointer)
5690         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
5691         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
5692
5693     auto diag = state.getSema().Diag(attr.getLoc(),
5694                                      diag::warn_nullability_declspec)
5695       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
5696                              attr.isContextSensitiveKeywordAttribute())
5697       << type
5698       << static_cast<unsigned>(pointerKind);
5699
5700     // FIXME: MemberPointer chunks don't carry the location of the *.
5701     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
5702       diag << FixItHint::CreateRemoval(attr.getLoc())
5703            << FixItHint::CreateInsertion(
5704                 state.getSema().getPreprocessor()
5705                   .getLocForEndOfToken(chunk.Loc),
5706                 " " + attr.getName()->getName().str() + " ");
5707     }
5708
5709     moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
5710                            chunk.getAttrListRef());
5711     return true;
5712   };
5713
5714   // Move it to the outermost pointer, member pointer, or block
5715   // pointer declarator.
5716   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
5717     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
5718     switch (chunk.Kind) {
5719     case DeclaratorChunk::Pointer:
5720     case DeclaratorChunk::BlockPointer:
5721     case DeclaratorChunk::MemberPointer:
5722       return moveToChunk(chunk, false);
5723
5724     case DeclaratorChunk::Paren:
5725     case DeclaratorChunk::Array:
5726       continue;
5727
5728     case DeclaratorChunk::Function:
5729       // Try to move past the return type to a function/block/member
5730       // function pointer.
5731       if (DeclaratorChunk *dest = maybeMovePastReturnType(
5732                                     declarator, i,
5733                                     /*onlyBlockPointers=*/false)) {
5734         return moveToChunk(*dest, true);
5735       }
5736
5737       return false;
5738       
5739     // Don't walk through these.
5740     case DeclaratorChunk::Reference:
5741       return false;
5742     }
5743   }
5744
5745   return false;
5746 }
5747
5748 static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
5749   assert(!Attr.isInvalid());
5750   switch (Attr.getKind()) {
5751   default:
5752     llvm_unreachable("not a calling convention attribute");
5753   case AttributeList::AT_CDecl:
5754     return AttributedType::attr_cdecl;
5755   case AttributeList::AT_FastCall:
5756     return AttributedType::attr_fastcall;
5757   case AttributeList::AT_StdCall:
5758     return AttributedType::attr_stdcall;
5759   case AttributeList::AT_ThisCall:
5760     return AttributedType::attr_thiscall;
5761   case AttributeList::AT_Pascal:
5762     return AttributedType::attr_pascal;
5763   case AttributeList::AT_VectorCall:
5764     return AttributedType::attr_vectorcall;
5765   case AttributeList::AT_Pcs: {
5766     // The attribute may have had a fixit applied where we treated an
5767     // identifier as a string literal.  The contents of the string are valid,
5768     // but the form may not be.
5769     StringRef Str;
5770     if (Attr.isArgExpr(0))
5771       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
5772     else
5773       Str = Attr.getArgAsIdent(0)->Ident->getName();
5774     return llvm::StringSwitch<AttributedType::Kind>(Str)
5775         .Case("aapcs", AttributedType::attr_pcs)
5776         .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
5777   }
5778   case AttributeList::AT_IntelOclBicc:
5779     return AttributedType::attr_inteloclbicc;
5780   case AttributeList::AT_MSABI:
5781     return AttributedType::attr_ms_abi;
5782   case AttributeList::AT_SysVABI:
5783     return AttributedType::attr_sysv_abi;
5784   }
5785   llvm_unreachable("unexpected attribute kind!");
5786 }
5787
5788 /// Process an individual function attribute.  Returns true to
5789 /// indicate that the attribute was handled, false if it wasn't.
5790 static bool handleFunctionTypeAttr(TypeProcessingState &state,
5791                                    AttributeList &attr,
5792                                    QualType &type) {
5793   Sema &S = state.getSema();
5794
5795   FunctionTypeUnwrapper unwrapped(S, type);
5796
5797   if (attr.getKind() == AttributeList::AT_NoReturn) {
5798     if (S.CheckNoReturnAttr(attr))
5799       return true;
5800
5801     // Delay if this is not a function type.
5802     if (!unwrapped.isFunctionType())
5803       return false;
5804
5805     // Otherwise we can process right away.
5806     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
5807     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
5808     return true;
5809   }
5810
5811   // ns_returns_retained is not always a type attribute, but if we got
5812   // here, we're treating it as one right now.
5813   if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
5814     assert(S.getLangOpts().ObjCAutoRefCount &&
5815            "ns_returns_retained treated as type attribute in non-ARC");
5816     if (attr.getNumArgs()) return true;
5817
5818     // Delay if this is not a function type.
5819     if (!unwrapped.isFunctionType())
5820       return false;
5821
5822     FunctionType::ExtInfo EI
5823       = unwrapped.get()->getExtInfo().withProducesResult(true);
5824     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
5825     return true;
5826   }
5827
5828   if (attr.getKind() == AttributeList::AT_Regparm) {
5829     unsigned value;
5830     if (S.CheckRegparmAttr(attr, value))
5831       return true;
5832
5833     // Delay if this is not a function type.
5834     if (!unwrapped.isFunctionType())
5835       return false;
5836
5837     // Diagnose regparm with fastcall.
5838     const FunctionType *fn = unwrapped.get();
5839     CallingConv CC = fn->getCallConv();
5840     if (CC == CC_X86FastCall) {
5841       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
5842         << FunctionType::getNameForCallConv(CC)
5843         << "regparm";
5844       attr.setInvalid();
5845       return true;
5846     }
5847
5848     FunctionType::ExtInfo EI =
5849       unwrapped.get()->getExtInfo().withRegParm(value);
5850     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
5851     return true;
5852   }
5853
5854   // Delay if the type didn't work out to a function.
5855   if (!unwrapped.isFunctionType()) return false;
5856
5857   // Otherwise, a calling convention.
5858   CallingConv CC;
5859   if (S.CheckCallingConvAttr(attr, CC))
5860     return true;
5861
5862   const FunctionType *fn = unwrapped.get();
5863   CallingConv CCOld = fn->getCallConv();
5864   AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
5865
5866   if (CCOld != CC) {
5867     // Error out on when there's already an attribute on the type
5868     // and the CCs don't match.
5869     const AttributedType *AT = S.getCallingConvAttributedType(type);
5870     if (AT && AT->getAttrKind() != CCAttrKind) {
5871       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
5872         << FunctionType::getNameForCallConv(CC)
5873         << FunctionType::getNameForCallConv(CCOld);
5874       attr.setInvalid();
5875       return true;
5876     }
5877   }
5878
5879   // Diagnose use of callee-cleanup calling convention on variadic functions.
5880   if (!supportsVariadicCall(CC)) {
5881     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
5882     if (FnP && FnP->isVariadic()) {
5883       unsigned DiagID = diag::err_cconv_varargs;
5884       // stdcall and fastcall are ignored with a warning for GCC and MS
5885       // compatibility.
5886       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
5887         DiagID = diag::warn_cconv_varargs;
5888
5889       S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
5890       attr.setInvalid();
5891       return true;
5892     }
5893   }
5894
5895   // Also diagnose fastcall with regparm.
5896   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
5897     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
5898         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
5899     attr.setInvalid();
5900     return true;
5901   }
5902
5903   // Modify the CC from the wrapped function type, wrap it all back, and then
5904   // wrap the whole thing in an AttributedType as written.  The modified type
5905   // might have a different CC if we ignored the attribute.
5906   FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
5907   QualType Equivalent =
5908       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
5909   type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
5910   return true;
5911 }
5912
5913 bool Sema::hasExplicitCallingConv(QualType &T) {
5914   QualType R = T.IgnoreParens();
5915   while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
5916     if (AT->isCallingConv())
5917       return true;
5918     R = AT->getModifiedType().IgnoreParens();
5919   }
5920   return false;
5921 }
5922
5923 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
5924                                   SourceLocation Loc) {
5925   FunctionTypeUnwrapper Unwrapped(*this, T);
5926   const FunctionType *FT = Unwrapped.get();
5927   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
5928                      cast<FunctionProtoType>(FT)->isVariadic());
5929   CallingConv CurCC = FT->getCallConv();
5930   CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
5931
5932   if (CurCC == ToCC)
5933     return;
5934
5935   // MS compiler ignores explicit calling convention attributes on structors. We
5936   // should do the same.
5937   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
5938     // Issue a warning on ignored calling convention -- except of __stdcall.
5939     // Again, this is what MS compiler does.
5940     if (CurCC != CC_X86StdCall)
5941       Diag(Loc, diag::warn_cconv_structors)
5942           << FunctionType::getNameForCallConv(CurCC);
5943   // Default adjustment.
5944   } else {
5945     // Only adjust types with the default convention.  For example, on Windows
5946     // we should adjust a __cdecl type to __thiscall for instance methods, and a
5947     // __thiscall type to __cdecl for static methods.
5948     CallingConv DefaultCC =
5949         Context.getDefaultCallingConvention(IsVariadic, IsStatic);
5950
5951     if (CurCC != DefaultCC || DefaultCC == ToCC)
5952       return;
5953
5954     if (hasExplicitCallingConv(T))
5955       return;
5956   }
5957
5958   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
5959   QualType Wrapped = Unwrapped.wrap(*this, FT);
5960   T = Context.getAdjustedType(T, Wrapped);
5961 }
5962
5963 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
5964 /// and float scalars, although arrays, pointers, and function return values are
5965 /// allowed in conjunction with this construct. Aggregates with this attribute
5966 /// are invalid, even if they are of the same size as a corresponding scalar.
5967 /// The raw attribute should contain precisely 1 argument, the vector size for
5968 /// the variable, measured in bytes. If curType and rawAttr are well formed,
5969 /// this routine will return a new vector type.
5970 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
5971                                  Sema &S) {
5972   // Check the attribute arguments.
5973   if (Attr.getNumArgs() != 1) {
5974     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
5975       << Attr.getName() << 1;
5976     Attr.setInvalid();
5977     return;
5978   }
5979   Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
5980   llvm::APSInt vecSize(32);
5981   if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
5982       !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
5983     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
5984       << Attr.getName() << AANT_ArgumentIntegerConstant
5985       << sizeExpr->getSourceRange();
5986     Attr.setInvalid();
5987     return;
5988   }
5989   // The base type must be integer (not Boolean or enumeration) or float, and
5990   // can't already be a vector.
5991   if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
5992       (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
5993     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
5994     Attr.setInvalid();
5995     return;
5996   }
5997   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
5998   // vecSize is specified in bytes - convert to bits.
5999   unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
6000
6001   // the vector size needs to be an integral multiple of the type size.
6002   if (vectorSize % typeSize) {
6003     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
6004       << sizeExpr->getSourceRange();
6005     Attr.setInvalid();
6006     return;
6007   }
6008   if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
6009     S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
6010       << sizeExpr->getSourceRange();
6011     Attr.setInvalid();
6012     return;
6013   }
6014   if (vectorSize == 0) {
6015     S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
6016       << sizeExpr->getSourceRange();
6017     Attr.setInvalid();
6018     return;
6019   }
6020
6021   // Success! Instantiate the vector type, the number of elements is > 0, and
6022   // not required to be a power of 2, unlike GCC.
6023   CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
6024                                     VectorType::GenericVector);
6025 }
6026
6027 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
6028 /// a type.
6029 static void HandleExtVectorTypeAttr(QualType &CurType,
6030                                     const AttributeList &Attr,
6031                                     Sema &S) {
6032   // check the attribute arguments.
6033   if (Attr.getNumArgs() != 1) {
6034     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6035       << Attr.getName() << 1;
6036     return;
6037   }
6038
6039   Expr *sizeExpr;
6040
6041   // Special case where the argument is a template id.
6042   if (Attr.isArgIdent(0)) {
6043     CXXScopeSpec SS;
6044     SourceLocation TemplateKWLoc;
6045     UnqualifiedId id;
6046     id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6047
6048     ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
6049                                           id, false, false);
6050     if (Size.isInvalid())
6051       return;
6052
6053     sizeExpr = Size.get();
6054   } else {
6055     sizeExpr = Attr.getArgAsExpr(0);
6056   }
6057
6058   // Create the vector type.
6059   QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
6060   if (!T.isNull())
6061     CurType = T;
6062 }
6063
6064 static bool isPermittedNeonBaseType(QualType &Ty,
6065                                     VectorType::VectorKind VecKind, Sema &S) {
6066   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
6067   if (!BTy)
6068     return false;
6069
6070   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
6071
6072   // Signed poly is mathematically wrong, but has been baked into some ABIs by
6073   // now.
6074   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
6075                         Triple.getArch() == llvm::Triple::aarch64_be;
6076   if (VecKind == VectorType::NeonPolyVector) {
6077     if (IsPolyUnsigned) {
6078       // AArch64 polynomial vectors are unsigned and support poly64.
6079       return BTy->getKind() == BuiltinType::UChar ||
6080              BTy->getKind() == BuiltinType::UShort ||
6081              BTy->getKind() == BuiltinType::ULong ||
6082              BTy->getKind() == BuiltinType::ULongLong;
6083     } else {
6084       // AArch32 polynomial vector are signed.
6085       return BTy->getKind() == BuiltinType::SChar ||
6086              BTy->getKind() == BuiltinType::Short;
6087     }
6088   }
6089
6090   // Non-polynomial vector types: the usual suspects are allowed, as well as
6091   // float64_t on AArch64.
6092   bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
6093                  Triple.getArch() == llvm::Triple::aarch64_be;
6094
6095   if (Is64Bit && BTy->getKind() == BuiltinType::Double)
6096     return true;
6097
6098   return BTy->getKind() == BuiltinType::SChar ||
6099          BTy->getKind() == BuiltinType::UChar ||
6100          BTy->getKind() == BuiltinType::Short ||
6101          BTy->getKind() == BuiltinType::UShort ||
6102          BTy->getKind() == BuiltinType::Int ||
6103          BTy->getKind() == BuiltinType::UInt ||
6104          BTy->getKind() == BuiltinType::Long ||
6105          BTy->getKind() == BuiltinType::ULong ||
6106          BTy->getKind() == BuiltinType::LongLong ||
6107          BTy->getKind() == BuiltinType::ULongLong ||
6108          BTy->getKind() == BuiltinType::Float ||
6109          BTy->getKind() == BuiltinType::Half;
6110 }
6111
6112 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
6113 /// "neon_polyvector_type" attributes are used to create vector types that
6114 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
6115 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
6116 /// the argument to these Neon attributes is the number of vector elements,
6117 /// not the vector size in bytes.  The vector width and element type must
6118 /// match one of the standard Neon vector types.
6119 static void HandleNeonVectorTypeAttr(QualType& CurType,
6120                                      const AttributeList &Attr, Sema &S,
6121                                      VectorType::VectorKind VecKind) {
6122   // Target must have NEON
6123   if (!S.Context.getTargetInfo().hasFeature("neon")) {
6124     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
6125     Attr.setInvalid();
6126     return;
6127   }
6128   // Check the attribute arguments.
6129   if (Attr.getNumArgs() != 1) {
6130     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6131       << Attr.getName() << 1;
6132     Attr.setInvalid();
6133     return;
6134   }
6135   // The number of elements must be an ICE.
6136   Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6137   llvm::APSInt numEltsInt(32);
6138   if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
6139       !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
6140     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6141       << Attr.getName() << AANT_ArgumentIntegerConstant
6142       << numEltsExpr->getSourceRange();
6143     Attr.setInvalid();
6144     return;
6145   }
6146   // Only certain element types are supported for Neon vectors.
6147   if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
6148     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
6149     Attr.setInvalid();
6150     return;
6151   }
6152
6153   // The total size of the vector must be 64 or 128 bits.
6154   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
6155   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
6156   unsigned vecSize = typeSize * numElts;
6157   if (vecSize != 64 && vecSize != 128) {
6158     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
6159     Attr.setInvalid();
6160     return;
6161   }
6162
6163   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
6164 }
6165
6166 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
6167                              TypeAttrLocation TAL, AttributeList *attrs) {
6168   // Scan through and apply attributes to this type where it makes sense.  Some
6169   // attributes (such as __address_space__, __vector_size__, etc) apply to the
6170   // type, but others can be present in the type specifiers even though they
6171   // apply to the decl.  Here we apply type attributes and ignore the rest.
6172
6173   bool hasOpenCLAddressSpace = false;
6174   while (attrs) {
6175     AttributeList &attr = *attrs;
6176     attrs = attr.getNext(); // reset to the next here due to early loop continue
6177                             // stmts
6178
6179     // Skip attributes that were marked to be invalid.
6180     if (attr.isInvalid())
6181       continue;
6182
6183     if (attr.isCXX11Attribute()) {
6184       // [[gnu::...]] attributes are treated as declaration attributes, so may
6185       // not appertain to a DeclaratorChunk, even if we handle them as type
6186       // attributes.
6187       if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
6188         if (TAL == TAL_DeclChunk) {
6189           state.getSema().Diag(attr.getLoc(),
6190                                diag::warn_cxx11_gnu_attribute_on_type)
6191               << attr.getName();
6192           continue;
6193         }
6194       } else if (TAL != TAL_DeclChunk) {
6195         // Otherwise, only consider type processing for a C++11 attribute if
6196         // it's actually been applied to a type.
6197         continue;
6198       }
6199     }
6200
6201     // If this is an attribute we can handle, do so now,
6202     // otherwise, add it to the FnAttrs list for rechaining.
6203     switch (attr.getKind()) {
6204     default:
6205       // A C++11 attribute on a declarator chunk must appertain to a type.
6206       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
6207         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
6208           << attr.getName();
6209         attr.setUsedAsTypeAttr();
6210       }
6211       break;
6212
6213     case AttributeList::UnknownAttribute:
6214       if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
6215         state.getSema().Diag(attr.getLoc(),
6216                              diag::warn_unknown_attribute_ignored)
6217           << attr.getName();
6218       break;
6219
6220     case AttributeList::IgnoredAttribute:
6221       break;
6222
6223     case AttributeList::AT_MayAlias:
6224       // FIXME: This attribute needs to actually be handled, but if we ignore
6225       // it it breaks large amounts of Linux software.
6226       attr.setUsedAsTypeAttr();
6227       break;
6228     case AttributeList::AT_OpenCLPrivateAddressSpace:
6229     case AttributeList::AT_OpenCLGlobalAddressSpace:
6230     case AttributeList::AT_OpenCLLocalAddressSpace:
6231     case AttributeList::AT_OpenCLConstantAddressSpace:
6232     case AttributeList::AT_OpenCLGenericAddressSpace:
6233     case AttributeList::AT_AddressSpace:
6234       HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
6235       attr.setUsedAsTypeAttr();
6236       hasOpenCLAddressSpace = true;
6237       break;
6238     OBJC_POINTER_TYPE_ATTRS_CASELIST:
6239       if (!handleObjCPointerTypeAttr(state, attr, type))
6240         distributeObjCPointerTypeAttr(state, attr, type);
6241       attr.setUsedAsTypeAttr();
6242       break;
6243     case AttributeList::AT_VectorSize:
6244       HandleVectorSizeAttr(type, attr, state.getSema());
6245       attr.setUsedAsTypeAttr();
6246       break;
6247     case AttributeList::AT_ExtVectorType:
6248       HandleExtVectorTypeAttr(type, attr, state.getSema());
6249       attr.setUsedAsTypeAttr();
6250       break;
6251     case AttributeList::AT_NeonVectorType:
6252       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
6253                                VectorType::NeonVector);
6254       attr.setUsedAsTypeAttr();
6255       break;
6256     case AttributeList::AT_NeonPolyVectorType:
6257       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
6258                                VectorType::NeonPolyVector);
6259       attr.setUsedAsTypeAttr();
6260       break;
6261     case AttributeList::AT_OpenCLImageAccess:
6262       // FIXME: there should be some type checking happening here, I would
6263       // imagine, but the original handler's checking was entirely superfluous.
6264       attr.setUsedAsTypeAttr();
6265       break;
6266
6267     MS_TYPE_ATTRS_CASELIST:
6268       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
6269         attr.setUsedAsTypeAttr();
6270       break;
6271
6272
6273     NULLABILITY_TYPE_ATTRS_CASELIST:
6274       // Either add nullability here or try to distribute it.  We
6275       // don't want to distribute the nullability specifier past any
6276       // dependent type, because that complicates the user model.
6277       if (type->canHaveNullability() || type->isDependentType() ||
6278           !distributeNullabilityTypeAttr(state, type, attr)) {
6279         if (state.getSema().checkNullabilityTypeSpecifier(
6280               type,
6281               mapNullabilityAttrKind(attr.getKind()),
6282               attr.getLoc(),
6283               attr.isContextSensitiveKeywordAttribute())) {
6284           attr.setInvalid();
6285         }
6286
6287         attr.setUsedAsTypeAttr();
6288       }
6289       break;
6290
6291     case AttributeList::AT_ObjCKindOf:
6292       // '__kindof' must be part of the decl-specifiers.
6293       switch (TAL) {
6294       case TAL_DeclSpec:
6295         break;
6296
6297       case TAL_DeclChunk:
6298       case TAL_DeclName:
6299         state.getSema().Diag(attr.getLoc(),
6300                              diag::err_objc_kindof_wrong_position)
6301           << FixItHint::CreateRemoval(attr.getLoc())
6302           << FixItHint::CreateInsertion(
6303                state.getDeclarator().getDeclSpec().getLocStart(), "__kindof ");
6304         break;
6305       }
6306
6307       // Apply it regardless.
6308       if (state.getSema().checkObjCKindOfType(type, attr.getLoc()))
6309         attr.setInvalid();
6310       attr.setUsedAsTypeAttr();
6311       break;
6312
6313     case AttributeList::AT_NSReturnsRetained:
6314       if (!state.getSema().getLangOpts().ObjCAutoRefCount)
6315         break;
6316       // fallthrough into the function attrs
6317
6318     FUNCTION_TYPE_ATTRS_CASELIST:
6319       attr.setUsedAsTypeAttr();
6320
6321       // Never process function type attributes as part of the
6322       // declaration-specifiers.
6323       if (TAL == TAL_DeclSpec)
6324         distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
6325
6326       // Otherwise, handle the possible delays.
6327       else if (!handleFunctionTypeAttr(state, attr, type))
6328         distributeFunctionTypeAttr(state, attr, type);
6329       break;
6330     }
6331   }
6332
6333   // If address space is not set, OpenCL 2.0 defines non private default
6334   // address spaces for some cases:
6335   // OpenCL 2.0, section 6.5:
6336   // The address space for a variable at program scope or a static variable
6337   // inside a function can either be __global or __constant, but defaults to
6338   // __global if not specified.
6339   // (...)
6340   // Pointers that are declared without pointing to a named address space point
6341   // to the generic address space.
6342   if (state.getSema().getLangOpts().OpenCLVersion >= 200 &&
6343       !hasOpenCLAddressSpace && type.getAddressSpace() == 0 &&
6344       (TAL == TAL_DeclSpec || TAL == TAL_DeclChunk)) {
6345     Declarator &D = state.getDeclarator();
6346     if (state.getCurrentChunkIndex() > 0 &&
6347         D.getTypeObject(state.getCurrentChunkIndex() - 1).Kind ==
6348             DeclaratorChunk::Pointer) {
6349       type = state.getSema().Context.getAddrSpaceQualType(
6350           type, LangAS::opencl_generic);
6351     } else if (state.getCurrentChunkIndex() == 0 &&
6352                D.getContext() == Declarator::FileContext &&
6353                !D.isFunctionDeclarator() && !D.isFunctionDefinition() &&
6354                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6355                !type->isSamplerT())
6356       type = state.getSema().Context.getAddrSpaceQualType(
6357           type, LangAS::opencl_global);
6358     else if (state.getCurrentChunkIndex() == 0 &&
6359              D.getContext() == Declarator::BlockContext &&
6360              D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
6361       type = state.getSema().Context.getAddrSpaceQualType(
6362           type, LangAS::opencl_global);
6363   }
6364 }
6365
6366 void Sema::completeExprArrayBound(Expr *E) {
6367   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
6368     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
6369       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
6370         SourceLocation PointOfInstantiation = E->getExprLoc();
6371
6372         if (MemberSpecializationInfo *MSInfo =
6373                 Var->getMemberSpecializationInfo()) {
6374           // If we don't already have a point of instantiation, this is it.
6375           if (MSInfo->getPointOfInstantiation().isInvalid()) {
6376             MSInfo->setPointOfInstantiation(PointOfInstantiation);
6377
6378             // This is a modification of an existing AST node. Notify
6379             // listeners.
6380             if (ASTMutationListener *L = getASTMutationListener())
6381               L->StaticDataMemberInstantiated(Var);
6382           }
6383         } else {
6384           VarTemplateSpecializationDecl *VarSpec =
6385               cast<VarTemplateSpecializationDecl>(Var);
6386           if (VarSpec->getPointOfInstantiation().isInvalid())
6387             VarSpec->setPointOfInstantiation(PointOfInstantiation);
6388         }
6389
6390         InstantiateVariableDefinition(PointOfInstantiation, Var);
6391
6392         // Update the type to the newly instantiated definition's type both
6393         // here and within the expression.
6394         if (VarDecl *Def = Var->getDefinition()) {
6395           DRE->setDecl(Def);
6396           QualType T = Def->getType();
6397           DRE->setType(T);
6398           // FIXME: Update the type on all intervening expressions.
6399           E->setType(T);
6400         }
6401
6402         // We still go on to try to complete the type independently, as it
6403         // may also require instantiations or diagnostics if it remains
6404         // incomplete.
6405       }
6406     }
6407   }
6408 }
6409
6410 /// \brief Ensure that the type of the given expression is complete.
6411 ///
6412 /// This routine checks whether the expression \p E has a complete type. If the
6413 /// expression refers to an instantiable construct, that instantiation is
6414 /// performed as needed to complete its type. Furthermore
6415 /// Sema::RequireCompleteType is called for the expression's type (or in the
6416 /// case of a reference type, the referred-to type).
6417 ///
6418 /// \param E The expression whose type is required to be complete.
6419 /// \param Diagnoser The object that will emit a diagnostic if the type is
6420 /// incomplete.
6421 ///
6422 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
6423 /// otherwise.
6424 bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
6425   QualType T = E->getType();
6426
6427   // Incomplete array types may be completed by the initializer attached to
6428   // their definitions. For static data members of class templates and for
6429   // variable templates, we need to instantiate the definition to get this
6430   // initializer and complete the type.
6431   if (T->isIncompleteArrayType()) {
6432     completeExprArrayBound(E);
6433     T = E->getType();
6434   }
6435
6436   // FIXME: Are there other cases which require instantiating something other
6437   // than the type to complete the type of an expression?
6438
6439   return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
6440 }
6441
6442 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
6443   BoundTypeDiagnoser<> Diagnoser(DiagID);
6444   return RequireCompleteExprType(E, Diagnoser);
6445 }
6446
6447 /// @brief Ensure that the type T is a complete type.
6448 ///
6449 /// This routine checks whether the type @p T is complete in any
6450 /// context where a complete type is required. If @p T is a complete
6451 /// type, returns false. If @p T is a class template specialization,
6452 /// this routine then attempts to perform class template
6453 /// instantiation. If instantiation fails, or if @p T is incomplete
6454 /// and cannot be completed, issues the diagnostic @p diag (giving it
6455 /// the type @p T) and returns true.
6456 ///
6457 /// @param Loc  The location in the source that the incomplete type
6458 /// diagnostic should refer to.
6459 ///
6460 /// @param T  The type that this routine is examining for completeness.
6461 ///
6462 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
6463 /// @c false otherwise.
6464 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
6465                                TypeDiagnoser &Diagnoser) {
6466   if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
6467     return true;
6468   if (const TagType *Tag = T->getAs<TagType>()) {
6469     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
6470       Tag->getDecl()->setCompleteDefinitionRequired();
6471       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
6472     }
6473   }
6474   return false;
6475 }
6476
6477 /// \brief Determine whether there is any declaration of \p D that was ever a
6478 ///        definition (perhaps before module merging) and is currently visible.
6479 /// \param D The definition of the entity.
6480 /// \param Suggested Filled in with the declaration that should be made visible
6481 ///        in order to provide a definition of this entity.
6482 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
6483 ///        not defined. This only matters for enums with a fixed underlying
6484 ///        type, since in all other cases, a type is complete if and only if it
6485 ///        is defined.
6486 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
6487                                 bool OnlyNeedComplete) {
6488   // Easy case: if we don't have modules, all declarations are visible.
6489   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
6490     return true;
6491
6492   // If this definition was instantiated from a template, map back to the
6493   // pattern from which it was instantiated.
6494   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
6495     // We're in the middle of defining it; this definition should be treated
6496     // as visible.
6497     return true;
6498   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
6499     if (auto *Pattern = RD->getTemplateInstantiationPattern())
6500       RD = Pattern;
6501     D = RD->getDefinition();
6502   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
6503     while (auto *NewED = ED->getInstantiatedFromMemberEnum())
6504       ED = NewED;
6505     if (OnlyNeedComplete && ED->isFixed()) {
6506       // If the enum has a fixed underlying type, and we're only looking for a
6507       // complete type (not a definition), any visible declaration of it will
6508       // do.
6509       *Suggested = nullptr;
6510       for (auto *Redecl : ED->redecls()) {
6511         if (isVisible(Redecl))
6512           return true;
6513         if (Redecl->isThisDeclarationADefinition() ||
6514             (Redecl->isCanonicalDecl() && !*Suggested))
6515           *Suggested = Redecl;
6516       }
6517       return false;
6518     }
6519     D = ED->getDefinition();
6520   }
6521   assert(D && "missing definition for pattern of instantiated definition");
6522
6523   *Suggested = D;
6524   if (isVisible(D))
6525     return true;
6526
6527   // The external source may have additional definitions of this type that are
6528   // visible, so complete the redeclaration chain now and ask again.
6529   if (auto *Source = Context.getExternalSource()) {
6530     Source->CompleteRedeclChain(D);
6531     return isVisible(D);
6532   }
6533
6534   return false;
6535 }
6536
6537 /// Locks in the inheritance model for the given class and all of its bases.
6538 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
6539   RD = RD->getMostRecentDecl();
6540   if (!RD->hasAttr<MSInheritanceAttr>()) {
6541     MSInheritanceAttr::Spelling IM;
6542
6543     switch (S.MSPointerToMemberRepresentationMethod) {
6544     case LangOptions::PPTMK_BestCase:
6545       IM = RD->calculateInheritanceModel();
6546       break;
6547     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
6548       IM = MSInheritanceAttr::Keyword_single_inheritance;
6549       break;
6550     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
6551       IM = MSInheritanceAttr::Keyword_multiple_inheritance;
6552       break;
6553     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
6554       IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
6555       break;
6556     }
6557
6558     RD->addAttr(MSInheritanceAttr::CreateImplicit(
6559         S.getASTContext(), IM,
6560         /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
6561             LangOptions::PPTMK_BestCase,
6562         S.ImplicitMSInheritanceAttrLoc.isValid()
6563             ? S.ImplicitMSInheritanceAttrLoc
6564             : RD->getSourceRange()));
6565   }
6566 }
6567
6568 /// \brief The implementation of RequireCompleteType
6569 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
6570                                    TypeDiagnoser *Diagnoser) {
6571   // FIXME: Add this assertion to make sure we always get instantiation points.
6572   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
6573   // FIXME: Add this assertion to help us flush out problems with
6574   // checking for dependent types and type-dependent expressions.
6575   //
6576   //  assert(!T->isDependentType() &&
6577   //         "Can't ask whether a dependent type is complete");
6578
6579   // We lock in the inheritance model once somebody has asked us to ensure
6580   // that a pointer-to-member type is complete.
6581   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6582     if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
6583       if (!MPTy->getClass()->isDependentType()) {
6584         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
6585         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
6586       }
6587     }
6588   }
6589
6590   // If we have a complete type, we're done.
6591   NamedDecl *Def = nullptr;
6592   if (!T->isIncompleteType(&Def)) {
6593     // If we know about the definition but it is not visible, complain.
6594     NamedDecl *SuggestedDef = nullptr;
6595     if (Def &&
6596         !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
6597       // If the user is going to see an error here, recover by making the
6598       // definition visible.
6599       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
6600       if (Diagnoser)
6601         diagnoseMissingImport(Loc, SuggestedDef, /*NeedDefinition*/true,
6602                               /*Recover*/TreatAsComplete);
6603       return !TreatAsComplete;
6604     }
6605
6606     return false;
6607   }
6608
6609   const TagType *Tag = T->getAs<TagType>();
6610   const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
6611
6612   // If there's an unimported definition of this type in a module (for
6613   // instance, because we forward declared it, then imported the definition),
6614   // import that definition now.
6615   //
6616   // FIXME: What about other cases where an import extends a redeclaration
6617   // chain for a declaration that can be accessed through a mechanism other
6618   // than name lookup (eg, referenced in a template, or a variable whose type
6619   // could be completed by the module)?
6620   //
6621   // FIXME: Should we map through to the base array element type before
6622   // checking for a tag type?
6623   if (Tag || IFace) {
6624     NamedDecl *D =
6625         Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
6626
6627     // Avoid diagnosing invalid decls as incomplete.
6628     if (D->isInvalidDecl())
6629       return true;
6630
6631     // Give the external AST source a chance to complete the type.
6632     if (auto *Source = Context.getExternalSource()) {
6633       if (Tag)
6634         Source->CompleteType(Tag->getDecl());
6635       else
6636         Source->CompleteType(IFace->getDecl());
6637
6638       // If the external source completed the type, go through the motions
6639       // again to ensure we're allowed to use the completed type.
6640       if (!T->isIncompleteType())
6641         return RequireCompleteTypeImpl(Loc, T, Diagnoser);
6642     }
6643   }
6644
6645   // If we have a class template specialization or a class member of a
6646   // class template specialization, or an array with known size of such,
6647   // try to instantiate it.
6648   QualType MaybeTemplate = T;
6649   while (const ConstantArrayType *Array
6650            = Context.getAsConstantArrayType(MaybeTemplate))
6651     MaybeTemplate = Array->getElementType();
6652   if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
6653     bool Instantiated = false;
6654     bool Diagnosed = false;
6655     if (ClassTemplateSpecializationDecl *ClassTemplateSpec
6656           = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
6657       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
6658         Diagnosed = InstantiateClassTemplateSpecialization(
6659             Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
6660             /*Complain=*/Diagnoser);
6661         Instantiated = true;
6662       }
6663     } else if (CXXRecordDecl *Rec
6664                  = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
6665       CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
6666       if (!Rec->isBeingDefined() && Pattern) {
6667         MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
6668         assert(MSI && "Missing member specialization information?");
6669         // This record was instantiated from a class within a template.
6670         if (MSI->getTemplateSpecializationKind() !=
6671             TSK_ExplicitSpecialization) {
6672           Diagnosed = InstantiateClass(Loc, Rec, Pattern,
6673                                        getTemplateInstantiationArgs(Rec),
6674                                        TSK_ImplicitInstantiation,
6675                                        /*Complain=*/Diagnoser);
6676           Instantiated = true;
6677         }
6678       }
6679     }
6680
6681     if (Instantiated) {
6682       // Instantiate* might have already complained that the template is not
6683       // defined, if we asked it to.
6684       if (Diagnoser && Diagnosed)
6685         return true;
6686       // If we instantiated a definition, check that it's usable, even if
6687       // instantiation produced an error, so that repeated calls to this
6688       // function give consistent answers.
6689       if (!T->isIncompleteType())
6690         return RequireCompleteTypeImpl(Loc, T, Diagnoser);
6691     }
6692   }
6693
6694   if (!Diagnoser)
6695     return true;
6696
6697   // We have an incomplete type. Produce a diagnostic.
6698   if (Ident___float128 &&
6699       T == Context.getTypeDeclType(Context.getFloat128StubType())) {
6700     Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
6701     return true;
6702   }
6703
6704   Diagnoser->diagnose(*this, Loc, T);
6705
6706   // If the type was a forward declaration of a class/struct/union
6707   // type, produce a note.
6708   if (Tag && !Tag->getDecl()->isInvalidDecl())
6709     Diag(Tag->getDecl()->getLocation(),
6710          Tag->isBeingDefined() ? diag::note_type_being_defined
6711                                : diag::note_forward_declaration)
6712       << QualType(Tag, 0);
6713
6714   // If the Objective-C class was a forward declaration, produce a note.
6715   if (IFace && !IFace->getDecl()->isInvalidDecl())
6716     Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
6717
6718   // If we have external information that we can use to suggest a fix,
6719   // produce a note.
6720   if (ExternalSource)
6721     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
6722
6723   return true;
6724 }
6725
6726 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
6727                                unsigned DiagID) {
6728   BoundTypeDiagnoser<> Diagnoser(DiagID);
6729   return RequireCompleteType(Loc, T, Diagnoser);
6730 }
6731
6732 /// \brief Get diagnostic %select index for tag kind for
6733 /// literal type diagnostic message.
6734 /// WARNING: Indexes apply to particular diagnostics only!
6735 ///
6736 /// \returns diagnostic %select index.
6737 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
6738   switch (Tag) {
6739   case TTK_Struct: return 0;
6740   case TTK_Interface: return 1;
6741   case TTK_Class:  return 2;
6742   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
6743   }
6744 }
6745
6746 /// @brief Ensure that the type T is a literal type.
6747 ///
6748 /// This routine checks whether the type @p T is a literal type. If @p T is an
6749 /// incomplete type, an attempt is made to complete it. If @p T is a literal
6750 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
6751 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
6752 /// it the type @p T), along with notes explaining why the type is not a
6753 /// literal type, and returns true.
6754 ///
6755 /// @param Loc  The location in the source that the non-literal type
6756 /// diagnostic should refer to.
6757 ///
6758 /// @param T  The type that this routine is examining for literalness.
6759 ///
6760 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
6761 ///
6762 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
6763 /// @c false otherwise.
6764 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
6765                               TypeDiagnoser &Diagnoser) {
6766   assert(!T->isDependentType() && "type should not be dependent");
6767
6768   QualType ElemType = Context.getBaseElementType(T);
6769   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
6770       T->isLiteralType(Context))
6771     return false;
6772
6773   Diagnoser.diagnose(*this, Loc, T);
6774
6775   if (T->isVariableArrayType())
6776     return true;
6777
6778   const RecordType *RT = ElemType->getAs<RecordType>();
6779   if (!RT)
6780     return true;
6781
6782   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6783
6784   // A partially-defined class type can't be a literal type, because a literal
6785   // class type must have a trivial destructor (which can't be checked until
6786   // the class definition is complete).
6787   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
6788     return true;
6789
6790   // If the class has virtual base classes, then it's not an aggregate, and
6791   // cannot have any constexpr constructors or a trivial default constructor,
6792   // so is non-literal. This is better to diagnose than the resulting absence
6793   // of constexpr constructors.
6794   if (RD->getNumVBases()) {
6795     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
6796       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
6797     for (const auto &I : RD->vbases())
6798       Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
6799           << I.getSourceRange();
6800   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
6801              !RD->hasTrivialDefaultConstructor()) {
6802     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
6803   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
6804     for (const auto &I : RD->bases()) {
6805       if (!I.getType()->isLiteralType(Context)) {
6806         Diag(I.getLocStart(),
6807              diag::note_non_literal_base_class)
6808           << RD << I.getType() << I.getSourceRange();
6809         return true;
6810       }
6811     }
6812     for (const auto *I : RD->fields()) {
6813       if (!I->getType()->isLiteralType(Context) ||
6814           I->getType().isVolatileQualified()) {
6815         Diag(I->getLocation(), diag::note_non_literal_field)
6816           << RD << I << I->getType()
6817           << I->getType().isVolatileQualified();
6818         return true;
6819       }
6820     }
6821   } else if (!RD->hasTrivialDestructor()) {
6822     // All fields and bases are of literal types, so have trivial destructors.
6823     // If this class's destructor is non-trivial it must be user-declared.
6824     CXXDestructorDecl *Dtor = RD->getDestructor();
6825     assert(Dtor && "class has literal fields and bases but no dtor?");
6826     if (!Dtor)
6827       return true;
6828
6829     Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
6830          diag::note_non_literal_user_provided_dtor :
6831          diag::note_non_literal_nontrivial_dtor) << RD;
6832     if (!Dtor->isUserProvided())
6833       SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
6834   }
6835
6836   return true;
6837 }
6838
6839 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
6840   BoundTypeDiagnoser<> Diagnoser(DiagID);
6841   return RequireLiteralType(Loc, T, Diagnoser);
6842 }
6843
6844 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
6845 /// and qualified by the nested-name-specifier contained in SS.
6846 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
6847                                  const CXXScopeSpec &SS, QualType T) {
6848   if (T.isNull())
6849     return T;
6850   NestedNameSpecifier *NNS;
6851   if (SS.isValid())
6852     NNS = SS.getScopeRep();
6853   else {
6854     if (Keyword == ETK_None)
6855       return T;
6856     NNS = nullptr;
6857   }
6858   return Context.getElaboratedType(Keyword, NNS, T);
6859 }
6860
6861 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
6862   ExprResult ER = CheckPlaceholderExpr(E);
6863   if (ER.isInvalid()) return QualType();
6864   E = ER.get();
6865
6866   if (!getLangOpts().CPlusPlus && E->refersToBitField())
6867     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
6868
6869   if (!E->isTypeDependent()) {
6870     QualType T = E->getType();
6871     if (const TagType *TT = T->getAs<TagType>())
6872       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
6873   }
6874   return Context.getTypeOfExprType(E);
6875 }
6876
6877 /// getDecltypeForExpr - Given an expr, will return the decltype for
6878 /// that expression, according to the rules in C++11
6879 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
6880 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
6881   if (E->isTypeDependent())
6882     return S.Context.DependentTy;
6883
6884   // C++11 [dcl.type.simple]p4:
6885   //   The type denoted by decltype(e) is defined as follows:
6886   //
6887   //     - if e is an unparenthesized id-expression or an unparenthesized class
6888   //       member access (5.2.5), decltype(e) is the type of the entity named
6889   //       by e. If there is no such entity, or if e names a set of overloaded
6890   //       functions, the program is ill-formed;
6891   //
6892   // We apply the same rules for Objective-C ivar and property references.
6893   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
6894     if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
6895       return VD->getType();
6896   } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
6897     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
6898       return FD->getType();
6899   } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
6900     return IR->getDecl()->getType();
6901   } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
6902     if (PR->isExplicitProperty())
6903       return PR->getExplicitProperty()->getType();
6904   } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
6905     return PE->getType();
6906   }
6907   
6908   // C++11 [expr.lambda.prim]p18:
6909   //   Every occurrence of decltype((x)) where x is a possibly
6910   //   parenthesized id-expression that names an entity of automatic
6911   //   storage duration is treated as if x were transformed into an
6912   //   access to a corresponding data member of the closure type that
6913   //   would have been declared if x were an odr-use of the denoted
6914   //   entity.
6915   using namespace sema;
6916   if (S.getCurLambda()) {
6917     if (isa<ParenExpr>(E)) {
6918       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
6919         if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
6920           QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
6921           if (!T.isNull())
6922             return S.Context.getLValueReferenceType(T);
6923         }
6924       }
6925     }
6926   }
6927
6928
6929   // C++11 [dcl.type.simple]p4:
6930   //   [...]
6931   QualType T = E->getType();
6932   switch (E->getValueKind()) {
6933   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
6934   //       type of e;
6935   case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
6936   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
6937   //       type of e;
6938   case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
6939   //  - otherwise, decltype(e) is the type of e.
6940   case VK_RValue: break;
6941   }
6942
6943   return T;
6944 }
6945
6946 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
6947                                  bool AsUnevaluated) {
6948   ExprResult ER = CheckPlaceholderExpr(E);
6949   if (ER.isInvalid()) return QualType();
6950   E = ER.get();
6951
6952   if (AsUnevaluated && ActiveTemplateInstantiations.empty() &&
6953       E->HasSideEffects(Context, false)) {
6954     // The expression operand for decltype is in an unevaluated expression
6955     // context, so side effects could result in unintended consequences.
6956     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
6957   }
6958
6959   return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
6960 }
6961
6962 QualType Sema::BuildUnaryTransformType(QualType BaseType,
6963                                        UnaryTransformType::UTTKind UKind,
6964                                        SourceLocation Loc) {
6965   switch (UKind) {
6966   case UnaryTransformType::EnumUnderlyingType:
6967     if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
6968       Diag(Loc, diag::err_only_enums_have_underlying_types);
6969       return QualType();
6970     } else {
6971       QualType Underlying = BaseType;
6972       if (!BaseType->isDependentType()) {
6973         // The enum could be incomplete if we're parsing its definition or
6974         // recovering from an error.
6975         NamedDecl *FwdDecl = nullptr;
6976         if (BaseType->isIncompleteType(&FwdDecl)) {
6977           Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
6978           Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
6979           return QualType();
6980         }
6981
6982         EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
6983         assert(ED && "EnumType has no EnumDecl");
6984
6985         DiagnoseUseOfDecl(ED, Loc);
6986
6987         Underlying = ED->getIntegerType();
6988         assert(!Underlying.isNull());
6989       }
6990       return Context.getUnaryTransformType(BaseType, Underlying,
6991                                         UnaryTransformType::EnumUnderlyingType);
6992     }
6993   }
6994   llvm_unreachable("unknown unary transform type");
6995 }
6996
6997 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
6998   if (!T->isDependentType()) {
6999     // FIXME: It isn't entirely clear whether incomplete atomic types
7000     // are allowed or not; for simplicity, ban them for the moment.
7001     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
7002       return QualType();
7003
7004     int DisallowedKind = -1;
7005     if (T->isArrayType())
7006       DisallowedKind = 1;
7007     else if (T->isFunctionType())
7008       DisallowedKind = 2;
7009     else if (T->isReferenceType())
7010       DisallowedKind = 3;
7011     else if (T->isAtomicType())
7012       DisallowedKind = 4;
7013     else if (T.hasQualifiers())
7014       DisallowedKind = 5;
7015     else if (!T.isTriviallyCopyableType(Context))
7016       // Some other non-trivially-copyable type (probably a C++ class)
7017       DisallowedKind = 6;
7018
7019     if (DisallowedKind != -1) {
7020       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
7021       return QualType();
7022     }
7023
7024     // FIXME: Do we need any handling for ARC here?
7025   }
7026
7027   // Build the pointer type.
7028   return Context.getAtomicType(T);
7029 }