]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/StaticAnalyzer/Checkers/CStringChecker.cpp
Vendor import of clang trunk r351319 (just before the release_80 branch
[FreeBSD/FreeBSD.git] / lib / StaticAnalyzer / Checkers / CStringChecker.cpp
1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This defines CStringChecker, which is an assortment of checks on calls
11 // to functions in <string.h>.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/Basic/CharInfo.h"
18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
19 #include "clang/StaticAnalyzer/Core/Checker.h"
20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace clang;
28 using namespace ento;
29
30 namespace {
31 class CStringChecker : public Checker< eval::Call,
32                                          check::PreStmt<DeclStmt>,
33                                          check::LiveSymbols,
34                                          check::DeadSymbols,
35                                          check::RegionChanges
36                                          > {
37   mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
38       BT_NotCString, BT_AdditionOverflow;
39
40   mutable const char *CurrentFunctionDescription;
41
42 public:
43   /// The filter is used to filter out the diagnostics which are not enabled by
44   /// the user.
45   struct CStringChecksFilter {
46     DefaultBool CheckCStringNullArg;
47     DefaultBool CheckCStringOutOfBounds;
48     DefaultBool CheckCStringBufferOverlap;
49     DefaultBool CheckCStringNotNullTerm;
50
51     CheckName CheckNameCStringNullArg;
52     CheckName CheckNameCStringOutOfBounds;
53     CheckName CheckNameCStringBufferOverlap;
54     CheckName CheckNameCStringNotNullTerm;
55   };
56
57   CStringChecksFilter Filter;
58
59   static void *getTag() { static int tag; return &tag; }
60
61   bool evalCall(const CallExpr *CE, CheckerContext &C) const;
62   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
63   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
64   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
65
66   ProgramStateRef
67     checkRegionChanges(ProgramStateRef state,
68                        const InvalidatedSymbols *,
69                        ArrayRef<const MemRegion *> ExplicitRegions,
70                        ArrayRef<const MemRegion *> Regions,
71                        const LocationContext *LCtx,
72                        const CallEvent *Call) const;
73
74   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
75                                           const CallExpr *) const;
76
77   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
78   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
79   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
80   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
81   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
82                       ProgramStateRef state,
83                       const Expr *Size,
84                       const Expr *Source,
85                       const Expr *Dest,
86                       bool Restricted = false,
87                       bool IsMempcpy = false) const;
88
89   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
90
91   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
92   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
93   void evalstrLengthCommon(CheckerContext &C,
94                            const CallExpr *CE,
95                            bool IsStrnlen = false) const;
96
97   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
98   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
99   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
100   void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
101   void evalStrcpyCommon(CheckerContext &C,
102                         const CallExpr *CE,
103                         bool returnEnd,
104                         bool isBounded,
105                         bool isAppending,
106                         bool returnPtr = true) const;
107
108   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
109   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
110   void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
111
112   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
113   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
114   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
115   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
116   void evalStrcmpCommon(CheckerContext &C,
117                         const CallExpr *CE,
118                         bool isBounded = false,
119                         bool ignoreCase = false) const;
120
121   void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
122
123   void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
124   void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
125   void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
126   void evalMemset(CheckerContext &C, const CallExpr *CE) const;
127   void evalBzero(CheckerContext &C, const CallExpr *CE) const;
128
129   // Utility methods
130   std::pair<ProgramStateRef , ProgramStateRef >
131   static assumeZero(CheckerContext &C,
132                     ProgramStateRef state, SVal V, QualType Ty);
133
134   static ProgramStateRef setCStringLength(ProgramStateRef state,
135                                               const MemRegion *MR,
136                                               SVal strLength);
137   static SVal getCStringLengthForRegion(CheckerContext &C,
138                                         ProgramStateRef &state,
139                                         const Expr *Ex,
140                                         const MemRegion *MR,
141                                         bool hypothetical);
142   SVal getCStringLength(CheckerContext &C,
143                         ProgramStateRef &state,
144                         const Expr *Ex,
145                         SVal Buf,
146                         bool hypothetical = false) const;
147
148   const StringLiteral *getCStringLiteral(CheckerContext &C,
149                                          ProgramStateRef &state,
150                                          const Expr *expr,
151                                          SVal val) const;
152
153   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
154                                           ProgramStateRef state,
155                                           const Expr *Ex, SVal V,
156                                           bool IsSourceBuffer,
157                                           const Expr *Size);
158
159   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
160                               const MemRegion *MR);
161
162   static bool memsetAux(const Expr *DstBuffer, SVal CharE,
163                         const Expr *Size, CheckerContext &C,
164                         ProgramStateRef &State);
165
166   // Re-usable checks
167   ProgramStateRef checkNonNull(CheckerContext &C,
168                                    ProgramStateRef state,
169                                    const Expr *S,
170                                    SVal l) const;
171   ProgramStateRef CheckLocation(CheckerContext &C,
172                                     ProgramStateRef state,
173                                     const Expr *S,
174                                     SVal l,
175                                     const char *message = nullptr) const;
176   ProgramStateRef CheckBufferAccess(CheckerContext &C,
177                                         ProgramStateRef state,
178                                         const Expr *Size,
179                                         const Expr *FirstBuf,
180                                         const Expr *SecondBuf,
181                                         const char *firstMessage = nullptr,
182                                         const char *secondMessage = nullptr,
183                                         bool WarnAboutSize = false) const;
184
185   ProgramStateRef CheckBufferAccess(CheckerContext &C,
186                                         ProgramStateRef state,
187                                         const Expr *Size,
188                                         const Expr *Buf,
189                                         const char *message = nullptr,
190                                         bool WarnAboutSize = false) const {
191     // This is a convenience overload.
192     return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
193                              WarnAboutSize);
194   }
195   ProgramStateRef CheckOverlap(CheckerContext &C,
196                                    ProgramStateRef state,
197                                    const Expr *Size,
198                                    const Expr *First,
199                                    const Expr *Second) const;
200   void emitOverlapBug(CheckerContext &C,
201                       ProgramStateRef state,
202                       const Stmt *First,
203                       const Stmt *Second) const;
204
205   void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
206                       StringRef WarningMsg) const;
207   void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
208                           const Stmt *S, StringRef WarningMsg) const;
209   void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
210                          const Stmt *S, StringRef WarningMsg) const;
211   void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
212
213   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
214                                             ProgramStateRef state,
215                                             NonLoc left,
216                                             NonLoc right) const;
217
218   // Return true if the destination buffer of the copy function may be in bound.
219   // Expects SVal of Size to be positive and unsigned.
220   // Expects SVal of FirstBuf to be a FieldRegion.
221   static bool IsFirstBufInBound(CheckerContext &C,
222                                 ProgramStateRef state,
223                                 const Expr *FirstBuf,
224                                 const Expr *Size);
225 };
226
227 } //end anonymous namespace
228
229 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
230
231 //===----------------------------------------------------------------------===//
232 // Individual checks and utility methods.
233 //===----------------------------------------------------------------------===//
234
235 std::pair<ProgramStateRef , ProgramStateRef >
236 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
237                            QualType Ty) {
238   Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
239   if (!val)
240     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
241
242   SValBuilder &svalBuilder = C.getSValBuilder();
243   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
244   return state->assume(svalBuilder.evalEQ(state, *val, zero));
245 }
246
247 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
248                                             ProgramStateRef state,
249                                             const Expr *S, SVal l) const {
250   // If a previous check has failed, propagate the failure.
251   if (!state)
252     return nullptr;
253
254   ProgramStateRef stateNull, stateNonNull;
255   std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
256
257   if (stateNull && !stateNonNull) {
258     if (Filter.CheckCStringNullArg) {
259       SmallString<80> buf;
260       llvm::raw_svector_ostream os(buf);
261       assert(CurrentFunctionDescription);
262       os << "Null pointer argument in call to " << CurrentFunctionDescription;
263
264       emitNullArgBug(C, stateNull, S, os.str());
265     }
266     return nullptr;
267   }
268
269   // From here on, assume that the value is non-null.
270   assert(stateNonNull);
271   return stateNonNull;
272 }
273
274 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
275 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
276                                              ProgramStateRef state,
277                                              const Expr *S, SVal l,
278                                              const char *warningMsg) const {
279   // If a previous check has failed, propagate the failure.
280   if (!state)
281     return nullptr;
282
283   // Check for out of bound array element access.
284   const MemRegion *R = l.getAsRegion();
285   if (!R)
286     return state;
287
288   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
289   if (!ER)
290     return state;
291
292   if (ER->getValueType() != C.getASTContext().CharTy)
293     return state;
294
295   // Get the size of the array.
296   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
297   SValBuilder &svalBuilder = C.getSValBuilder();
298   SVal Extent =
299     svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
300   DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
301
302   // Get the index of the accessed element.
303   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
304
305   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
306   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
307   if (StOutBound && !StInBound) {
308     // These checks are either enabled by the CString out-of-bounds checker
309     // explicitly or implicitly by the Malloc checker.
310     // In the latter case we only do modeling but do not emit warning.
311     if (!Filter.CheckCStringOutOfBounds)
312       return nullptr;
313     // Emit a bug report.
314     if (warningMsg) {
315       emitOutOfBoundsBug(C, StOutBound, S, warningMsg);
316     } else {
317       assert(CurrentFunctionDescription);
318       assert(CurrentFunctionDescription[0] != '\0');
319
320       SmallString<80> buf;
321       llvm::raw_svector_ostream os(buf);
322       os << toUppercase(CurrentFunctionDescription[0])
323          << &CurrentFunctionDescription[1]
324          << " accesses out-of-bound array element";
325       emitOutOfBoundsBug(C, StOutBound, S, os.str());
326     }
327     return nullptr;
328   }
329
330   // Array bound check succeeded.  From this point forward the array bound
331   // should always succeed.
332   return StInBound;
333 }
334
335 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
336                                                  ProgramStateRef state,
337                                                  const Expr *Size,
338                                                  const Expr *FirstBuf,
339                                                  const Expr *SecondBuf,
340                                                  const char *firstMessage,
341                                                  const char *secondMessage,
342                                                  bool WarnAboutSize) const {
343   // If a previous check has failed, propagate the failure.
344   if (!state)
345     return nullptr;
346
347   SValBuilder &svalBuilder = C.getSValBuilder();
348   ASTContext &Ctx = svalBuilder.getContext();
349   const LocationContext *LCtx = C.getLocationContext();
350
351   QualType sizeTy = Size->getType();
352   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
353
354   // Check that the first buffer is non-null.
355   SVal BufVal = C.getSVal(FirstBuf);
356   state = checkNonNull(C, state, FirstBuf, BufVal);
357   if (!state)
358     return nullptr;
359
360   // If out-of-bounds checking is turned off, skip the rest.
361   if (!Filter.CheckCStringOutOfBounds)
362     return state;
363
364   // Get the access length and make sure it is known.
365   // FIXME: This assumes the caller has already checked that the access length
366   // is positive. And that it's unsigned.
367   SVal LengthVal = C.getSVal(Size);
368   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
369   if (!Length)
370     return state;
371
372   // Compute the offset of the last element to be accessed: size-1.
373   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
374   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
375   if (Offset.isUnknown())
376     return nullptr;
377   NonLoc LastOffset = Offset.castAs<NonLoc>();
378
379   // Check that the first buffer is sufficiently long.
380   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
381   if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
382     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
383
384     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
385                                           LastOffset, PtrTy);
386     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
387
388     // If the buffer isn't large enough, abort.
389     if (!state)
390       return nullptr;
391   }
392
393   // If there's a second buffer, check it as well.
394   if (SecondBuf) {
395     BufVal = state->getSVal(SecondBuf, LCtx);
396     state = checkNonNull(C, state, SecondBuf, BufVal);
397     if (!state)
398       return nullptr;
399
400     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
401     if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
402       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
403
404       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
405                                             LastOffset, PtrTy);
406       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
407     }
408   }
409
410   // Large enough or not, return this state!
411   return state;
412 }
413
414 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
415                                             ProgramStateRef state,
416                                             const Expr *Size,
417                                             const Expr *First,
418                                             const Expr *Second) const {
419   if (!Filter.CheckCStringBufferOverlap)
420     return state;
421
422   // Do a simple check for overlap: if the two arguments are from the same
423   // buffer, see if the end of the first is greater than the start of the second
424   // or vice versa.
425
426   // If a previous check has failed, propagate the failure.
427   if (!state)
428     return nullptr;
429
430   ProgramStateRef stateTrue, stateFalse;
431
432   // Get the buffer values and make sure they're known locations.
433   const LocationContext *LCtx = C.getLocationContext();
434   SVal firstVal = state->getSVal(First, LCtx);
435   SVal secondVal = state->getSVal(Second, LCtx);
436
437   Optional<Loc> firstLoc = firstVal.getAs<Loc>();
438   if (!firstLoc)
439     return state;
440
441   Optional<Loc> secondLoc = secondVal.getAs<Loc>();
442   if (!secondLoc)
443     return state;
444
445   // Are the two values the same?
446   SValBuilder &svalBuilder = C.getSValBuilder();
447   std::tie(stateTrue, stateFalse) =
448     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
449
450   if (stateTrue && !stateFalse) {
451     // If the values are known to be equal, that's automatically an overlap.
452     emitOverlapBug(C, stateTrue, First, Second);
453     return nullptr;
454   }
455
456   // assume the two expressions are not equal.
457   assert(stateFalse);
458   state = stateFalse;
459
460   // Which value comes first?
461   QualType cmpTy = svalBuilder.getConditionType();
462   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
463                                          *firstLoc, *secondLoc, cmpTy);
464   Optional<DefinedOrUnknownSVal> reverseTest =
465       reverse.getAs<DefinedOrUnknownSVal>();
466   if (!reverseTest)
467     return state;
468
469   std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
470   if (stateTrue) {
471     if (stateFalse) {
472       // If we don't know which one comes first, we can't perform this test.
473       return state;
474     } else {
475       // Switch the values so that firstVal is before secondVal.
476       std::swap(firstLoc, secondLoc);
477
478       // Switch the Exprs as well, so that they still correspond.
479       std::swap(First, Second);
480     }
481   }
482
483   // Get the length, and make sure it too is known.
484   SVal LengthVal = state->getSVal(Size, LCtx);
485   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
486   if (!Length)
487     return state;
488
489   // Convert the first buffer's start address to char*.
490   // Bail out if the cast fails.
491   ASTContext &Ctx = svalBuilder.getContext();
492   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
493   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
494                                          First->getType());
495   Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
496   if (!FirstStartLoc)
497     return state;
498
499   // Compute the end of the first buffer. Bail out if THAT fails.
500   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
501                                  *FirstStartLoc, *Length, CharPtrTy);
502   Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
503   if (!FirstEndLoc)
504     return state;
505
506   // Is the end of the first buffer past the start of the second buffer?
507   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
508                                 *FirstEndLoc, *secondLoc, cmpTy);
509   Optional<DefinedOrUnknownSVal> OverlapTest =
510       Overlap.getAs<DefinedOrUnknownSVal>();
511   if (!OverlapTest)
512     return state;
513
514   std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
515
516   if (stateTrue && !stateFalse) {
517     // Overlap!
518     emitOverlapBug(C, stateTrue, First, Second);
519     return nullptr;
520   }
521
522   // assume the two expressions don't overlap.
523   assert(stateFalse);
524   return stateFalse;
525 }
526
527 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
528                                   const Stmt *First, const Stmt *Second) const {
529   ExplodedNode *N = C.generateErrorNode(state);
530   if (!N)
531     return;
532
533   if (!BT_Overlap)
534     BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
535                                  categories::UnixAPI, "Improper arguments"));
536
537   // Generate a report for this bug.
538   auto report = llvm::make_unique<BugReport>(
539       *BT_Overlap, "Arguments must not be overlapping buffers", N);
540   report->addRange(First->getSourceRange());
541   report->addRange(Second->getSourceRange());
542
543   C.emitReport(std::move(report));
544 }
545
546 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
547                                     const Stmt *S, StringRef WarningMsg) const {
548   if (ExplodedNode *N = C.generateErrorNode(State)) {
549     if (!BT_Null)
550       BT_Null.reset(new BuiltinBug(
551           Filter.CheckNameCStringNullArg, categories::UnixAPI,
552           "Null pointer argument in call to byte string function"));
553
554     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
555     auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N);
556     Report->addRange(S->getSourceRange());
557     if (const auto *Ex = dyn_cast<Expr>(S))
558       bugreporter::trackExpressionValue(N, Ex, *Report);
559     C.emitReport(std::move(Report));
560   }
561 }
562
563 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
564                                         ProgramStateRef State, const Stmt *S,
565                                         StringRef WarningMsg) const {
566   if (ExplodedNode *N = C.generateErrorNode(State)) {
567     if (!BT_Bounds)
568       BT_Bounds.reset(new BuiltinBug(
569           Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
570                                          : Filter.CheckNameCStringNullArg,
571           "Out-of-bound array access",
572           "Byte string function accesses out-of-bound array element"));
573
574     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
575
576     // FIXME: It would be nice to eventually make this diagnostic more clear,
577     // e.g., by referencing the original declaration or by saying *why* this
578     // reference is outside the range.
579     auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N);
580     Report->addRange(S->getSourceRange());
581     C.emitReport(std::move(Report));
582   }
583 }
584
585 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
586                                        const Stmt *S,
587                                        StringRef WarningMsg) const {
588   if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
589     if (!BT_NotCString)
590       BT_NotCString.reset(new BuiltinBug(
591           Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
592           "Argument is not a null-terminated string."));
593
594     auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N);
595
596     Report->addRange(S->getSourceRange());
597     C.emitReport(std::move(Report));
598   }
599 }
600
601 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
602                                              ProgramStateRef State) const {
603   if (ExplodedNode *N = C.generateErrorNode(State)) {
604     if (!BT_NotCString)
605       BT_NotCString.reset(
606           new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
607                          "Sum of expressions causes overflow."));
608
609     // This isn't a great error message, but this should never occur in real
610     // code anyway -- you'd have to create a buffer longer than a size_t can
611     // represent, which is sort of a contradiction.
612     const char *WarningMsg =
613         "This expression will create a string whose length is too big to "
614         "be represented as a size_t";
615
616     auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N);
617     C.emitReport(std::move(Report));
618   }
619 }
620
621 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
622                                                      ProgramStateRef state,
623                                                      NonLoc left,
624                                                      NonLoc right) const {
625   // If out-of-bounds checking is turned off, skip the rest.
626   if (!Filter.CheckCStringOutOfBounds)
627     return state;
628
629   // If a previous check has failed, propagate the failure.
630   if (!state)
631     return nullptr;
632
633   SValBuilder &svalBuilder = C.getSValBuilder();
634   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
635
636   QualType sizeTy = svalBuilder.getContext().getSizeType();
637   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
638   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
639
640   SVal maxMinusRight;
641   if (right.getAs<nonloc::ConcreteInt>()) {
642     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
643                                                  sizeTy);
644   } else {
645     // Try switching the operands. (The order of these two assignments is
646     // important!)
647     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
648                                             sizeTy);
649     left = right;
650   }
651
652   if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
653     QualType cmpTy = svalBuilder.getConditionType();
654     // If left > max - right, we have an overflow.
655     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
656                                                 *maxMinusRightNL, cmpTy);
657
658     ProgramStateRef stateOverflow, stateOkay;
659     std::tie(stateOverflow, stateOkay) =
660       state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
661
662     if (stateOverflow && !stateOkay) {
663       // We have an overflow. Emit a bug report.
664       emitAdditionOverflowBug(C, stateOverflow);
665       return nullptr;
666     }
667
668     // From now on, assume an overflow didn't occur.
669     assert(stateOkay);
670     state = stateOkay;
671   }
672
673   return state;
674 }
675
676 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
677                                                 const MemRegion *MR,
678                                                 SVal strLength) {
679   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
680
681   MR = MR->StripCasts();
682
683   switch (MR->getKind()) {
684   case MemRegion::StringRegionKind:
685     // FIXME: This can happen if we strcpy() into a string region. This is
686     // undefined [C99 6.4.5p6], but we should still warn about it.
687     return state;
688
689   case MemRegion::SymbolicRegionKind:
690   case MemRegion::AllocaRegionKind:
691   case MemRegion::VarRegionKind:
692   case MemRegion::FieldRegionKind:
693   case MemRegion::ObjCIvarRegionKind:
694     // These are the types we can currently track string lengths for.
695     break;
696
697   case MemRegion::ElementRegionKind:
698     // FIXME: Handle element regions by upper-bounding the parent region's
699     // string length.
700     return state;
701
702   default:
703     // Other regions (mostly non-data) can't have a reliable C string length.
704     // For now, just ignore the change.
705     // FIXME: These are rare but not impossible. We should output some kind of
706     // warning for things like strcpy((char[]){'a', 0}, "b");
707     return state;
708   }
709
710   if (strLength.isUnknown())
711     return state->remove<CStringLength>(MR);
712
713   return state->set<CStringLength>(MR, strLength);
714 }
715
716 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
717                                                ProgramStateRef &state,
718                                                const Expr *Ex,
719                                                const MemRegion *MR,
720                                                bool hypothetical) {
721   if (!hypothetical) {
722     // If there's a recorded length, go ahead and return it.
723     const SVal *Recorded = state->get<CStringLength>(MR);
724     if (Recorded)
725       return *Recorded;
726   }
727
728   // Otherwise, get a new symbol and update the state.
729   SValBuilder &svalBuilder = C.getSValBuilder();
730   QualType sizeTy = svalBuilder.getContext().getSizeType();
731   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
732                                                     MR, Ex, sizeTy,
733                                                     C.getLocationContext(),
734                                                     C.blockCount());
735
736   if (!hypothetical) {
737     if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
738       // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
739       BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
740       const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
741       llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
742       const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
743                                                         fourInt);
744       NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
745       SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
746                                                 maxLength, sizeTy);
747       state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
748     }
749     state = state->set<CStringLength>(MR, strLength);
750   }
751
752   return strLength;
753 }
754
755 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
756                                       const Expr *Ex, SVal Buf,
757                                       bool hypothetical) const {
758   const MemRegion *MR = Buf.getAsRegion();
759   if (!MR) {
760     // If we can't get a region, see if it's something we /know/ isn't a
761     // C string. In the context of locations, the only time we can issue such
762     // a warning is for labels.
763     if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
764       if (Filter.CheckCStringNotNullTerm) {
765         SmallString<120> buf;
766         llvm::raw_svector_ostream os(buf);
767         assert(CurrentFunctionDescription);
768         os << "Argument to " << CurrentFunctionDescription
769            << " is the address of the label '" << Label->getLabel()->getName()
770            << "', which is not a null-terminated string";
771
772         emitNotCStringBug(C, state, Ex, os.str());
773       }
774       return UndefinedVal();
775     }
776
777     // If it's not a region and not a label, give up.
778     return UnknownVal();
779   }
780
781   // If we have a region, strip casts from it and see if we can figure out
782   // its length. For anything we can't figure out, just return UnknownVal.
783   MR = MR->StripCasts();
784
785   switch (MR->getKind()) {
786   case MemRegion::StringRegionKind: {
787     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
788     // so we can assume that the byte length is the correct C string length.
789     SValBuilder &svalBuilder = C.getSValBuilder();
790     QualType sizeTy = svalBuilder.getContext().getSizeType();
791     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
792     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
793   }
794   case MemRegion::SymbolicRegionKind:
795   case MemRegion::AllocaRegionKind:
796   case MemRegion::VarRegionKind:
797   case MemRegion::FieldRegionKind:
798   case MemRegion::ObjCIvarRegionKind:
799     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
800   case MemRegion::CompoundLiteralRegionKind:
801     // FIXME: Can we track this? Is it necessary?
802     return UnknownVal();
803   case MemRegion::ElementRegionKind:
804     // FIXME: How can we handle this? It's not good enough to subtract the
805     // offset from the base string length; consider "123\x00567" and &a[5].
806     return UnknownVal();
807   default:
808     // Other regions (mostly non-data) can't have a reliable C string length.
809     // In this case, an error is emitted and UndefinedVal is returned.
810     // The caller should always be prepared to handle this case.
811     if (Filter.CheckCStringNotNullTerm) {
812       SmallString<120> buf;
813       llvm::raw_svector_ostream os(buf);
814
815       assert(CurrentFunctionDescription);
816       os << "Argument to " << CurrentFunctionDescription << " is ";
817
818       if (SummarizeRegion(os, C.getASTContext(), MR))
819         os << ", which is not a null-terminated string";
820       else
821         os << "not a null-terminated string";
822
823       emitNotCStringBug(C, state, Ex, os.str());
824     }
825     return UndefinedVal();
826   }
827 }
828
829 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
830   ProgramStateRef &state, const Expr *expr, SVal val) const {
831
832   // Get the memory region pointed to by the val.
833   const MemRegion *bufRegion = val.getAsRegion();
834   if (!bufRegion)
835     return nullptr;
836
837   // Strip casts off the memory region.
838   bufRegion = bufRegion->StripCasts();
839
840   // Cast the memory region to a string region.
841   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
842   if (!strRegion)
843     return nullptr;
844
845   // Return the actual string in the string region.
846   return strRegion->getStringLiteral();
847 }
848
849 bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
850                                        ProgramStateRef state,
851                                        const Expr *FirstBuf,
852                                        const Expr *Size) {
853   // If we do not know that the buffer is long enough we return 'true'.
854   // Otherwise the parent region of this field region would also get
855   // invalidated, which would lead to warnings based on an unknown state.
856
857   // Originally copied from CheckBufferAccess and CheckLocation.
858   SValBuilder &svalBuilder = C.getSValBuilder();
859   ASTContext &Ctx = svalBuilder.getContext();
860   const LocationContext *LCtx = C.getLocationContext();
861
862   QualType sizeTy = Size->getType();
863   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
864   SVal BufVal = state->getSVal(FirstBuf, LCtx);
865
866   SVal LengthVal = state->getSVal(Size, LCtx);
867   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
868   if (!Length)
869     return true; // cf top comment.
870
871   // Compute the offset of the last element to be accessed: size-1.
872   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
873   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
874   if (Offset.isUnknown())
875     return true; // cf top comment
876   NonLoc LastOffset = Offset.castAs<NonLoc>();
877
878   // Check that the first buffer is sufficiently long.
879   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
880   Optional<Loc> BufLoc = BufStart.getAs<Loc>();
881   if (!BufLoc)
882     return true; // cf top comment.
883
884   SVal BufEnd =
885       svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
886
887   // Check for out of bound array element access.
888   const MemRegion *R = BufEnd.getAsRegion();
889   if (!R)
890     return true; // cf top comment.
891
892   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
893   if (!ER)
894     return true; // cf top comment.
895
896   // FIXME: Does this crash when a non-standard definition
897   // of a library function is encountered?
898   assert(ER->getValueType() == C.getASTContext().CharTy &&
899          "IsFirstBufInBound should only be called with char* ElementRegions");
900
901   // Get the size of the array.
902   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
903   SVal Extent =
904       svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
905   DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>();
906
907   // Get the index of the accessed element.
908   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
909
910   ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true);
911
912   return static_cast<bool>(StInBound);
913 }
914
915 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
916                                                  ProgramStateRef state,
917                                                  const Expr *E, SVal V,
918                                                  bool IsSourceBuffer,
919                                                  const Expr *Size) {
920   Optional<Loc> L = V.getAs<Loc>();
921   if (!L)
922     return state;
923
924   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
925   // some assumptions about the value that CFRefCount can't. Even so, it should
926   // probably be refactored.
927   if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
928     const MemRegion *R = MR->getRegion()->StripCasts();
929
930     // Are we dealing with an ElementRegion?  If so, we should be invalidating
931     // the super-region.
932     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
933       R = ER->getSuperRegion();
934       // FIXME: What about layers of ElementRegions?
935     }
936
937     // Invalidate this region.
938     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
939
940     bool CausesPointerEscape = false;
941     RegionAndSymbolInvalidationTraits ITraits;
942     // Invalidate and escape only indirect regions accessible through the source
943     // buffer.
944     if (IsSourceBuffer) {
945       ITraits.setTrait(R->getBaseRegion(),
946                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
947       ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
948       CausesPointerEscape = true;
949     } else {
950       const MemRegion::Kind& K = R->getKind();
951       if (K == MemRegion::FieldRegionKind)
952         if (Size && IsFirstBufInBound(C, state, E, Size)) {
953           // If destination buffer is a field region and access is in bound,
954           // do not invalidate its super region.
955           ITraits.setTrait(
956               R,
957               RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
958         }
959     }
960
961     return state->invalidateRegions(R, E, C.blockCount(), LCtx,
962                                     CausesPointerEscape, nullptr, nullptr,
963                                     &ITraits);
964   }
965
966   // If we have a non-region value by chance, just remove the binding.
967   // FIXME: is this necessary or correct? This handles the non-Region
968   //  cases.  Is it ever valid to store to these?
969   return state->killBinding(*L);
970 }
971
972 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
973                                      const MemRegion *MR) {
974   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
975
976   switch (MR->getKind()) {
977   case MemRegion::FunctionCodeRegionKind: {
978     const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
979     if (FD)
980       os << "the address of the function '" << *FD << '\'';
981     else
982       os << "the address of a function";
983     return true;
984   }
985   case MemRegion::BlockCodeRegionKind:
986     os << "block text";
987     return true;
988   case MemRegion::BlockDataRegionKind:
989     os << "a block";
990     return true;
991   case MemRegion::CXXThisRegionKind:
992   case MemRegion::CXXTempObjectRegionKind:
993     os << "a C++ temp object of type " << TVR->getValueType().getAsString();
994     return true;
995   case MemRegion::VarRegionKind:
996     os << "a variable of type" << TVR->getValueType().getAsString();
997     return true;
998   case MemRegion::FieldRegionKind:
999     os << "a field of type " << TVR->getValueType().getAsString();
1000     return true;
1001   case MemRegion::ObjCIvarRegionKind:
1002     os << "an instance variable of type " << TVR->getValueType().getAsString();
1003     return true;
1004   default:
1005     return false;
1006   }
1007 }
1008
1009 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1010                                const Expr *Size, CheckerContext &C,
1011                                ProgramStateRef &State) {
1012   SVal MemVal = C.getSVal(DstBuffer);
1013   SVal SizeVal = C.getSVal(Size);
1014   const MemRegion *MR = MemVal.getAsRegion();
1015   if (!MR)
1016     return false;
1017
1018   // We're about to model memset by producing a "default binding" in the Store.
1019   // Our current implementation - RegionStore - doesn't support default bindings
1020   // that don't cover the whole base region. So we should first get the offset
1021   // and the base region to figure out whether the offset of buffer is 0.
1022   RegionOffset Offset = MR->getAsOffset();
1023   const MemRegion *BR = Offset.getRegion();
1024
1025   Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1026   if (!SizeNL)
1027     return false;
1028
1029   SValBuilder &svalBuilder = C.getSValBuilder();
1030   ASTContext &Ctx = C.getASTContext();
1031
1032   // void *memset(void *dest, int ch, size_t count);
1033   // For now we can only handle the case of offset is 0 and concrete char value.
1034   if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1035       Offset.getOffset() == 0) {
1036     // Get the base region's extent.
1037     auto *SubReg = cast<SubRegion>(BR);
1038     DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder);
1039
1040     ProgramStateRef StateWholeReg, StateNotWholeReg;
1041     std::tie(StateWholeReg, StateNotWholeReg) =
1042         State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL));
1043
1044     // With the semantic of 'memset()', we should convert the CharVal to
1045     // unsigned char.
1046     CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1047
1048     ProgramStateRef StateNullChar, StateNonNullChar;
1049     std::tie(StateNullChar, StateNonNullChar) =
1050         assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1051
1052     if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1053         !StateNonNullChar) {
1054       // If the 'memset()' acts on the whole region of destination buffer and
1055       // the value of the second argument of 'memset()' is zero, bind the second
1056       // argument's value to the destination buffer with 'default binding'.
1057       // FIXME: Since there is no perfect way to bind the non-zero character, we
1058       // can only deal with zero value here. In the future, we need to deal with
1059       // the binding of non-zero value in the case of whole region.
1060       State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1061                                      C.getLocationContext());
1062     } else {
1063       // If the destination buffer's extent is not equal to the value of
1064       // third argument, just invalidate buffer.
1065       State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1066                                /*IsSourceBuffer*/ false, Size);
1067     }
1068
1069     if (StateNullChar && !StateNonNullChar) {
1070       // If the value of the second argument of 'memset()' is zero, set the
1071       // string length of destination buffer to 0 directly.
1072       State = setCStringLength(State, MR,
1073                                svalBuilder.makeZeroVal(Ctx.getSizeType()));
1074     } else if (!StateNullChar && StateNonNullChar) {
1075       SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1076           CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1077           C.getLocationContext(), C.blockCount());
1078
1079       // If the value of second argument is not zero, then the string length
1080       // is at least the size argument.
1081       SVal NewStrLenGESize = svalBuilder.evalBinOp(
1082           State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1083
1084       State = setCStringLength(
1085           State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1086           MR, NewStrLen);
1087     }
1088   } else {
1089     // If the offset is not zero and char value is not concrete, we can do
1090     // nothing but invalidate the buffer.
1091     State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1092                              /*IsSourceBuffer*/ false, Size);
1093   }
1094   return true;
1095 }
1096
1097 //===----------------------------------------------------------------------===//
1098 // evaluation of individual function calls.
1099 //===----------------------------------------------------------------------===//
1100
1101 void CStringChecker::evalCopyCommon(CheckerContext &C,
1102                                     const CallExpr *CE,
1103                                     ProgramStateRef state,
1104                                     const Expr *Size, const Expr *Dest,
1105                                     const Expr *Source, bool Restricted,
1106                                     bool IsMempcpy) const {
1107   CurrentFunctionDescription = "memory copy function";
1108
1109   // See if the size argument is zero.
1110   const LocationContext *LCtx = C.getLocationContext();
1111   SVal sizeVal = state->getSVal(Size, LCtx);
1112   QualType sizeTy = Size->getType();
1113
1114   ProgramStateRef stateZeroSize, stateNonZeroSize;
1115   std::tie(stateZeroSize, stateNonZeroSize) =
1116     assumeZero(C, state, sizeVal, sizeTy);
1117
1118   // Get the value of the Dest.
1119   SVal destVal = state->getSVal(Dest, LCtx);
1120
1121   // If the size is zero, there won't be any actual memory access, so
1122   // just bind the return value to the destination buffer and return.
1123   if (stateZeroSize && !stateNonZeroSize) {
1124     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1125     C.addTransition(stateZeroSize);
1126     return;
1127   }
1128
1129   // If the size can be nonzero, we have to check the other arguments.
1130   if (stateNonZeroSize) {
1131     state = stateNonZeroSize;
1132
1133     // Ensure the destination is not null. If it is NULL there will be a
1134     // NULL pointer dereference.
1135     state = checkNonNull(C, state, Dest, destVal);
1136     if (!state)
1137       return;
1138
1139     // Get the value of the Src.
1140     SVal srcVal = state->getSVal(Source, LCtx);
1141
1142     // Ensure the source is not null. If it is NULL there will be a
1143     // NULL pointer dereference.
1144     state = checkNonNull(C, state, Source, srcVal);
1145     if (!state)
1146       return;
1147
1148     // Ensure the accesses are valid and that the buffers do not overlap.
1149     const char * const writeWarning =
1150       "Memory copy function overflows destination buffer";
1151     state = CheckBufferAccess(C, state, Size, Dest, Source,
1152                               writeWarning, /* sourceWarning = */ nullptr);
1153     if (Restricted)
1154       state = CheckOverlap(C, state, Size, Dest, Source);
1155
1156     if (!state)
1157       return;
1158
1159     // If this is mempcpy, get the byte after the last byte copied and
1160     // bind the expr.
1161     if (IsMempcpy) {
1162       // Get the byte after the last byte copied.
1163       SValBuilder &SvalBuilder = C.getSValBuilder();
1164       ASTContext &Ctx = SvalBuilder.getContext();
1165       QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1166       SVal DestRegCharVal =
1167           SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType());
1168       SVal lastElement = C.getSValBuilder().evalBinOp(
1169           state, BO_Add, DestRegCharVal, sizeVal, Dest->getType());
1170       // If we don't know how much we copied, we can at least
1171       // conjure a return value for later.
1172       if (lastElement.isUnknown())
1173         lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1174                                                           C.blockCount());
1175
1176       // The byte after the last byte copied is the return value.
1177       state = state->BindExpr(CE, LCtx, lastElement);
1178     } else {
1179       // All other copies return the destination buffer.
1180       // (Well, bcopy() has a void return type, but this won't hurt.)
1181       state = state->BindExpr(CE, LCtx, destVal);
1182     }
1183
1184     // Invalidate the destination (regular invalidation without pointer-escaping
1185     // the address of the top-level region).
1186     // FIXME: Even if we can't perfectly model the copy, we should see if we
1187     // can use LazyCompoundVals to copy the source values into the destination.
1188     // This would probably remove any existing bindings past the end of the
1189     // copied region, but that's still an improvement over blank invalidation.
1190     state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
1191                              /*IsSourceBuffer*/false, Size);
1192
1193     // Invalidate the source (const-invalidation without const-pointer-escaping
1194     // the address of the top-level region).
1195     state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
1196                              /*IsSourceBuffer*/true, nullptr);
1197
1198     C.addTransition(state);
1199   }
1200 }
1201
1202
1203 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1204   if (CE->getNumArgs() < 3)
1205     return;
1206
1207   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1208   // The return value is the address of the destination buffer.
1209   const Expr *Dest = CE->getArg(0);
1210   ProgramStateRef state = C.getState();
1211
1212   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
1213 }
1214
1215 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1216   if (CE->getNumArgs() < 3)
1217     return;
1218
1219   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1220   // The return value is a pointer to the byte following the last written byte.
1221   const Expr *Dest = CE->getArg(0);
1222   ProgramStateRef state = C.getState();
1223
1224   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
1225 }
1226
1227 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1228   if (CE->getNumArgs() < 3)
1229     return;
1230
1231   // void *memmove(void *dst, const void *src, size_t n);
1232   // The return value is the address of the destination buffer.
1233   const Expr *Dest = CE->getArg(0);
1234   ProgramStateRef state = C.getState();
1235
1236   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1237 }
1238
1239 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1240   if (CE->getNumArgs() < 3)
1241     return;
1242
1243   // void bcopy(const void *src, void *dst, size_t n);
1244   evalCopyCommon(C, CE, C.getState(),
1245                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
1246 }
1247
1248 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1249   if (CE->getNumArgs() < 3)
1250     return;
1251
1252   // int memcmp(const void *s1, const void *s2, size_t n);
1253   CurrentFunctionDescription = "memory comparison function";
1254
1255   const Expr *Left = CE->getArg(0);
1256   const Expr *Right = CE->getArg(1);
1257   const Expr *Size = CE->getArg(2);
1258
1259   ProgramStateRef state = C.getState();
1260   SValBuilder &svalBuilder = C.getSValBuilder();
1261
1262   // See if the size argument is zero.
1263   const LocationContext *LCtx = C.getLocationContext();
1264   SVal sizeVal = state->getSVal(Size, LCtx);
1265   QualType sizeTy = Size->getType();
1266
1267   ProgramStateRef stateZeroSize, stateNonZeroSize;
1268   std::tie(stateZeroSize, stateNonZeroSize) =
1269     assumeZero(C, state, sizeVal, sizeTy);
1270
1271   // If the size can be zero, the result will be 0 in that case, and we don't
1272   // have to check either of the buffers.
1273   if (stateZeroSize) {
1274     state = stateZeroSize;
1275     state = state->BindExpr(CE, LCtx,
1276                             svalBuilder.makeZeroVal(CE->getType()));
1277     C.addTransition(state);
1278   }
1279
1280   // If the size can be nonzero, we have to check the other arguments.
1281   if (stateNonZeroSize) {
1282     state = stateNonZeroSize;
1283     // If we know the two buffers are the same, we know the result is 0.
1284     // First, get the two buffers' addresses. Another checker will have already
1285     // made sure they're not undefined.
1286     DefinedOrUnknownSVal LV =
1287         state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
1288     DefinedOrUnknownSVal RV =
1289         state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
1290
1291     // See if they are the same.
1292     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1293     ProgramStateRef StSameBuf, StNotSameBuf;
1294     std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1295
1296     // If the two arguments might be the same buffer, we know the result is 0,
1297     // and we only need to check one size.
1298     if (StSameBuf) {
1299       state = StSameBuf;
1300       state = CheckBufferAccess(C, state, Size, Left);
1301       if (state) {
1302         state = StSameBuf->BindExpr(CE, LCtx,
1303                                     svalBuilder.makeZeroVal(CE->getType()));
1304         C.addTransition(state);
1305       }
1306     }
1307
1308     // If the two arguments might be different buffers, we have to check the
1309     // size of both of them.
1310     if (StNotSameBuf) {
1311       state = StNotSameBuf;
1312       state = CheckBufferAccess(C, state, Size, Left, Right);
1313       if (state) {
1314         // The return value is the comparison result, which we don't know.
1315         SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1316                                                  C.blockCount());
1317         state = state->BindExpr(CE, LCtx, CmpV);
1318         C.addTransition(state);
1319       }
1320     }
1321   }
1322 }
1323
1324 void CStringChecker::evalstrLength(CheckerContext &C,
1325                                    const CallExpr *CE) const {
1326   if (CE->getNumArgs() < 1)
1327     return;
1328
1329   // size_t strlen(const char *s);
1330   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1331 }
1332
1333 void CStringChecker::evalstrnLength(CheckerContext &C,
1334                                     const CallExpr *CE) const {
1335   if (CE->getNumArgs() < 2)
1336     return;
1337
1338   // size_t strnlen(const char *s, size_t maxlen);
1339   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1340 }
1341
1342 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1343                                          bool IsStrnlen) const {
1344   CurrentFunctionDescription = "string length function";
1345   ProgramStateRef state = C.getState();
1346   const LocationContext *LCtx = C.getLocationContext();
1347
1348   if (IsStrnlen) {
1349     const Expr *maxlenExpr = CE->getArg(1);
1350     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1351
1352     ProgramStateRef stateZeroSize, stateNonZeroSize;
1353     std::tie(stateZeroSize, stateNonZeroSize) =
1354       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1355
1356     // If the size can be zero, the result will be 0 in that case, and we don't
1357     // have to check the string itself.
1358     if (stateZeroSize) {
1359       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1360       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1361       C.addTransition(stateZeroSize);
1362     }
1363
1364     // If the size is GUARANTEED to be zero, we're done!
1365     if (!stateNonZeroSize)
1366       return;
1367
1368     // Otherwise, record the assumption that the size is nonzero.
1369     state = stateNonZeroSize;
1370   }
1371
1372   // Check that the string argument is non-null.
1373   const Expr *Arg = CE->getArg(0);
1374   SVal ArgVal = state->getSVal(Arg, LCtx);
1375
1376   state = checkNonNull(C, state, Arg, ArgVal);
1377
1378   if (!state)
1379     return;
1380
1381   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1382
1383   // If the argument isn't a valid C string, there's no valid state to
1384   // transition to.
1385   if (strLength.isUndef())
1386     return;
1387
1388   DefinedOrUnknownSVal result = UnknownVal();
1389
1390   // If the check is for strnlen() then bind the return value to no more than
1391   // the maxlen value.
1392   if (IsStrnlen) {
1393     QualType cmpTy = C.getSValBuilder().getConditionType();
1394
1395     // It's a little unfortunate to be getting this again,
1396     // but it's not that expensive...
1397     const Expr *maxlenExpr = CE->getArg(1);
1398     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1399
1400     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1401     Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1402
1403     if (strLengthNL && maxlenValNL) {
1404       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1405
1406       // Check if the strLength is greater than the maxlen.
1407       std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1408           C.getSValBuilder()
1409               .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1410               .castAs<DefinedOrUnknownSVal>());
1411
1412       if (stateStringTooLong && !stateStringNotTooLong) {
1413         // If the string is longer than maxlen, return maxlen.
1414         result = *maxlenValNL;
1415       } else if (stateStringNotTooLong && !stateStringTooLong) {
1416         // If the string is shorter than maxlen, return its length.
1417         result = *strLengthNL;
1418       }
1419     }
1420
1421     if (result.isUnknown()) {
1422       // If we don't have enough information for a comparison, there's
1423       // no guarantee the full string length will actually be returned.
1424       // All we know is the return value is the min of the string length
1425       // and the limit. This is better than nothing.
1426       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1427                                                    C.blockCount());
1428       NonLoc resultNL = result.castAs<NonLoc>();
1429
1430       if (strLengthNL) {
1431         state = state->assume(C.getSValBuilder().evalBinOpNN(
1432                                   state, BO_LE, resultNL, *strLengthNL, cmpTy)
1433                                   .castAs<DefinedOrUnknownSVal>(), true);
1434       }
1435
1436       if (maxlenValNL) {
1437         state = state->assume(C.getSValBuilder().evalBinOpNN(
1438                                   state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1439                                   .castAs<DefinedOrUnknownSVal>(), true);
1440       }
1441     }
1442
1443   } else {
1444     // This is a plain strlen(), not strnlen().
1445     result = strLength.castAs<DefinedOrUnknownSVal>();
1446
1447     // If we don't know the length of the string, conjure a return
1448     // value, so it can be used in constraints, at least.
1449     if (result.isUnknown()) {
1450       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1451                                                    C.blockCount());
1452     }
1453   }
1454
1455   // Bind the return value.
1456   assert(!result.isUnknown() && "Should have conjured a value by now");
1457   state = state->BindExpr(CE, LCtx, result);
1458   C.addTransition(state);
1459 }
1460
1461 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1462   if (CE->getNumArgs() < 2)
1463     return;
1464
1465   // char *strcpy(char *restrict dst, const char *restrict src);
1466   evalStrcpyCommon(C, CE,
1467                    /* returnEnd = */ false,
1468                    /* isBounded = */ false,
1469                    /* isAppending = */ false);
1470 }
1471
1472 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1473   if (CE->getNumArgs() < 3)
1474     return;
1475
1476   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1477   evalStrcpyCommon(C, CE,
1478                    /* returnEnd = */ false,
1479                    /* isBounded = */ true,
1480                    /* isAppending = */ false);
1481 }
1482
1483 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1484   if (CE->getNumArgs() < 2)
1485     return;
1486
1487   // char *stpcpy(char *restrict dst, const char *restrict src);
1488   evalStrcpyCommon(C, CE,
1489                    /* returnEnd = */ true,
1490                    /* isBounded = */ false,
1491                    /* isAppending = */ false);
1492 }
1493
1494 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1495   if (CE->getNumArgs() < 3)
1496     return;
1497
1498   // char *strlcpy(char *dst, const char *src, size_t n);
1499   evalStrcpyCommon(C, CE,
1500                    /* returnEnd = */ true,
1501                    /* isBounded = */ true,
1502                    /* isAppending = */ false,
1503                    /* returnPtr = */ false);
1504 }
1505
1506 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1507   if (CE->getNumArgs() < 2)
1508     return;
1509
1510   //char *strcat(char *restrict s1, const char *restrict s2);
1511   evalStrcpyCommon(C, CE,
1512                    /* returnEnd = */ false,
1513                    /* isBounded = */ false,
1514                    /* isAppending = */ true);
1515 }
1516
1517 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1518   if (CE->getNumArgs() < 3)
1519     return;
1520
1521   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1522   evalStrcpyCommon(C, CE,
1523                    /* returnEnd = */ false,
1524                    /* isBounded = */ true,
1525                    /* isAppending = */ true);
1526 }
1527
1528 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1529   if (CE->getNumArgs() < 3)
1530     return;
1531
1532   //char *strlcat(char *s1, const char *s2, size_t n);
1533   evalStrcpyCommon(C, CE,
1534                    /* returnEnd = */ false,
1535                    /* isBounded = */ true,
1536                    /* isAppending = */ true,
1537                    /* returnPtr = */ false);
1538 }
1539
1540 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1541                                       bool returnEnd, bool isBounded,
1542                                       bool isAppending, bool returnPtr) const {
1543   CurrentFunctionDescription = "string copy function";
1544   ProgramStateRef state = C.getState();
1545   const LocationContext *LCtx = C.getLocationContext();
1546
1547   // Check that the destination is non-null.
1548   const Expr *Dst = CE->getArg(0);
1549   SVal DstVal = state->getSVal(Dst, LCtx);
1550
1551   state = checkNonNull(C, state, Dst, DstVal);
1552   if (!state)
1553     return;
1554
1555   // Check that the source is non-null.
1556   const Expr *srcExpr = CE->getArg(1);
1557   SVal srcVal = state->getSVal(srcExpr, LCtx);
1558   state = checkNonNull(C, state, srcExpr, srcVal);
1559   if (!state)
1560     return;
1561
1562   // Get the string length of the source.
1563   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1564
1565   // If the source isn't a valid C string, give up.
1566   if (strLength.isUndef())
1567     return;
1568
1569   SValBuilder &svalBuilder = C.getSValBuilder();
1570   QualType cmpTy = svalBuilder.getConditionType();
1571   QualType sizeTy = svalBuilder.getContext().getSizeType();
1572
1573   // These two values allow checking two kinds of errors:
1574   // - actual overflows caused by a source that doesn't fit in the destination
1575   // - potential overflows caused by a bound that could exceed the destination
1576   SVal amountCopied = UnknownVal();
1577   SVal maxLastElementIndex = UnknownVal();
1578   const char *boundWarning = nullptr;
1579
1580   state = CheckOverlap(C, state, isBounded ? CE->getArg(2) : CE->getArg(1), Dst, srcExpr);
1581
1582   if (!state)
1583     return;
1584
1585   // If the function is strncpy, strncat, etc... it is bounded.
1586   if (isBounded) {
1587     // Get the max number of characters to copy.
1588     const Expr *lenExpr = CE->getArg(2);
1589     SVal lenVal = state->getSVal(lenExpr, LCtx);
1590
1591     // Protect against misdeclared strncpy().
1592     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1593
1594     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1595     Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1596
1597     // If we know both values, we might be able to figure out how much
1598     // we're copying.
1599     if (strLengthNL && lenValNL) {
1600       ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1601
1602       // Check if the max number to copy is less than the length of the src.
1603       // If the bound is equal to the source length, strncpy won't null-
1604       // terminate the result!
1605       std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1606           svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1607               .castAs<DefinedOrUnknownSVal>());
1608
1609       if (stateSourceTooLong && !stateSourceNotTooLong) {
1610         // Max number to copy is less than the length of the src, so the actual
1611         // strLength copied is the max number arg.
1612         state = stateSourceTooLong;
1613         amountCopied = lenVal;
1614
1615       } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1616         // The source buffer entirely fits in the bound.
1617         state = stateSourceNotTooLong;
1618         amountCopied = strLength;
1619       }
1620     }
1621
1622     // We still want to know if the bound is known to be too large.
1623     if (lenValNL) {
1624       if (isAppending) {
1625         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1626
1627         // Get the string length of the destination. If the destination is
1628         // memory that can't have a string length, we shouldn't be copying
1629         // into it anyway.
1630         SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1631         if (dstStrLength.isUndef())
1632           return;
1633
1634         if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) {
1635           maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1636                                                         *lenValNL,
1637                                                         *dstStrLengthNL,
1638                                                         sizeTy);
1639           boundWarning = "Size argument is greater than the free space in the "
1640                          "destination buffer";
1641         }
1642
1643       } else {
1644         // For strncpy, this is just checking that lenVal <= sizeof(dst)
1645         // (Yes, strncpy and strncat differ in how they treat termination.
1646         // strncat ALWAYS terminates, but strncpy doesn't.)
1647
1648         // We need a special case for when the copy size is zero, in which
1649         // case strncpy will do no work at all. Our bounds check uses n-1
1650         // as the last element accessed, so n == 0 is problematic.
1651         ProgramStateRef StateZeroSize, StateNonZeroSize;
1652         std::tie(StateZeroSize, StateNonZeroSize) =
1653           assumeZero(C, state, *lenValNL, sizeTy);
1654
1655         // If the size is known to be zero, we're done.
1656         if (StateZeroSize && !StateNonZeroSize) {
1657           if (returnPtr) {
1658             StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1659           } else {
1660             StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, *lenValNL);
1661           }
1662           C.addTransition(StateZeroSize);
1663           return;
1664         }
1665
1666         // Otherwise, go ahead and figure out the last element we'll touch.
1667         // We don't record the non-zero assumption here because we can't
1668         // be sure. We won't warn on a possible zero.
1669         NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1670         maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1671                                                       one, sizeTy);
1672         boundWarning = "Size argument is greater than the length of the "
1673                        "destination buffer";
1674       }
1675     }
1676
1677     // If we couldn't pin down the copy length, at least bound it.
1678     // FIXME: We should actually run this code path for append as well, but
1679     // right now it creates problems with constraints (since we can end up
1680     // trying to pass constraints from symbol to symbol).
1681     if (amountCopied.isUnknown() && !isAppending) {
1682       // Try to get a "hypothetical" string length symbol, which we can later
1683       // set as a real value if that turns out to be the case.
1684       amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1685       assert(!amountCopied.isUndef());
1686
1687       if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) {
1688         if (lenValNL) {
1689           // amountCopied <= lenVal
1690           SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1691                                                              *amountCopiedNL,
1692                                                              *lenValNL,
1693                                                              cmpTy);
1694           state = state->assume(
1695               copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
1696           if (!state)
1697             return;
1698         }
1699
1700         if (strLengthNL) {
1701           // amountCopied <= strlen(source)
1702           SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1703                                                            *amountCopiedNL,
1704                                                            *strLengthNL,
1705                                                            cmpTy);
1706           state = state->assume(
1707               copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
1708           if (!state)
1709             return;
1710         }
1711       }
1712     }
1713
1714   } else {
1715     // The function isn't bounded. The amount copied should match the length
1716     // of the source buffer.
1717     amountCopied = strLength;
1718   }
1719
1720   assert(state);
1721
1722   // This represents the number of characters copied into the destination
1723   // buffer. (It may not actually be the strlen if the destination buffer
1724   // is not terminated.)
1725   SVal finalStrLength = UnknownVal();
1726
1727   // If this is an appending function (strcat, strncat...) then set the
1728   // string length to strlen(src) + strlen(dst) since the buffer will
1729   // ultimately contain both.
1730   if (isAppending) {
1731     // Get the string length of the destination. If the destination is memory
1732     // that can't have a string length, we shouldn't be copying into it anyway.
1733     SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1734     if (dstStrLength.isUndef())
1735       return;
1736
1737     Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
1738     Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1739
1740     // If we know both string lengths, we might know the final string length.
1741     if (srcStrLengthNL && dstStrLengthNL) {
1742       // Make sure the two lengths together don't overflow a size_t.
1743       state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1744       if (!state)
1745         return;
1746
1747       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1748                                                *dstStrLengthNL, sizeTy);
1749     }
1750
1751     // If we couldn't get a single value for the final string length,
1752     // we can at least bound it by the individual lengths.
1753     if (finalStrLength.isUnknown()) {
1754       // Try to get a "hypothetical" string length symbol, which we can later
1755       // set as a real value if that turns out to be the case.
1756       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1757       assert(!finalStrLength.isUndef());
1758
1759       if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1760         if (srcStrLengthNL) {
1761           // finalStrLength >= srcStrLength
1762           SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1763                                                         *finalStrLengthNL,
1764                                                         *srcStrLengthNL,
1765                                                         cmpTy);
1766           state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1767                                 true);
1768           if (!state)
1769             return;
1770         }
1771
1772         if (dstStrLengthNL) {
1773           // finalStrLength >= dstStrLength
1774           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1775                                                       *finalStrLengthNL,
1776                                                       *dstStrLengthNL,
1777                                                       cmpTy);
1778           state =
1779               state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1780           if (!state)
1781             return;
1782         }
1783       }
1784     }
1785
1786   } else {
1787     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1788     // the final string length will match the input string length.
1789     finalStrLength = amountCopied;
1790   }
1791
1792   SVal Result;
1793
1794   if (returnPtr) {
1795     // The final result of the function will either be a pointer past the last
1796     // copied element, or a pointer to the start of the destination buffer.
1797     Result = (returnEnd ? UnknownVal() : DstVal);
1798   } else {
1799     Result = finalStrLength;
1800   }
1801
1802   assert(state);
1803
1804   // If the destination is a MemRegion, try to check for a buffer overflow and
1805   // record the new string length.
1806   if (Optional<loc::MemRegionVal> dstRegVal =
1807       DstVal.getAs<loc::MemRegionVal>()) {
1808     QualType ptrTy = Dst->getType();
1809
1810     // If we have an exact value on a bounded copy, use that to check for
1811     // overflows, rather than our estimate about how much is actually copied.
1812     if (boundWarning) {
1813       if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1814         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1815             *maxLastNL, ptrTy);
1816         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1817             boundWarning);
1818         if (!state)
1819           return;
1820       }
1821     }
1822
1823     // Then, if the final length is known...
1824     if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1825       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1826           *knownStrLength, ptrTy);
1827
1828       // ...and we haven't checked the bound, we'll check the actual copy.
1829       if (!boundWarning) {
1830         const char * const warningMsg =
1831           "String copy function overflows destination buffer";
1832         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1833         if (!state)
1834           return;
1835       }
1836
1837       // If this is a stpcpy-style copy, the last element is the return value.
1838       if (returnPtr && returnEnd)
1839         Result = lastElement;
1840     }
1841
1842     // Invalidate the destination (regular invalidation without pointer-escaping
1843     // the address of the top-level region). This must happen before we set the
1844     // C string length because invalidation will clear the length.
1845     // FIXME: Even if we can't perfectly model the copy, we should see if we
1846     // can use LazyCompoundVals to copy the source values into the destination.
1847     // This would probably remove any existing bindings past the end of the
1848     // string, but that's still an improvement over blank invalidation.
1849     state = InvalidateBuffer(C, state, Dst, *dstRegVal,
1850         /*IsSourceBuffer*/false, nullptr);
1851
1852     // Invalidate the source (const-invalidation without const-pointer-escaping
1853     // the address of the top-level region).
1854     state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true,
1855         nullptr);
1856
1857     // Set the C string length of the destination, if we know it.
1858     if (isBounded && !isAppending) {
1859       // strncpy is annoying in that it doesn't guarantee to null-terminate
1860       // the result string. If the original string didn't fit entirely inside
1861       // the bound (including the null-terminator), we don't know how long the
1862       // result is.
1863       if (amountCopied != strLength)
1864         finalStrLength = UnknownVal();
1865     }
1866     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1867   }
1868
1869   assert(state);
1870
1871   if (returnPtr) {
1872     // If this is a stpcpy-style copy, but we were unable to check for a buffer
1873     // overflow, we still need a result. Conjure a return value.
1874     if (returnEnd && Result.isUnknown()) {
1875       Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1876     }
1877   }
1878   // Set the return value.
1879   state = state->BindExpr(CE, LCtx, Result);
1880   C.addTransition(state);
1881 }
1882
1883 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1884   if (CE->getNumArgs() < 2)
1885     return;
1886
1887   //int strcmp(const char *s1, const char *s2);
1888   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1889 }
1890
1891 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1892   if (CE->getNumArgs() < 3)
1893     return;
1894
1895   //int strncmp(const char *s1, const char *s2, size_t n);
1896   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1897 }
1898
1899 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1900     const CallExpr *CE) const {
1901   if (CE->getNumArgs() < 2)
1902     return;
1903
1904   //int strcasecmp(const char *s1, const char *s2);
1905   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1906 }
1907
1908 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1909     const CallExpr *CE) const {
1910   if (CE->getNumArgs() < 3)
1911     return;
1912
1913   //int strncasecmp(const char *s1, const char *s2, size_t n);
1914   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1915 }
1916
1917 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1918     bool isBounded, bool ignoreCase) const {
1919   CurrentFunctionDescription = "string comparison function";
1920   ProgramStateRef state = C.getState();
1921   const LocationContext *LCtx = C.getLocationContext();
1922
1923   // Check that the first string is non-null
1924   const Expr *s1 = CE->getArg(0);
1925   SVal s1Val = state->getSVal(s1, LCtx);
1926   state = checkNonNull(C, state, s1, s1Val);
1927   if (!state)
1928     return;
1929
1930   // Check that the second string is non-null.
1931   const Expr *s2 = CE->getArg(1);
1932   SVal s2Val = state->getSVal(s2, LCtx);
1933   state = checkNonNull(C, state, s2, s2Val);
1934   if (!state)
1935     return;
1936
1937   // Get the string length of the first string or give up.
1938   SVal s1Length = getCStringLength(C, state, s1, s1Val);
1939   if (s1Length.isUndef())
1940     return;
1941
1942   // Get the string length of the second string or give up.
1943   SVal s2Length = getCStringLength(C, state, s2, s2Val);
1944   if (s2Length.isUndef())
1945     return;
1946
1947   // If we know the two buffers are the same, we know the result is 0.
1948   // First, get the two buffers' addresses. Another checker will have already
1949   // made sure they're not undefined.
1950   DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
1951   DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
1952
1953   // See if they are the same.
1954   SValBuilder &svalBuilder = C.getSValBuilder();
1955   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1956   ProgramStateRef StSameBuf, StNotSameBuf;
1957   std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1958
1959   // If the two arguments might be the same buffer, we know the result is 0,
1960   // and we only need to check one size.
1961   if (StSameBuf) {
1962     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1963         svalBuilder.makeZeroVal(CE->getType()));
1964     C.addTransition(StSameBuf);
1965
1966     // If the two arguments are GUARANTEED to be the same, we're done!
1967     if (!StNotSameBuf)
1968       return;
1969   }
1970
1971   assert(StNotSameBuf);
1972   state = StNotSameBuf;
1973
1974   // At this point we can go about comparing the two buffers.
1975   // For now, we only do this if they're both known string literals.
1976
1977   // Attempt to extract string literals from both expressions.
1978   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1979   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1980   bool canComputeResult = false;
1981   SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1982       C.blockCount());
1983
1984   if (s1StrLiteral && s2StrLiteral) {
1985     StringRef s1StrRef = s1StrLiteral->getString();
1986     StringRef s2StrRef = s2StrLiteral->getString();
1987
1988     if (isBounded) {
1989       // Get the max number of characters to compare.
1990       const Expr *lenExpr = CE->getArg(2);
1991       SVal lenVal = state->getSVal(lenExpr, LCtx);
1992
1993       // If the length is known, we can get the right substrings.
1994       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1995         // Create substrings of each to compare the prefix.
1996         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1997         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1998         canComputeResult = true;
1999       }
2000     } else {
2001       // This is a normal, unbounded strcmp.
2002       canComputeResult = true;
2003     }
2004
2005     if (canComputeResult) {
2006       // Real strcmp stops at null characters.
2007       size_t s1Term = s1StrRef.find('\0');
2008       if (s1Term != StringRef::npos)
2009         s1StrRef = s1StrRef.substr(0, s1Term);
2010
2011       size_t s2Term = s2StrRef.find('\0');
2012       if (s2Term != StringRef::npos)
2013         s2StrRef = s2StrRef.substr(0, s2Term);
2014
2015       // Use StringRef's comparison methods to compute the actual result.
2016       int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef)
2017         : s1StrRef.compare(s2StrRef);
2018
2019       // The strcmp function returns an integer greater than, equal to, or less
2020       // than zero, [c11, p7.24.4.2].
2021       if (compareRes == 0) {
2022         resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2023       }
2024       else {
2025         DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2026         // Constrain strcmp's result range based on the result of StringRef's
2027         // comparison methods.
2028         BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
2029         SVal compareWithZero =
2030           svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2031               svalBuilder.getConditionType());
2032         DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2033         state = state->assume(compareWithZeroVal, true);
2034       }
2035     }
2036   }
2037
2038   state = state->BindExpr(CE, LCtx, resultVal);
2039
2040   // Record this as a possible path.
2041   C.addTransition(state);
2042 }
2043
2044 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2045   //char *strsep(char **stringp, const char *delim);
2046   if (CE->getNumArgs() < 2)
2047     return;
2048
2049   // Sanity: does the search string parameter match the return type?
2050   const Expr *SearchStrPtr = CE->getArg(0);
2051   QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
2052   if (CharPtrTy.isNull() ||
2053       CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2054     return;
2055
2056   CurrentFunctionDescription = "strsep()";
2057   ProgramStateRef State = C.getState();
2058   const LocationContext *LCtx = C.getLocationContext();
2059
2060   // Check that the search string pointer is non-null (though it may point to
2061   // a null string).
2062   SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
2063   State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2064   if (!State)
2065     return;
2066
2067   // Check that the delimiter string is non-null.
2068   const Expr *DelimStr = CE->getArg(1);
2069   SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
2070   State = checkNonNull(C, State, DelimStr, DelimStrVal);
2071   if (!State)
2072     return;
2073
2074   SValBuilder &SVB = C.getSValBuilder();
2075   SVal Result;
2076   if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2077     // Get the current value of the search string pointer, as a char*.
2078     Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2079
2080     // Invalidate the search string, representing the change of one delimiter
2081     // character to NUL.
2082     State = InvalidateBuffer(C, State, SearchStrPtr, Result,
2083         /*IsSourceBuffer*/false, nullptr);
2084
2085     // Overwrite the search string pointer. The new value is either an address
2086     // further along in the same string, or NULL if there are no more tokens.
2087     State = State->bindLoc(*SearchStrLoc,
2088         SVB.conjureSymbolVal(getTag(),
2089           CE,
2090           LCtx,
2091           CharPtrTy,
2092           C.blockCount()),
2093         LCtx);
2094   } else {
2095     assert(SearchStrVal.isUnknown());
2096     // Conjure a symbolic value. It's the best we can do.
2097     Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2098   }
2099
2100   // Set the return value, and finish.
2101   State = State->BindExpr(CE, LCtx, Result);
2102   C.addTransition(State);
2103 }
2104
2105 // These should probably be moved into a C++ standard library checker.
2106 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2107   evalStdCopyCommon(C, CE);
2108 }
2109
2110 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2111     const CallExpr *CE) const {
2112   evalStdCopyCommon(C, CE);
2113 }
2114
2115 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2116     const CallExpr *CE) const {
2117   if (CE->getNumArgs() < 3)
2118     return;
2119
2120   ProgramStateRef State = C.getState();
2121
2122   const LocationContext *LCtx = C.getLocationContext();
2123
2124   // template <class _InputIterator, class _OutputIterator>
2125   // _OutputIterator
2126   // copy(_InputIterator __first, _InputIterator __last,
2127   //        _OutputIterator __result)
2128
2129   // Invalidate the destination buffer
2130   const Expr *Dst = CE->getArg(2);
2131   SVal DstVal = State->getSVal(Dst, LCtx);
2132   State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2133       /*Size=*/nullptr);
2134
2135   SValBuilder &SVB = C.getSValBuilder();
2136
2137   SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2138   State = State->BindExpr(CE, LCtx, ResultVal);
2139
2140   C.addTransition(State);
2141 }
2142
2143 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2144   if (CE->getNumArgs() != 3)
2145     return;
2146
2147   CurrentFunctionDescription = "memory set function";
2148
2149   const Expr *Mem = CE->getArg(0);
2150   const Expr *CharE = CE->getArg(1);
2151   const Expr *Size = CE->getArg(2);
2152   ProgramStateRef State = C.getState();
2153
2154   // See if the size argument is zero.
2155   const LocationContext *LCtx = C.getLocationContext();
2156   SVal SizeVal = State->getSVal(Size, LCtx);
2157   QualType SizeTy = Size->getType();
2158
2159   ProgramStateRef StateZeroSize, StateNonZeroSize;
2160   std::tie(StateZeroSize, StateNonZeroSize) =
2161     assumeZero(C, State, SizeVal, SizeTy);
2162
2163   // Get the value of the memory area.
2164   SVal MemVal = State->getSVal(Mem, LCtx);
2165
2166   // If the size is zero, there won't be any actual memory access, so
2167   // just bind the return value to the Mem buffer and return.
2168   if (StateZeroSize && !StateNonZeroSize) {
2169     StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal);
2170     C.addTransition(StateZeroSize);
2171     return;
2172   }
2173
2174   // Ensure the memory area is not null.
2175   // If it is NULL there will be a NULL pointer dereference.
2176   State = checkNonNull(C, StateNonZeroSize, Mem, MemVal);
2177   if (!State)
2178     return;
2179
2180   State = CheckBufferAccess(C, State, Size, Mem);
2181   if (!State)
2182     return;
2183
2184   // According to the values of the arguments, bind the value of the second
2185   // argument to the destination buffer and set string length, or just
2186   // invalidate the destination buffer.
2187   if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State))
2188     return;
2189
2190   State = State->BindExpr(CE, LCtx, MemVal);
2191   C.addTransition(State);
2192 }
2193
2194 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2195   if (CE->getNumArgs() != 2)
2196     return;
2197
2198   CurrentFunctionDescription = "memory clearance function";
2199
2200   const Expr *Mem = CE->getArg(0);
2201   const Expr *Size = CE->getArg(1);
2202   SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2203
2204   ProgramStateRef State = C.getState();
2205   
2206   // See if the size argument is zero.
2207   SVal SizeVal = C.getSVal(Size);
2208   QualType SizeTy = Size->getType();
2209
2210   ProgramStateRef StateZeroSize, StateNonZeroSize;
2211   std::tie(StateZeroSize, StateNonZeroSize) =
2212     assumeZero(C, State, SizeVal, SizeTy);
2213
2214   // If the size is zero, there won't be any actual memory access,
2215   // In this case we just return.
2216   if (StateZeroSize && !StateNonZeroSize) {
2217     C.addTransition(StateZeroSize);
2218     return;
2219   }
2220
2221   // Get the value of the memory area.
2222   SVal MemVal = C.getSVal(Mem);
2223
2224   // Ensure the memory area is not null.
2225   // If it is NULL there will be a NULL pointer dereference.
2226   State = checkNonNull(C, StateNonZeroSize, Mem, MemVal);
2227   if (!State)
2228     return;
2229
2230   State = CheckBufferAccess(C, State, Size, Mem);
2231   if (!State)
2232     return;
2233
2234   if (!memsetAux(Mem, Zero, Size, C, State))
2235     return;
2236
2237   C.addTransition(State);
2238 }
2239
2240 static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) {
2241   IdentifierInfo *II = FD->getIdentifier();
2242   if (!II)
2243     return false;
2244
2245   if (!AnalysisDeclContext::isInStdNamespace(FD))
2246     return false;
2247
2248   if (II->getName().equals(Name))
2249     return true;
2250
2251   return false;
2252 }
2253 //===----------------------------------------------------------------------===//
2254 // The driver method, and other Checker callbacks.
2255 //===----------------------------------------------------------------------===//
2256
2257 static CStringChecker::FnCheck identifyCall(const CallExpr *CE,
2258                                             CheckerContext &C) {
2259   const FunctionDecl *FDecl = C.getCalleeDecl(CE);
2260   if (!FDecl)
2261     return nullptr;
2262
2263   // Pro-actively check that argument types are safe to do arithmetic upon.
2264   // We do not want to crash if someone accidentally passes a structure
2265   // into, say, a C++ overload of any of these functions.
2266   if (isCPPStdLibraryFunction(FDecl, "copy")) {
2267     if (CE->getNumArgs() < 3 || !CE->getArg(2)->getType()->isPointerType())
2268       return nullptr;
2269     return &CStringChecker::evalStdCopy;
2270   } else if (isCPPStdLibraryFunction(FDecl, "copy_backward")) {
2271     if (CE->getNumArgs() < 3 || !CE->getArg(2)->getType()->isPointerType())
2272       return nullptr;
2273     return &CStringChecker::evalStdCopyBackward;
2274   } else {
2275     // An umbrella check for all C library functions.
2276     for (auto I: CE->arguments()) {
2277       QualType T = I->getType();
2278       if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2279         return nullptr;
2280     }
2281   }
2282
2283   // FIXME: Poorly-factored string switches are slow.
2284   if (C.isCLibraryFunction(FDecl, "memcpy"))
2285     return &CStringChecker::evalMemcpy;
2286   else if (C.isCLibraryFunction(FDecl, "mempcpy"))
2287     return &CStringChecker::evalMempcpy;
2288   else if (C.isCLibraryFunction(FDecl, "memcmp"))
2289     return &CStringChecker::evalMemcmp;
2290   else if (C.isCLibraryFunction(FDecl, "memmove"))
2291     return &CStringChecker::evalMemmove;
2292   else if (C.isCLibraryFunction(FDecl, "memset") ||
2293            C.isCLibraryFunction(FDecl, "explicit_memset"))
2294     return &CStringChecker::evalMemset;
2295   else if (C.isCLibraryFunction(FDecl, "strcpy"))
2296     return &CStringChecker::evalStrcpy;
2297   else if (C.isCLibraryFunction(FDecl, "strncpy"))
2298     return &CStringChecker::evalStrncpy;
2299   else if (C.isCLibraryFunction(FDecl, "stpcpy"))
2300     return &CStringChecker::evalStpcpy;
2301   else if (C.isCLibraryFunction(FDecl, "strlcpy"))
2302     return &CStringChecker::evalStrlcpy;
2303   else if (C.isCLibraryFunction(FDecl, "strcat"))
2304     return &CStringChecker::evalStrcat;
2305   else if (C.isCLibraryFunction(FDecl, "strncat"))
2306     return &CStringChecker::evalStrncat;
2307   else if (C.isCLibraryFunction(FDecl, "strlcat"))
2308     return &CStringChecker::evalStrlcat;
2309   else if (C.isCLibraryFunction(FDecl, "strlen"))
2310     return &CStringChecker::evalstrLength;
2311   else if (C.isCLibraryFunction(FDecl, "strnlen"))
2312     return &CStringChecker::evalstrnLength;
2313   else if (C.isCLibraryFunction(FDecl, "strcmp"))
2314     return &CStringChecker::evalStrcmp;
2315   else if (C.isCLibraryFunction(FDecl, "strncmp"))
2316     return &CStringChecker::evalStrncmp;
2317   else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
2318     return &CStringChecker::evalStrcasecmp;
2319   else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
2320     return &CStringChecker::evalStrncasecmp;
2321   else if (C.isCLibraryFunction(FDecl, "strsep"))
2322     return &CStringChecker::evalStrsep;
2323   else if (C.isCLibraryFunction(FDecl, "bcopy"))
2324     return &CStringChecker::evalBcopy;
2325   else if (C.isCLibraryFunction(FDecl, "bcmp"))
2326     return &CStringChecker::evalMemcmp;
2327   else if (C.isCLibraryFunction(FDecl, "bzero") ||
2328            C.isCLibraryFunction(FDecl, "explicit_bzero"))
2329     return &CStringChecker::evalBzero;
2330
2331   return nullptr;
2332 }
2333
2334 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
2335
2336   FnCheck evalFunction = identifyCall(CE, C);
2337
2338   // If the callee isn't a string function, let another checker handle it.
2339   if (!evalFunction)
2340     return false;
2341
2342   // Check and evaluate the call.
2343   (this->*evalFunction)(C, CE);
2344
2345   // If the evaluate call resulted in no change, chain to the next eval call
2346   // handler.
2347   // Note, the custom CString evaluation calls assume that basic safety
2348   // properties are held. However, if the user chooses to turn off some of these
2349   // checks, we ignore the issues and leave the call evaluation to a generic
2350   // handler.
2351   return C.isDifferent();
2352 }
2353
2354 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2355   // Record string length for char a[] = "abc";
2356   ProgramStateRef state = C.getState();
2357
2358   for (const auto *I : DS->decls()) {
2359     const VarDecl *D = dyn_cast<VarDecl>(I);
2360     if (!D)
2361       continue;
2362
2363     // FIXME: Handle array fields of structs.
2364     if (!D->getType()->isArrayType())
2365       continue;
2366
2367     const Expr *Init = D->getInit();
2368     if (!Init)
2369       continue;
2370     if (!isa<StringLiteral>(Init))
2371       continue;
2372
2373     Loc VarLoc = state->getLValue(D, C.getLocationContext());
2374     const MemRegion *MR = VarLoc.getAsRegion();
2375     if (!MR)
2376       continue;
2377
2378     SVal StrVal = C.getSVal(Init);
2379     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2380     DefinedOrUnknownSVal strLength =
2381       getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2382
2383     state = state->set<CStringLength>(MR, strLength);
2384   }
2385
2386   C.addTransition(state);
2387 }
2388
2389 ProgramStateRef
2390 CStringChecker::checkRegionChanges(ProgramStateRef state,
2391     const InvalidatedSymbols *,
2392     ArrayRef<const MemRegion *> ExplicitRegions,
2393     ArrayRef<const MemRegion *> Regions,
2394     const LocationContext *LCtx,
2395     const CallEvent *Call) const {
2396   CStringLengthTy Entries = state->get<CStringLength>();
2397   if (Entries.isEmpty())
2398     return state;
2399
2400   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2401   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2402
2403   // First build sets for the changed regions and their super-regions.
2404   for (ArrayRef<const MemRegion *>::iterator
2405       I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2406     const MemRegion *MR = *I;
2407     Invalidated.insert(MR);
2408
2409     SuperRegions.insert(MR);
2410     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2411       MR = SR->getSuperRegion();
2412       SuperRegions.insert(MR);
2413     }
2414   }
2415
2416   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2417
2418   // Then loop over the entries in the current state.
2419   for (CStringLengthTy::iterator I = Entries.begin(),
2420       E = Entries.end(); I != E; ++I) {
2421     const MemRegion *MR = I.getKey();
2422
2423     // Is this entry for a super-region of a changed region?
2424     if (SuperRegions.count(MR)) {
2425       Entries = F.remove(Entries, MR);
2426       continue;
2427     }
2428
2429     // Is this entry for a sub-region of a changed region?
2430     const MemRegion *Super = MR;
2431     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2432       Super = SR->getSuperRegion();
2433       if (Invalidated.count(Super)) {
2434         Entries = F.remove(Entries, MR);
2435         break;
2436       }
2437     }
2438   }
2439
2440   return state->set<CStringLength>(Entries);
2441 }
2442
2443 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2444     SymbolReaper &SR) const {
2445   // Mark all symbols in our string length map as valid.
2446   CStringLengthTy Entries = state->get<CStringLength>();
2447
2448   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2449       I != E; ++I) {
2450     SVal Len = I.getData();
2451
2452     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2453         se = Len.symbol_end(); si != se; ++si)
2454       SR.markInUse(*si);
2455   }
2456 }
2457
2458 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2459     CheckerContext &C) const {
2460   ProgramStateRef state = C.getState();
2461   CStringLengthTy Entries = state->get<CStringLength>();
2462   if (Entries.isEmpty())
2463     return;
2464
2465   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2466   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2467       I != E; ++I) {
2468     SVal Len = I.getData();
2469     if (SymbolRef Sym = Len.getAsSymbol()) {
2470       if (SR.isDead(Sym))
2471         Entries = F.remove(Entries, I.getKey());
2472     }
2473   }
2474
2475   state = state->set<CStringLength>(Entries);
2476   C.addTransition(state);
2477 }
2478
2479 #define REGISTER_CHECKER(name)                                                 \
2480   void ento::register##name(CheckerManager &mgr) {                             \
2481     CStringChecker *checker = mgr.registerChecker<CStringChecker>();           \
2482     checker->Filter.Check##name = true;                                        \
2483     checker->Filter.CheckName##name = mgr.getCurrentCheckName();               \
2484   }
2485
2486   REGISTER_CHECKER(CStringNullArg)
2487   REGISTER_CHECKER(CStringOutOfBounds)
2488   REGISTER_CHECKER(CStringBufferOverlap)
2489 REGISTER_CHECKER(CStringNotNullTerm)
2490
2491   void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
2492     Mgr.registerChecker<CStringChecker>();
2493   }