]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Target/AMDGPU/GCNHazardRecognizer.cpp
Vendor import of llvm release_39 branch r276489:
[FreeBSD/FreeBSD.git] / lib / Target / AMDGPU / GCNHazardRecognizer.cpp
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements hazard recognizers for scheduling on GCN processors.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "GCNHazardRecognizer.h"
15 #include "AMDGPUSubtarget.h"
16 #include "SIInstrInfo.h"
17 #include "llvm/CodeGen/ScheduleDAG.h"
18 #include "llvm/Support/Debug.h"
19
20 using namespace llvm;
21
22 //===----------------------------------------------------------------------===//
23 // Hazard Recoginizer Implementation
24 //===----------------------------------------------------------------------===//
25
26 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
27   CurrCycleInstr(nullptr),
28   MF(MF),
29   ST(MF.getSubtarget<SISubtarget>()) {
30   MaxLookAhead = 5;
31 }
32
33 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
34   EmitInstruction(SU->getInstr());
35 }
36
37 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
38   CurrCycleInstr = MI;
39 }
40
41 ScheduleHazardRecognizer::HazardType
42 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
43   MachineInstr *MI = SU->getInstr();
44
45   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
46     return NoopHazard;
47
48   if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
49     return NoopHazard;
50
51   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
52     return NoopHazard;
53
54   return NoHazard;
55 }
56
57 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
58   return PreEmitNoops(SU->getInstr());
59 }
60
61 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
62   if (SIInstrInfo::isSMRD(*MI))
63     return std::max(0, checkSMRDHazards(MI));
64
65   if (SIInstrInfo::isVMEM(*MI))
66     return std::max(0, checkVMEMHazards(MI));
67
68   if (SIInstrInfo::isDPP(*MI))
69     return std::max(0, checkDPPHazards(MI));
70
71   return 0;
72 }
73
74 void GCNHazardRecognizer::EmitNoop() {
75   EmittedInstrs.push_front(nullptr);
76 }
77
78 void GCNHazardRecognizer::AdvanceCycle() {
79
80   // When the scheduler detects a stall, it will call AdvanceCycle() without
81   // emitting any instructions.
82   if (!CurrCycleInstr)
83     return;
84
85   const SIInstrInfo *TII = ST.getInstrInfo();
86   unsigned NumWaitStates = TII->getNumWaitStates(*CurrCycleInstr);
87
88   // Keep track of emitted instructions
89   EmittedInstrs.push_front(CurrCycleInstr);
90
91   // Add a nullptr for each additional wait state after the first.  Make sure
92   // not to add more than getMaxLookAhead() items to the list, since we
93   // truncate the list to that size right after this loop.
94   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
95        i < e; ++i) {
96     EmittedInstrs.push_front(nullptr);
97   }
98
99   // getMaxLookahead() is the largest number of wait states we will ever need
100   // to insert, so there is no point in keeping track of more than that many
101   // wait states.
102   EmittedInstrs.resize(getMaxLookAhead());
103
104   CurrCycleInstr = nullptr;
105 }
106
107 void GCNHazardRecognizer::RecedeCycle() {
108   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
109 }
110
111 //===----------------------------------------------------------------------===//
112 // Helper Functions
113 //===----------------------------------------------------------------------===//
114
115 int GCNHazardRecognizer::getWaitStatesSinceDef(
116     unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
117   const SIRegisterInfo *TRI = ST.getRegisterInfo();
118
119   int WaitStates = -1;
120   for (MachineInstr *MI : EmittedInstrs) {
121     ++WaitStates;
122     if (!MI || !IsHazardDef(MI))
123       continue;
124     if (MI->modifiesRegister(Reg, TRI))
125       return WaitStates;
126   }
127   return std::numeric_limits<int>::max();
128 }
129
130 //===----------------------------------------------------------------------===//
131 // No-op Hazard Detection
132 //===----------------------------------------------------------------------===//
133
134 static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
135                          std::set<unsigned> &Set) {
136   for (const MachineOperand &Op : Ops) {
137     if (Op.isReg())
138       Set.insert(Op.getReg());
139   }
140 }
141
142 int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
143   // SMEM soft clause are only present on VI+
144   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
145     return 0;
146
147   // A soft-clause is any group of consecutive SMEM instructions.  The
148   // instructions in this group may return out of order and/or may be
149   // replayed (i.e. the same instruction issued more than once).
150   //
151   // In order to handle these situations correctly we need to make sure
152   // that when a clause has more than one instruction, no instruction in the
153   // clause writes to a register that is read another instruction in the clause
154   // (including itself). If we encounter this situaion, we need to break the
155   // clause by inserting a non SMEM instruction.
156
157   std::set<unsigned> ClauseDefs;
158   std::set<unsigned> ClauseUses;
159
160   for (MachineInstr *MI : EmittedInstrs) {
161
162     // When we hit a non-SMEM instruction then we have passed the start of the
163     // clause and we can stop.
164     if (!MI || !SIInstrInfo::isSMRD(*MI))
165       break;
166
167     addRegsToSet(MI->defs(), ClauseDefs);
168     addRegsToSet(MI->uses(), ClauseUses);
169   }
170
171   if (ClauseDefs.empty())
172     return 0;
173
174   // FIXME: When we support stores, we need to make sure not to put loads and
175   // stores in the same clause if they use the same address.  For now, just
176   // start a new clause whenever we see a store.
177   if (SMEM->mayStore())
178     return 1;
179
180   addRegsToSet(SMEM->defs(), ClauseDefs);
181   addRegsToSet(SMEM->uses(), ClauseUses);
182
183   std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
184   std::vector<unsigned>::iterator End;
185
186   End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
187                               ClauseUses.begin(), ClauseUses.end(), Result.begin());
188
189   // If the set of defs and uses intersect then we cannot add this instruction
190   // to the clause, so we have a hazard.
191   if (End != Result.begin())
192     return 1;
193
194   return 0;
195 }
196
197 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
198   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
199   const SIInstrInfo *TII = ST.getInstrInfo();
200   int WaitStatesNeeded = 0;
201
202   WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
203
204   // This SMRD hazard only affects SI.
205   if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
206     return WaitStatesNeeded;
207
208   // A read of an SGPR by SMRD instruction requires 4 wait states when the
209   // SGPR was written by a VALU instruction.
210   int SmrdSgprWaitStates = 4;
211   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
212
213   for (const MachineOperand &Use : SMRD->uses()) {
214     if (!Use.isReg())
215       continue;
216     int WaitStatesNeededForUse =
217         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
218     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
219   }
220   return WaitStatesNeeded;
221 }
222
223 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
224   const SIInstrInfo *TII = ST.getInstrInfo();
225
226   if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
227     return 0;
228
229   const SIRegisterInfo &TRI = TII->getRegisterInfo();
230
231   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
232   // SGPR was written by a VALU Instruction.
233   int VmemSgprWaitStates = 5;
234   int WaitStatesNeeded = 0;
235   auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
236
237   for (const MachineOperand &Use : VMEM->uses()) {
238     if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
239       continue;
240
241     int WaitStatesNeededForUse =
242         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
243     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
244   }
245   return WaitStatesNeeded;
246 }
247
248 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
249   const SIRegisterInfo *TRI = ST.getRegisterInfo();
250
251   // Check for DPP VGPR read after VALU VGPR write.
252   int DppVgprWaitStates = 2;
253   int WaitStatesNeeded = 0;
254
255   for (const MachineOperand &Use : DPP->uses()) {
256     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
257       continue;
258     int WaitStatesNeededForUse =
259         DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
260     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
261   }
262
263   return WaitStatesNeeded;
264 }