]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
Vendor import of llvm trunk r321017:
[FreeBSD/FreeBSD.git] / lib / Target / ARM / MCTargetDesc / ARMAddressingModes.h
1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
15 #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
16
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22
23 namespace llvm {
24
25 /// ARM_AM - ARM Addressing Mode Stuff
26 namespace ARM_AM {
27   enum ShiftOpc {
28     no_shift = 0,
29     asr,
30     lsl,
31     lsr,
32     ror,
33     rrx
34   };
35
36   enum AddrOpc {
37     sub = 0,
38     add
39   };
40
41   inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
42
43   inline const char *getShiftOpcStr(ShiftOpc Op) {
44     switch (Op) {
45     default: llvm_unreachable("Unknown shift opc!");
46     case ARM_AM::asr: return "asr";
47     case ARM_AM::lsl: return "lsl";
48     case ARM_AM::lsr: return "lsr";
49     case ARM_AM::ror: return "ror";
50     case ARM_AM::rrx: return "rrx";
51     }
52   }
53
54   inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
55     switch (Op) {
56     default: llvm_unreachable("Unknown shift opc!");
57     case ARM_AM::asr: return 2;
58     case ARM_AM::lsl: return 0;
59     case ARM_AM::lsr: return 1;
60     case ARM_AM::ror: return 3;
61     }
62   }
63
64   enum AMSubMode {
65     bad_am_submode = 0,
66     ia,
67     ib,
68     da,
69     db
70   };
71
72   inline const char *getAMSubModeStr(AMSubMode Mode) {
73     switch (Mode) {
74     default: llvm_unreachable("Unknown addressing sub-mode!");
75     case ARM_AM::ia: return "ia";
76     case ARM_AM::ib: return "ib";
77     case ARM_AM::da: return "da";
78     case ARM_AM::db: return "db";
79     }
80   }
81
82   /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
83   ///
84   inline unsigned rotr32(unsigned Val, unsigned Amt) {
85     assert(Amt < 32 && "Invalid rotate amount");
86     return (Val >> Amt) | (Val << ((32-Amt)&31));
87   }
88
89   /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
90   ///
91   inline unsigned rotl32(unsigned Val, unsigned Amt) {
92     assert(Amt < 32 && "Invalid rotate amount");
93     return (Val << Amt) | (Val >> ((32-Amt)&31));
94   }
95
96   //===--------------------------------------------------------------------===//
97   // Addressing Mode #1: shift_operand with registers
98   //===--------------------------------------------------------------------===//
99   //
100   // This 'addressing mode' is used for arithmetic instructions.  It can
101   // represent things like:
102   //   reg
103   //   reg [asr|lsl|lsr|ror|rrx] reg
104   //   reg [asr|lsl|lsr|ror|rrx] imm
105   //
106   // This is stored three operands [rega, regb, opc].  The first is the base
107   // reg, the second is the shift amount (or reg0 if not present or imm).  The
108   // third operand encodes the shift opcode and the imm if a reg isn't present.
109   //
110   inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
111     return ShOp | (Imm << 3);
112   }
113   inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
114   inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
115
116   /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
117   /// the 8-bit imm value.
118   inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
119   /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
120   /// the rotate amount.
121   inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
122
123   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
124   /// computing the rotate amount to use.  If this immediate value cannot be
125   /// handled with a single shifter-op, determine a good rotate amount that will
126   /// take a maximal chunk of bits out of the immediate.
127   inline unsigned getSOImmValRotate(unsigned Imm) {
128     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
129     // of zero.
130     if ((Imm & ~255U) == 0) return 0;
131
132     // Use CTZ to compute the rotate amount.
133     unsigned TZ = countTrailingZeros(Imm);
134
135     // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
136     // not 9.
137     unsigned RotAmt = TZ & ~1;
138
139     // If we can handle this spread, return it.
140     if ((rotr32(Imm, RotAmt) & ~255U) == 0)
141       return (32-RotAmt)&31;  // HW rotates right, not left.
142
143     // For values like 0xF000000F, we should ignore the low 6 bits, then
144     // retry the hunt.
145     if (Imm & 63U) {
146       unsigned TZ2 = countTrailingZeros(Imm & ~63U);
147       unsigned RotAmt2 = TZ2 & ~1;
148       if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
149         return (32-RotAmt2)&31;  // HW rotates right, not left.
150     }
151
152     // Otherwise, we have no way to cover this span of bits with a single
153     // shifter_op immediate.  Return a chunk of bits that will be useful to
154     // handle.
155     return (32-RotAmt)&31;  // HW rotates right, not left.
156   }
157
158   /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
159   /// into an shifter_operand immediate operand, return the 12-bit encoding for
160   /// it.  If not, return -1.
161   inline int getSOImmVal(unsigned Arg) {
162     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
163     // of zero.
164     if ((Arg & ~255U) == 0) return Arg;
165
166     unsigned RotAmt = getSOImmValRotate(Arg);
167
168     // If this cannot be handled with a single shifter_op, bail out.
169     if (rotr32(~255U, RotAmt) & Arg)
170       return -1;
171
172     // Encode this correctly.
173     return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
174   }
175
176   /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
177   /// or'ing together two SOImmVal's.
178   inline bool isSOImmTwoPartVal(unsigned V) {
179     // If this can be handled with a single shifter_op, bail out.
180     V = rotr32(~255U, getSOImmValRotate(V)) & V;
181     if (V == 0)
182       return false;
183
184     // If this can be handled with two shifter_op's, accept.
185     V = rotr32(~255U, getSOImmValRotate(V)) & V;
186     return V == 0;
187   }
188
189   /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
190   /// return the first chunk of it.
191   inline unsigned getSOImmTwoPartFirst(unsigned V) {
192     return rotr32(255U, getSOImmValRotate(V)) & V;
193   }
194
195   /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
196   /// return the second chunk of it.
197   inline unsigned getSOImmTwoPartSecond(unsigned V) {
198     // Mask out the first hunk.
199     V = rotr32(~255U, getSOImmValRotate(V)) & V;
200
201     // Take what's left.
202     assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
203     return V;
204   }
205
206   /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
207   /// by a left shift. Returns the shift amount to use.
208   inline unsigned getThumbImmValShift(unsigned Imm) {
209     // 8-bit (or less) immediates are trivially immediate operand with a shift
210     // of zero.
211     if ((Imm & ~255U) == 0) return 0;
212
213     // Use CTZ to compute the shift amount.
214     return countTrailingZeros(Imm);
215   }
216
217   /// isThumbImmShiftedVal - Return true if the specified value can be obtained
218   /// by left shifting a 8-bit immediate.
219   inline bool isThumbImmShiftedVal(unsigned V) {
220     // If this can be handled with
221     V = (~255U << getThumbImmValShift(V)) & V;
222     return V == 0;
223   }
224
225   /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
226   /// by a left shift. Returns the shift amount to use.
227   inline unsigned getThumbImm16ValShift(unsigned Imm) {
228     // 16-bit (or less) immediates are trivially immediate operand with a shift
229     // of zero.
230     if ((Imm & ~65535U) == 0) return 0;
231
232     // Use CTZ to compute the shift amount.
233     return countTrailingZeros(Imm);
234   }
235
236   /// isThumbImm16ShiftedVal - Return true if the specified value can be
237   /// obtained by left shifting a 16-bit immediate.
238   inline bool isThumbImm16ShiftedVal(unsigned V) {
239     // If this can be handled with
240     V = (~65535U << getThumbImm16ValShift(V)) & V;
241     return V == 0;
242   }
243
244   /// getThumbImmNonShiftedVal - If V is a value that satisfies
245   /// isThumbImmShiftedVal, return the non-shiftd value.
246   inline unsigned getThumbImmNonShiftedVal(unsigned V) {
247     return V >> getThumbImmValShift(V);
248   }
249
250
251   /// getT2SOImmValSplat - Return the 12-bit encoded representation
252   /// if the specified value can be obtained by splatting the low 8 bits
253   /// into every other byte or every byte of a 32-bit value. i.e.,
254   ///     00000000 00000000 00000000 abcdefgh    control = 0
255   ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
256   ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
257   ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
258   /// Return -1 if none of the above apply.
259   /// See ARM Reference Manual A6.3.2.
260   inline int getT2SOImmValSplatVal(unsigned V) {
261     unsigned u, Vs, Imm;
262     // control = 0
263     if ((V & 0xffffff00) == 0)
264       return V;
265
266     // If the value is zeroes in the first byte, just shift those off
267     Vs = ((V & 0xff) == 0) ? V >> 8 : V;
268     // Any passing value only has 8 bits of payload, splatted across the word
269     Imm = Vs & 0xff;
270     // Likewise, any passing values have the payload splatted into the 3rd byte
271     u = Imm | (Imm << 16);
272
273     // control = 1 or 2
274     if (Vs == u)
275       return (((Vs == V) ? 1 : 2) << 8) | Imm;
276
277     // control = 3
278     if (Vs == (u | (u << 8)))
279       return (3 << 8) | Imm;
280
281     return -1;
282   }
283
284   /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
285   /// specified value is a rotated 8-bit value. Return -1 if no rotation
286   /// encoding is possible.
287   /// See ARM Reference Manual A6.3.2.
288   inline int getT2SOImmValRotateVal(unsigned V) {
289     unsigned RotAmt = countLeadingZeros(V);
290     if (RotAmt >= 24)
291       return -1;
292
293     // If 'Arg' can be handled with a single shifter_op return the value.
294     if ((rotr32(0xff000000U, RotAmt) & V) == V)
295       return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
296
297     return -1;
298   }
299
300   /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
301   /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
302   /// encoding for it.  If not, return -1.
303   /// See ARM Reference Manual A6.3.2.
304   inline int getT2SOImmVal(unsigned Arg) {
305     // If 'Arg' is an 8-bit splat, then get the encoded value.
306     int Splat = getT2SOImmValSplatVal(Arg);
307     if (Splat != -1)
308       return Splat;
309
310     // If 'Arg' can be handled with a single shifter_op return the value.
311     int Rot = getT2SOImmValRotateVal(Arg);
312     if (Rot != -1)
313       return Rot;
314
315     return -1;
316   }
317
318   inline unsigned getT2SOImmValRotate(unsigned V) {
319     if ((V & ~255U) == 0) return 0;
320     // Use CTZ to compute the rotate amount.
321     unsigned RotAmt = countTrailingZeros(V);
322     return (32 - RotAmt) & 31;
323   }
324
325   inline bool isT2SOImmTwoPartVal(unsigned Imm) {
326     unsigned V = Imm;
327     // Passing values can be any combination of splat values and shifter
328     // values. If this can be handled with a single shifter or splat, bail
329     // out. Those should be handled directly, not with a two-part val.
330     if (getT2SOImmValSplatVal(V) != -1)
331       return false;
332     V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
333     if (V == 0)
334       return false;
335
336     // If this can be handled as an immediate, accept.
337     if (getT2SOImmVal(V) != -1) return true;
338
339     // Likewise, try masking out a splat value first.
340     V = Imm;
341     if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
342       V &= ~0xff00ff00U;
343     else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
344       V &= ~0x00ff00ffU;
345     // If what's left can be handled as an immediate, accept.
346     if (getT2SOImmVal(V) != -1) return true;
347
348     // Otherwise, do not accept.
349     return false;
350   }
351
352   inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
353     assert (isT2SOImmTwoPartVal(Imm) &&
354             "Immedate cannot be encoded as two part immediate!");
355     // Try a shifter operand as one part
356     unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
357     // If the rest is encodable as an immediate, then return it.
358     if (getT2SOImmVal(V) != -1) return V;
359
360     // Try masking out a splat value first.
361     if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
362       return Imm & 0xff00ff00U;
363
364     // The other splat is all that's left as an option.
365     assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
366     return Imm & 0x00ff00ffU;
367   }
368
369   inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
370     // Mask out the first hunk
371     Imm ^= getT2SOImmTwoPartFirst(Imm);
372     // Return what's left
373     assert (getT2SOImmVal(Imm) != -1 &&
374             "Unable to encode second part of T2 two part SO immediate");
375     return Imm;
376   }
377
378
379   //===--------------------------------------------------------------------===//
380   // Addressing Mode #2
381   //===--------------------------------------------------------------------===//
382   //
383   // This is used for most simple load/store instructions.
384   //
385   // addrmode2 := reg +/- reg shop imm
386   // addrmode2 := reg +/- imm12
387   //
388   // The first operand is always a Reg.  The second operand is a reg if in
389   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
390   // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
391   // fourth operand 16-17 encodes the index mode.
392   //
393   // If this addressing mode is a frame index (before prolog/epilog insertion
394   // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
395   // with no shift amount for the frame offset.
396   //
397   inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
398                             unsigned IdxMode = 0) {
399     assert(Imm12 < (1 << 12) && "Imm too large!");
400     bool isSub = Opc == sub;
401     return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
402   }
403   inline unsigned getAM2Offset(unsigned AM2Opc) {
404     return AM2Opc & ((1 << 12)-1);
405   }
406   inline AddrOpc getAM2Op(unsigned AM2Opc) {
407     return ((AM2Opc >> 12) & 1) ? sub : add;
408   }
409   inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
410     return (ShiftOpc)((AM2Opc >> 13) & 7);
411   }
412   inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
413
414   //===--------------------------------------------------------------------===//
415   // Addressing Mode #3
416   //===--------------------------------------------------------------------===//
417   //
418   // This is used for sign-extending loads, and load/store-pair instructions.
419   //
420   // addrmode3 := reg +/- reg
421   // addrmode3 := reg +/- imm8
422   //
423   // The first operand is always a Reg.  The second operand is a reg if in
424   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
425   // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
426   // index mode.
427
428   /// getAM3Opc - This function encodes the addrmode3 opc field.
429   inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
430                             unsigned IdxMode = 0) {
431     bool isSub = Opc == sub;
432     return ((int)isSub << 8) | Offset | (IdxMode << 9);
433   }
434   inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
435   inline AddrOpc getAM3Op(unsigned AM3Opc) {
436     return ((AM3Opc >> 8) & 1) ? sub : add;
437   }
438   inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
439
440   //===--------------------------------------------------------------------===//
441   // Addressing Mode #4
442   //===--------------------------------------------------------------------===//
443   //
444   // This is used for load / store multiple instructions.
445   //
446   // addrmode4 := reg, <mode>
447   //
448   // The four modes are:
449   //    IA - Increment after
450   //    IB - Increment before
451   //    DA - Decrement after
452   //    DB - Decrement before
453   // For VFP instructions, only the IA and DB modes are valid.
454
455   inline AMSubMode getAM4SubMode(unsigned Mode) {
456     return (AMSubMode)(Mode & 0x7);
457   }
458
459   inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
460
461   //===--------------------------------------------------------------------===//
462   // Addressing Mode #5
463   //===--------------------------------------------------------------------===//
464   //
465   // This is used for coprocessor instructions, such as FP load/stores.
466   //
467   // addrmode5 := reg +/- imm8*4
468   //
469   // The first operand is always a Reg.  The second operand encodes the
470   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
471
472   /// getAM5Opc - This function encodes the addrmode5 opc field.
473   inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
474     bool isSub = Opc == sub;
475     return ((int)isSub << 8) | Offset;
476   }
477   inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
478   inline AddrOpc getAM5Op(unsigned AM5Opc) {
479     return ((AM5Opc >> 8) & 1) ? sub : add;
480   }
481
482   //===--------------------------------------------------------------------===//
483   // Addressing Mode #5 FP16
484   //===--------------------------------------------------------------------===//
485   //
486   // This is used for coprocessor instructions, such as 16-bit FP load/stores.
487   //
488   // addrmode5fp16 := reg +/- imm8*2
489   //
490   // The first operand is always a Reg.  The second operand encodes the
491   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
492
493   /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
494   inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
495     bool isSub = Opc == sub;
496     return ((int)isSub << 8) | Offset;
497   }
498   inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
499     return AM5Opc & 0xFF;
500   }
501   inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
502     return ((AM5Opc >> 8) & 1) ? sub : add;
503   }
504
505   //===--------------------------------------------------------------------===//
506   // Addressing Mode #6
507   //===--------------------------------------------------------------------===//
508   //
509   // This is used for NEON load / store instructions.
510   //
511   // addrmode6 := reg with optional alignment
512   //
513   // This is stored in two operands [regaddr, align].  The first is the
514   // address register.  The second operand is the value of the alignment
515   // specifier in bytes or zero if no explicit alignment.
516   // Valid alignments depend on the specific instruction.
517
518   //===--------------------------------------------------------------------===//
519   // NEON Modified Immediates
520   //===--------------------------------------------------------------------===//
521   //
522   // Several NEON instructions (e.g., VMOV) take a "modified immediate"
523   // vector operand, where a small immediate encoded in the instruction
524   // specifies a full NEON vector value.  These modified immediates are
525   // represented here as encoded integers.  The low 8 bits hold the immediate
526   // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
527   // the "Cmode" field of the instruction.  The interfaces below treat the
528   // Op and Cmode values as a single 5-bit value.
529
530   inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
531     return (OpCmode << 8) | Val;
532   }
533   inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
534     return (ModImm >> 8) & 0x1f;
535   }
536   inline unsigned getNEONModImmVal(unsigned ModImm) { return ModImm & 0xff; }
537
538   /// decodeNEONModImm - Decode a NEON modified immediate value into the
539   /// element value and the element size in bits.  (If the element size is
540   /// smaller than the vector, it is splatted into all the elements.)
541   inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
542     unsigned OpCmode = getNEONModImmOpCmode(ModImm);
543     unsigned Imm8 = getNEONModImmVal(ModImm);
544     uint64_t Val = 0;
545
546     if (OpCmode == 0xe) {
547       // 8-bit vector elements
548       Val = Imm8;
549       EltBits = 8;
550     } else if ((OpCmode & 0xc) == 0x8) {
551       // 16-bit vector elements
552       unsigned ByteNum = (OpCmode & 0x6) >> 1;
553       Val = Imm8 << (8 * ByteNum);
554       EltBits = 16;
555     } else if ((OpCmode & 0x8) == 0) {
556       // 32-bit vector elements, zero with one byte set
557       unsigned ByteNum = (OpCmode & 0x6) >> 1;
558       Val = Imm8 << (8 * ByteNum);
559       EltBits = 32;
560     } else if ((OpCmode & 0xe) == 0xc) {
561       // 32-bit vector elements, one byte with low bits set
562       unsigned ByteNum = 1 + (OpCmode & 0x1);
563       Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
564       EltBits = 32;
565     } else if (OpCmode == 0x1e) {
566       // 64-bit vector elements
567       for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
568         if ((ModImm >> ByteNum) & 1)
569           Val |= (uint64_t)0xff << (8 * ByteNum);
570       }
571       EltBits = 64;
572     } else {
573       llvm_unreachable("Unsupported NEON immediate");
574     }
575     return Val;
576   }
577
578   // Generic validation for single-byte immediate (0X00, 00X0, etc).
579   inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
580     assert(Size >= 1 && Size <= 4 && "Invalid size");
581     unsigned count = 0;
582     for (unsigned i = 0; i < Size; ++i) {
583       if (Value & 0xff) count++;
584       Value >>= 8;
585     }
586     return count == 1;
587   }
588
589   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
590   inline bool isNEONi16splat(unsigned Value) {
591     if (Value > 0xffff)
592       return false;
593     // i16 value with set bits only in one byte X0 or 0X.
594     return Value == 0 || isNEONBytesplat(Value, 2);
595   }
596
597   // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
598   inline unsigned encodeNEONi16splat(unsigned Value) {
599     assert(isNEONi16splat(Value) && "Invalid NEON splat value");
600     if (Value >= 0x100)
601       Value = (Value >> 8) | 0xa00;
602     else
603       Value |= 0x800;
604     return Value;
605   }
606
607   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
608   inline bool isNEONi32splat(unsigned Value) {
609     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
610     return Value == 0 || isNEONBytesplat(Value, 4);
611   }
612
613   /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
614   inline unsigned encodeNEONi32splat(unsigned Value) {
615     assert(isNEONi32splat(Value) && "Invalid NEON splat value");
616     if (Value >= 0x100 && Value <= 0xff00)
617       Value = (Value >> 8) | 0x200;
618     else if (Value > 0xffff && Value <= 0xff0000)
619       Value = (Value >> 16) | 0x400;
620     else if (Value > 0xffffff)
621       Value = (Value >> 24) | 0x600;
622     return Value;
623   }
624
625   //===--------------------------------------------------------------------===//
626   // Floating-point Immediates
627   //
628   inline float getFPImmFloat(unsigned Imm) {
629     // We expect an 8-bit binary encoding of a floating-point number here.
630     union {
631       uint32_t I;
632       float F;
633     } FPUnion;
634
635     uint8_t Sign = (Imm >> 7) & 0x1;
636     uint8_t Exp = (Imm >> 4) & 0x7;
637     uint8_t Mantissa = Imm & 0xf;
638
639     //   8-bit FP    iEEEE Float Encoding
640     //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
641     //
642     // where B = NOT(b);
643
644     FPUnion.I = 0;
645     FPUnion.I |= Sign << 31;
646     FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
647     FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
648     FPUnion.I |= (Exp & 0x3) << 23;
649     FPUnion.I |= Mantissa << 19;
650     return FPUnion.F;
651   }
652
653   /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
654   /// floating-point value. If the value cannot be represented as an 8-bit
655   /// floating-point value, then return -1.
656   inline int getFP16Imm(const APInt &Imm) {
657     uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
658     int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
659     int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
660
661     // We can handle 4 bits of mantissa.
662     // mantissa = (16+UInt(e:f:g:h))/16.
663     if (Mantissa & 0x3f)
664       return -1;
665     Mantissa >>= 6;
666
667     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
668     if (Exp < -3 || Exp > 4)
669       return -1;
670     Exp = ((Exp+3) & 0x7) ^ 4;
671
672     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
673   }
674
675   inline int getFP16Imm(const APFloat &FPImm) {
676     return getFP16Imm(FPImm.bitcastToAPInt());
677   }
678
679   /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
680   /// floating-point value. If the value cannot be represented as an 8-bit
681   /// floating-point value, then return -1.
682   inline int getFP32Imm(const APInt &Imm) {
683     uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
684     int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
685     int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
686
687     // We can handle 4 bits of mantissa.
688     // mantissa = (16+UInt(e:f:g:h))/16.
689     if (Mantissa & 0x7ffff)
690       return -1;
691     Mantissa >>= 19;
692     if ((Mantissa & 0xf) != Mantissa)
693       return -1;
694
695     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
696     if (Exp < -3 || Exp > 4)
697       return -1;
698     Exp = ((Exp+3) & 0x7) ^ 4;
699
700     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
701   }
702
703   inline int getFP32Imm(const APFloat &FPImm) {
704     return getFP32Imm(FPImm.bitcastToAPInt());
705   }
706
707   /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
708   /// floating-point value. If the value cannot be represented as an 8-bit
709   /// floating-point value, then return -1.
710   inline int getFP64Imm(const APInt &Imm) {
711     uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
712     int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
713     uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
714
715     // We can handle 4 bits of mantissa.
716     // mantissa = (16+UInt(e:f:g:h))/16.
717     if (Mantissa & 0xffffffffffffULL)
718       return -1;
719     Mantissa >>= 48;
720     if ((Mantissa & 0xf) != Mantissa)
721       return -1;
722
723     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
724     if (Exp < -3 || Exp > 4)
725       return -1;
726     Exp = ((Exp+3) & 0x7) ^ 4;
727
728     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
729   }
730
731   inline int getFP64Imm(const APFloat &FPImm) {
732     return getFP64Imm(FPImm.bitcastToAPInt());
733   }
734
735 } // end namespace ARM_AM
736 } // end namespace llvm
737
738 #endif
739