]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Target/Mips/MipsISelLowering.cpp
Vendor import of llvm trunk r161861:
[FreeBSD/FreeBSD.git] / lib / Target / Mips / MipsISelLowering.cpp
1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that Mips uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "mips-lower"
16 #include "MipsISelLowering.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsTargetMachine.h"
19 #include "MipsTargetObjectFile.h"
20 #include "MipsSubtarget.h"
21 #include "InstPrinter/MipsInstPrinter.h"
22 #include "MCTargetDesc/MipsBaseInfo.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Function.h"
25 #include "llvm/GlobalVariable.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/CallingConv.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAGISel.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace llvm;
40
41 // If I is a shifted mask, set the size (Size) and the first bit of the
42 // mask (Pos), and return true.
43 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
44 static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
45   if (!isShiftedMask_64(I))
46      return false;
47
48   Size = CountPopulation_64(I);
49   Pos = CountTrailingZeros_64(I);
50   return true;
51 }
52
53 static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
54   MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
55   return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
56 }
57
58 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
59   switch (Opcode) {
60   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
61   case MipsISD::Hi:                return "MipsISD::Hi";
62   case MipsISD::Lo:                return "MipsISD::Lo";
63   case MipsISD::GPRel:             return "MipsISD::GPRel";
64   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
65   case MipsISD::Ret:               return "MipsISD::Ret";
66   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
67   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
68   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
69   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
70   case MipsISD::FPRound:           return "MipsISD::FPRound";
71   case MipsISD::MAdd:              return "MipsISD::MAdd";
72   case MipsISD::MAddu:             return "MipsISD::MAddu";
73   case MipsISD::MSub:              return "MipsISD::MSub";
74   case MipsISD::MSubu:             return "MipsISD::MSubu";
75   case MipsISD::DivRem:            return "MipsISD::DivRem";
76   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
77   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
78   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
79   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
80   case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
81   case MipsISD::Sync:              return "MipsISD::Sync";
82   case MipsISD::Ext:               return "MipsISD::Ext";
83   case MipsISD::Ins:               return "MipsISD::Ins";
84   case MipsISD::LWL:               return "MipsISD::LWL";
85   case MipsISD::LWR:               return "MipsISD::LWR";
86   case MipsISD::SWL:               return "MipsISD::SWL";
87   case MipsISD::SWR:               return "MipsISD::SWR";
88   case MipsISD::LDL:               return "MipsISD::LDL";
89   case MipsISD::LDR:               return "MipsISD::LDR";
90   case MipsISD::SDL:               return "MipsISD::SDL";
91   case MipsISD::SDR:               return "MipsISD::SDR";
92   default:                         return NULL;
93   }
94 }
95
96 MipsTargetLowering::
97 MipsTargetLowering(MipsTargetMachine &TM)
98   : TargetLowering(TM, new MipsTargetObjectFile()),
99     Subtarget(&TM.getSubtarget<MipsSubtarget>()),
100     HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
101     IsO32(Subtarget->isABI_O32()) {
102
103   // Mips does not have i1 type, so use i32 for
104   // setcc operations results (slt, sgt, ...).
105   setBooleanContents(ZeroOrOneBooleanContent);
106   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
107
108   // Set up the register classes
109   addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
110
111   if (HasMips64)
112     addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
113
114   if (Subtarget->inMips16Mode()) {
115     addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
116     addRegisterClass(MVT::i32, &Mips::CPURARegRegClass);
117   }
118
119   if (!TM.Options.UseSoftFloat) {
120     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
121
122     // When dealing with single precision only, use libcalls
123     if (!Subtarget->isSingleFloat()) {
124       if (HasMips64)
125         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
126       else
127         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
128     }
129   }
130
131   // Load extented operations for i1 types must be promoted
132   setLoadExtAction(ISD::EXTLOAD,  MVT::i1,  Promote);
133   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1,  Promote);
134   setLoadExtAction(ISD::SEXTLOAD, MVT::i1,  Promote);
135
136   // MIPS doesn't have extending float->double load/store
137   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
138   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
139
140   // Used by legalize types to correctly generate the setcc result.
141   // Without this, every float setcc comes with a AND/OR with the result,
142   // we don't want this, since the fpcmp result goes to a flag register,
143   // which is used implicitly by brcond and select operations.
144   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
145
146   // Mips Custom Operations
147   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
148   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
149   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
150   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
151   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
152   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
153   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
154   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
155   setOperationAction(ISD::SELECT_CC,          MVT::f32,   Custom);
156   setOperationAction(ISD::SELECT_CC,          MVT::f64,   Custom);
157   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
158   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
159   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
160   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
161   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
162   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
163   setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
164   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
165   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
166   setOperationAction(ISD::STORE,              MVT::i32, Custom);
167
168   if (!TM.Options.NoNaNsFPMath) {
169     setOperationAction(ISD::FABS,             MVT::f32,   Custom);
170     setOperationAction(ISD::FABS,             MVT::f64,   Custom);
171   }
172
173   if (HasMips64) {
174     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
175     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
176     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
177     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
178     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
179     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
180     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
181     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
182   }
183
184   if (!HasMips64) {
185     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
186     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
187     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
188   }
189
190   setOperationAction(ISD::SDIV, MVT::i32, Expand);
191   setOperationAction(ISD::SREM, MVT::i32, Expand);
192   setOperationAction(ISD::UDIV, MVT::i32, Expand);
193   setOperationAction(ISD::UREM, MVT::i32, Expand);
194   setOperationAction(ISD::SDIV, MVT::i64, Expand);
195   setOperationAction(ISD::SREM, MVT::i64, Expand);
196   setOperationAction(ISD::UDIV, MVT::i64, Expand);
197   setOperationAction(ISD::UREM, MVT::i64, Expand);
198
199   // Operations not directly supported by Mips.
200   setOperationAction(ISD::BR_JT,             MVT::Other, Expand);
201   setOperationAction(ISD::BR_CC,             MVT::Other, Expand);
202   setOperationAction(ISD::SELECT_CC,         MVT::Other, Expand);
203   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
204   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
205   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
206   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
207   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
208   setOperationAction(ISD::CTPOP,             MVT::i32,   Expand);
209   setOperationAction(ISD::CTPOP,             MVT::i64,   Expand);
210   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
211   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
212   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i32,   Expand);
213   setOperationAction(ISD::CTTZ_ZERO_UNDEF,   MVT::i64,   Expand);
214   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i32,   Expand);
215   setOperationAction(ISD::CTLZ_ZERO_UNDEF,   MVT::i64,   Expand);
216   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
217   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
218   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
219   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
220
221   if (!Subtarget->hasMips32r2())
222     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
223
224   if (!Subtarget->hasMips64r2())
225     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
226
227   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
228   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
229   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
230   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
231   setOperationAction(ISD::FPOWI,             MVT::f32,   Expand);
232   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
233   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
234   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
235   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
236   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
237   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
238   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
239   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
240   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
241   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
242
243   if (!TM.Options.NoNaNsFPMath) {
244     setOperationAction(ISD::FNEG,             MVT::f32,   Expand);
245     setOperationAction(ISD::FNEG,             MVT::f64,   Expand);
246   }
247
248   setOperationAction(ISD::EXCEPTIONADDR,     MVT::i32, Expand);
249   setOperationAction(ISD::EXCEPTIONADDR,     MVT::i64, Expand);
250   setOperationAction(ISD::EHSELECTION,       MVT::i32, Expand);
251   setOperationAction(ISD::EHSELECTION,       MVT::i64, Expand);
252
253   setOperationAction(ISD::VAARG,             MVT::Other, Expand);
254   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
255   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
256
257   // Use the default for now
258   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
259   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
260
261   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i32,    Expand);
262   setOperationAction(ISD::ATOMIC_LOAD,       MVT::i64,    Expand);
263   setOperationAction(ISD::ATOMIC_STORE,      MVT::i32,    Expand);
264   setOperationAction(ISD::ATOMIC_STORE,      MVT::i64,    Expand);
265
266   setInsertFencesForAtomic(true);
267
268   if (!Subtarget->hasSEInReg()) {
269     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
270     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
271   }
272
273   if (!Subtarget->hasBitCount()) {
274     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
275     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
276   }
277
278   if (!Subtarget->hasSwap()) {
279     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
280     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
281   }
282
283   if (HasMips64) {
284     setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
285     setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
286     setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
287     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
288   }
289
290   setTargetDAGCombine(ISD::ADDE);
291   setTargetDAGCombine(ISD::SUBE);
292   setTargetDAGCombine(ISD::SDIVREM);
293   setTargetDAGCombine(ISD::UDIVREM);
294   setTargetDAGCombine(ISD::SELECT);
295   setTargetDAGCombine(ISD::AND);
296   setTargetDAGCombine(ISD::OR);
297   setTargetDAGCombine(ISD::ADD);
298
299   setMinFunctionAlignment(HasMips64 ? 3 : 2);
300
301   setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
302   computeRegisterProperties();
303
304   setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
305   setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
306
307   maxStoresPerMemcpy = 16;
308 }
309
310 bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
311   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
312
313   switch (SVT) {
314   case MVT::i64:
315   case MVT::i32:
316     return true;
317   default:
318     return false;
319   }
320 }
321
322 EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
323   return MVT::i32;
324 }
325
326 // SelectMadd -
327 // Transforms a subgraph in CurDAG if the following pattern is found:
328 //  (addc multLo, Lo0), (adde multHi, Hi0),
329 // where,
330 //  multHi/Lo: product of multiplication
331 //  Lo0: initial value of Lo register
332 //  Hi0: initial value of Hi register
333 // Return true if pattern matching was successful.
334 static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
335   // ADDENode's second operand must be a flag output of an ADDC node in order
336   // for the matching to be successful.
337   SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
338
339   if (ADDCNode->getOpcode() != ISD::ADDC)
340     return false;
341
342   SDValue MultHi = ADDENode->getOperand(0);
343   SDValue MultLo = ADDCNode->getOperand(0);
344   SDNode *MultNode = MultHi.getNode();
345   unsigned MultOpc = MultHi.getOpcode();
346
347   // MultHi and MultLo must be generated by the same node,
348   if (MultLo.getNode() != MultNode)
349     return false;
350
351   // and it must be a multiplication.
352   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
353     return false;
354
355   // MultLo amd MultHi must be the first and second output of MultNode
356   // respectively.
357   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
358     return false;
359
360   // Transform this to a MADD only if ADDENode and ADDCNode are the only users
361   // of the values of MultNode, in which case MultNode will be removed in later
362   // phases.
363   // If there exist users other than ADDENode or ADDCNode, this function returns
364   // here, which will result in MultNode being mapped to a single MULT
365   // instruction node rather than a pair of MULT and MADD instructions being
366   // produced.
367   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
368     return false;
369
370   SDValue Chain = CurDAG->getEntryNode();
371   DebugLoc dl = ADDENode->getDebugLoc();
372
373   // create MipsMAdd(u) node
374   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
375
376   SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
377                                  MultNode->getOperand(0),// Factor 0
378                                  MultNode->getOperand(1),// Factor 1
379                                  ADDCNode->getOperand(1),// Lo0
380                                  ADDENode->getOperand(1));// Hi0
381
382   // create CopyFromReg nodes
383   SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
384                                               MAdd);
385   SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
386                                               Mips::HI, MVT::i32,
387                                               CopyFromLo.getValue(2));
388
389   // replace uses of adde and addc here
390   if (!SDValue(ADDCNode, 0).use_empty())
391     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
392
393   if (!SDValue(ADDENode, 0).use_empty())
394     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
395
396   return true;
397 }
398
399 // SelectMsub -
400 // Transforms a subgraph in CurDAG if the following pattern is found:
401 //  (addc Lo0, multLo), (sube Hi0, multHi),
402 // where,
403 //  multHi/Lo: product of multiplication
404 //  Lo0: initial value of Lo register
405 //  Hi0: initial value of Hi register
406 // Return true if pattern matching was successful.
407 static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
408   // SUBENode's second operand must be a flag output of an SUBC node in order
409   // for the matching to be successful.
410   SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
411
412   if (SUBCNode->getOpcode() != ISD::SUBC)
413     return false;
414
415   SDValue MultHi = SUBENode->getOperand(1);
416   SDValue MultLo = SUBCNode->getOperand(1);
417   SDNode *MultNode = MultHi.getNode();
418   unsigned MultOpc = MultHi.getOpcode();
419
420   // MultHi and MultLo must be generated by the same node,
421   if (MultLo.getNode() != MultNode)
422     return false;
423
424   // and it must be a multiplication.
425   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
426     return false;
427
428   // MultLo amd MultHi must be the first and second output of MultNode
429   // respectively.
430   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
431     return false;
432
433   // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
434   // of the values of MultNode, in which case MultNode will be removed in later
435   // phases.
436   // If there exist users other than SUBENode or SUBCNode, this function returns
437   // here, which will result in MultNode being mapped to a single MULT
438   // instruction node rather than a pair of MULT and MSUB instructions being
439   // produced.
440   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
441     return false;
442
443   SDValue Chain = CurDAG->getEntryNode();
444   DebugLoc dl = SUBENode->getDebugLoc();
445
446   // create MipsSub(u) node
447   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
448
449   SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
450                                  MultNode->getOperand(0),// Factor 0
451                                  MultNode->getOperand(1),// Factor 1
452                                  SUBCNode->getOperand(0),// Lo0
453                                  SUBENode->getOperand(0));// Hi0
454
455   // create CopyFromReg nodes
456   SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
457                                               MSub);
458   SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
459                                               Mips::HI, MVT::i32,
460                                               CopyFromLo.getValue(2));
461
462   // replace uses of sube and subc here
463   if (!SDValue(SUBCNode, 0).use_empty())
464     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
465
466   if (!SDValue(SUBENode, 0).use_empty())
467     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
468
469   return true;
470 }
471
472 static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
473                                   TargetLowering::DAGCombinerInfo &DCI,
474                                   const MipsSubtarget *Subtarget) {
475   if (DCI.isBeforeLegalize())
476     return SDValue();
477
478   if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
479       SelectMadd(N, &DAG))
480     return SDValue(N, 0);
481
482   return SDValue();
483 }
484
485 static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
486                                   TargetLowering::DAGCombinerInfo &DCI,
487                                   const MipsSubtarget *Subtarget) {
488   if (DCI.isBeforeLegalize())
489     return SDValue();
490
491   if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
492       SelectMsub(N, &DAG))
493     return SDValue(N, 0);
494
495   return SDValue();
496 }
497
498 static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
499                                     TargetLowering::DAGCombinerInfo &DCI,
500                                     const MipsSubtarget *Subtarget) {
501   if (DCI.isBeforeLegalizeOps())
502     return SDValue();
503
504   EVT Ty = N->getValueType(0);
505   unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
506   unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
507   unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
508                                                   MipsISD::DivRemU;
509   DebugLoc dl = N->getDebugLoc();
510
511   SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
512                                N->getOperand(0), N->getOperand(1));
513   SDValue InChain = DAG.getEntryNode();
514   SDValue InGlue = DivRem;
515
516   // insert MFLO
517   if (N->hasAnyUseOfValue(0)) {
518     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
519                                             InGlue);
520     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
521     InChain = CopyFromLo.getValue(1);
522     InGlue = CopyFromLo.getValue(2);
523   }
524
525   // insert MFHI
526   if (N->hasAnyUseOfValue(1)) {
527     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
528                                             HI, Ty, InGlue);
529     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
530   }
531
532   return SDValue();
533 }
534
535 static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
536   switch (CC) {
537   default: llvm_unreachable("Unknown fp condition code!");
538   case ISD::SETEQ:
539   case ISD::SETOEQ: return Mips::FCOND_OEQ;
540   case ISD::SETUNE: return Mips::FCOND_UNE;
541   case ISD::SETLT:
542   case ISD::SETOLT: return Mips::FCOND_OLT;
543   case ISD::SETGT:
544   case ISD::SETOGT: return Mips::FCOND_OGT;
545   case ISD::SETLE:
546   case ISD::SETOLE: return Mips::FCOND_OLE;
547   case ISD::SETGE:
548   case ISD::SETOGE: return Mips::FCOND_OGE;
549   case ISD::SETULT: return Mips::FCOND_ULT;
550   case ISD::SETULE: return Mips::FCOND_ULE;
551   case ISD::SETUGT: return Mips::FCOND_UGT;
552   case ISD::SETUGE: return Mips::FCOND_UGE;
553   case ISD::SETUO:  return Mips::FCOND_UN;
554   case ISD::SETO:   return Mips::FCOND_OR;
555   case ISD::SETNE:
556   case ISD::SETONE: return Mips::FCOND_ONE;
557   case ISD::SETUEQ: return Mips::FCOND_UEQ;
558   }
559 }
560
561
562 // Returns true if condition code has to be inverted.
563 static bool InvertFPCondCode(Mips::CondCode CC) {
564   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
565     return false;
566
567   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
568          "Illegal Condition Code");
569
570   return true;
571 }
572
573 // Creates and returns an FPCmp node from a setcc node.
574 // Returns Op if setcc is not a floating point comparison.
575 static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
576   // must be a SETCC node
577   if (Op.getOpcode() != ISD::SETCC)
578     return Op;
579
580   SDValue LHS = Op.getOperand(0);
581
582   if (!LHS.getValueType().isFloatingPoint())
583     return Op;
584
585   SDValue RHS = Op.getOperand(1);
586   DebugLoc dl = Op.getDebugLoc();
587
588   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
589   // node if necessary.
590   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
591
592   return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
593                      DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
594 }
595
596 // Creates and returns a CMovFPT/F node.
597 static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
598                             SDValue False, DebugLoc DL) {
599   bool invert = InvertFPCondCode((Mips::CondCode)
600                                  cast<ConstantSDNode>(Cond.getOperand(2))
601                                  ->getSExtValue());
602
603   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
604                      True.getValueType(), True, False, Cond);
605 }
606
607 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
608                                     TargetLowering::DAGCombinerInfo &DCI,
609                                     const MipsSubtarget *Subtarget) {
610   if (DCI.isBeforeLegalizeOps())
611     return SDValue();
612
613   SDValue SetCC = N->getOperand(0);
614
615   if ((SetCC.getOpcode() != ISD::SETCC) ||
616       !SetCC.getOperand(0).getValueType().isInteger())
617     return SDValue();
618
619   SDValue False = N->getOperand(2);
620   EVT FalseTy = False.getValueType();
621
622   if (!FalseTy.isInteger())
623     return SDValue();
624
625   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
626
627   if (!CN || CN->getZExtValue())
628     return SDValue();
629
630   const DebugLoc DL = N->getDebugLoc();
631   ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
632   SDValue True = N->getOperand(1);
633
634   SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
635                        SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
636
637   return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
638 }
639
640 static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
641                                  TargetLowering::DAGCombinerInfo &DCI,
642                                  const MipsSubtarget *Subtarget) {
643   // Pattern match EXT.
644   //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
645   //  => ext $dst, $src, size, pos
646   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
647     return SDValue();
648
649   SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
650   unsigned ShiftRightOpc = ShiftRight.getOpcode();
651
652   // Op's first operand must be a shift right.
653   if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
654     return SDValue();
655
656   // The second operand of the shift must be an immediate.
657   ConstantSDNode *CN;
658   if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
659     return SDValue();
660
661   uint64_t Pos = CN->getZExtValue();
662   uint64_t SMPos, SMSize;
663
664   // Op's second operand must be a shifted mask.
665   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
666       !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
667     return SDValue();
668
669   // Return if the shifted mask does not start at bit 0 or the sum of its size
670   // and Pos exceeds the word's size.
671   EVT ValTy = N->getValueType(0);
672   if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
673     return SDValue();
674
675   return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
676                      ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
677                      DAG.getConstant(SMSize, MVT::i32));
678 }
679
680 static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
681                                 TargetLowering::DAGCombinerInfo &DCI,
682                                 const MipsSubtarget *Subtarget) {
683   // Pattern match INS.
684   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
685   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
686   //  => ins $dst, $src, size, pos, $src1
687   if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
688     return SDValue();
689
690   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
691   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
692   ConstantSDNode *CN;
693
694   // See if Op's first operand matches (and $src1 , mask0).
695   if (And0.getOpcode() != ISD::AND)
696     return SDValue();
697
698   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
699       !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
700     return SDValue();
701
702   // See if Op's second operand matches (and (shl $src, pos), mask1).
703   if (And1.getOpcode() != ISD::AND)
704     return SDValue();
705
706   if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
707       !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
708     return SDValue();
709
710   // The shift masks must have the same position and size.
711   if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
712     return SDValue();
713
714   SDValue Shl = And1.getOperand(0);
715   if (Shl.getOpcode() != ISD::SHL)
716     return SDValue();
717
718   if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
719     return SDValue();
720
721   unsigned Shamt = CN->getZExtValue();
722
723   // Return if the shift amount and the first bit position of mask are not the
724   // same.
725   EVT ValTy = N->getValueType(0);
726   if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
727     return SDValue();
728
729   return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
730                      DAG.getConstant(SMPos0, MVT::i32),
731                      DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
732 }
733
734 static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
735                                  TargetLowering::DAGCombinerInfo &DCI,
736                                  const MipsSubtarget *Subtarget) {
737   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
738
739   if (DCI.isBeforeLegalizeOps())
740     return SDValue();
741
742   SDValue Add = N->getOperand(1);
743
744   if (Add.getOpcode() != ISD::ADD)
745     return SDValue();
746
747   SDValue Lo = Add.getOperand(1);
748
749   if ((Lo.getOpcode() != MipsISD::Lo) ||
750       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
751     return SDValue();
752
753   EVT ValTy = N->getValueType(0);
754   DebugLoc DL = N->getDebugLoc();
755
756   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
757                              Add.getOperand(0));
758   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
759 }
760
761 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
762   const {
763   SelectionDAG &DAG = DCI.DAG;
764   unsigned opc = N->getOpcode();
765
766   switch (opc) {
767   default: break;
768   case ISD::ADDE:
769     return PerformADDECombine(N, DAG, DCI, Subtarget);
770   case ISD::SUBE:
771     return PerformSUBECombine(N, DAG, DCI, Subtarget);
772   case ISD::SDIVREM:
773   case ISD::UDIVREM:
774     return PerformDivRemCombine(N, DAG, DCI, Subtarget);
775   case ISD::SELECT:
776     return PerformSELECTCombine(N, DAG, DCI, Subtarget);
777   case ISD::AND:
778     return PerformANDCombine(N, DAG, DCI, Subtarget);
779   case ISD::OR:
780     return PerformORCombine(N, DAG, DCI, Subtarget);
781   case ISD::ADD:
782     return PerformADDCombine(N, DAG, DCI, Subtarget);
783   }
784
785   return SDValue();
786 }
787
788 SDValue MipsTargetLowering::
789 LowerOperation(SDValue Op, SelectionDAG &DAG) const
790 {
791   switch (Op.getOpcode())
792   {
793     case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
794     case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
795     case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
796     case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
797     case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
798     case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
799     case ISD::SELECT:             return LowerSELECT(Op, DAG);
800     case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
801     case ISD::SETCC:              return LowerSETCC(Op, DAG);
802     case ISD::VASTART:            return LowerVASTART(Op, DAG);
803     case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
804     case ISD::FABS:               return LowerFABS(Op, DAG);
805     case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
806     case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
807     case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, DAG);
808     case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
809     case ISD::SHL_PARTS:          return LowerShiftLeftParts(Op, DAG);
810     case ISD::SRA_PARTS:          return LowerShiftRightParts(Op, DAG, true);
811     case ISD::SRL_PARTS:          return LowerShiftRightParts(Op, DAG, false);
812     case ISD::LOAD:               return LowerLOAD(Op, DAG);
813     case ISD::STORE:              return LowerSTORE(Op, DAG);
814   }
815   return SDValue();
816 }
817
818 //===----------------------------------------------------------------------===//
819 //  Lower helper functions
820 //===----------------------------------------------------------------------===//
821
822 // AddLiveIn - This helper function adds the specified physical register to the
823 // MachineFunction as a live in value.  It also creates a corresponding
824 // virtual register for it.
825 static unsigned
826 AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
827 {
828   assert(RC->contains(PReg) && "Not the correct regclass!");
829   unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
830   MF.getRegInfo().addLiveIn(PReg, VReg);
831   return VReg;
832 }
833
834 // Get fp branch code (not opcode) from condition code.
835 static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
836   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
837     return Mips::BRANCH_T;
838
839   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
840          "Invalid CondCode.");
841
842   return Mips::BRANCH_F;
843 }
844
845 /*
846 static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
847                                         DebugLoc dl,
848                                         const MipsSubtarget *Subtarget,
849                                         const TargetInstrInfo *TII,
850                                         bool isFPCmp, unsigned Opc) {
851   // There is no need to expand CMov instructions if target has
852   // conditional moves.
853   if (Subtarget->hasCondMov())
854     return BB;
855
856   // To "insert" a SELECT_CC instruction, we actually have to insert the
857   // diamond control-flow pattern.  The incoming instruction knows the
858   // destination vreg to set, the condition code register to branch on, the
859   // true/false values to select between, and a branch opcode to use.
860   const BasicBlock *LLVM_BB = BB->getBasicBlock();
861   MachineFunction::iterator It = BB;
862   ++It;
863
864   //  thisMBB:
865   //  ...
866   //   TrueVal = ...
867   //   setcc r1, r2, r3
868   //   bNE   r1, r0, copy1MBB
869   //   fallthrough --> copy0MBB
870   MachineBasicBlock *thisMBB  = BB;
871   MachineFunction *F = BB->getParent();
872   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
873   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
874   F->insert(It, copy0MBB);
875   F->insert(It, sinkMBB);
876
877   // Transfer the remainder of BB and its successor edges to sinkMBB.
878   sinkMBB->splice(sinkMBB->begin(), BB,
879                   llvm::next(MachineBasicBlock::iterator(MI)),
880                   BB->end());
881   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
882
883   // Next, add the true and fallthrough blocks as its successors.
884   BB->addSuccessor(copy0MBB);
885   BB->addSuccessor(sinkMBB);
886
887   // Emit the right instruction according to the type of the operands compared
888   if (isFPCmp)
889     BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
890   else
891     BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
892       .addReg(Mips::ZERO).addMBB(sinkMBB);
893
894   //  copy0MBB:
895   //   %FalseValue = ...
896   //   # fallthrough to sinkMBB
897   BB = copy0MBB;
898
899   // Update machine-CFG edges
900   BB->addSuccessor(sinkMBB);
901
902   //  sinkMBB:
903   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
904   //  ...
905   BB = sinkMBB;
906
907   if (isFPCmp)
908     BuildMI(*BB, BB->begin(), dl,
909             TII->get(Mips::PHI), MI->getOperand(0).getReg())
910       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
911       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
912   else
913     BuildMI(*BB, BB->begin(), dl,
914             TII->get(Mips::PHI), MI->getOperand(0).getReg())
915       .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
916       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
917
918   MI->eraseFromParent();   // The pseudo instruction is gone now.
919   return BB;
920 }
921 */
922 MachineBasicBlock *
923 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
924                                                 MachineBasicBlock *BB) const {
925   switch (MI->getOpcode()) {
926   default: llvm_unreachable("Unexpected instr type to insert");
927   case Mips::ATOMIC_LOAD_ADD_I8:
928   case Mips::ATOMIC_LOAD_ADD_I8_P8:
929     return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
930   case Mips::ATOMIC_LOAD_ADD_I16:
931   case Mips::ATOMIC_LOAD_ADD_I16_P8:
932     return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
933   case Mips::ATOMIC_LOAD_ADD_I32:
934   case Mips::ATOMIC_LOAD_ADD_I32_P8:
935     return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
936   case Mips::ATOMIC_LOAD_ADD_I64:
937   case Mips::ATOMIC_LOAD_ADD_I64_P8:
938     return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
939
940   case Mips::ATOMIC_LOAD_AND_I8:
941   case Mips::ATOMIC_LOAD_AND_I8_P8:
942     return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
943   case Mips::ATOMIC_LOAD_AND_I16:
944   case Mips::ATOMIC_LOAD_AND_I16_P8:
945     return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
946   case Mips::ATOMIC_LOAD_AND_I32:
947   case Mips::ATOMIC_LOAD_AND_I32_P8:
948     return EmitAtomicBinary(MI, BB, 4, Mips::AND);
949   case Mips::ATOMIC_LOAD_AND_I64:
950   case Mips::ATOMIC_LOAD_AND_I64_P8:
951     return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
952
953   case Mips::ATOMIC_LOAD_OR_I8:
954   case Mips::ATOMIC_LOAD_OR_I8_P8:
955     return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
956   case Mips::ATOMIC_LOAD_OR_I16:
957   case Mips::ATOMIC_LOAD_OR_I16_P8:
958     return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
959   case Mips::ATOMIC_LOAD_OR_I32:
960   case Mips::ATOMIC_LOAD_OR_I32_P8:
961     return EmitAtomicBinary(MI, BB, 4, Mips::OR);
962   case Mips::ATOMIC_LOAD_OR_I64:
963   case Mips::ATOMIC_LOAD_OR_I64_P8:
964     return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
965
966   case Mips::ATOMIC_LOAD_XOR_I8:
967   case Mips::ATOMIC_LOAD_XOR_I8_P8:
968     return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
969   case Mips::ATOMIC_LOAD_XOR_I16:
970   case Mips::ATOMIC_LOAD_XOR_I16_P8:
971     return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
972   case Mips::ATOMIC_LOAD_XOR_I32:
973   case Mips::ATOMIC_LOAD_XOR_I32_P8:
974     return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
975   case Mips::ATOMIC_LOAD_XOR_I64:
976   case Mips::ATOMIC_LOAD_XOR_I64_P8:
977     return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
978
979   case Mips::ATOMIC_LOAD_NAND_I8:
980   case Mips::ATOMIC_LOAD_NAND_I8_P8:
981     return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
982   case Mips::ATOMIC_LOAD_NAND_I16:
983   case Mips::ATOMIC_LOAD_NAND_I16_P8:
984     return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
985   case Mips::ATOMIC_LOAD_NAND_I32:
986   case Mips::ATOMIC_LOAD_NAND_I32_P8:
987     return EmitAtomicBinary(MI, BB, 4, 0, true);
988   case Mips::ATOMIC_LOAD_NAND_I64:
989   case Mips::ATOMIC_LOAD_NAND_I64_P8:
990     return EmitAtomicBinary(MI, BB, 8, 0, true);
991
992   case Mips::ATOMIC_LOAD_SUB_I8:
993   case Mips::ATOMIC_LOAD_SUB_I8_P8:
994     return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
995   case Mips::ATOMIC_LOAD_SUB_I16:
996   case Mips::ATOMIC_LOAD_SUB_I16_P8:
997     return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
998   case Mips::ATOMIC_LOAD_SUB_I32:
999   case Mips::ATOMIC_LOAD_SUB_I32_P8:
1000     return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
1001   case Mips::ATOMIC_LOAD_SUB_I64:
1002   case Mips::ATOMIC_LOAD_SUB_I64_P8:
1003     return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
1004
1005   case Mips::ATOMIC_SWAP_I8:
1006   case Mips::ATOMIC_SWAP_I8_P8:
1007     return EmitAtomicBinaryPartword(MI, BB, 1, 0);
1008   case Mips::ATOMIC_SWAP_I16:
1009   case Mips::ATOMIC_SWAP_I16_P8:
1010     return EmitAtomicBinaryPartword(MI, BB, 2, 0);
1011   case Mips::ATOMIC_SWAP_I32:
1012   case Mips::ATOMIC_SWAP_I32_P8:
1013     return EmitAtomicBinary(MI, BB, 4, 0);
1014   case Mips::ATOMIC_SWAP_I64:
1015   case Mips::ATOMIC_SWAP_I64_P8:
1016     return EmitAtomicBinary(MI, BB, 8, 0);
1017
1018   case Mips::ATOMIC_CMP_SWAP_I8:
1019   case Mips::ATOMIC_CMP_SWAP_I8_P8:
1020     return EmitAtomicCmpSwapPartword(MI, BB, 1);
1021   case Mips::ATOMIC_CMP_SWAP_I16:
1022   case Mips::ATOMIC_CMP_SWAP_I16_P8:
1023     return EmitAtomicCmpSwapPartword(MI, BB, 2);
1024   case Mips::ATOMIC_CMP_SWAP_I32:
1025   case Mips::ATOMIC_CMP_SWAP_I32_P8:
1026     return EmitAtomicCmpSwap(MI, BB, 4);
1027   case Mips::ATOMIC_CMP_SWAP_I64:
1028   case Mips::ATOMIC_CMP_SWAP_I64_P8:
1029     return EmitAtomicCmpSwap(MI, BB, 8);
1030   }
1031 }
1032
1033 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1034 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1035 MachineBasicBlock *
1036 MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
1037                                      unsigned Size, unsigned BinOpcode,
1038                                      bool Nand) const {
1039   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
1040
1041   MachineFunction *MF = BB->getParent();
1042   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1043   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1044   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1045   DebugLoc dl = MI->getDebugLoc();
1046   unsigned LL, SC, AND, NOR, ZERO, BEQ;
1047
1048   if (Size == 4) {
1049     LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1050     SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1051     AND = Mips::AND;
1052     NOR = Mips::NOR;
1053     ZERO = Mips::ZERO;
1054     BEQ = Mips::BEQ;
1055   }
1056   else {
1057     LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1058     SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1059     AND = Mips::AND64;
1060     NOR = Mips::NOR64;
1061     ZERO = Mips::ZERO_64;
1062     BEQ = Mips::BEQ64;
1063   }
1064
1065   unsigned OldVal = MI->getOperand(0).getReg();
1066   unsigned Ptr = MI->getOperand(1).getReg();
1067   unsigned Incr = MI->getOperand(2).getReg();
1068
1069   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1070   unsigned AndRes = RegInfo.createVirtualRegister(RC);
1071   unsigned Success = RegInfo.createVirtualRegister(RC);
1072
1073   // insert new blocks after the current block
1074   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1075   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1076   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1077   MachineFunction::iterator It = BB;
1078   ++It;
1079   MF->insert(It, loopMBB);
1080   MF->insert(It, exitMBB);
1081
1082   // Transfer the remainder of BB and its successor edges to exitMBB.
1083   exitMBB->splice(exitMBB->begin(), BB,
1084                   llvm::next(MachineBasicBlock::iterator(MI)),
1085                   BB->end());
1086   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1087
1088   //  thisMBB:
1089   //    ...
1090   //    fallthrough --> loopMBB
1091   BB->addSuccessor(loopMBB);
1092   loopMBB->addSuccessor(loopMBB);
1093   loopMBB->addSuccessor(exitMBB);
1094
1095   //  loopMBB:
1096   //    ll oldval, 0(ptr)
1097   //    <binop> storeval, oldval, incr
1098   //    sc success, storeval, 0(ptr)
1099   //    beq success, $0, loopMBB
1100   BB = loopMBB;
1101   BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
1102   if (Nand) {
1103     //  and andres, oldval, incr
1104     //  nor storeval, $0, andres
1105     BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
1106     BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
1107   } else if (BinOpcode) {
1108     //  <binop> storeval, oldval, incr
1109     BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
1110   } else {
1111     StoreVal = Incr;
1112   }
1113   BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
1114   BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
1115
1116   MI->eraseFromParent();   // The instruction is gone now.
1117
1118   return exitMBB;
1119 }
1120
1121 MachineBasicBlock *
1122 MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
1123                                              MachineBasicBlock *BB,
1124                                              unsigned Size, unsigned BinOpcode,
1125                                              bool Nand) const {
1126   assert((Size == 1 || Size == 2) &&
1127       "Unsupported size for EmitAtomicBinaryPartial.");
1128
1129   MachineFunction *MF = BB->getParent();
1130   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1131   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1132   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1133   DebugLoc dl = MI->getDebugLoc();
1134   unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1135   unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1136
1137   unsigned Dest = MI->getOperand(0).getReg();
1138   unsigned Ptr = MI->getOperand(1).getReg();
1139   unsigned Incr = MI->getOperand(2).getReg();
1140
1141   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1142   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1143   unsigned Mask = RegInfo.createVirtualRegister(RC);
1144   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1145   unsigned NewVal = RegInfo.createVirtualRegister(RC);
1146   unsigned OldVal = RegInfo.createVirtualRegister(RC);
1147   unsigned Incr2 = RegInfo.createVirtualRegister(RC);
1148   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1149   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1150   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1151   unsigned AndRes = RegInfo.createVirtualRegister(RC);
1152   unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
1153   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1154   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1155   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1156   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1157   unsigned SllRes = RegInfo.createVirtualRegister(RC);
1158   unsigned Success = RegInfo.createVirtualRegister(RC);
1159
1160   // insert new blocks after the current block
1161   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1162   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1163   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1164   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1165   MachineFunction::iterator It = BB;
1166   ++It;
1167   MF->insert(It, loopMBB);
1168   MF->insert(It, sinkMBB);
1169   MF->insert(It, exitMBB);
1170
1171   // Transfer the remainder of BB and its successor edges to exitMBB.
1172   exitMBB->splice(exitMBB->begin(), BB,
1173                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1174   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1175
1176   BB->addSuccessor(loopMBB);
1177   loopMBB->addSuccessor(loopMBB);
1178   loopMBB->addSuccessor(sinkMBB);
1179   sinkMBB->addSuccessor(exitMBB);
1180
1181   //  thisMBB:
1182   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1183   //    and     alignedaddr,ptr,masklsb2
1184   //    andi    ptrlsb2,ptr,3
1185   //    sll     shiftamt,ptrlsb2,3
1186   //    ori     maskupper,$0,255               # 0xff
1187   //    sll     mask,maskupper,shiftamt
1188   //    nor     mask2,$0,mask
1189   //    sll     incr2,incr,shiftamt
1190
1191   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1192   BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1193     .addReg(Mips::ZERO).addImm(-4);
1194   BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1195     .addReg(Ptr).addReg(MaskLSB2);
1196   BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1197   BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1198   BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1199     .addReg(Mips::ZERO).addImm(MaskImm);
1200   BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1201     .addReg(ShiftAmt).addReg(MaskUpper);
1202   BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1203   BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
1204
1205   // atomic.load.binop
1206   // loopMBB:
1207   //   ll      oldval,0(alignedaddr)
1208   //   binop   binopres,oldval,incr2
1209   //   and     newval,binopres,mask
1210   //   and     maskedoldval0,oldval,mask2
1211   //   or      storeval,maskedoldval0,newval
1212   //   sc      success,storeval,0(alignedaddr)
1213   //   beq     success,$0,loopMBB
1214
1215   // atomic.swap
1216   // loopMBB:
1217   //   ll      oldval,0(alignedaddr)
1218   //   and     newval,incr2,mask
1219   //   and     maskedoldval0,oldval,mask2
1220   //   or      storeval,maskedoldval0,newval
1221   //   sc      success,storeval,0(alignedaddr)
1222   //   beq     success,$0,loopMBB
1223
1224   BB = loopMBB;
1225   BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1226   if (Nand) {
1227     //  and andres, oldval, incr2
1228     //  nor binopres, $0, andres
1229     //  and newval, binopres, mask
1230     BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
1231     BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
1232       .addReg(Mips::ZERO).addReg(AndRes);
1233     BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1234   } else if (BinOpcode) {
1235     //  <binop> binopres, oldval, incr2
1236     //  and newval, binopres, mask
1237     BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
1238     BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
1239   } else {// atomic.swap
1240     //  and newval, incr2, mask
1241     BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
1242   }
1243
1244   BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1245     .addReg(OldVal).addReg(Mask2);
1246   BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1247     .addReg(MaskedOldVal0).addReg(NewVal);
1248   BuildMI(BB, dl, TII->get(SC), Success)
1249     .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1250   BuildMI(BB, dl, TII->get(Mips::BEQ))
1251     .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
1252
1253   //  sinkMBB:
1254   //    and     maskedoldval1,oldval,mask
1255   //    srl     srlres,maskedoldval1,shiftamt
1256   //    sll     sllres,srlres,24
1257   //    sra     dest,sllres,24
1258   BB = sinkMBB;
1259   int64_t ShiftImm = (Size == 1) ? 24 : 16;
1260
1261   BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1262     .addReg(OldVal).addReg(Mask);
1263   BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1264       .addReg(ShiftAmt).addReg(MaskedOldVal1);
1265   BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1266       .addReg(SrlRes).addImm(ShiftImm);
1267   BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1268       .addReg(SllRes).addImm(ShiftImm);
1269
1270   MI->eraseFromParent();   // The instruction is gone now.
1271
1272   return exitMBB;
1273 }
1274
1275 MachineBasicBlock *
1276 MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
1277                                       MachineBasicBlock *BB,
1278                                       unsigned Size) const {
1279   assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
1280
1281   MachineFunction *MF = BB->getParent();
1282   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1283   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1284   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1285   DebugLoc dl = MI->getDebugLoc();
1286   unsigned LL, SC, ZERO, BNE, BEQ;
1287
1288   if (Size == 4) {
1289     LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1290     SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1291     ZERO = Mips::ZERO;
1292     BNE = Mips::BNE;
1293     BEQ = Mips::BEQ;
1294   }
1295   else {
1296     LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
1297     SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
1298     ZERO = Mips::ZERO_64;
1299     BNE = Mips::BNE64;
1300     BEQ = Mips::BEQ64;
1301   }
1302
1303   unsigned Dest    = MI->getOperand(0).getReg();
1304   unsigned Ptr     = MI->getOperand(1).getReg();
1305   unsigned OldVal  = MI->getOperand(2).getReg();
1306   unsigned NewVal  = MI->getOperand(3).getReg();
1307
1308   unsigned Success = RegInfo.createVirtualRegister(RC);
1309
1310   // insert new blocks after the current block
1311   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1312   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1313   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1314   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1315   MachineFunction::iterator It = BB;
1316   ++It;
1317   MF->insert(It, loop1MBB);
1318   MF->insert(It, loop2MBB);
1319   MF->insert(It, exitMBB);
1320
1321   // Transfer the remainder of BB and its successor edges to exitMBB.
1322   exitMBB->splice(exitMBB->begin(), BB,
1323                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1324   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1325
1326   //  thisMBB:
1327   //    ...
1328   //    fallthrough --> loop1MBB
1329   BB->addSuccessor(loop1MBB);
1330   loop1MBB->addSuccessor(exitMBB);
1331   loop1MBB->addSuccessor(loop2MBB);
1332   loop2MBB->addSuccessor(loop1MBB);
1333   loop2MBB->addSuccessor(exitMBB);
1334
1335   // loop1MBB:
1336   //   ll dest, 0(ptr)
1337   //   bne dest, oldval, exitMBB
1338   BB = loop1MBB;
1339   BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
1340   BuildMI(BB, dl, TII->get(BNE))
1341     .addReg(Dest).addReg(OldVal).addMBB(exitMBB);
1342
1343   // loop2MBB:
1344   //   sc success, newval, 0(ptr)
1345   //   beq success, $0, loop1MBB
1346   BB = loop2MBB;
1347   BuildMI(BB, dl, TII->get(SC), Success)
1348     .addReg(NewVal).addReg(Ptr).addImm(0);
1349   BuildMI(BB, dl, TII->get(BEQ))
1350     .addReg(Success).addReg(ZERO).addMBB(loop1MBB);
1351
1352   MI->eraseFromParent();   // The instruction is gone now.
1353
1354   return exitMBB;
1355 }
1356
1357 MachineBasicBlock *
1358 MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
1359                                               MachineBasicBlock *BB,
1360                                               unsigned Size) const {
1361   assert((Size == 1 || Size == 2) &&
1362       "Unsupported size for EmitAtomicCmpSwapPartial.");
1363
1364   MachineFunction *MF = BB->getParent();
1365   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1366   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1367   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1368   DebugLoc dl = MI->getDebugLoc();
1369   unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
1370   unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
1371
1372   unsigned Dest    = MI->getOperand(0).getReg();
1373   unsigned Ptr     = MI->getOperand(1).getReg();
1374   unsigned CmpVal  = MI->getOperand(2).getReg();
1375   unsigned NewVal  = MI->getOperand(3).getReg();
1376
1377   unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
1378   unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
1379   unsigned Mask = RegInfo.createVirtualRegister(RC);
1380   unsigned Mask2 = RegInfo.createVirtualRegister(RC);
1381   unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1382   unsigned OldVal = RegInfo.createVirtualRegister(RC);
1383   unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
1384   unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1385   unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
1386   unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
1387   unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
1388   unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1389   unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
1390   unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
1391   unsigned StoreVal = RegInfo.createVirtualRegister(RC);
1392   unsigned SrlRes = RegInfo.createVirtualRegister(RC);
1393   unsigned SllRes = RegInfo.createVirtualRegister(RC);
1394   unsigned Success = RegInfo.createVirtualRegister(RC);
1395
1396   // insert new blocks after the current block
1397   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1398   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1399   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
1400   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1401   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1402   MachineFunction::iterator It = BB;
1403   ++It;
1404   MF->insert(It, loop1MBB);
1405   MF->insert(It, loop2MBB);
1406   MF->insert(It, sinkMBB);
1407   MF->insert(It, exitMBB);
1408
1409   // Transfer the remainder of BB and its successor edges to exitMBB.
1410   exitMBB->splice(exitMBB->begin(), BB,
1411                   llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
1412   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1413
1414   BB->addSuccessor(loop1MBB);
1415   loop1MBB->addSuccessor(sinkMBB);
1416   loop1MBB->addSuccessor(loop2MBB);
1417   loop2MBB->addSuccessor(loop1MBB);
1418   loop2MBB->addSuccessor(sinkMBB);
1419   sinkMBB->addSuccessor(exitMBB);
1420
1421   // FIXME: computation of newval2 can be moved to loop2MBB.
1422   //  thisMBB:
1423   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1424   //    and     alignedaddr,ptr,masklsb2
1425   //    andi    ptrlsb2,ptr,3
1426   //    sll     shiftamt,ptrlsb2,3
1427   //    ori     maskupper,$0,255               # 0xff
1428   //    sll     mask,maskupper,shiftamt
1429   //    nor     mask2,$0,mask
1430   //    andi    maskedcmpval,cmpval,255
1431   //    sll     shiftedcmpval,maskedcmpval,shiftamt
1432   //    andi    maskednewval,newval,255
1433   //    sll     shiftednewval,maskednewval,shiftamt
1434   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1435   BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
1436     .addReg(Mips::ZERO).addImm(-4);
1437   BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
1438     .addReg(Ptr).addReg(MaskLSB2);
1439   BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
1440   BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1441   BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
1442     .addReg(Mips::ZERO).addImm(MaskImm);
1443   BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
1444     .addReg(ShiftAmt).addReg(MaskUpper);
1445   BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1446   BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
1447     .addReg(CmpVal).addImm(MaskImm);
1448   BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
1449     .addReg(ShiftAmt).addReg(MaskedCmpVal);
1450   BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
1451     .addReg(NewVal).addImm(MaskImm);
1452   BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
1453     .addReg(ShiftAmt).addReg(MaskedNewVal);
1454
1455   //  loop1MBB:
1456   //    ll      oldval,0(alginedaddr)
1457   //    and     maskedoldval0,oldval,mask
1458   //    bne     maskedoldval0,shiftedcmpval,sinkMBB
1459   BB = loop1MBB;
1460   BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
1461   BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
1462     .addReg(OldVal).addReg(Mask);
1463   BuildMI(BB, dl, TII->get(Mips::BNE))
1464     .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
1465
1466   //  loop2MBB:
1467   //    and     maskedoldval1,oldval,mask2
1468   //    or      storeval,maskedoldval1,shiftednewval
1469   //    sc      success,storeval,0(alignedaddr)
1470   //    beq     success,$0,loop1MBB
1471   BB = loop2MBB;
1472   BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
1473     .addReg(OldVal).addReg(Mask2);
1474   BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
1475     .addReg(MaskedOldVal1).addReg(ShiftedNewVal);
1476   BuildMI(BB, dl, TII->get(SC), Success)
1477       .addReg(StoreVal).addReg(AlignedAddr).addImm(0);
1478   BuildMI(BB, dl, TII->get(Mips::BEQ))
1479       .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
1480
1481   //  sinkMBB:
1482   //    srl     srlres,maskedoldval0,shiftamt
1483   //    sll     sllres,srlres,24
1484   //    sra     dest,sllres,24
1485   BB = sinkMBB;
1486   int64_t ShiftImm = (Size == 1) ? 24 : 16;
1487
1488   BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
1489       .addReg(ShiftAmt).addReg(MaskedOldVal0);
1490   BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
1491       .addReg(SrlRes).addImm(ShiftImm);
1492   BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
1493       .addReg(SllRes).addImm(ShiftImm);
1494
1495   MI->eraseFromParent();   // The instruction is gone now.
1496
1497   return exitMBB;
1498 }
1499
1500 //===----------------------------------------------------------------------===//
1501 //  Misc Lower Operation implementation
1502 //===----------------------------------------------------------------------===//
1503 SDValue MipsTargetLowering::
1504 LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
1505 {
1506   // The first operand is the chain, the second is the condition, the third is
1507   // the block to branch to if the condition is true.
1508   SDValue Chain = Op.getOperand(0);
1509   SDValue Dest = Op.getOperand(2);
1510   DebugLoc dl = Op.getDebugLoc();
1511
1512   SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
1513
1514   // Return if flag is not set by a floating point comparison.
1515   if (CondRes.getOpcode() != MipsISD::FPCmp)
1516     return Op;
1517
1518   SDValue CCNode  = CondRes.getOperand(2);
1519   Mips::CondCode CC =
1520     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
1521   SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
1522
1523   return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
1524                      Dest, CondRes);
1525 }
1526
1527 SDValue MipsTargetLowering::
1528 LowerSELECT(SDValue Op, SelectionDAG &DAG) const
1529 {
1530   SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
1531
1532   // Return if flag is not set by a floating point comparison.
1533   if (Cond.getOpcode() != MipsISD::FPCmp)
1534     return Op;
1535
1536   return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
1537                       Op.getDebugLoc());
1538 }
1539
1540 SDValue MipsTargetLowering::
1541 LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
1542 {
1543   DebugLoc DL = Op.getDebugLoc();
1544   EVT Ty = Op.getOperand(0).getValueType();
1545   SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
1546                              Op.getOperand(0), Op.getOperand(1),
1547                              Op.getOperand(4));
1548
1549   return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
1550                      Op.getOperand(3));
1551 }
1552
1553 SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1554   SDValue Cond = CreateFPCmp(DAG, Op);
1555
1556   assert(Cond.getOpcode() == MipsISD::FPCmp &&
1557          "Floating point operand expected.");
1558
1559   SDValue True  = DAG.getConstant(1, MVT::i32);
1560   SDValue False = DAG.getConstant(0, MVT::i32);
1561
1562   return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
1563 }
1564
1565 SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
1566                                                SelectionDAG &DAG) const {
1567   // FIXME there isn't actually debug info here
1568   DebugLoc dl = Op.getDebugLoc();
1569   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1570
1571   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1572     SDVTList VTs = DAG.getVTList(MVT::i32);
1573
1574     MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
1575
1576     // %gp_rel relocation
1577     if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1578       SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1579                                               MipsII::MO_GPREL);
1580       SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
1581       SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1582       return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
1583     }
1584     // %hi/%lo relocation
1585     SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1586                                               MipsII::MO_ABS_HI);
1587     SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
1588                                               MipsII::MO_ABS_LO);
1589     SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
1590     SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
1591     return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1592   }
1593
1594   EVT ValTy = Op.getValueType();
1595   bool HasGotOfst = (GV->hasInternalLinkage() ||
1596                      (GV->hasLocalLinkage() && !isa<Function>(GV)));
1597   unsigned GotFlag = HasMips64 ?
1598                      (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) :
1599                      (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16);
1600   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag);
1601   GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA);
1602   SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA,
1603                                 MachinePointerInfo(), false, false, false, 0);
1604   // On functions and global targets not internal linked only
1605   // a load from got/GP is necessary for PIC to work.
1606   if (!HasGotOfst)
1607     return ResNode;
1608   SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0,
1609                                             HasMips64 ? MipsII::MO_GOT_OFST :
1610                                                         MipsII::MO_ABS_LO);
1611   SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo);
1612   return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo);
1613 }
1614
1615 SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
1616                                               SelectionDAG &DAG) const {
1617   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1618   // FIXME there isn't actually debug info here
1619   DebugLoc dl = Op.getDebugLoc();
1620
1621   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1622     // %hi/%lo relocation
1623     SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI);
1624     SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO);
1625     SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
1626     SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
1627     return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
1628   }
1629
1630   EVT ValTy = Op.getValueType();
1631   unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1632   unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1633   SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag);
1634   BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy,
1635                             GetGlobalReg(DAG, ValTy), BAGOTOffset);
1636   SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag);
1637   SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset,
1638                              MachinePointerInfo(), false, false, false, 0);
1639   SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset);
1640   return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1641 }
1642
1643 SDValue MipsTargetLowering::
1644 LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
1645 {
1646   // If the relocation model is PIC, use the General Dynamic TLS Model or
1647   // Local Dynamic TLS model, otherwise use the Initial Exec or
1648   // Local Exec TLS Model.
1649
1650   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1651   DebugLoc dl = GA->getDebugLoc();
1652   const GlobalValue *GV = GA->getGlobal();
1653   EVT PtrVT = getPointerTy();
1654
1655   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1656
1657   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
1658     // General Dynamic and Local Dynamic TLS Model.
1659     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
1660                                                       : MipsII::MO_TLSGD;
1661
1662     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
1663     SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
1664                                    GetGlobalReg(DAG, PtrVT), TGA);
1665     unsigned PtrSize = PtrVT.getSizeInBits();
1666     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
1667
1668     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
1669
1670     ArgListTy Args;
1671     ArgListEntry Entry;
1672     Entry.Node = Argument;
1673     Entry.Ty = PtrTy;
1674     Args.push_back(Entry);
1675
1676     TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
1677                   false, false, false, false, 0, CallingConv::C,
1678                   /*isTailCall=*/false, /*doesNotRet=*/false,
1679                   /*isReturnValueUsed=*/true,
1680                   TlsGetAddr, Args, DAG, dl);
1681     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1682
1683     SDValue Ret = CallResult.first;
1684
1685     if (model != TLSModel::LocalDynamic)
1686       return Ret;
1687
1688     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1689                                                MipsII::MO_DTPREL_HI);
1690     SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1691     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1692                                                MipsII::MO_DTPREL_LO);
1693     SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1694     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
1695     return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
1696   }
1697
1698   SDValue Offset;
1699   if (model == TLSModel::InitialExec) {
1700     // Initial Exec TLS Model
1701     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1702                                              MipsII::MO_GOTTPREL);
1703     TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1704                       TGA);
1705     Offset = DAG.getLoad(PtrVT, dl,
1706                          DAG.getEntryNode(), TGA, MachinePointerInfo(),
1707                          false, false, false, 0);
1708   } else {
1709     // Local Exec TLS Model
1710     assert(model == TLSModel::LocalExec);
1711     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1712                                                MipsII::MO_TPREL_HI);
1713     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1714                                                MipsII::MO_TPREL_LO);
1715     SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
1716     SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
1717     Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1718   }
1719
1720   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
1721   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1722 }
1723
1724 SDValue MipsTargetLowering::
1725 LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
1726 {
1727   SDValue HiPart, JTI, JTILo;
1728   // FIXME there isn't actually debug info here
1729   DebugLoc dl = Op.getDebugLoc();
1730   bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1731   EVT PtrVT = Op.getValueType();
1732   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1733
1734   if (!IsPIC && !IsN64) {
1735     JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI);
1736     HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI);
1737     JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO);
1738   } else {// Emit Load from Global Pointer
1739     unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1740     unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1741     JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag);
1742     JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
1743                       JTI);
1744     HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI,
1745                          MachinePointerInfo(), false, false, false, 0);
1746     JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag);
1747   }
1748
1749   SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo);
1750   return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo);
1751 }
1752
1753 SDValue MipsTargetLowering::
1754 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
1755 {
1756   SDValue ResNode;
1757   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1758   const Constant *C = N->getConstVal();
1759   // FIXME there isn't actually debug info here
1760   DebugLoc dl = Op.getDebugLoc();
1761
1762   // gp_rel relocation
1763   // FIXME: we should reference the constant pool using small data sections,
1764   // but the asm printer currently doesn't support this feature without
1765   // hacking it. This feature should come soon so we can uncomment the
1766   // stuff below.
1767   //if (IsInSmallSection(C->getType())) {
1768   //  SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
1769   //  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1770   //  ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
1771
1772   if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
1773     SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1774                                              N->getOffset(), MipsII::MO_ABS_HI);
1775     SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1776                                              N->getOffset(), MipsII::MO_ABS_LO);
1777     SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
1778     SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
1779     ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
1780   } else {
1781     EVT ValTy = Op.getValueType();
1782     unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
1783     unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
1784     SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1785                                            N->getOffset(), GOTFlag);
1786     CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP);
1787     SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP,
1788                                MachinePointerInfo::getConstantPool(), false,
1789                                false, false, 0);
1790     SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(),
1791                                              N->getOffset(), OFSTFlag);
1792     SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo);
1793     ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo);
1794   }
1795
1796   return ResNode;
1797 }
1798
1799 SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1800   MachineFunction &MF = DAG.getMachineFunction();
1801   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
1802
1803   DebugLoc dl = Op.getDebugLoc();
1804   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1805                                  getPointerTy());
1806
1807   // vastart just stores the address of the VarArgsFrameIndex slot into the
1808   // memory location argument.
1809   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1810   return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
1811                       MachinePointerInfo(SV), false, false, 0);
1812 }
1813
1814 static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1815   EVT TyX = Op.getOperand(0).getValueType();
1816   EVT TyY = Op.getOperand(1).getValueType();
1817   SDValue Const1 = DAG.getConstant(1, MVT::i32);
1818   SDValue Const31 = DAG.getConstant(31, MVT::i32);
1819   DebugLoc DL = Op.getDebugLoc();
1820   SDValue Res;
1821
1822   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1823   // to i32.
1824   SDValue X = (TyX == MVT::f32) ?
1825     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1826     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1827                 Const1);
1828   SDValue Y = (TyY == MVT::f32) ?
1829     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
1830     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
1831                 Const1);
1832
1833   if (HasR2) {
1834     // ext  E, Y, 31, 1  ; extract bit31 of Y
1835     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
1836     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
1837     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
1838   } else {
1839     // sll SllX, X, 1
1840     // srl SrlX, SllX, 1
1841     // srl SrlY, Y, 31
1842     // sll SllY, SrlX, 31
1843     // or  Or, SrlX, SllY
1844     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1845     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1846     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
1847     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
1848     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
1849   }
1850
1851   if (TyX == MVT::f32)
1852     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
1853
1854   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1855                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1856   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1857 }
1858
1859 static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1860   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
1861   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
1862   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
1863   SDValue Const1 = DAG.getConstant(1, MVT::i32);
1864   DebugLoc DL = Op.getDebugLoc();
1865
1866   // Bitcast to integer nodes.
1867   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
1868   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
1869
1870   if (HasR2) {
1871     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
1872     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
1873     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
1874                             DAG.getConstant(WidthY - 1, MVT::i32), Const1);
1875
1876     if (WidthX > WidthY)
1877       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
1878     else if (WidthY > WidthX)
1879       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
1880
1881     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
1882                             DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
1883     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
1884   }
1885
1886   // (d)sll SllX, X, 1
1887   // (d)srl SrlX, SllX, 1
1888   // (d)srl SrlY, Y, width(Y)-1
1889   // (d)sll SllY, SrlX, width(Y)-1
1890   // or     Or, SrlX, SllY
1891   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
1892   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
1893   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
1894                              DAG.getConstant(WidthY - 1, MVT::i32));
1895
1896   if (WidthX > WidthY)
1897     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
1898   else if (WidthY > WidthX)
1899     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
1900
1901   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
1902                              DAG.getConstant(WidthX - 1, MVT::i32));
1903   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
1904   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
1905 }
1906
1907 SDValue
1908 MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
1909   if (Subtarget->hasMips64())
1910     return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
1911
1912   return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
1913 }
1914
1915 static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1916   SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1917   DebugLoc DL = Op.getDebugLoc();
1918
1919   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
1920   // to i32.
1921   SDValue X = (Op.getValueType() == MVT::f32) ?
1922     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
1923     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1924                 Const1);
1925
1926   // Clear MSB.
1927   if (HasR2)
1928     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
1929                       DAG.getRegister(Mips::ZERO, MVT::i32),
1930                       DAG.getConstant(31, MVT::i32), Const1, X);
1931   else {
1932     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
1933     Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
1934   }
1935
1936   if (Op.getValueType() == MVT::f32)
1937     return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
1938
1939   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1940                              Op.getOperand(0), DAG.getConstant(0, MVT::i32));
1941   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
1942 }
1943
1944 static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
1945   SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
1946   DebugLoc DL = Op.getDebugLoc();
1947
1948   // Bitcast to integer node.
1949   SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
1950
1951   // Clear MSB.
1952   if (HasR2)
1953     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
1954                       DAG.getRegister(Mips::ZERO_64, MVT::i64),
1955                       DAG.getConstant(63, MVT::i32), Const1, X);
1956   else {
1957     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
1958     Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
1959   }
1960
1961   return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
1962 }
1963
1964 SDValue
1965 MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
1966   if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
1967     return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
1968
1969   return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
1970 }
1971
1972 SDValue MipsTargetLowering::
1973 LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1974   // check the depth
1975   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1976          "Frame address can only be determined for current frame.");
1977
1978   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1979   MFI->setFrameAddressIsTaken(true);
1980   EVT VT = Op.getValueType();
1981   DebugLoc dl = Op.getDebugLoc();
1982   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1983                                          IsN64 ? Mips::FP_64 : Mips::FP, VT);
1984   return FrameAddr;
1985 }
1986
1987 SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
1988                                             SelectionDAG &DAG) const {
1989   // check the depth
1990   assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
1991          "Return address can be determined only for current frame.");
1992
1993   MachineFunction &MF = DAG.getMachineFunction();
1994   MachineFrameInfo *MFI = MF.getFrameInfo();
1995   EVT VT = Op.getValueType();
1996   unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
1997   MFI->setReturnAddressIsTaken(true);
1998
1999   // Return RA, which contains the return address. Mark it an implicit live-in.
2000   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2001   return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
2002 }
2003
2004 // TODO: set SType according to the desired memory barrier behavior.
2005 SDValue
2006 MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
2007   unsigned SType = 0;
2008   DebugLoc dl = Op.getDebugLoc();
2009   return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2010                      DAG.getConstant(SType, MVT::i32));
2011 }
2012
2013 SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
2014                                               SelectionDAG &DAG) const {
2015   // FIXME: Need pseudo-fence for 'singlethread' fences
2016   // FIXME: Set SType for weaker fences where supported/appropriate.
2017   unsigned SType = 0;
2018   DebugLoc dl = Op.getDebugLoc();
2019   return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
2020                      DAG.getConstant(SType, MVT::i32));
2021 }
2022
2023 SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
2024                                                 SelectionDAG &DAG) const {
2025   DebugLoc DL = Op.getDebugLoc();
2026   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2027   SDValue Shamt = Op.getOperand(2);
2028
2029   // if shamt < 32:
2030   //  lo = (shl lo, shamt)
2031   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2032   // else:
2033   //  lo = 0
2034   //  hi = (shl lo, shamt[4:0])
2035   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2036                             DAG.getConstant(-1, MVT::i32));
2037   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
2038                                       DAG.getConstant(1, MVT::i32));
2039   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
2040                                      Not);
2041   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
2042   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2043   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
2044   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2045                              DAG.getConstant(0x20, MVT::i32));
2046   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2047                    DAG.getConstant(0, MVT::i32), ShiftLeftLo);
2048   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
2049
2050   SDValue Ops[2] = {Lo, Hi};
2051   return DAG.getMergeValues(Ops, 2, DL);
2052 }
2053
2054 SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2055                                                  bool IsSRA) const {
2056   DebugLoc DL = Op.getDebugLoc();
2057   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2058   SDValue Shamt = Op.getOperand(2);
2059
2060   // if shamt < 32:
2061   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2062   //  if isSRA:
2063   //    hi = (sra hi, shamt)
2064   //  else:
2065   //    hi = (srl hi, shamt)
2066   // else:
2067   //  if isSRA:
2068   //   lo = (sra hi, shamt[4:0])
2069   //   hi = (sra hi, 31)
2070   //  else:
2071   //   lo = (srl hi, shamt[4:0])
2072   //   hi = 0
2073   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2074                             DAG.getConstant(-1, MVT::i32));
2075   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
2076                                      DAG.getConstant(1, MVT::i32));
2077   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
2078   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
2079   SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
2080   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2081                                      Hi, Shamt);
2082   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2083                              DAG.getConstant(0x20, MVT::i32));
2084   SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
2085                                 DAG.getConstant(31, MVT::i32));
2086   Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
2087   Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
2088                    IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
2089                    ShiftRightHi);
2090
2091   SDValue Ops[2] = {Lo, Hi};
2092   return DAG.getMergeValues(Ops, 2, DL);
2093 }
2094
2095 static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2096                             SDValue Chain, SDValue Src, unsigned Offset) {
2097   SDValue Ptr = LD->getBasePtr();
2098   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2099   EVT BasePtrVT = Ptr.getValueType();
2100   DebugLoc DL = LD->getDebugLoc();
2101   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2102
2103   if (Offset)
2104     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2105                       DAG.getConstant(Offset, BasePtrVT));
2106
2107   SDValue Ops[] = { Chain, Ptr, Src };
2108   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2109                                  LD->getMemOperand());
2110 }
2111
2112 // Expand an unaligned 32 or 64-bit integer load node.
2113 SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2114   LoadSDNode *LD = cast<LoadSDNode>(Op);
2115   EVT MemVT = LD->getMemoryVT();
2116
2117   // Return if load is aligned or if MemVT is neither i32 nor i64.
2118   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2119       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2120     return SDValue();
2121
2122   bool IsLittle = Subtarget->isLittle();
2123   EVT VT = Op.getValueType();
2124   ISD::LoadExtType ExtType = LD->getExtensionType();
2125   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2126
2127   assert((VT == MVT::i32) || (VT == MVT::i64));
2128
2129   // Expand
2130   //  (set dst, (i64 (load baseptr)))
2131   // to
2132   //  (set tmp, (ldl (add baseptr, 7), undef))
2133   //  (set dst, (ldr baseptr, tmp))
2134   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2135     SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2136                                IsLittle ? 7 : 0);
2137     return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2138                         IsLittle ? 0 : 7);
2139   }
2140
2141   SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2142                              IsLittle ? 3 : 0);
2143   SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2144                              IsLittle ? 0 : 3);
2145
2146   // Expand
2147   //  (set dst, (i32 (load baseptr))) or
2148   //  (set dst, (i64 (sextload baseptr))) or
2149   //  (set dst, (i64 (extload baseptr)))
2150   // to
2151   //  (set tmp, (lwl (add baseptr, 3), undef))
2152   //  (set dst, (lwr baseptr, tmp))
2153   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2154       (ExtType == ISD::EXTLOAD))
2155     return LWR;
2156
2157   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2158
2159   // Expand
2160   //  (set dst, (i64 (zextload baseptr)))
2161   // to
2162   //  (set tmp0, (lwl (add baseptr, 3), undef))
2163   //  (set tmp1, (lwr baseptr, tmp0))
2164   //  (set tmp2, (shl tmp1, 32))
2165   //  (set dst, (srl tmp2, 32))
2166   DebugLoc DL = LD->getDebugLoc();
2167   SDValue Const32 = DAG.getConstant(32, MVT::i32);
2168   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2169   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2170   SDValue Ops[] = { SRL, LWR.getValue(1) };
2171   return DAG.getMergeValues(Ops, 2, DL);
2172 }
2173
2174 static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2175                              SDValue Chain, unsigned Offset) {
2176   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2177   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2178   DebugLoc DL = SD->getDebugLoc();
2179   SDVTList VTList = DAG.getVTList(MVT::Other);
2180
2181   if (Offset)
2182     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2183                       DAG.getConstant(Offset, BasePtrVT));
2184
2185   SDValue Ops[] = { Chain, Value, Ptr };
2186   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
2187                                  SD->getMemOperand());
2188 }
2189
2190 // Expand an unaligned 32 or 64-bit integer store node.
2191 SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2192   StoreSDNode *SD = cast<StoreSDNode>(Op);
2193   EVT MemVT = SD->getMemoryVT();
2194
2195   // Return if store is aligned or if MemVT is neither i32 nor i64.
2196   if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2197       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2198     return SDValue();
2199
2200   bool IsLittle = Subtarget->isLittle();
2201   SDValue Value = SD->getValue(), Chain = SD->getChain();
2202   EVT VT = Value.getValueType();
2203
2204   // Expand
2205   //  (store val, baseptr) or
2206   //  (truncstore val, baseptr)
2207   // to
2208   //  (swl val, (add baseptr, 3))
2209   //  (swr val, baseptr)
2210   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2211     SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
2212                                 IsLittle ? 3 : 0);
2213     return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2214   }
2215
2216   assert(VT == MVT::i64);
2217
2218   // Expand
2219   //  (store val, baseptr)
2220   // to
2221   //  (sdl val, (add baseptr, 7))
2222   //  (sdr val, baseptr)
2223   SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2224   return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2225 }
2226
2227 //===----------------------------------------------------------------------===//
2228 //                      Calling Convention Implementation
2229 //===----------------------------------------------------------------------===//
2230
2231 //===----------------------------------------------------------------------===//
2232 // TODO: Implement a generic logic using tblgen that can support this.
2233 // Mips O32 ABI rules:
2234 // ---
2235 // i32 - Passed in A0, A1, A2, A3 and stack
2236 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2237 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
2238 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2239 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2240 //       not used, it must be shadowed. If only A3 is avaiable, shadow it and
2241 //       go to stack.
2242 //
2243 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2244 //===----------------------------------------------------------------------===//
2245
2246 static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
2247                        MVT LocVT, CCValAssign::LocInfo LocInfo,
2248                        ISD::ArgFlagsTy ArgFlags, CCState &State) {
2249
2250   static const unsigned IntRegsSize=4, FloatRegsSize=2;
2251
2252   static const uint16_t IntRegs[] = {
2253       Mips::A0, Mips::A1, Mips::A2, Mips::A3
2254   };
2255   static const uint16_t F32Regs[] = {
2256       Mips::F12, Mips::F14
2257   };
2258   static const uint16_t F64Regs[] = {
2259       Mips::D6, Mips::D7
2260   };
2261
2262   // ByVal Args
2263   if (ArgFlags.isByVal()) {
2264     State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
2265                       1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
2266     unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
2267     for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
2268          r < std::min(IntRegsSize, NextReg); ++r)
2269       State.AllocateReg(IntRegs[r]);
2270     return false;
2271   }
2272
2273   // Promote i8 and i16
2274   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2275     LocVT = MVT::i32;
2276     if (ArgFlags.isSExt())
2277       LocInfo = CCValAssign::SExt;
2278     else if (ArgFlags.isZExt())
2279       LocInfo = CCValAssign::ZExt;
2280     else
2281       LocInfo = CCValAssign::AExt;
2282   }
2283
2284   unsigned Reg;
2285
2286   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2287   // is true: function is vararg, argument is 3rd or higher, there is previous
2288   // argument which is not f32 or f64.
2289   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
2290       || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
2291   unsigned OrigAlign = ArgFlags.getOrigAlign();
2292   bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2293
2294   if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2295     Reg = State.AllocateReg(IntRegs, IntRegsSize);
2296     // If this is the first part of an i64 arg,
2297     // the allocated register must be either A0 or A2.
2298     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2299       Reg = State.AllocateReg(IntRegs, IntRegsSize);
2300     LocVT = MVT::i32;
2301   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2302     // Allocate int register and shadow next int register. If first
2303     // available register is Mips::A1 or Mips::A3, shadow it too.
2304     Reg = State.AllocateReg(IntRegs, IntRegsSize);
2305     if (Reg == Mips::A1 || Reg == Mips::A3)
2306       Reg = State.AllocateReg(IntRegs, IntRegsSize);
2307     State.AllocateReg(IntRegs, IntRegsSize);
2308     LocVT = MVT::i32;
2309   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2310     // we are guaranteed to find an available float register
2311     if (ValVT == MVT::f32) {
2312       Reg = State.AllocateReg(F32Regs, FloatRegsSize);
2313       // Shadow int register
2314       State.AllocateReg(IntRegs, IntRegsSize);
2315     } else {
2316       Reg = State.AllocateReg(F64Regs, FloatRegsSize);
2317       // Shadow int registers
2318       unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
2319       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2320         State.AllocateReg(IntRegs, IntRegsSize);
2321       State.AllocateReg(IntRegs, IntRegsSize);
2322     }
2323   } else
2324     llvm_unreachable("Cannot handle this ValVT.");
2325
2326   unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
2327   unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
2328
2329   if (!Reg)
2330     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2331   else
2332     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2333
2334   return false; // CC must always match
2335 }
2336
2337 static const uint16_t Mips64IntRegs[8] =
2338   {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
2339    Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64};
2340 static const uint16_t Mips64DPRegs[8] =
2341   {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
2342    Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64};
2343
2344 static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT,
2345                            CCValAssign::LocInfo LocInfo,
2346                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
2347   unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8);
2348   unsigned Size  = (ArgFlags.getByValSize() + 7) / 8 * 8;
2349   unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8);
2350
2351   assert(Align <= 16 && "Cannot handle alignments larger than 16.");
2352
2353   // If byval is 16-byte aligned, the first arg register must be even.
2354   if ((Align == 16) && (FirstIdx % 2)) {
2355     State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]);
2356     ++FirstIdx;
2357   }
2358
2359   // Mark the registers allocated.
2360   for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I)
2361     State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]);
2362
2363   // Allocate space on caller's stack.
2364   unsigned Offset = State.AllocateStack(Size, Align);
2365
2366   if (FirstIdx < 8)
2367     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx],
2368                                      LocVT, LocInfo));
2369   else
2370     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2371
2372   return true;
2373 }
2374
2375 #include "MipsGenCallingConv.inc"
2376
2377 static void
2378 AnalyzeMips64CallOperands(CCState &CCInfo,
2379                           const SmallVectorImpl<ISD::OutputArg> &Outs) {
2380   unsigned NumOps = Outs.size();
2381   for (unsigned i = 0; i != NumOps; ++i) {
2382     MVT ArgVT = Outs[i].VT;
2383     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2384     bool R;
2385
2386     if (Outs[i].IsFixed)
2387       R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2388     else
2389       R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2390
2391     if (R) {
2392 #ifndef NDEBUG
2393       dbgs() << "Call operand #" << i << " has unhandled type "
2394              << EVT(ArgVT).getEVTString();
2395 #endif
2396       llvm_unreachable(0);
2397     }
2398   }
2399 }
2400
2401 //===----------------------------------------------------------------------===//
2402 //                  Call Calling Convention Implementation
2403 //===----------------------------------------------------------------------===//
2404
2405 static const unsigned O32IntRegsSize = 4;
2406
2407 static const uint16_t O32IntRegs[] = {
2408   Mips::A0, Mips::A1, Mips::A2, Mips::A3
2409 };
2410
2411 // Return next O32 integer argument register.
2412 static unsigned getNextIntArgReg(unsigned Reg) {
2413   assert((Reg == Mips::A0) || (Reg == Mips::A2));
2414   return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
2415 }
2416
2417 // Write ByVal Arg to arg registers and stack.
2418 static void
2419 WriteByValArg(SDValue Chain, DebugLoc dl,
2420               SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2421               SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2422               MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2423               const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2424               MVT PtrType, bool isLittle) {
2425   unsigned LocMemOffset = VA.getLocMemOffset();
2426   unsigned Offset = 0;
2427   uint32_t RemainingSize = Flags.getByValSize();
2428   unsigned ByValAlign = Flags.getByValAlign();
2429
2430   // Copy the first 4 words of byval arg to registers A0 - A3.
2431   // FIXME: Use a stricter alignment if it enables better optimization in passes
2432   //        run later.
2433   for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
2434        Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
2435     SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2436                                   DAG.getConstant(Offset, MVT::i32));
2437     SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
2438                                   MachinePointerInfo(), false, false, false,
2439                                   std::min(ByValAlign, (unsigned )4));
2440     MemOpChains.push_back(LoadVal.getValue(1));
2441     unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2442     RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2443   }
2444
2445   if (RemainingSize == 0)
2446     return;
2447
2448   // If there still is a register available for argument passing, write the
2449   // remaining part of the structure to it using subword loads and shifts.
2450   if (LocMemOffset < 4 * 4) {
2451     assert(RemainingSize <= 3 && RemainingSize >= 1 &&
2452            "There must be one to three bytes remaining.");
2453     unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
2454     SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2455                                   DAG.getConstant(Offset, MVT::i32));
2456     unsigned Alignment = std::min(ByValAlign, (unsigned )4);
2457     SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2458                                      LoadPtr, MachinePointerInfo(),
2459                                      MVT::getIntegerVT(LoadSize * 8), false,
2460                                      false, Alignment);
2461     MemOpChains.push_back(LoadVal.getValue(1));
2462
2463     // If target is big endian, shift it to the most significant half-word or
2464     // byte.
2465     if (!isLittle)
2466       LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
2467                             DAG.getConstant(32 - LoadSize * 8, MVT::i32));
2468
2469     Offset += LoadSize;
2470     RemainingSize -= LoadSize;
2471
2472     // Read second subword if necessary.
2473     if (RemainingSize != 0)  {
2474       assert(RemainingSize == 1 && "There must be one byte remaining.");
2475       LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2476                             DAG.getConstant(Offset, MVT::i32));
2477       unsigned Alignment = std::min(ByValAlign, (unsigned )2);
2478       SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
2479                                        LoadPtr, MachinePointerInfo(),
2480                                        MVT::i8, false, false, Alignment);
2481       MemOpChains.push_back(Subword.getValue(1));
2482       // Insert the loaded byte to LoadVal.
2483       // FIXME: Use INS if supported by target.
2484       unsigned ShiftAmt = isLittle ? 16 : 8;
2485       SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
2486                                   DAG.getConstant(ShiftAmt, MVT::i32));
2487       LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
2488     }
2489
2490     unsigned DstReg = O32IntRegs[LocMemOffset / 4];
2491     RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
2492     return;
2493   }
2494
2495   // Copy remaining part of byval arg using memcpy.
2496   SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
2497                             DAG.getConstant(Offset, MVT::i32));
2498   SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr,
2499                             DAG.getIntPtrConstant(LocMemOffset));
2500   Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2501                         DAG.getConstant(RemainingSize, MVT::i32),
2502                         std::min(ByValAlign, (unsigned)4),
2503                         /*isVolatile=*/false, /*AlwaysInline=*/false,
2504                         MachinePointerInfo(0), MachinePointerInfo(0));
2505   MemOpChains.push_back(Chain);
2506 }
2507
2508 // Copy Mips64 byVal arg to registers and stack.
2509 void static
2510 PassByValArg64(SDValue Chain, DebugLoc dl,
2511                SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
2512                SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
2513                MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
2514                const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2515                EVT PtrTy, bool isLittle) {
2516   unsigned ByValSize = Flags.getByValSize();
2517   unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8);
2518   bool IsRegLoc = VA.isRegLoc();
2519   unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
2520   unsigned LocMemOffset = 0;
2521   unsigned MemCpySize = ByValSize;
2522
2523   if (!IsRegLoc)
2524     LocMemOffset = VA.getLocMemOffset();
2525   else {
2526     const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8,
2527                                     VA.getLocReg());
2528     const uint16_t *RegEnd = Mips64IntRegs + 8;
2529
2530     // Copy double words to registers.
2531     for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) {
2532       SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2533                                     DAG.getConstant(Offset, PtrTy));
2534       SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr,
2535                                     MachinePointerInfo(), false, false, false,
2536                                     Alignment);
2537       MemOpChains.push_back(LoadVal.getValue(1));
2538       RegsToPass.push_back(std::make_pair(*Reg, LoadVal));
2539     }
2540
2541     // Return if the struct has been fully copied.
2542     if (!(MemCpySize = ByValSize - Offset))
2543       return;
2544
2545     // If there is an argument register available, copy the remainder of the
2546     // byval argument with sub-doubleword loads and shifts.
2547     if (Reg != RegEnd) {
2548       assert((ByValSize < Offset + 8) &&
2549              "Size of the remainder should be smaller than 8-byte.");
2550       SDValue Val;
2551       for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) {
2552         unsigned RemSize = ByValSize - Offset;
2553
2554         if (RemSize < LoadSize)
2555           continue;
2556
2557         SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2558                                       DAG.getConstant(Offset, PtrTy));
2559         SDValue LoadVal =
2560           DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr,
2561                          MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
2562                          false, false, Alignment);
2563         MemOpChains.push_back(LoadVal.getValue(1));
2564
2565         // Offset in number of bits from double word boundary.
2566         unsigned OffsetDW = (Offset % 8) * 8;
2567         unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8);
2568         SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal,
2569                                     DAG.getConstant(Shamt, MVT::i32));
2570
2571         Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) :
2572                               Shift;
2573         Offset += LoadSize;
2574         Alignment = std::min(Alignment, LoadSize);
2575       }
2576
2577       RegsToPass.push_back(std::make_pair(*Reg, Val));
2578       return;
2579     }
2580   }
2581
2582   assert(MemCpySize && "MemCpySize must not be zero.");
2583
2584   // Copy remainder of byval arg to it with memcpy.
2585   SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg,
2586                             DAG.getConstant(Offset, PtrTy));
2587   SDValue Dst = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr,
2588                             DAG.getIntPtrConstant(LocMemOffset));
2589   Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
2590                         DAG.getConstant(MemCpySize, PtrTy), Alignment,
2591                         /*isVolatile=*/false, /*AlwaysInline=*/false,
2592                         MachinePointerInfo(0), MachinePointerInfo(0));
2593   MemOpChains.push_back(Chain);
2594 }
2595
2596 /// LowerCall - functions arguments are copied from virtual regs to
2597 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
2598 /// TODO: isTailCall.
2599 SDValue
2600 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2601                               SmallVectorImpl<SDValue> &InVals) const {
2602   SelectionDAG &DAG                     = CLI.DAG;
2603   DebugLoc &dl                          = CLI.DL;
2604   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2605   SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2606   SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2607   SDValue Chain                         = CLI.Chain;
2608   SDValue Callee                        = CLI.Callee;
2609   bool &isTailCall                      = CLI.IsTailCall;
2610   CallingConv::ID CallConv              = CLI.CallConv;
2611   bool isVarArg                         = CLI.IsVarArg;
2612
2613   // MIPs target does not yet support tail call optimization.
2614   isTailCall = false;
2615
2616   MachineFunction &MF = DAG.getMachineFunction();
2617   MachineFrameInfo *MFI = MF.getFrameInfo();
2618   const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
2619   bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
2620   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2621
2622   // Analyze operands of the call, assigning locations to each operand.
2623   SmallVector<CCValAssign, 16> ArgLocs;
2624   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2625                  getTargetMachine(), ArgLocs, *DAG.getContext());
2626
2627   if (CallConv == CallingConv::Fast)
2628     CCInfo.AnalyzeCallOperands(Outs, CC_Mips_FastCC);
2629   else if (IsO32)
2630     CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
2631   else if (HasMips64)
2632     AnalyzeMips64CallOperands(CCInfo, Outs);
2633   else
2634     CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
2635
2636   // Get a count of how many bytes are to be pushed on the stack.
2637   unsigned NextStackOffset = CCInfo.getNextStackOffset();
2638   unsigned StackAlignment = TFL->getStackAlignment();
2639   NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
2640
2641   // Update size of the maximum argument space.
2642   // For O32, a minimum of four words (16 bytes) of argument space is
2643   // allocated.
2644   if (IsO32 && (CallConv != CallingConv::Fast))
2645     NextStackOffset = std::max(NextStackOffset, (unsigned)16);
2646
2647   // Chain is the output chain of the last Load/Store or CopyToReg node.
2648   // ByValChain is the output chain of the last Memcpy node created for copying
2649   // byval arguments to the stack.
2650   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
2651   Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
2652
2653   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
2654                                         IsN64 ? Mips::SP_64 : Mips::SP,
2655                                         getPointerTy());
2656
2657   if (MipsFI->getMaxCallFrameSize() < NextStackOffset)
2658     MipsFI->setMaxCallFrameSize(NextStackOffset);
2659
2660   // With EABI is it possible to have 16 args on registers.
2661   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
2662   SmallVector<SDValue, 8> MemOpChains;
2663
2664   // Walk the register/memloc assignments, inserting copies/loads.
2665   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2666     SDValue Arg = OutVals[i];
2667     CCValAssign &VA = ArgLocs[i];
2668     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
2669     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2670
2671     // ByVal Arg.
2672     if (Flags.isByVal()) {
2673       assert(Flags.getByValSize() &&
2674              "ByVal args of size 0 should have been ignored by front-end.");
2675       if (IsO32)
2676         WriteByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2677                       MFI, DAG, Arg, VA, Flags, getPointerTy(),
2678                       Subtarget->isLittle());
2679       else
2680         PassByValArg64(Chain, dl, RegsToPass, MemOpChains, StackPtr,
2681                        MFI, DAG, Arg, VA, Flags, getPointerTy(),
2682                        Subtarget->isLittle());
2683       continue;
2684     }
2685
2686     // Promote the value if needed.
2687     switch (VA.getLocInfo()) {
2688     default: llvm_unreachable("Unknown loc info!");
2689     case CCValAssign::Full:
2690       if (VA.isRegLoc()) {
2691         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
2692             (ValVT == MVT::f64 && LocVT == MVT::i64))
2693           Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
2694         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
2695           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2696                                    Arg, DAG.getConstant(0, MVT::i32));
2697           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
2698                                    Arg, DAG.getConstant(1, MVT::i32));
2699           if (!Subtarget->isLittle())
2700             std::swap(Lo, Hi);
2701           unsigned LocRegLo = VA.getLocReg();
2702           unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
2703           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
2704           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
2705           continue;
2706         }
2707       }
2708       break;
2709     case CCValAssign::SExt:
2710       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
2711       break;
2712     case CCValAssign::ZExt:
2713       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
2714       break;
2715     case CCValAssign::AExt:
2716       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
2717       break;
2718     }
2719
2720     // Arguments that can be passed on register must be kept at
2721     // RegsToPass vector
2722     if (VA.isRegLoc()) {
2723       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2724       continue;
2725     }
2726
2727     // Register can't get to this point...
2728     assert(VA.isMemLoc());
2729
2730     // emit ISD::STORE whichs stores the
2731     // parameter value to a stack Location
2732     SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
2733                                  DAG.getIntPtrConstant(VA.getLocMemOffset()));
2734     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2735                                        MachinePointerInfo(), false, false, 0));
2736   }
2737
2738   // Transform all store nodes into one single node because all store
2739   // nodes are independent of each other.
2740   if (!MemOpChains.empty())
2741     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2742                         &MemOpChains[0], MemOpChains.size());
2743
2744   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2745   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2746   // node so that legalize doesn't hack it.
2747   unsigned char OpFlag;
2748   bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
2749   bool GlobalOrExternal = false;
2750   SDValue CalleeLo;
2751
2752   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2753     if (IsPICCall && G->getGlobal()->hasInternalLinkage()) {
2754       OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE;
2755       unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST;
2756       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
2757                                           OpFlag);
2758       CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
2759                                             0, LoFlag);
2760     } else {
2761       OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
2762       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2763                                           getPointerTy(), 0, OpFlag);
2764     }
2765
2766     GlobalOrExternal = true;
2767   }
2768   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2769     if (IsN64 || (!IsO32 && IsPIC))
2770       OpFlag = MipsII::MO_GOT_DISP;
2771     else if (!IsPIC) // !N64 && static
2772       OpFlag = MipsII::MO_NO_FLAG;
2773     else // O32 & PIC
2774       OpFlag = MipsII::MO_GOT_CALL;
2775     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2776                                          OpFlag);
2777     GlobalOrExternal = true;
2778   }
2779
2780   SDValue InFlag;
2781
2782   // Create nodes that load address of callee and copy it to T9
2783   if (IsPICCall) {
2784     if (GlobalOrExternal) {
2785       // Load callee address
2786       Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(),
2787                            GetGlobalReg(DAG, getPointerTy()), Callee);
2788       SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
2789                                       Callee, MachinePointerInfo::getGOT(),
2790                                       false, false, false, 0);
2791
2792       // Use GOT+LO if callee has internal linkage.
2793       if (CalleeLo.getNode()) {
2794         SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo);
2795         Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo);
2796       } else
2797         Callee = LoadValue;
2798     }
2799   }
2800
2801   // T9 register operand.
2802   SDValue T9;
2803
2804   // T9 should contain the address of the callee function if
2805   // -reloction-model=pic or it is an indirect call.
2806   if (IsPICCall || !GlobalOrExternal) {
2807     // copy to T9
2808     unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
2809     Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
2810     InFlag = Chain.getValue(1);
2811
2812     if (Subtarget->inMips16Mode())
2813       T9 = DAG.getRegister(T9Reg, getPointerTy());
2814     else
2815       Callee = DAG.getRegister(T9Reg, getPointerTy());
2816   }
2817
2818   // Insert node "GP copy globalreg" before call to function.
2819   // Lazy-binding stubs require GP to point to the GOT.
2820   if (IsPICCall) {
2821     unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
2822     EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
2823     RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
2824   }
2825
2826   // Build a sequence of copy-to-reg nodes chained together with token
2827   // chain and flag operands which copy the outgoing args into registers.
2828   // The InFlag in necessary since all emitted instructions must be
2829   // stuck together.
2830   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2831     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2832                              RegsToPass[i].second, InFlag);
2833     InFlag = Chain.getValue(1);
2834   }
2835
2836   // MipsJmpLink = #chain, #target_address, #opt_in_flags...
2837   //             = Chain, Callee, Reg#1, Reg#2, ...
2838   //
2839   // Returns a chain & a flag for retval copy to use.
2840   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2841   SmallVector<SDValue, 8> Ops;
2842   Ops.push_back(Chain);
2843   Ops.push_back(Callee);
2844
2845   // Add argument registers to the end of the list so that they are
2846   // known live into the call.
2847   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2848     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2849                                   RegsToPass[i].second.getValueType()));
2850
2851   // Add T9 register operand.
2852   if (T9.getNode())
2853     Ops.push_back(T9);
2854
2855   // Add a register mask operand representing the call-preserved registers.
2856   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2857   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2858   assert(Mask && "Missing call preserved mask for calling convention");
2859   Ops.push_back(DAG.getRegisterMask(Mask));
2860
2861   if (InFlag.getNode())
2862     Ops.push_back(InFlag);
2863
2864   Chain  = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
2865   InFlag = Chain.getValue(1);
2866
2867   // Create the CALLSEQ_END node.
2868   Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
2869                              DAG.getIntPtrConstant(0, true), InFlag);
2870   InFlag = Chain.getValue(1);
2871
2872   // Handle result values, copying them out of physregs into vregs that we
2873   // return.
2874   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2875                          Ins, dl, DAG, InVals);
2876 }
2877
2878 /// LowerCallResult - Lower the result values of a call into the
2879 /// appropriate copies out of appropriate physical registers.
2880 SDValue
2881 MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2882                                     CallingConv::ID CallConv, bool isVarArg,
2883                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2884                                     DebugLoc dl, SelectionDAG &DAG,
2885                                     SmallVectorImpl<SDValue> &InVals) const {
2886   // Assign locations to each value returned by this call.
2887   SmallVector<CCValAssign, 16> RVLocs;
2888   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2889                  getTargetMachine(), RVLocs, *DAG.getContext());
2890
2891   CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
2892
2893   // Copy all of the result registers out of their specified physreg.
2894   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2895     Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
2896                                RVLocs[i].getValVT(), InFlag).getValue(1);
2897     InFlag = Chain.getValue(2);
2898     InVals.push_back(Chain.getValue(0));
2899   }
2900
2901   return Chain;
2902 }
2903
2904 //===----------------------------------------------------------------------===//
2905 //             Formal Arguments Calling Convention Implementation
2906 //===----------------------------------------------------------------------===//
2907 static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2908                          std::vector<SDValue> &OutChains,
2909                          SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
2910                          const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2911                          const Argument *FuncArg) {
2912   unsigned LocMem = VA.getLocMemOffset();
2913   unsigned FirstWord = LocMem / 4;
2914
2915   // copy register A0 - A3 to frame object
2916   for (unsigned i = 0; i < NumWords; ++i) {
2917     unsigned CurWord = FirstWord + i;
2918     if (CurWord >= O32IntRegsSize)
2919       break;
2920
2921     unsigned SrcReg = O32IntRegs[CurWord];
2922     unsigned Reg = AddLiveIn(MF, SrcReg, &Mips::CPURegsRegClass);
2923     SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
2924                                    DAG.getConstant(i * 4, MVT::i32));
2925     SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
2926                                  StorePtr, MachinePointerInfo(FuncArg, i * 4),
2927                                  false, false, 0);
2928     OutChains.push_back(Store);
2929   }
2930 }
2931
2932 // Create frame object on stack and copy registers used for byval passing to it.
2933 static unsigned
2934 CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl,
2935                     std::vector<SDValue> &OutChains, SelectionDAG &DAG,
2936                     const CCValAssign &VA, const ISD::ArgFlagsTy &Flags,
2937                     MachineFrameInfo *MFI, bool IsRegLoc,
2938                     SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI,
2939                     EVT PtrTy, const Argument *FuncArg) {
2940   const uint16_t *Reg = Mips64IntRegs + 8;
2941   int FOOffset; // Frame object offset from virtual frame pointer.
2942
2943   if (IsRegLoc) {
2944     Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg());
2945     FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8;
2946   }
2947   else
2948     FOOffset = VA.getLocMemOffset();
2949
2950   // Create frame object.
2951   unsigned NumRegs = (Flags.getByValSize() + 7) / 8;
2952   unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true);
2953   SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy);
2954   InVals.push_back(FIN);
2955
2956   // Copy arg registers.
2957   for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs);
2958        ++Reg, ++I) {
2959     unsigned VReg = AddLiveIn(MF, *Reg, &Mips::CPU64RegsRegClass);
2960     SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN,
2961                                    DAG.getConstant(I * 8, PtrTy));
2962     SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64),
2963                                  StorePtr, MachinePointerInfo(FuncArg, I * 8),
2964                                  false, false, 0);
2965     OutChains.push_back(Store);
2966   }
2967
2968   return LastFI;
2969 }
2970
2971 /// LowerFormalArguments - transform physical registers into virtual registers
2972 /// and generate load operations for arguments places on the stack.
2973 SDValue
2974 MipsTargetLowering::LowerFormalArguments(SDValue Chain,
2975                                          CallingConv::ID CallConv,
2976                                          bool isVarArg,
2977                                       const SmallVectorImpl<ISD::InputArg> &Ins,
2978                                          DebugLoc dl, SelectionDAG &DAG,
2979                                          SmallVectorImpl<SDValue> &InVals)
2980                                           const {
2981   MachineFunction &MF = DAG.getMachineFunction();
2982   MachineFrameInfo *MFI = MF.getFrameInfo();
2983   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2984
2985   MipsFI->setVarArgsFrameIndex(0);
2986
2987   // Used with vargs to acumulate store chains.
2988   std::vector<SDValue> OutChains;
2989
2990   // Assign locations to all of the incoming arguments.
2991   SmallVector<CCValAssign, 16> ArgLocs;
2992   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2993                  getTargetMachine(), ArgLocs, *DAG.getContext());
2994
2995   if (CallConv == CallingConv::Fast)
2996     CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FastCC);
2997   else if (IsO32)
2998     CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
2999   else
3000     CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
3001
3002   Function::const_arg_iterator FuncArg =
3003     DAG.getMachineFunction().getFunction()->arg_begin();
3004   int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
3005
3006   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) {
3007     CCValAssign &VA = ArgLocs[i];
3008     EVT ValVT = VA.getValVT();
3009     ISD::ArgFlagsTy Flags = Ins[i].Flags;
3010     bool IsRegLoc = VA.isRegLoc();
3011
3012     if (Flags.isByVal()) {
3013       assert(Flags.getByValSize() &&
3014              "ByVal args of size 0 should have been ignored by front-end.");
3015       if (IsO32) {
3016         unsigned NumWords = (Flags.getByValSize() + 3) / 4;
3017         LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
3018                                         true);
3019         SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3020         InVals.push_back(FIN);
3021         ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags,
3022                      &*FuncArg);
3023       } else // N32/64
3024         LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags,
3025                                      MFI, IsRegLoc, InVals, MipsFI,
3026                                      getPointerTy(), &*FuncArg);
3027       continue;
3028     }
3029
3030     // Arguments stored on registers
3031     if (IsRegLoc) {
3032       EVT RegVT = VA.getLocVT();
3033       unsigned ArgReg = VA.getLocReg();
3034       const TargetRegisterClass *RC;
3035
3036       if (RegVT == MVT::i32)
3037         RC = &Mips::CPURegsRegClass;
3038       else if (RegVT == MVT::i64)
3039         RC = &Mips::CPU64RegsRegClass;
3040       else if (RegVT == MVT::f32)
3041         RC = &Mips::FGR32RegClass;
3042       else if (RegVT == MVT::f64)
3043         RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
3044       else
3045         llvm_unreachable("RegVT not supported by FormalArguments Lowering");
3046
3047       // Transform the arguments stored on
3048       // physical registers into virtual ones
3049       unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3050       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3051
3052       // If this is an 8 or 16-bit value, it has been passed promoted
3053       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3054       // truncate to the right size.
3055       if (VA.getLocInfo() != CCValAssign::Full) {
3056         unsigned Opcode = 0;
3057         if (VA.getLocInfo() == CCValAssign::SExt)
3058           Opcode = ISD::AssertSext;
3059         else if (VA.getLocInfo() == CCValAssign::ZExt)
3060           Opcode = ISD::AssertZext;
3061         if (Opcode)
3062           ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
3063                                  DAG.getValueType(ValVT));
3064         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
3065       }
3066
3067       // Handle floating point arguments passed in integer registers.
3068       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3069           (RegVT == MVT::i64 && ValVT == MVT::f64))
3070         ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
3071       else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
3072         unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
3073                                   getNextIntArgReg(ArgReg), RC);
3074         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
3075         if (!Subtarget->isLittle())
3076           std::swap(ArgValue, ArgValue2);
3077         ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
3078                                ArgValue, ArgValue2);
3079       }
3080
3081       InVals.push_back(ArgValue);
3082     } else { // VA.isRegLoc()
3083
3084       // sanity check
3085       assert(VA.isMemLoc());
3086
3087       // The stack pointer offset is relative to the caller stack frame.
3088       LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
3089                                       VA.getLocMemOffset(), true);
3090
3091       // Create load nodes to retrieve arguments from the stack
3092       SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
3093       InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
3094                                    MachinePointerInfo::getFixedStack(LastFI),
3095                                    false, false, false, 0));
3096     }
3097   }
3098
3099   // The mips ABIs for returning structs by value requires that we copy
3100   // the sret argument into $v0 for the return. Save the argument into
3101   // a virtual register so that we can access it from the return points.
3102   if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3103     unsigned Reg = MipsFI->getSRetReturnReg();
3104     if (!Reg) {
3105       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
3106       MipsFI->setSRetReturnReg(Reg);
3107     }
3108     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
3109     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
3110   }
3111
3112   if (isVarArg) {
3113     unsigned NumOfRegs = IsO32 ? 4 : 8;
3114     const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs;
3115     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs);
3116     int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot.
3117     const TargetRegisterClass *RC = IsO32 ?
3118       (const TargetRegisterClass*)&Mips::CPURegsRegClass :
3119       (const TargetRegisterClass*)&Mips::CPU64RegsRegClass;
3120     unsigned RegSize = RC->getSize();
3121     int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize;
3122
3123     // Offset of the first variable argument from stack pointer.
3124     int FirstVaArgOffset;
3125
3126     if (IsO32 || (Idx == NumOfRegs)) {
3127       FirstVaArgOffset =
3128         (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize;
3129     } else
3130       FirstVaArgOffset = RegSlotOffset;
3131
3132     // Record the frame index of the first variable argument
3133     // which is a value necessary to VASTART.
3134     LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true);
3135     MipsFI->setVarArgsFrameIndex(LastFI);
3136
3137     // Copy the integer registers that have not been used for argument passing
3138     // to the argument register save area. For O32, the save area is allocated
3139     // in the caller's stack frame, while for N32/64, it is allocated in the
3140     // callee's stack frame.
3141     for (int StackOffset = RegSlotOffset;
3142          Idx < NumOfRegs; ++Idx, StackOffset += RegSize) {
3143       unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC);
3144       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3145                                             MVT::getIntegerVT(RegSize * 8));
3146       LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true);
3147       SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
3148       OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
3149                                        MachinePointerInfo(), false, false, 0));
3150     }
3151   }
3152
3153   MipsFI->setLastInArgFI(LastFI);
3154
3155   // All stores are grouped in one node to allow the matching between
3156   // the size of Ins and InVals. This only happens when on varg functions
3157   if (!OutChains.empty()) {
3158     OutChains.push_back(Chain);
3159     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3160                         &OutChains[0], OutChains.size());
3161   }
3162
3163   return Chain;
3164 }
3165
3166 //===----------------------------------------------------------------------===//
3167 //               Return Value Calling Convention Implementation
3168 //===----------------------------------------------------------------------===//
3169
3170 SDValue
3171 MipsTargetLowering::LowerReturn(SDValue Chain,
3172                                 CallingConv::ID CallConv, bool isVarArg,
3173                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
3174                                 const SmallVectorImpl<SDValue> &OutVals,
3175                                 DebugLoc dl, SelectionDAG &DAG) const {
3176
3177   // CCValAssign - represent the assignment of
3178   // the return value to a location
3179   SmallVector<CCValAssign, 16> RVLocs;
3180
3181   // CCState - Info about the registers and stack slot.
3182   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3183                  getTargetMachine(), RVLocs, *DAG.getContext());
3184
3185   // Analize return values.
3186   CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3187
3188   // If this is the first return lowered for this function, add
3189   // the regs to the liveout set for the function.
3190   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3191     for (unsigned i = 0; i != RVLocs.size(); ++i)
3192       if (RVLocs[i].isRegLoc())
3193         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3194   }
3195
3196   SDValue Flag;
3197
3198   // Copy the result values into the output registers.
3199   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3200     CCValAssign &VA = RVLocs[i];
3201     assert(VA.isRegLoc() && "Can only return in registers!");
3202
3203     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
3204
3205     // guarantee that all emitted copies are
3206     // stuck together, avoiding something bad
3207     Flag = Chain.getValue(1);
3208   }
3209
3210   // The mips ABIs for returning structs by value requires that we copy
3211   // the sret argument into $v0 for the return. We saved the argument into
3212   // a virtual register in the entry block, so now we copy the value out
3213   // and into $v0.
3214   if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
3215     MachineFunction &MF      = DAG.getMachineFunction();
3216     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3217     unsigned Reg = MipsFI->getSRetReturnReg();
3218
3219     if (!Reg)
3220       llvm_unreachable("sret virtual register not created in the entry block");
3221     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
3222
3223     Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
3224     Flag = Chain.getValue(1);
3225   }
3226
3227   // Return on Mips is always a "jr $ra"
3228   if (Flag.getNode())
3229     return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
3230
3231   // Return Void
3232   return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
3233 }
3234
3235 //===----------------------------------------------------------------------===//
3236 //                           Mips Inline Assembly Support
3237 //===----------------------------------------------------------------------===//
3238
3239 /// getConstraintType - Given a constraint letter, return the type of
3240 /// constraint it is for this target.
3241 MipsTargetLowering::ConstraintType MipsTargetLowering::
3242 getConstraintType(const std::string &Constraint) const
3243 {
3244   // Mips specific constrainy
3245   // GCC config/mips/constraints.md
3246   //
3247   // 'd' : An address register. Equivalent to r
3248   //       unless generating MIPS16 code.
3249   // 'y' : Equivalent to r; retained for
3250   //       backwards compatibility.
3251   // 'c' : A register suitable for use in an indirect
3252   //       jump. This will always be $25 for -mabicalls.
3253   // 'l' : The lo register. 1 word storage.
3254   // 'x' : The hilo register pair. Double word storage.
3255   if (Constraint.size() == 1) {
3256     switch (Constraint[0]) {
3257       default : break;
3258       case 'd':
3259       case 'y':
3260       case 'f':
3261       case 'c':
3262       case 'l':
3263       case 'x':
3264         return C_RegisterClass;
3265     }
3266   }
3267   return TargetLowering::getConstraintType(Constraint);
3268 }
3269
3270 /// Examine constraint type and operand type and determine a weight value.
3271 /// This object must already have been set up with the operand type
3272 /// and the current alternative constraint selected.
3273 TargetLowering::ConstraintWeight
3274 MipsTargetLowering::getSingleConstraintMatchWeight(
3275     AsmOperandInfo &info, const char *constraint) const {
3276   ConstraintWeight weight = CW_Invalid;
3277   Value *CallOperandVal = info.CallOperandVal;
3278     // If we don't have a value, we can't do a match,
3279     // but allow it at the lowest weight.
3280   if (CallOperandVal == NULL)
3281     return CW_Default;
3282   Type *type = CallOperandVal->getType();
3283   // Look at the constraint type.
3284   switch (*constraint) {
3285   default:
3286     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3287     break;
3288   case 'd':
3289   case 'y':
3290     if (type->isIntegerTy())
3291       weight = CW_Register;
3292     break;
3293   case 'f':
3294     if (type->isFloatTy())
3295       weight = CW_Register;
3296     break;
3297   case 'c': // $25 for indirect jumps
3298   case 'l': // lo register
3299   case 'x': // hilo register pair
3300       if (type->isIntegerTy())
3301       weight = CW_SpecificReg;
3302       break;
3303   case 'I': // signed 16 bit immediate
3304   case 'J': // integer zero
3305   case 'K': // unsigned 16 bit immediate
3306   case 'L': // signed 32 bit immediate where lower 16 bits are 0
3307   case 'N': // immediate in the range of -65535 to -1 (inclusive)
3308   case 'O': // signed 15 bit immediate (+- 16383)
3309   case 'P': // immediate in the range of 65535 to 1 (inclusive)
3310     if (isa<ConstantInt>(CallOperandVal))
3311       weight = CW_Constant;
3312     break;
3313   }
3314   return weight;
3315 }
3316
3317 /// Given a register class constraint, like 'r', if this corresponds directly
3318 /// to an LLVM register class, return a register of 0 and the register class
3319 /// pointer.
3320 std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
3321 getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
3322 {
3323   if (Constraint.size() == 1) {
3324     switch (Constraint[0]) {
3325     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3326     case 'y': // Same as 'r'. Exists for compatibility.
3327     case 'r':
3328       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
3329         return std::make_pair(0U, &Mips::CPURegsRegClass);
3330       if (VT == MVT::i64 && !HasMips64)
3331         return std::make_pair(0U, &Mips::CPURegsRegClass);
3332       if (VT == MVT::i64 && HasMips64)
3333         return std::make_pair(0U, &Mips::CPU64RegsRegClass);
3334       // This will generate an error message
3335       return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3336     case 'f':
3337       if (VT == MVT::f32)
3338         return std::make_pair(0U, &Mips::FGR32RegClass);
3339       if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
3340         if (Subtarget->isFP64bit())
3341           return std::make_pair(0U, &Mips::FGR64RegClass);
3342         return std::make_pair(0U, &Mips::AFGR64RegClass);
3343       }
3344       break;
3345     case 'c': // register suitable for indirect jump
3346       if (VT == MVT::i32)
3347         return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
3348       assert(VT == MVT::i64 && "Unexpected type.");
3349       return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
3350     case 'l': // register suitable for indirect jump
3351       if (VT == MVT::i32)
3352         return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
3353       return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
3354     case 'x': // register suitable for indirect jump
3355       // Fixme: Not triggering the use of both hi and low
3356       // This will generate an error message
3357       return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
3358     }
3359   }
3360   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3361 }
3362
3363 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3364 /// vector.  If it is invalid, don't add anything to Ops.
3365 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3366                                                      std::string &Constraint,
3367                                                      std::vector<SDValue>&Ops,
3368                                                      SelectionDAG &DAG) const {
3369   SDValue Result(0, 0);
3370
3371   // Only support length 1 constraints for now.
3372   if (Constraint.length() > 1) return;
3373
3374   char ConstraintLetter = Constraint[0];
3375   switch (ConstraintLetter) {
3376   default: break; // This will fall through to the generic implementation
3377   case 'I': // Signed 16 bit constant
3378     // If this fails, the parent routine will give an error
3379     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3380       EVT Type = Op.getValueType();
3381       int64_t Val = C->getSExtValue();
3382       if (isInt<16>(Val)) {
3383         Result = DAG.getTargetConstant(Val, Type);
3384         break;
3385       }
3386     }
3387     return;
3388   case 'J': // integer zero
3389     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3390       EVT Type = Op.getValueType();
3391       int64_t Val = C->getZExtValue();
3392       if (Val == 0) {
3393         Result = DAG.getTargetConstant(0, Type);
3394         break;
3395       }
3396     }
3397     return;
3398   case 'K': // unsigned 16 bit immediate
3399     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3400       EVT Type = Op.getValueType();
3401       uint64_t Val = (uint64_t)C->getZExtValue();
3402       if (isUInt<16>(Val)) {
3403         Result = DAG.getTargetConstant(Val, Type);
3404         break;
3405       }
3406     }
3407     return;
3408   case 'L': // signed 32 bit immediate where lower 16 bits are 0
3409     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3410       EVT Type = Op.getValueType();
3411       int64_t Val = C->getSExtValue();
3412       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
3413         Result = DAG.getTargetConstant(Val, Type);
3414         break;
3415       }
3416     }
3417     return;
3418   case 'N': // immediate in the range of -65535 to -1 (inclusive)
3419     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3420       EVT Type = Op.getValueType();
3421       int64_t Val = C->getSExtValue();
3422       if ((Val >= -65535) && (Val <= -1)) {
3423         Result = DAG.getTargetConstant(Val, Type);
3424         break;
3425       }
3426     }
3427     return;
3428   case 'O': // signed 15 bit immediate
3429     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3430       EVT Type = Op.getValueType();
3431       int64_t Val = C->getSExtValue();
3432       if ((isInt<15>(Val))) {
3433         Result = DAG.getTargetConstant(Val, Type);
3434         break;
3435       }
3436     }
3437     return;
3438   case 'P': // immediate in the range of 1 to 65535 (inclusive)
3439     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3440       EVT Type = Op.getValueType();
3441       int64_t Val = C->getSExtValue();
3442       if ((Val <= 65535) && (Val >= 1)) {
3443         Result = DAG.getTargetConstant(Val, Type);
3444         break;
3445       }
3446     }
3447     return;
3448   }
3449
3450   if (Result.getNode()) {
3451     Ops.push_back(Result);
3452     return;
3453   }
3454
3455   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3456 }
3457
3458 bool
3459 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3460   // The Mips target isn't yet aware of offsets.
3461   return false;
3462 }
3463
3464 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
3465                                             unsigned SrcAlign, bool IsZeroVal,
3466                                             bool MemcpyStrSrc,
3467                                             MachineFunction &MF) const {
3468   if (Subtarget->hasMips64())
3469     return MVT::i64;
3470
3471   return MVT::i32;
3472 }
3473
3474 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3475   if (VT != MVT::f32 && VT != MVT::f64)
3476     return false;
3477   if (Imm.isNegZero())
3478     return false;
3479   return Imm.isZero();
3480 }
3481
3482 unsigned MipsTargetLowering::getJumpTableEncoding() const {
3483   if (IsN64)
3484     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
3485
3486   return TargetLowering::getJumpTableEncoding();
3487 }