]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
Vendor import of llvm RELEASE_350/final tag r216957 (effectively, 3.5.0 release):
[FreeBSD/FreeBSD.git] / lib / Target / SystemZ / SystemZISelDAGToDAG.cpp
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZTargetMachine.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/raw_ostream.h"
19
20 using namespace llvm;
21
22 #define DEBUG_TYPE "systemz-isel"
23
24 namespace {
25 // Used to build addressing modes.
26 struct SystemZAddressingMode {
27   // The shape of the address.
28   enum AddrForm {
29     // base+displacement
30     FormBD,
31
32     // base+displacement+index for load and store operands
33     FormBDXNormal,
34
35     // base+displacement+index for load address operands
36     FormBDXLA,
37
38     // base+displacement+index+ADJDYNALLOC
39     FormBDXDynAlloc
40   };
41   AddrForm Form;
42
43   // The type of displacement.  The enum names here correspond directly
44   // to the definitions in SystemZOperand.td.  We could split them into
45   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
46   enum DispRange {
47     Disp12Only,
48     Disp12Pair,
49     Disp20Only,
50     Disp20Only128,
51     Disp20Pair
52   };
53   DispRange DR;
54
55   // The parts of the address.  The address is equivalent to:
56   //
57   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
58   SDValue Base;
59   int64_t Disp;
60   SDValue Index;
61   bool IncludesDynAlloc;
62
63   SystemZAddressingMode(AddrForm form, DispRange dr)
64     : Form(form), DR(dr), Base(), Disp(0), Index(),
65       IncludesDynAlloc(false) {}
66
67   // True if the address can have an index register.
68   bool hasIndexField() { return Form != FormBD; }
69
70   // True if the address can (and must) include ADJDYNALLOC.
71   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
72
73   void dump() {
74     errs() << "SystemZAddressingMode " << this << '\n';
75
76     errs() << " Base ";
77     if (Base.getNode())
78       Base.getNode()->dump();
79     else
80       errs() << "null\n";
81
82     if (hasIndexField()) {
83       errs() << " Index ";
84       if (Index.getNode())
85         Index.getNode()->dump();
86       else
87         errs() << "null\n";
88     }
89
90     errs() << " Disp " << Disp;
91     if (IncludesDynAlloc)
92       errs() << " + ADJDYNALLOC";
93     errs() << '\n';
94   }
95 };
96
97 // Return a mask with Count low bits set.
98 static uint64_t allOnes(unsigned int Count) {
99   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
100 }
101
102 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
103 // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
104 // Rotate (I5).  The combined operand value is effectively:
105 //
106 //   (or (rotl Input, Rotate), ~Mask)
107 //
108 // for RNSBG and:
109 //
110 //   (and (rotl Input, Rotate), Mask)
111 //
112 // otherwise.  The output value has BitSize bits, although Input may be
113 // narrower (in which case the upper bits are don't care).
114 struct RxSBGOperands {
115   RxSBGOperands(unsigned Op, SDValue N)
116     : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
117       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
118       Rotate(0) {}
119
120   unsigned Opcode;
121   unsigned BitSize;
122   uint64_t Mask;
123   SDValue Input;
124   unsigned Start;
125   unsigned End;
126   unsigned Rotate;
127 };
128
129 class SystemZDAGToDAGISel : public SelectionDAGISel {
130   const SystemZTargetLowering &Lowering;
131   const SystemZSubtarget &Subtarget;
132
133   // Used by SystemZOperands.td to create integer constants.
134   inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
135     return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
136   }
137
138   const SystemZTargetMachine &getTargetMachine() const {
139     return static_cast<const SystemZTargetMachine &>(TM);
140   }
141
142   const SystemZInstrInfo *getInstrInfo() const {
143     return getTargetMachine().getInstrInfo();
144   }
145
146   // Try to fold more of the base or index of AM into AM, where IsBase
147   // selects between the base and index.
148   bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
149
150   // Try to describe N in AM, returning true on success.
151   bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
152
153   // Extract individual target operands from matched address AM.
154   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
155                           SDValue &Base, SDValue &Disp) const;
156   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
157                           SDValue &Base, SDValue &Disp, SDValue &Index) const;
158
159   // Try to match Addr as a FormBD address with displacement type DR.
160   // Return true on success, storing the base and displacement in
161   // Base and Disp respectively.
162   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
163                     SDValue &Base, SDValue &Disp) const;
164
165   // Try to match Addr as a FormBDX address with displacement type DR.
166   // Return true on success and if the result had no index.  Store the
167   // base and displacement in Base and Disp respectively.
168   bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
169                      SDValue &Base, SDValue &Disp) const;
170
171   // Try to match Addr as a FormBDX* address of form Form with
172   // displacement type DR.  Return true on success, storing the base,
173   // displacement and index in Base, Disp and Index respectively.
174   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
175                      SystemZAddressingMode::DispRange DR, SDValue Addr,
176                      SDValue &Base, SDValue &Disp, SDValue &Index) const;
177
178   // PC-relative address matching routines used by SystemZOperands.td.
179   bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
180     if (SystemZISD::isPCREL(Addr.getOpcode())) {
181       Target = Addr.getOperand(0);
182       return true;
183     }
184     return false;
185   }
186
187   // BD matching routines used by SystemZOperands.td.
188   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
189     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
190   }
191   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
192     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
193   }
194   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
195     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
196   }
197   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
198     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
199   }
200
201   // MVI matching routines used by SystemZOperands.td.
202   bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
203     return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
204   }
205   bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
206     return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
207   }
208
209   // BDX matching routines used by SystemZOperands.td.
210   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
211                            SDValue &Index) const {
212     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
213                          SystemZAddressingMode::Disp12Only,
214                          Addr, Base, Disp, Index);
215   }
216   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
217                            SDValue &Index) const {
218     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
219                          SystemZAddressingMode::Disp12Pair,
220                          Addr, Base, Disp, Index);
221   }
222   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
223                             SDValue &Index) const {
224     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
225                          SystemZAddressingMode::Disp12Only,
226                          Addr, Base, Disp, Index);
227   }
228   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
229                            SDValue &Index) const {
230     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
231                          SystemZAddressingMode::Disp20Only,
232                          Addr, Base, Disp, Index);
233   }
234   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
235                               SDValue &Index) const {
236     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
237                          SystemZAddressingMode::Disp20Only128,
238                          Addr, Base, Disp, Index);
239   }
240   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
241                            SDValue &Index) const {
242     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
243                          SystemZAddressingMode::Disp20Pair,
244                          Addr, Base, Disp, Index);
245   }
246   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
247                           SDValue &Index) const {
248     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
249                          SystemZAddressingMode::Disp12Pair,
250                          Addr, Base, Disp, Index);
251   }
252   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
253                           SDValue &Index) const {
254     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
255                          SystemZAddressingMode::Disp20Pair,
256                          Addr, Base, Disp, Index);
257   }
258
259   // Check whether (or Op (and X InsertMask)) is effectively an insertion
260   // of X into bits InsertMask of some Y != Op.  Return true if so and
261   // set Op to that Y.
262   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
263
264   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
265   // Return true on success.
266   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
267
268   // Try to fold some of RxSBG.Input into other fields of RxSBG.
269   // Return true on success.
270   bool expandRxSBG(RxSBGOperands &RxSBG) const;
271
272   // Return an undefined value of type VT.
273   SDValue getUNDEF(SDLoc DL, EVT VT) const;
274
275   // Convert N to VT, if it isn't already.
276   SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
277
278   // Try to implement AND or shift node N using RISBG with the zero flag set.
279   // Return the selected node on success, otherwise return null.
280   SDNode *tryRISBGZero(SDNode *N);
281
282   // Try to use RISBG or Opcode to implement OR or XOR node N.
283   // Return the selected node on success, otherwise return null.
284   SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
285
286   // If Op0 is null, then Node is a constant that can be loaded using:
287   //
288   //   (Opcode UpperVal LowerVal)
289   //
290   // If Op0 is nonnull, then Node can be implemented using:
291   //
292   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
293   SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
294                               uint64_t UpperVal, uint64_t LowerVal);
295
296   // Return true if Load and Store are loads and stores of the same size
297   // and are guaranteed not to overlap.  Such operations can be implemented
298   // using block (SS-format) instructions.
299   //
300   // Partial overlap would lead to incorrect code, since the block operations
301   // are logically bytewise, even though they have a fast path for the
302   // non-overlapping case.  We also need to avoid full overlap (i.e. two
303   // addresses that might be equal at run time) because although that case
304   // would be handled correctly, it might be implemented by millicode.
305   bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
306
307   // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
308   // from Y to X.
309   bool storeLoadCanUseMVC(SDNode *N) const;
310
311   // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
312   // if A[1 - I] == X and if N can use a block operation like NC from A[I]
313   // to X.
314   bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
315
316 public:
317   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
318     : SelectionDAGISel(TM, OptLevel),
319       Lowering(*TM.getTargetLowering()),
320       Subtarget(*TM.getSubtargetImpl()) { }
321
322   // Override MachineFunctionPass.
323   const char *getPassName() const override {
324     return "SystemZ DAG->DAG Pattern Instruction Selection";
325   }
326
327   // Override SelectionDAGISel.
328   SDNode *Select(SDNode *Node) override;
329   bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
330                                     std::vector<SDValue> &OutOps) override;
331
332   // Include the pieces autogenerated from the target description.
333   #include "SystemZGenDAGISel.inc"
334 };
335 } // end anonymous namespace
336
337 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
338                                          CodeGenOpt::Level OptLevel) {
339   return new SystemZDAGToDAGISel(TM, OptLevel);
340 }
341
342 // Return true if Val should be selected as a displacement for an address
343 // with range DR.  Here we're interested in the range of both the instruction
344 // described by DR and of any pairing instruction.
345 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
346   switch (DR) {
347   case SystemZAddressingMode::Disp12Only:
348     return isUInt<12>(Val);
349
350   case SystemZAddressingMode::Disp12Pair:
351   case SystemZAddressingMode::Disp20Only:
352   case SystemZAddressingMode::Disp20Pair:
353     return isInt<20>(Val);
354
355   case SystemZAddressingMode::Disp20Only128:
356     return isInt<20>(Val) && isInt<20>(Val + 8);
357   }
358   llvm_unreachable("Unhandled displacement range");
359 }
360
361 // Change the base or index in AM to Value, where IsBase selects
362 // between the base and index.
363 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
364                             SDValue Value) {
365   if (IsBase)
366     AM.Base = Value;
367   else
368     AM.Index = Value;
369 }
370
371 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
372 // where IsBase selects between the base and index.  Try to fold the
373 // ADJDYNALLOC into AM.
374 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
375                               SDValue Value) {
376   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
377     changeComponent(AM, IsBase, Value);
378     AM.IncludesDynAlloc = true;
379     return true;
380   }
381   return false;
382 }
383
384 // The base of AM is equivalent to Base + Index.  Try to use Index as
385 // the index register.
386 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
387                         SDValue Index) {
388   if (AM.hasIndexField() && !AM.Index.getNode()) {
389     AM.Base = Base;
390     AM.Index = Index;
391     return true;
392   }
393   return false;
394 }
395
396 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
397 // between the base and index.  Try to fold Op1 into AM's displacement.
398 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
399                        SDValue Op0, uint64_t Op1) {
400   // First try adjusting the displacement.
401   int64_t TestDisp = AM.Disp + Op1;
402   if (selectDisp(AM.DR, TestDisp)) {
403     changeComponent(AM, IsBase, Op0);
404     AM.Disp = TestDisp;
405     return true;
406   }
407
408   // We could consider forcing the displacement into a register and
409   // using it as an index, but it would need to be carefully tuned.
410   return false;
411 }
412
413 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
414                                         bool IsBase) const {
415   SDValue N = IsBase ? AM.Base : AM.Index;
416   unsigned Opcode = N.getOpcode();
417   if (Opcode == ISD::TRUNCATE) {
418     N = N.getOperand(0);
419     Opcode = N.getOpcode();
420   }
421   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
422     SDValue Op0 = N.getOperand(0);
423     SDValue Op1 = N.getOperand(1);
424
425     unsigned Op0Code = Op0->getOpcode();
426     unsigned Op1Code = Op1->getOpcode();
427
428     if (Op0Code == SystemZISD::ADJDYNALLOC)
429       return expandAdjDynAlloc(AM, IsBase, Op1);
430     if (Op1Code == SystemZISD::ADJDYNALLOC)
431       return expandAdjDynAlloc(AM, IsBase, Op0);
432
433     if (Op0Code == ISD::Constant)
434       return expandDisp(AM, IsBase, Op1,
435                         cast<ConstantSDNode>(Op0)->getSExtValue());
436     if (Op1Code == ISD::Constant)
437       return expandDisp(AM, IsBase, Op0,
438                         cast<ConstantSDNode>(Op1)->getSExtValue());
439
440     if (IsBase && expandIndex(AM, Op0, Op1))
441       return true;
442   }
443   if (Opcode == SystemZISD::PCREL_OFFSET) {
444     SDValue Full = N.getOperand(0);
445     SDValue Base = N.getOperand(1);
446     SDValue Anchor = Base.getOperand(0);
447     uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
448                        cast<GlobalAddressSDNode>(Anchor)->getOffset());
449     return expandDisp(AM, IsBase, Base, Offset);
450   }
451   return false;
452 }
453
454 // Return true if an instruction with displacement range DR should be
455 // used for displacement value Val.  selectDisp(DR, Val) must already hold.
456 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
457   assert(selectDisp(DR, Val) && "Invalid displacement");
458   switch (DR) {
459   case SystemZAddressingMode::Disp12Only:
460   case SystemZAddressingMode::Disp20Only:
461   case SystemZAddressingMode::Disp20Only128:
462     return true;
463
464   case SystemZAddressingMode::Disp12Pair:
465     // Use the other instruction if the displacement is too large.
466     return isUInt<12>(Val);
467
468   case SystemZAddressingMode::Disp20Pair:
469     // Use the other instruction if the displacement is small enough.
470     return !isUInt<12>(Val);
471   }
472   llvm_unreachable("Unhandled displacement range");
473 }
474
475 // Return true if Base + Disp + Index should be performed by LA(Y).
476 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
477   // Don't use LA(Y) for constants.
478   if (!Base)
479     return false;
480
481   // Always use LA(Y) for frame addresses, since we know that the destination
482   // register is almost always (perhaps always) going to be different from
483   // the frame register.
484   if (Base->getOpcode() == ISD::FrameIndex)
485     return true;
486
487   if (Disp) {
488     // Always use LA(Y) if there is a base, displacement and index.
489     if (Index)
490       return true;
491
492     // Always use LA if the displacement is small enough.  It should always
493     // be no worse than AGHI (and better if it avoids a move).
494     if (isUInt<12>(Disp))
495       return true;
496
497     // For similar reasons, always use LAY if the constant is too big for AGHI.
498     // LAY should be no worse than AGFI.
499     if (!isInt<16>(Disp))
500       return true;
501   } else {
502     // Don't use LA for plain registers.
503     if (!Index)
504       return false;
505
506     // Don't use LA for plain addition if the index operand is only used
507     // once.  It should be a natural two-operand addition in that case.
508     if (Index->hasOneUse())
509       return false;
510
511     // Prefer addition if the second operation is sign-extended, in the
512     // hope of using AGF.
513     unsigned IndexOpcode = Index->getOpcode();
514     if (IndexOpcode == ISD::SIGN_EXTEND ||
515         IndexOpcode == ISD::SIGN_EXTEND_INREG)
516       return false;
517   }
518
519   // Don't use LA for two-operand addition if either operand is only
520   // used once.  The addition instructions are better in that case.
521   if (Base->hasOneUse())
522     return false;
523
524   return true;
525 }
526
527 // Return true if Addr is suitable for AM, updating AM if so.
528 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
529                                         SystemZAddressingMode &AM) const {
530   // Start out assuming that the address will need to be loaded separately,
531   // then try to extend it as much as we can.
532   AM.Base = Addr;
533
534   // First try treating the address as a constant.
535   if (Addr.getOpcode() == ISD::Constant &&
536       expandDisp(AM, true, SDValue(),
537                  cast<ConstantSDNode>(Addr)->getSExtValue()))
538     ;
539   else
540     // Otherwise try expanding each component.
541     while (expandAddress(AM, true) ||
542            (AM.Index.getNode() && expandAddress(AM, false)))
543       continue;
544
545   // Reject cases where it isn't profitable to use LA(Y).
546   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
547       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
548     return false;
549
550   // Reject cases where the other instruction in a pair should be used.
551   if (!isValidDisp(AM.DR, AM.Disp))
552     return false;
553
554   // Make sure that ADJDYNALLOC is included where necessary.
555   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
556     return false;
557
558   DEBUG(AM.dump());
559   return true;
560 }
561
562 // Insert a node into the DAG at least before Pos.  This will reposition
563 // the node as needed, and will assign it a node ID that is <= Pos's ID.
564 // Note that this does *not* preserve the uniqueness of node IDs!
565 // The selection DAG must no longer depend on their uniqueness when this
566 // function is used.
567 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
568   if (N.getNode()->getNodeId() == -1 ||
569       N.getNode()->getNodeId() > Pos->getNodeId()) {
570     DAG->RepositionNode(Pos, N.getNode());
571     N.getNode()->setNodeId(Pos->getNodeId());
572   }
573 }
574
575 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
576                                              EVT VT, SDValue &Base,
577                                              SDValue &Disp) const {
578   Base = AM.Base;
579   if (!Base.getNode())
580     // Register 0 means "no base".  This is mostly useful for shifts.
581     Base = CurDAG->getRegister(0, VT);
582   else if (Base.getOpcode() == ISD::FrameIndex) {
583     // Lower a FrameIndex to a TargetFrameIndex.
584     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
585     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
586   } else if (Base.getValueType() != VT) {
587     // Truncate values from i64 to i32, for shifts.
588     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
589            "Unexpected truncation");
590     SDLoc DL(Base);
591     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
592     insertDAGNode(CurDAG, Base.getNode(), Trunc);
593     Base = Trunc;
594   }
595
596   // Lower the displacement to a TargetConstant.
597   Disp = CurDAG->getTargetConstant(AM.Disp, VT);
598 }
599
600 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
601                                              EVT VT, SDValue &Base,
602                                              SDValue &Disp,
603                                              SDValue &Index) const {
604   getAddressOperands(AM, VT, Base, Disp);
605
606   Index = AM.Index;
607   if (!Index.getNode())
608     // Register 0 means "no index".
609     Index = CurDAG->getRegister(0, VT);
610 }
611
612 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
613                                        SDValue Addr, SDValue &Base,
614                                        SDValue &Disp) const {
615   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
616   if (!selectAddress(Addr, AM))
617     return false;
618
619   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
620   return true;
621 }
622
623 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
624                                         SDValue Addr, SDValue &Base,
625                                         SDValue &Disp) const {
626   SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
627   if (!selectAddress(Addr, AM) || AM.Index.getNode())
628     return false;
629
630   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
631   return true;
632 }
633
634 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
635                                         SystemZAddressingMode::DispRange DR,
636                                         SDValue Addr, SDValue &Base,
637                                         SDValue &Disp, SDValue &Index) const {
638   SystemZAddressingMode AM(Form, DR);
639   if (!selectAddress(Addr, AM))
640     return false;
641
642   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
643   return true;
644 }
645
646 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
647                                                uint64_t InsertMask) const {
648   // We're only interested in cases where the insertion is into some operand
649   // of Op, rather than into Op itself.  The only useful case is an AND.
650   if (Op.getOpcode() != ISD::AND)
651     return false;
652
653   // We need a constant mask.
654   auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
655   if (!MaskNode)
656     return false;
657
658   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
659   uint64_t AndMask = MaskNode->getZExtValue();
660   if (InsertMask & AndMask)
661     return false;
662
663   // It's only an insertion if all bits are covered or are known to be zero.
664   // The inner check covers all cases but is more expensive.
665   uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
666   if (Used != (AndMask | InsertMask)) {
667     APInt KnownZero, KnownOne;
668     CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne);
669     if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
670       return false;
671   }
672
673   Op = Op.getOperand(0);
674   return true;
675 }
676
677 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
678                                           uint64_t Mask) const {
679   const SystemZInstrInfo *TII = getInstrInfo();
680   if (RxSBG.Rotate != 0)
681     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
682   Mask &= RxSBG.Mask;
683   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
684     RxSBG.Mask = Mask;
685     return true;
686   }
687   return false;
688 }
689
690 // Return true if any bits of (RxSBG.Input & Mask) are significant.
691 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
692   // Rotate the mask in the same way as RxSBG.Input is rotated.
693   if (RxSBG.Rotate != 0)
694     Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
695   return (Mask & RxSBG.Mask) != 0;
696 }
697
698 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
699   SDValue N = RxSBG.Input;
700   unsigned Opcode = N.getOpcode();
701   switch (Opcode) {
702   case ISD::AND: {
703     if (RxSBG.Opcode == SystemZ::RNSBG)
704       return false;
705
706     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
707     if (!MaskNode)
708       return false;
709
710     SDValue Input = N.getOperand(0);
711     uint64_t Mask = MaskNode->getZExtValue();
712     if (!refineRxSBGMask(RxSBG, Mask)) {
713       // If some bits of Input are already known zeros, those bits will have
714       // been removed from the mask.  See if adding them back in makes the
715       // mask suitable.
716       APInt KnownZero, KnownOne;
717       CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
718       Mask |= KnownZero.getZExtValue();
719       if (!refineRxSBGMask(RxSBG, Mask))
720         return false;
721     }
722     RxSBG.Input = Input;
723     return true;
724   }
725
726   case ISD::OR: {
727     if (RxSBG.Opcode != SystemZ::RNSBG)
728       return false;
729
730     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
731     if (!MaskNode)
732       return false;
733
734     SDValue Input = N.getOperand(0);
735     uint64_t Mask = ~MaskNode->getZExtValue();
736     if (!refineRxSBGMask(RxSBG, Mask)) {
737       // If some bits of Input are already known ones, those bits will have
738       // been removed from the mask.  See if adding them back in makes the
739       // mask suitable.
740       APInt KnownZero, KnownOne;
741       CurDAG->computeKnownBits(Input, KnownZero, KnownOne);
742       Mask &= ~KnownOne.getZExtValue();
743       if (!refineRxSBGMask(RxSBG, Mask))
744         return false;
745     }
746     RxSBG.Input = Input;
747     return true;
748   }
749
750   case ISD::ROTL: {
751     // Any 64-bit rotate left can be merged into the RxSBG.
752     if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
753       return false;
754     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
755     if (!CountNode)
756       return false;
757
758     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
759     RxSBG.Input = N.getOperand(0);
760     return true;
761   }
762       
763   case ISD::ANY_EXTEND:
764     // Bits above the extended operand are don't-care.
765     RxSBG.Input = N.getOperand(0);
766     return true;
767
768   case ISD::ZERO_EXTEND:
769     if (RxSBG.Opcode != SystemZ::RNSBG) {
770       // Restrict the mask to the extended operand.
771       unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
772       if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
773         return false;
774
775       RxSBG.Input = N.getOperand(0);
776       return true;
777     }
778     // Fall through.
779     
780   case ISD::SIGN_EXTEND: {
781     // Check that the extension bits are don't-care (i.e. are masked out
782     // by the final mask).
783     unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
784     if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
785       return false;
786
787     RxSBG.Input = N.getOperand(0);
788     return true;
789   }
790
791   case ISD::SHL: {
792     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
793     if (!CountNode)
794       return false;
795
796     uint64_t Count = CountNode->getZExtValue();
797     unsigned BitSize = N.getValueType().getSizeInBits();
798     if (Count < 1 || Count >= BitSize)
799       return false;
800
801     if (RxSBG.Opcode == SystemZ::RNSBG) {
802       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
803       // count bits from RxSBG.Input are ignored.
804       if (maskMatters(RxSBG, allOnes(Count)))
805         return false;
806     } else {
807       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
808       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
809         return false;
810     }
811
812     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
813     RxSBG.Input = N.getOperand(0);
814     return true;
815   }
816
817   case ISD::SRL:
818   case ISD::SRA: {
819     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
820     if (!CountNode)
821       return false;
822
823     uint64_t Count = CountNode->getZExtValue();
824     unsigned BitSize = N.getValueType().getSizeInBits();
825     if (Count < 1 || Count >= BitSize)
826       return false;
827
828     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
829       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
830       // count bits from RxSBG.Input are ignored.
831       if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
832         return false;
833     } else {
834       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
835       // which is similar to SLL above.
836       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
837         return false;
838     }
839
840     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
841     RxSBG.Input = N.getOperand(0);
842     return true;
843   }
844   default:
845     return false;
846   }
847 }
848
849 SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
850   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
851   return SDValue(N, 0);
852 }
853
854 SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
855   if (N.getValueType() == MVT::i32 && VT == MVT::i64)
856     return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
857                                          DL, VT, getUNDEF(DL, MVT::i64), N);
858   if (N.getValueType() == MVT::i64 && VT == MVT::i32)
859     return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
860   assert(N.getValueType() == VT && "Unexpected value types");
861   return N;
862 }
863
864 SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
865   EVT VT = N->getValueType(0);
866   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
867   unsigned Count = 0;
868   while (expandRxSBG(RISBG))
869     if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
870       Count += 1;
871   if (Count == 0)
872     return nullptr;
873   if (Count == 1) {
874     // Prefer to use normal shift instructions over RISBG, since they can handle
875     // all cases and are sometimes shorter.
876     if (N->getOpcode() != ISD::AND)
877       return nullptr;
878
879     // Prefer register extensions like LLC over RISBG.  Also prefer to start
880     // out with normal ANDs if one instruction would be enough.  We can convert
881     // these ANDs into an RISBG later if a three-address instruction is useful.
882     if (VT == MVT::i32 ||
883         RISBG.Mask == 0xff ||
884         RISBG.Mask == 0xffff ||
885         SystemZ::isImmLF(~RISBG.Mask) ||
886         SystemZ::isImmHF(~RISBG.Mask)) {
887       // Force the new mask into the DAG, since it may include known-one bits.
888       auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
889       if (MaskN->getZExtValue() != RISBG.Mask) {
890         SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
891         N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
892         return SelectCode(N);
893       }
894       return nullptr;
895     }
896   }  
897
898   unsigned Opcode = SystemZ::RISBG;
899   EVT OpcodeVT = MVT::i64;
900   if (VT == MVT::i32 && Subtarget.hasHighWord()) {
901     Opcode = SystemZ::RISBMux;
902     OpcodeVT = MVT::i32;
903     RISBG.Start &= 31;
904     RISBG.End &= 31;
905   }
906   SDValue Ops[5] = {
907     getUNDEF(SDLoc(N), OpcodeVT),
908     convertTo(SDLoc(N), OpcodeVT, RISBG.Input),
909     CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
910     CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
911     CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
912   };
913   N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops);
914   return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
915 }
916
917 SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
918   // Try treating each operand of N as the second operand of the RxSBG
919   // and see which goes deepest.
920   RxSBGOperands RxSBG[] = {
921     RxSBGOperands(Opcode, N->getOperand(0)),
922     RxSBGOperands(Opcode, N->getOperand(1))
923   };
924   unsigned Count[] = { 0, 0 };
925   for (unsigned I = 0; I < 2; ++I)
926     while (expandRxSBG(RxSBG[I]))
927       if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
928         Count[I] += 1;
929
930   // Do nothing if neither operand is suitable.
931   if (Count[0] == 0 && Count[1] == 0)
932     return nullptr;
933
934   // Pick the deepest second operand.
935   unsigned I = Count[0] > Count[1] ? 0 : 1;
936   SDValue Op0 = N->getOperand(I ^ 1);
937
938   // Prefer IC for character insertions from memory.
939   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
940     if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
941       if (Load->getMemoryVT() == MVT::i8)
942         return nullptr;
943
944   // See whether we can avoid an AND in the first operand by converting
945   // ROSBG to RISBG.
946   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
947     Opcode = SystemZ::RISBG;
948            
949   EVT VT = N->getValueType(0);
950   SDValue Ops[5] = {
951     convertTo(SDLoc(N), MVT::i64, Op0),
952     convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
953     CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
954     CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
955     CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
956   };
957   N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
958   return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
959 }
960
961 SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
962                                                  SDValue Op0, uint64_t UpperVal,
963                                                  uint64_t LowerVal) {
964   EVT VT = Node->getValueType(0);
965   SDLoc DL(Node);
966   SDValue Upper = CurDAG->getConstant(UpperVal, VT);
967   if (Op0.getNode())
968     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
969   Upper = SDValue(Select(Upper.getNode()), 0);
970
971   SDValue Lower = CurDAG->getConstant(LowerVal, VT);
972   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
973   return Or.getNode();
974 }
975
976 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
977                                                LoadSDNode *Load) const {
978   // Check that the two memory operands have the same size.
979   if (Load->getMemoryVT() != Store->getMemoryVT())
980     return false;
981
982   // Volatility stops an access from being decomposed.
983   if (Load->isVolatile() || Store->isVolatile())
984     return false;
985
986   // There's no chance of overlap if the load is invariant.
987   if (Load->isInvariant())
988     return true;
989
990   // Otherwise we need to check whether there's an alias.
991   const Value *V1 = Load->getMemOperand()->getValue();
992   const Value *V2 = Store->getMemOperand()->getValue();
993   if (!V1 || !V2)
994     return false;
995
996   // Reject equality.
997   uint64_t Size = Load->getMemoryVT().getStoreSize();
998   int64_t End1 = Load->getSrcValueOffset() + Size;
999   int64_t End2 = Store->getSrcValueOffset() + Size;
1000   if (V1 == V2 && End1 == End2)
1001     return false;
1002
1003   return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
1004                     AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
1005 }
1006
1007 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1008   auto *Store = cast<StoreSDNode>(N);
1009   auto *Load = cast<LoadSDNode>(Store->getValue());
1010
1011   // Prefer not to use MVC if either address can use ... RELATIVE LONG
1012   // instructions.
1013   uint64_t Size = Load->getMemoryVT().getStoreSize();
1014   if (Size > 1 && Size <= 8) {
1015     // Prefer LHRL, LRL and LGRL.
1016     if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1017       return false;
1018     // Prefer STHRL, STRL and STGRL.
1019     if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1020       return false;
1021   }
1022
1023   return canUseBlockOperation(Store, Load);
1024 }
1025
1026 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1027                                                      unsigned I) const {
1028   auto *StoreA = cast<StoreSDNode>(N);
1029   auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1030   auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1031   return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1032 }
1033
1034 SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
1035   // Dump information about the Node being selected
1036   DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1037
1038   // If we have a custom node, we already have selected!
1039   if (Node->isMachineOpcode()) {
1040     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1041     Node->setNodeId(-1);
1042     return nullptr;
1043   }
1044
1045   unsigned Opcode = Node->getOpcode();
1046   SDNode *ResNode = nullptr;
1047   switch (Opcode) {
1048   case ISD::OR:
1049     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1050       ResNode = tryRxSBG(Node, SystemZ::ROSBG);
1051     goto or_xor;
1052
1053   case ISD::XOR:
1054     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1055       ResNode = tryRxSBG(Node, SystemZ::RXSBG);
1056     // Fall through.
1057   or_xor:
1058     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1059     // split the operation into two.
1060     if (!ResNode && Node->getValueType(0) == MVT::i64)
1061       if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1062         uint64_t Val = Op1->getZExtValue();
1063         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1064           Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1065                                      Val - uint32_t(Val), uint32_t(Val));
1066       }
1067     break;
1068
1069   case ISD::AND:
1070     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1071       ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1072     // Fall through.
1073   case ISD::ROTL:
1074   case ISD::SHL:
1075   case ISD::SRL:
1076   case ISD::ZERO_EXTEND:
1077     if (!ResNode)
1078       ResNode = tryRISBGZero(Node);
1079     break;
1080
1081   case ISD::Constant:
1082     // If this is a 64-bit constant that is out of the range of LLILF,
1083     // LLIHF and LGFI, split it into two 32-bit pieces.
1084     if (Node->getValueType(0) == MVT::i64) {
1085       uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1086       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1087         Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1088                                    Val - uint32_t(Val), uint32_t(Val));
1089     }
1090     break;
1091
1092   case SystemZISD::SELECT_CCMASK: {
1093     SDValue Op0 = Node->getOperand(0);
1094     SDValue Op1 = Node->getOperand(1);
1095     // Prefer to put any load first, so that it can be matched as a
1096     // conditional load.
1097     if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1098       SDValue CCValid = Node->getOperand(2);
1099       SDValue CCMask = Node->getOperand(3);
1100       uint64_t ConstCCValid =
1101         cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1102       uint64_t ConstCCMask =
1103         cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1104       // Invert the condition.
1105       CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
1106                                    CCMask.getValueType());
1107       SDValue Op4 = Node->getOperand(4);
1108       Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1109     }
1110     break;
1111   }
1112   }
1113
1114   // Select the default instruction
1115   if (!ResNode)
1116     ResNode = SelectCode(Node);
1117
1118   DEBUG(errs() << "=> ";
1119         if (ResNode == nullptr || ResNode == Node)
1120           Node->dump(CurDAG);
1121         else
1122           ResNode->dump(CurDAG);
1123         errs() << "\n";
1124         );
1125   return ResNode;
1126 }
1127
1128 bool SystemZDAGToDAGISel::
1129 SelectInlineAsmMemoryOperand(const SDValue &Op,
1130                              char ConstraintCode,
1131                              std::vector<SDValue> &OutOps) {
1132   assert(ConstraintCode == 'm' && "Unexpected constraint code");
1133   // Accept addresses with short displacements, which are compatible
1134   // with Q, R, S and T.  But keep the index operand for future expansion.
1135   SDValue Base, Disp, Index;
1136   if (!selectBDXAddr(SystemZAddressingMode::FormBD,
1137                      SystemZAddressingMode::Disp12Only,
1138                      Op, Base, Disp, Index))
1139     return true;
1140   OutOps.push_back(Base);
1141   OutOps.push_back(Disp);
1142   OutOps.push_back(Index);
1143   return false;
1144 }