]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h
Update LLVM to r104832.
[FreeBSD/FreeBSD.git] / lib / Target / X86 / Disassembler / X86DisassemblerDecoderCommon.h
1 /*===- X86DisassemblerDecoderCommon.h - Disassembler decoder -------*- C -*-==*
2  *
3  *                     The LLVM Compiler Infrastructure
4  *
5  * This file is distributed under the University of Illinois Open Source
6  * License. See LICENSE.TXT for details.
7  *
8  *===----------------------------------------------------------------------===*
9  *
10  * This file is part of the X86 Disassembler.
11  * It contains common definitions used by both the disassembler and the table
12  *  generator.
13  * Documentation for the disassembler can be found in X86Disassembler.h.
14  *
15  *===----------------------------------------------------------------------===*/
16
17 /*
18  * This header file provides those definitions that need to be shared between
19  * the decoder and the table generator in a C-friendly manner.
20  */
21
22 #ifndef X86DISASSEMBLERDECODERCOMMON_H
23 #define X86DISASSEMBLERDECODERCOMMON_H
24
25 #include "llvm/System/DataTypes.h"
26
27 #define INSTRUCTIONS_SYM  x86DisassemblerInstrSpecifiers
28 #define CONTEXTS_SYM      x86DisassemblerContexts
29 #define ONEBYTE_SYM       x86DisassemblerOneByteOpcodes
30 #define TWOBYTE_SYM       x86DisassemblerTwoByteOpcodes
31 #define THREEBYTE38_SYM   x86DisassemblerThreeByte38Opcodes
32 #define THREEBYTE3A_SYM   x86DisassemblerThreeByte3AOpcodes
33
34 #define INSTRUCTIONS_STR  "x86DisassemblerInstrSpecifiers"
35 #define CONTEXTS_STR      "x86DisassemblerContexts"
36 #define ONEBYTE_STR       "x86DisassemblerOneByteOpcodes"
37 #define TWOBYTE_STR       "x86DisassemblerTwoByteOpcodes"
38 #define THREEBYTE38_STR   "x86DisassemblerThreeByte38Opcodes"
39 #define THREEBYTE3A_STR   "x86DisassemblerThreeByte3AOpcodes"
40
41 /*
42  * Attributes of an instruction that must be known before the opcode can be
43  * processed correctly.  Most of these indicate the presence of particular
44  * prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
45  */
46 #define ATTRIBUTE_BITS          \
47   ENUM_ENTRY(ATTR_NONE,   0x00) \
48   ENUM_ENTRY(ATTR_64BIT,  0x01) \
49   ENUM_ENTRY(ATTR_XS,     0x02) \
50   ENUM_ENTRY(ATTR_XD,     0x04) \
51   ENUM_ENTRY(ATTR_REXW,   0x08) \
52   ENUM_ENTRY(ATTR_OPSIZE, 0x10)
53
54 #define ENUM_ENTRY(n, v) n = v,
55 enum attributeBits {
56   ATTRIBUTE_BITS
57   ATTR_max
58 };
59 #undef ENUM_ENTRY
60
61 /*
62  * Combinations of the above attributes that are relevant to instruction
63  * decode.  Although other combinations are possible, they can be reduced to
64  * these without affecting the ultimately decoded instruction.
65  */
66
67 /*           Class name           Rank  Rationale for rank assignment         */
68 #define INSTRUCTION_CONTEXTS                                                   \
69   ENUM_ENTRY(IC,                    0,  "says nothing about the instruction")  \
70   ENUM_ENTRY(IC_64BIT,              1,  "says the instruction applies in "     \
71                                         "64-bit mode but no more")             \
72   ENUM_ENTRY(IC_OPSIZE,             3,  "requires an OPSIZE prefix, so "       \
73                                         "operands change width")               \
74   ENUM_ENTRY(IC_XD,                 2,  "may say something about the opcode "  \
75                                         "but not the operands")                \
76   ENUM_ENTRY(IC_XS,                 2,  "may say something about the opcode "  \
77                                         "but not the operands")                \
78   ENUM_ENTRY(IC_64BIT_REXW,         4,  "requires a REX.W prefix, so operands "\
79                                         "change width; overrides IC_OPSIZE")   \
80   ENUM_ENTRY(IC_64BIT_OPSIZE,       3,  "Just as meaningful as IC_OPSIZE")     \
81   ENUM_ENTRY(IC_64BIT_XD,           5,  "XD instructions are SSE; REX.W is "   \
82                                         "secondary")                           \
83   ENUM_ENTRY(IC_64BIT_XS,           5,  "Just as meaningful as IC_64BIT_XD")   \
84   ENUM_ENTRY(IC_64BIT_REXW_XS,      6,  "OPSIZE could mean a different "       \
85                                         "opcode")                              \
86   ENUM_ENTRY(IC_64BIT_REXW_XD,      6,  "Just as meaningful as "               \
87                                         "IC_64BIT_REXW_XS")                    \
88   ENUM_ENTRY(IC_64BIT_REXW_OPSIZE,  7,  "The Dynamic Duo!  Prefer over all "   \
89                                         "else because this changes most "      \
90                                         "operands' meaning")
91
92 #define ENUM_ENTRY(n, r, d) n,    
93 typedef enum {
94   INSTRUCTION_CONTEXTS
95   IC_max
96 } InstructionContext;
97 #undef ENUM_ENTRY
98
99 /*
100  * Opcode types, which determine which decode table to use, both in the Intel
101  * manual and also for the decoder.
102  */
103 typedef enum {
104   ONEBYTE       = 0,
105   TWOBYTE       = 1,
106   THREEBYTE_38  = 2,
107   THREEBYTE_3A  = 3
108 } OpcodeType;
109
110 /*
111  * The following structs are used for the hierarchical decode table.  After
112  * determining the instruction's class (i.e., which IC_* constant applies to
113  * it), the decoder reads the opcode.  Some instructions require specific
114  * values of the ModR/M byte, so the ModR/M byte indexes into the final table.
115  *
116  * If a ModR/M byte is not required, "required" is left unset, and the values
117  * for each instructionID are identical.
118  */
119  
120 typedef uint16_t InstrUID;
121
122 /*
123  * ModRMDecisionType - describes the type of ModR/M decision, allowing the 
124  * consumer to determine the number of entries in it.
125  *
126  * MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
127  *                  instruction is the same.
128  * MODRM_SPLITRM  - If the ModR/M byte is between 0x00 and 0xbf, the opcode
129  *                  corresponds to one instruction; otherwise, it corresponds to
130  *                  a different instruction.
131  * MODRM_FULL     - Potentially, each value of the ModR/M byte could correspond
132  *                  to a different instruction.
133  */
134
135 #define MODRMTYPES            \
136   ENUM_ENTRY(MODRM_ONEENTRY)  \
137   ENUM_ENTRY(MODRM_SPLITRM)   \
138   ENUM_ENTRY(MODRM_FULL)
139
140 #define ENUM_ENTRY(n) n,    
141 typedef enum {
142   MODRMTYPES
143   MODRM_max
144 } ModRMDecisionType;
145 #undef ENUM_ENTRY
146
147 /*
148  * ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which 
149  *  instruction each possible value of the ModR/M byte corresponds to.  Once
150  *  this information is known, we have narrowed down to a single instruction.
151  */
152 struct ModRMDecision {
153   uint8_t     modrm_type;
154   
155   /* The macro below must be defined wherever this file is included. */
156   INSTRUCTION_IDS
157 };
158
159 /*
160  * OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at
161  *   given a particular opcode.
162  */
163 struct OpcodeDecision {
164   struct ModRMDecision modRMDecisions[256];
165 };
166
167 /*
168  * ContextDecision - Specifies which opcode->instruction tables to look at given
169  *   a particular context (set of attributes).  Since there are many possible
170  *   contexts, the decoder first uses CONTEXTS_SYM to determine which context
171  *   applies given a specific set of attributes.  Hence there are only IC_max
172  *   entries in this table, rather than 2^(ATTR_max).
173  */
174 struct ContextDecision {
175   struct OpcodeDecision opcodeDecisions[IC_max];
176 };
177
178 /* 
179  * Physical encodings of instruction operands.
180  */
181
182 #define ENCODINGS                                                              \
183   ENUM_ENTRY(ENCODING_NONE,   "")                                              \
184   ENUM_ENTRY(ENCODING_REG,    "Register operand in ModR/M byte.")              \
185   ENUM_ENTRY(ENCODING_RM,     "R/M operand in ModR/M byte.")                   \
186   ENUM_ENTRY(ENCODING_CB,     "1-byte code offset (possible new CS value)")    \
187   ENUM_ENTRY(ENCODING_CW,     "2-byte")                                        \
188   ENUM_ENTRY(ENCODING_CD,     "4-byte")                                        \
189   ENUM_ENTRY(ENCODING_CP,     "6-byte")                                        \
190   ENUM_ENTRY(ENCODING_CO,     "8-byte")                                        \
191   ENUM_ENTRY(ENCODING_CT,     "10-byte")                                       \
192   ENUM_ENTRY(ENCODING_IB,     "1-byte immediate")                              \
193   ENUM_ENTRY(ENCODING_IW,     "2-byte")                                        \
194   ENUM_ENTRY(ENCODING_ID,     "4-byte")                                        \
195   ENUM_ENTRY(ENCODING_IO,     "8-byte")                                        \
196   ENUM_ENTRY(ENCODING_RB,     "(AL..DIL, R8L..R15L) Register code added to "   \
197                               "the opcode byte")                               \
198   ENUM_ENTRY(ENCODING_RW,     "(AX..DI, R8W..R15W)")                           \
199   ENUM_ENTRY(ENCODING_RD,     "(EAX..EDI, R8D..R15D)")                         \
200   ENUM_ENTRY(ENCODING_RO,     "(RAX..RDI, R8..R15)")                           \
201   ENUM_ENTRY(ENCODING_I,      "Position on floating-point stack added to the " \
202                               "opcode byte")                                   \
203                                                                                \
204   ENUM_ENTRY(ENCODING_Iv,     "Immediate of operand size")                     \
205   ENUM_ENTRY(ENCODING_Ia,     "Immediate of address size")                     \
206   ENUM_ENTRY(ENCODING_Rv,     "Register code of operand size added to the "    \
207                               "opcode byte")                                   \
208   ENUM_ENTRY(ENCODING_DUP,    "Duplicate of another operand; ID is encoded "   \
209                               "in type")
210
211 #define ENUM_ENTRY(n, d) n,    
212   typedef enum {
213     ENCODINGS
214     ENCODING_max
215   } OperandEncoding;
216 #undef ENUM_ENTRY
217
218 /* 
219  * Semantic interpretations of instruction operands.
220  */
221
222 #define TYPES                                                                  \
223   ENUM_ENTRY(TYPE_NONE,       "")                                              \
224   ENUM_ENTRY(TYPE_REL8,       "1-byte immediate address")                      \
225   ENUM_ENTRY(TYPE_REL16,      "2-byte")                                        \
226   ENUM_ENTRY(TYPE_REL32,      "4-byte")                                        \
227   ENUM_ENTRY(TYPE_REL64,      "8-byte")                                        \
228   ENUM_ENTRY(TYPE_PTR1616,    "2+2-byte segment+offset address")               \
229   ENUM_ENTRY(TYPE_PTR1632,    "2+4-byte")                                      \
230   ENUM_ENTRY(TYPE_PTR1664,    "2+8-byte")                                      \
231   ENUM_ENTRY(TYPE_R8,         "1-byte register operand")                       \
232   ENUM_ENTRY(TYPE_R16,        "2-byte")                                        \
233   ENUM_ENTRY(TYPE_R32,        "4-byte")                                        \
234   ENUM_ENTRY(TYPE_R64,        "8-byte")                                        \
235   ENUM_ENTRY(TYPE_IMM8,       "1-byte immediate operand")                      \
236   ENUM_ENTRY(TYPE_IMM16,      "2-byte")                                        \
237   ENUM_ENTRY(TYPE_IMM32,      "4-byte")                                        \
238   ENUM_ENTRY(TYPE_IMM64,      "8-byte")                                        \
239   ENUM_ENTRY(TYPE_IMM3,       "1-byte immediate operand between 0 and 7")      \
240   ENUM_ENTRY(TYPE_RM8,        "1-byte register or memory operand")             \
241   ENUM_ENTRY(TYPE_RM16,       "2-byte")                                        \
242   ENUM_ENTRY(TYPE_RM32,       "4-byte")                                        \
243   ENUM_ENTRY(TYPE_RM64,       "8-byte")                                        \
244   ENUM_ENTRY(TYPE_M,          "Memory operand")                                \
245   ENUM_ENTRY(TYPE_M8,         "1-byte")                                        \
246   ENUM_ENTRY(TYPE_M16,        "2-byte")                                        \
247   ENUM_ENTRY(TYPE_M32,        "4-byte")                                        \
248   ENUM_ENTRY(TYPE_M64,        "8-byte")                                        \
249   ENUM_ENTRY(TYPE_LEA,        "Effective address")                             \
250   ENUM_ENTRY(TYPE_M128,       "16-byte (SSE/SSE2)")                            \
251   ENUM_ENTRY(TYPE_M1616,      "2+2-byte segment+offset address")               \
252   ENUM_ENTRY(TYPE_M1632,      "2+4-byte")                                      \
253   ENUM_ENTRY(TYPE_M1664,      "2+8-byte")                                      \
254   ENUM_ENTRY(TYPE_M16_32,     "2+4-byte two-part memory operand (LIDT, LGDT)") \
255   ENUM_ENTRY(TYPE_M16_16,     "2+2-byte (BOUND)")                              \
256   ENUM_ENTRY(TYPE_M32_32,     "4+4-byte (BOUND)")                              \
257   ENUM_ENTRY(TYPE_M16_64,     "2+8-byte (LIDT, LGDT)")                         \
258   ENUM_ENTRY(TYPE_MOFFS8,     "1-byte memory offset (relative to segment "     \
259                               "base)")                                         \
260   ENUM_ENTRY(TYPE_MOFFS16,    "2-byte")                                        \
261   ENUM_ENTRY(TYPE_MOFFS32,    "4-byte")                                        \
262   ENUM_ENTRY(TYPE_MOFFS64,    "8-byte")                                        \
263   ENUM_ENTRY(TYPE_SREG,       "Byte with single bit set: 0 = ES, 1 = CS, "     \
264                               "2 = SS, 3 = DS, 4 = FS, 5 = GS")                \
265   ENUM_ENTRY(TYPE_M32FP,      "32-bit IEE754 memory floating-point operand")   \
266   ENUM_ENTRY(TYPE_M64FP,      "64-bit")                                        \
267   ENUM_ENTRY(TYPE_M80FP,      "80-bit extended")                               \
268   ENUM_ENTRY(TYPE_M16INT,     "2-byte memory integer operand for use in "      \
269                               "floating-point instructions")                   \
270   ENUM_ENTRY(TYPE_M32INT,     "4-byte")                                        \
271   ENUM_ENTRY(TYPE_M64INT,     "8-byte")                                        \
272   ENUM_ENTRY(TYPE_ST,         "Position on the floating-point stack")          \
273   ENUM_ENTRY(TYPE_MM,         "MMX register operand")                          \
274   ENUM_ENTRY(TYPE_MM32,       "4-byte MMX register or memory operand")         \
275   ENUM_ENTRY(TYPE_MM64,       "8-byte")                                        \
276   ENUM_ENTRY(TYPE_XMM,        "XMM register operand")                          \
277   ENUM_ENTRY(TYPE_XMM32,      "4-byte XMM register or memory operand")         \
278   ENUM_ENTRY(TYPE_XMM64,      "8-byte")                                        \
279   ENUM_ENTRY(TYPE_XMM128,     "16-byte")                                       \
280   ENUM_ENTRY(TYPE_XMM0,       "Implicit use of XMM0")                          \
281   ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand")                      \
282   ENUM_ENTRY(TYPE_DEBUGREG,   "Debug register operand")                        \
283   ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand")                      \
284                                                                                \
285   ENUM_ENTRY(TYPE_Mv,         "Memory operand of operand size")                \
286   ENUM_ENTRY(TYPE_Rv,         "Register operand of operand size")              \
287   ENUM_ENTRY(TYPE_IMMv,       "Immediate operand of operand size")             \
288   ENUM_ENTRY(TYPE_RELv,       "Immediate address of operand size")             \
289   ENUM_ENTRY(TYPE_DUP0,       "Duplicate of operand 0")                        \
290   ENUM_ENTRY(TYPE_DUP1,       "operand 1")                                     \
291   ENUM_ENTRY(TYPE_DUP2,       "operand 2")                                     \
292   ENUM_ENTRY(TYPE_DUP3,       "operand 3")                                     \
293   ENUM_ENTRY(TYPE_DUP4,       "operand 4")                                     \
294   ENUM_ENTRY(TYPE_M512,       "512-bit FPU/MMX/XMM/MXCSR state")
295
296 #define ENUM_ENTRY(n, d) n,    
297 typedef enum {
298   TYPES
299   TYPE_max
300 } OperandType;
301 #undef ENUM_ENTRY
302
303 /* 
304  * OperandSpecifier - The specification for how to extract and interpret one
305  *   operand.
306  */
307 struct OperandSpecifier {
308   OperandEncoding  encoding;
309   OperandType      type;
310 };
311
312 /*
313  * Indicates where the opcode modifier (if any) is to be found.  Extended
314  * opcodes with AddRegFrm have the opcode modifier in the ModR/M byte.
315  */
316
317 #define MODIFIER_TYPES        \
318   ENUM_ENTRY(MODIFIER_NONE)   \
319   ENUM_ENTRY(MODIFIER_OPCODE) \
320   ENUM_ENTRY(MODIFIER_MODRM)
321
322 #define ENUM_ENTRY(n) n,
323 typedef enum {
324   MODIFIER_TYPES
325   MODIFIER_max
326 } ModifierType;
327 #undef ENUM_ENTRY
328
329 #define X86_MAX_OPERANDS 5
330
331 /*
332  * The specification for how to extract and interpret a full instruction and
333  * its operands.
334  */
335 struct InstructionSpecifier {
336   ModifierType modifierType;
337   uint8_t modifierBase;
338   struct OperandSpecifier operands[X86_MAX_OPERANDS];
339   
340   /* The macro below must be defined wherever this file is included. */
341   INSTRUCTION_SPECIFIER_FIELDS
342 };
343
344 /*
345  * Decoding mode for the Intel disassembler.  16-bit, 32-bit, and 64-bit mode
346  * are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
347  * respectively.
348  */
349 typedef enum {
350   MODE_16BIT,
351   MODE_32BIT,
352   MODE_64BIT
353 } DisassemblerMode;
354
355 #endif