]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Transforms/IPO/FunctionAttrs.cpp
Vendor import of llvm trunk r154661:
[FreeBSD/FreeBSD.git] / lib / Transforms / IPO / FunctionAttrs.cpp
1 //===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple interprocedural pass which walks the
11 // call-graph, looking for functions which do not access or only read
12 // non-local memory, and marking them readnone/readonly.  In addition,
13 // it marks function arguments (of pointer type) 'nocapture' if a call
14 // to the function does not create any copies of the pointer value that
15 // outlive the call.  This more or less means that the pointer is only
16 // dereferenced, and not returned from the function or stored in a global.
17 // This pass is implemented as a bottom-up traversal of the call-graph.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #define DEBUG_TYPE "functionattrs"
22 #include "llvm/Transforms/IPO.h"
23 #include "llvm/CallGraphSCCPass.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CallGraph.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/ADT/SCCIterator.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/UniqueVector.h"
34 #include "llvm/Support/InstIterator.h"
35 using namespace llvm;
36
37 STATISTIC(NumReadNone, "Number of functions marked readnone");
38 STATISTIC(NumReadOnly, "Number of functions marked readonly");
39 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
40 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
41
42 namespace {
43   struct FunctionAttrs : public CallGraphSCCPass {
44     static char ID; // Pass identification, replacement for typeid
45     FunctionAttrs() : CallGraphSCCPass(ID), AA(0) {
46       initializeFunctionAttrsPass(*PassRegistry::getPassRegistry());
47     }
48
49     // runOnSCC - Analyze the SCC, performing the transformation if possible.
50     bool runOnSCC(CallGraphSCC &SCC);
51
52     // AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
53     bool AddReadAttrs(const CallGraphSCC &SCC);
54
55     // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
56     bool AddNoCaptureAttrs(const CallGraphSCC &SCC);
57
58     // IsFunctionMallocLike - Does this function allocate new memory?
59     bool IsFunctionMallocLike(Function *F,
60                               SmallPtrSet<Function*, 8> &) const;
61
62     // AddNoAliasAttrs - Deduce noalias attributes for the SCC.
63     bool AddNoAliasAttrs(const CallGraphSCC &SCC);
64
65     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66       AU.setPreservesCFG();
67       AU.addRequired<AliasAnalysis>();
68       CallGraphSCCPass::getAnalysisUsage(AU);
69     }
70
71   private:
72     AliasAnalysis *AA;
73   };
74 }
75
76 char FunctionAttrs::ID = 0;
77 INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs",
78                 "Deduce function attributes", false, false)
79 INITIALIZE_AG_DEPENDENCY(CallGraph)
80 INITIALIZE_PASS_END(FunctionAttrs, "functionattrs",
81                 "Deduce function attributes", false, false)
82
83 Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
84
85
86 /// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
87 bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
88   SmallPtrSet<Function*, 8> SCCNodes;
89
90   // Fill SCCNodes with the elements of the SCC.  Used for quickly
91   // looking up whether a given CallGraphNode is in this SCC.
92   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
93     SCCNodes.insert((*I)->getFunction());
94
95   // Check if any of the functions in the SCC read or write memory.  If they
96   // write memory then they can't be marked readnone or readonly.
97   bool ReadsMemory = false;
98   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
99     Function *F = (*I)->getFunction();
100
101     if (F == 0)
102       // External node - may write memory.  Just give up.
103       return false;
104
105     AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
106     if (MRB == AliasAnalysis::DoesNotAccessMemory)
107       // Already perfect!
108       continue;
109
110     // Definitions with weak linkage may be overridden at linktime with
111     // something that writes memory, so treat them like declarations.
112     if (F->isDeclaration() || F->mayBeOverridden()) {
113       if (!AliasAnalysis::onlyReadsMemory(MRB))
114         // May write memory.  Just give up.
115         return false;
116
117       ReadsMemory = true;
118       continue;
119     }
120
121     // Scan the function body for instructions that may read or write memory.
122     for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
123       Instruction *I = &*II;
124
125       // Some instructions can be ignored even if they read or write memory.
126       // Detect these now, skipping to the next instruction if one is found.
127       CallSite CS(cast<Value>(I));
128       if (CS) {
129         // Ignore calls to functions in the same SCC.
130         if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
131           continue;
132         AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS);
133         // If the call doesn't access arbitrary memory, we may be able to
134         // figure out something.
135         if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
136           // If the call does access argument pointees, check each argument.
137           if (AliasAnalysis::doesAccessArgPointees(MRB))
138             // Check whether all pointer arguments point to local memory, and
139             // ignore calls that only access local memory.
140             for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
141                  CI != CE; ++CI) {
142               Value *Arg = *CI;
143               if (Arg->getType()->isPointerTy()) {
144                 AliasAnalysis::Location Loc(Arg,
145                                             AliasAnalysis::UnknownSize,
146                                             I->getMetadata(LLVMContext::MD_tbaa));
147                 if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
148                   if (MRB & AliasAnalysis::Mod)
149                     // Writes non-local memory.  Give up.
150                     return false;
151                   if (MRB & AliasAnalysis::Ref)
152                     // Ok, it reads non-local memory.
153                     ReadsMemory = true;
154                 }
155               }
156             }
157           continue;
158         }
159         // The call could access any memory. If that includes writes, give up.
160         if (MRB & AliasAnalysis::Mod)
161           return false;
162         // If it reads, note it.
163         if (MRB & AliasAnalysis::Ref)
164           ReadsMemory = true;
165         continue;
166       } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
167         // Ignore non-volatile loads from local memory. (Atomic is okay here.)
168         if (!LI->isVolatile()) {
169           AliasAnalysis::Location Loc = AA->getLocation(LI);
170           if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
171             continue;
172         }
173       } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
174         // Ignore non-volatile stores to local memory. (Atomic is okay here.)
175         if (!SI->isVolatile()) {
176           AliasAnalysis::Location Loc = AA->getLocation(SI);
177           if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
178             continue;
179         }
180       } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
181         // Ignore vaargs on local memory.
182         AliasAnalysis::Location Loc = AA->getLocation(VI);
183         if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
184           continue;
185       }
186
187       // Any remaining instructions need to be taken seriously!  Check if they
188       // read or write memory.
189       if (I->mayWriteToMemory())
190         // Writes memory.  Just give up.
191         return false;
192
193       // If this instruction may read memory, remember that.
194       ReadsMemory |= I->mayReadFromMemory();
195     }
196   }
197
198   // Success!  Functions in this SCC do not access memory, or only read memory.
199   // Give them the appropriate attribute.
200   bool MadeChange = false;
201   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
202     Function *F = (*I)->getFunction();
203
204     if (F->doesNotAccessMemory())
205       // Already perfect!
206       continue;
207
208     if (F->onlyReadsMemory() && ReadsMemory)
209       // No change.
210       continue;
211
212     MadeChange = true;
213
214     // Clear out any existing attributes.
215     F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
216
217     // Add in the new attribute.
218     F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone);
219
220     if (ReadsMemory)
221       ++NumReadOnly;
222     else
223       ++NumReadNone;
224   }
225
226   return MadeChange;
227 }
228
229 namespace {
230   // For a given pointer Argument, this retains a list of Arguments of functions
231   // in the same SCC that the pointer data flows into. We use this to build an
232   // SCC of the arguments.
233   struct ArgumentGraphNode {
234     Argument *Definition;
235     SmallVector<ArgumentGraphNode*, 4> Uses;
236   };
237
238   class ArgumentGraph {
239     // We store pointers to ArgumentGraphNode objects, so it's important that
240     // that they not move around upon insert.
241     typedef std::map<Argument*, ArgumentGraphNode> ArgumentMapTy;
242
243     ArgumentMapTy ArgumentMap;
244
245     // There is no root node for the argument graph, in fact:
246     //   void f(int *x, int *y) { if (...) f(x, y); }
247     // is an example where the graph is disconnected. The SCCIterator requires a
248     // single entry point, so we maintain a fake ("synthetic") root node that
249     // uses every node. Because the graph is directed and nothing points into
250     // the root, it will not participate in any SCCs (except for its own).
251     ArgumentGraphNode SyntheticRoot;
252
253   public:
254     ArgumentGraph() { SyntheticRoot.Definition = 0; }
255
256     typedef SmallVectorImpl<ArgumentGraphNode*>::iterator iterator;
257
258     iterator begin() { return SyntheticRoot.Uses.begin(); }
259     iterator end() { return SyntheticRoot.Uses.end(); }
260     ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
261
262     ArgumentGraphNode *operator[](Argument *A) {
263       ArgumentGraphNode &Node = ArgumentMap[A];
264       Node.Definition = A;
265       SyntheticRoot.Uses.push_back(&Node);
266       return &Node;
267     }
268   };
269
270   // This tracker checks whether callees are in the SCC, and if so it does not
271   // consider that a capture, instead adding it to the "Uses" list and
272   // continuing with the analysis.
273   struct ArgumentUsesTracker : public CaptureTracker {
274     ArgumentUsesTracker(const SmallPtrSet<Function*, 8> &SCCNodes)
275       : Captured(false), SCCNodes(SCCNodes) {}
276
277     void tooManyUses() { Captured = true; }
278
279     bool shouldExplore(Use *U) { return true; }
280
281     bool captured(Use *U) {
282       CallSite CS(U->getUser());
283       if (!CS.getInstruction()) { Captured = true; return true; }
284
285       Function *F = CS.getCalledFunction();
286       if (!F || !SCCNodes.count(F)) { Captured = true; return true; }
287
288       Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
289       for (CallSite::arg_iterator PI = CS.arg_begin(), PE = CS.arg_end();
290            PI != PE; ++PI, ++AI) {
291         if (AI == AE) {
292           assert(F->isVarArg() && "More params than args in non-varargs call");
293           Captured = true;
294           return true;
295         }
296         if (PI == U) {
297           Uses.push_back(AI);
298           break;
299         }
300       }
301       assert(!Uses.empty() && "Capturing call-site captured nothing?");
302       return false;
303     }
304
305     bool Captured;  // True only if certainly captured (used outside our SCC).
306     SmallVector<Argument*, 4> Uses;  // Uses within our SCC.
307
308     const SmallPtrSet<Function*, 8> &SCCNodes;
309   };
310 }
311
312 namespace llvm {
313   template<> struct GraphTraits<ArgumentGraphNode*> {
314     typedef ArgumentGraphNode NodeType;
315     typedef SmallVectorImpl<ArgumentGraphNode*>::iterator ChildIteratorType;
316
317     static inline NodeType *getEntryNode(NodeType *A) { return A; }
318     static inline ChildIteratorType child_begin(NodeType *N) {
319       return N->Uses.begin();
320     }
321     static inline ChildIteratorType child_end(NodeType *N) {
322       return N->Uses.end();
323     }
324   };
325   template<> struct GraphTraits<ArgumentGraph*>
326     : public GraphTraits<ArgumentGraphNode*> {
327     static NodeType *getEntryNode(ArgumentGraph *AG) {
328       return AG->getEntryNode();
329     }
330     static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
331       return AG->begin();
332     }
333     static ChildIteratorType nodes_end(ArgumentGraph *AG) {
334       return AG->end();
335     }
336   };
337 }
338
339 /// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
340 bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
341   bool Changed = false;
342
343   SmallPtrSet<Function*, 8> SCCNodes;
344
345   // Fill SCCNodes with the elements of the SCC.  Used for quickly
346   // looking up whether a given CallGraphNode is in this SCC.
347   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
348     Function *F = (*I)->getFunction();
349     if (F && !F->isDeclaration() && !F->mayBeOverridden())
350       SCCNodes.insert(F);
351   }
352
353   ArgumentGraph AG;
354
355   // Check each function in turn, determining which pointer arguments are not
356   // captured.
357   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
358     Function *F = (*I)->getFunction();
359
360     if (F == 0)
361       // External node - only a problem for arguments that we pass to it.
362       continue;
363
364     // Definitions with weak linkage may be overridden at linktime with
365     // something that captures pointers, so treat them like declarations.
366     if (F->isDeclaration() || F->mayBeOverridden())
367       continue;
368
369     // Functions that are readonly (or readnone) and nounwind and don't return
370     // a value can't capture arguments. Don't analyze them.
371     if (F->onlyReadsMemory() && F->doesNotThrow() &&
372         F->getReturnType()->isVoidTy()) {
373       for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
374            A != E; ++A) {
375         if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
376           A->addAttr(Attribute::NoCapture);
377           ++NumNoCapture;
378           Changed = true;
379         }
380       }
381       continue;
382     }
383
384     for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
385       if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
386         ArgumentUsesTracker Tracker(SCCNodes);
387         PointerMayBeCaptured(A, &Tracker);
388         if (!Tracker.Captured) {
389           if (Tracker.Uses.empty()) {
390             // If it's trivially not captured, mark it nocapture now.
391             A->addAttr(Attribute::NoCapture);
392             ++NumNoCapture;
393             Changed = true;
394           } else {
395             // If it's not trivially captured and not trivially not captured,
396             // then it must be calling into another function in our SCC. Save
397             // its particulars for Argument-SCC analysis later.
398             ArgumentGraphNode *Node = AG[A];
399             for (SmallVectorImpl<Argument*>::iterator UI = Tracker.Uses.begin(),
400                    UE = Tracker.Uses.end(); UI != UE; ++UI)
401               Node->Uses.push_back(AG[*UI]);
402           }
403         }
404         // Otherwise, it's captured. Don't bother doing SCC analysis on it.
405       }
406   }
407
408   // The graph we've collected is partial because we stopped scanning for
409   // argument uses once we solved the argument trivially. These partial nodes
410   // show up as ArgumentGraphNode objects with an empty Uses list, and for
411   // these nodes the final decision about whether they capture has already been
412   // made.  If the definition doesn't have a 'nocapture' attribute by now, it
413   // captures.
414
415   for (scc_iterator<ArgumentGraph*> I = scc_begin(&AG), E = scc_end(&AG);
416        I != E; ++I) {
417     std::vector<ArgumentGraphNode*> &ArgumentSCC = *I;
418     if (ArgumentSCC.size() == 1) {
419       if (!ArgumentSCC[0]->Definition) continue;  // synthetic root node
420
421       // eg. "void f(int* x) { if (...) f(x); }"
422       if (ArgumentSCC[0]->Uses.size() == 1 &&
423           ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
424         ArgumentSCC[0]->Definition->addAttr(Attribute::NoCapture);
425         ++NumNoCapture;
426         Changed = true;
427       }
428       continue;
429     }
430
431     bool SCCCaptured = false;
432     for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
433            E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
434       ArgumentGraphNode *Node = *I;
435       if (Node->Uses.empty()) {
436         if (!Node->Definition->hasNoCaptureAttr())
437           SCCCaptured = true;
438       }
439     }
440     if (SCCCaptured) continue;
441
442     SmallPtrSet<Argument*, 8> ArgumentSCCNodes;
443     // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
444     // quickly looking up whether a given Argument is in this ArgumentSCC.
445     for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
446            E = ArgumentSCC.end(); I != E; ++I) {
447       ArgumentSCCNodes.insert((*I)->Definition);
448     }
449
450     for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
451            E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
452       ArgumentGraphNode *N = *I;
453       for (SmallVectorImpl<ArgumentGraphNode*>::iterator UI = N->Uses.begin(),
454              UE = N->Uses.end(); UI != UE; ++UI) {
455         Argument *A = (*UI)->Definition;
456         if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
457           continue;
458         SCCCaptured = true;
459         break;
460       }
461     }
462     if (SCCCaptured) continue;
463
464     for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
465       Argument *A = ArgumentSCC[i]->Definition;
466       A->addAttr(Attribute::NoCapture);
467       ++NumNoCapture;
468       Changed = true;
469     }
470   }
471
472   return Changed;
473 }
474
475 /// IsFunctionMallocLike - A function is malloc-like if it returns either null
476 /// or a pointer that doesn't alias any other pointer visible to the caller.
477 bool FunctionAttrs::IsFunctionMallocLike(Function *F,
478                               SmallPtrSet<Function*, 8> &SCCNodes) const {
479   UniqueVector<Value *> FlowsToReturn;
480   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
481     if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
482       FlowsToReturn.insert(Ret->getReturnValue());
483
484   for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
485     Value *RetVal = FlowsToReturn[i+1];   // UniqueVector[0] is reserved.
486
487     if (Constant *C = dyn_cast<Constant>(RetVal)) {
488       if (!C->isNullValue() && !isa<UndefValue>(C))
489         return false;
490
491       continue;
492     }
493
494     if (isa<Argument>(RetVal))
495       return false;
496
497     if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
498       switch (RVI->getOpcode()) {
499         // Extend the analysis by looking upwards.
500         case Instruction::BitCast:
501         case Instruction::GetElementPtr:
502           FlowsToReturn.insert(RVI->getOperand(0));
503           continue;
504         case Instruction::Select: {
505           SelectInst *SI = cast<SelectInst>(RVI);
506           FlowsToReturn.insert(SI->getTrueValue());
507           FlowsToReturn.insert(SI->getFalseValue());
508           continue;
509         }
510         case Instruction::PHI: {
511           PHINode *PN = cast<PHINode>(RVI);
512           for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
513             FlowsToReturn.insert(PN->getIncomingValue(i));
514           continue;
515         }
516
517         // Check whether the pointer came from an allocation.
518         case Instruction::Alloca:
519           break;
520         case Instruction::Call:
521         case Instruction::Invoke: {
522           CallSite CS(RVI);
523           if (CS.paramHasAttr(0, Attribute::NoAlias))
524             break;
525           if (CS.getCalledFunction() &&
526               SCCNodes.count(CS.getCalledFunction()))
527             break;
528         } // fall-through
529         default:
530           return false;  // Did not come from an allocation.
531       }
532
533     if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
534       return false;
535   }
536
537   return true;
538 }
539
540 /// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
541 bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
542   SmallPtrSet<Function*, 8> SCCNodes;
543
544   // Fill SCCNodes with the elements of the SCC.  Used for quickly
545   // looking up whether a given CallGraphNode is in this SCC.
546   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
547     SCCNodes.insert((*I)->getFunction());
548
549   // Check each function in turn, determining which functions return noalias
550   // pointers.
551   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
552     Function *F = (*I)->getFunction();
553
554     if (F == 0)
555       // External node - skip it;
556       return false;
557
558     // Already noalias.
559     if (F->doesNotAlias(0))
560       continue;
561
562     // Definitions with weak linkage may be overridden at linktime, so
563     // treat them like declarations.
564     if (F->isDeclaration() || F->mayBeOverridden())
565       return false;
566
567     // We annotate noalias return values, which are only applicable to 
568     // pointer types.
569     if (!F->getReturnType()->isPointerTy())
570       continue;
571
572     if (!IsFunctionMallocLike(F, SCCNodes))
573       return false;
574   }
575
576   bool MadeChange = false;
577   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
578     Function *F = (*I)->getFunction();
579     if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
580       continue;
581
582     F->setDoesNotAlias(0);
583     ++NumNoAlias;
584     MadeChange = true;
585   }
586
587   return MadeChange;
588 }
589
590 bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
591   AA = &getAnalysis<AliasAnalysis>();
592
593   bool Changed = AddReadAttrs(SCC);
594   Changed |= AddNoCaptureAttrs(SCC);
595   Changed |= AddNoAliasAttrs(SCC);
596   return Changed;
597 }