]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/Transforms/Vectorize/SLPVectorizer.cpp
Vendor import of llvm release_39 branch r276489:
[FreeBSD/FreeBSD.git] / lib / Transforms / Vectorize / SLPVectorizer.cpp
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/PostOrderIterator.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/CodeMetrics.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopAccessAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/NoFolder.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Vectorize.h"
44 #include <algorithm>
45 #include <memory>
46
47 using namespace llvm;
48 using namespace slpvectorizer;
49
50 #define SV_NAME "slp-vectorizer"
51 #define DEBUG_TYPE "SLP"
52
53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
54
55 static cl::opt<int>
56     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
57                      cl::desc("Only vectorize if you gain more than this "
58                               "number "));
59
60 static cl::opt<bool>
61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
62                    cl::desc("Attempt to vectorize horizontal reductions"));
63
64 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
65     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
66     cl::desc(
67         "Attempt to vectorize horizontal reductions feeding into a store"));
68
69 static cl::opt<int>
70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
71     cl::desc("Attempt to vectorize for this register size in bits"));
72
73 /// Limits the size of scheduling regions in a block.
74 /// It avoid long compile times for _very_ large blocks where vector
75 /// instructions are spread over a wide range.
76 /// This limit is way higher than needed by real-world functions.
77 static cl::opt<int>
78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
79     cl::desc("Limit the size of the SLP scheduling region per block"));
80
81 static cl::opt<int> MinVectorRegSizeOption(
82     "slp-min-reg-size", cl::init(128), cl::Hidden,
83     cl::desc("Attempt to vectorize for this register size in bits"));
84
85 // FIXME: Set this via cl::opt to allow overriding.
86 static const unsigned RecursionMaxDepth = 12;
87
88 // Limit the number of alias checks. The limit is chosen so that
89 // it has no negative effect on the llvm benchmarks.
90 static const unsigned AliasedCheckLimit = 10;
91
92 // Another limit for the alias checks: The maximum distance between load/store
93 // instructions where alias checks are done.
94 // This limit is useful for very large basic blocks.
95 static const unsigned MaxMemDepDistance = 160;
96
97 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
98 /// regions to be handled.
99 static const int MinScheduleRegionSize = 16;
100
101 /// \brief Predicate for the element types that the SLP vectorizer supports.
102 ///
103 /// The most important thing to filter here are types which are invalid in LLVM
104 /// vectors. We also filter target specific types which have absolutely no
105 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
106 /// avoids spending time checking the cost model and realizing that they will
107 /// be inevitably scalarized.
108 static bool isValidElementType(Type *Ty) {
109   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
110          !Ty->isPPC_FP128Ty();
111 }
112
113 /// \returns the parent basic block if all of the instructions in \p VL
114 /// are in the same block or null otherwise.
115 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
116   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
117   if (!I0)
118     return nullptr;
119   BasicBlock *BB = I0->getParent();
120   for (int i = 1, e = VL.size(); i < e; i++) {
121     Instruction *I = dyn_cast<Instruction>(VL[i]);
122     if (!I)
123       return nullptr;
124
125     if (BB != I->getParent())
126       return nullptr;
127   }
128   return BB;
129 }
130
131 /// \returns True if all of the values in \p VL are constants.
132 static bool allConstant(ArrayRef<Value *> VL) {
133   for (Value *i : VL)
134     if (!isa<Constant>(i))
135       return false;
136   return true;
137 }
138
139 /// \returns True if all of the values in \p VL are identical.
140 static bool isSplat(ArrayRef<Value *> VL) {
141   for (unsigned i = 1, e = VL.size(); i < e; ++i)
142     if (VL[i] != VL[0])
143       return false;
144   return true;
145 }
146
147 ///\returns Opcode that can be clubbed with \p Op to create an alternate
148 /// sequence which can later be merged as a ShuffleVector instruction.
149 static unsigned getAltOpcode(unsigned Op) {
150   switch (Op) {
151   case Instruction::FAdd:
152     return Instruction::FSub;
153   case Instruction::FSub:
154     return Instruction::FAdd;
155   case Instruction::Add:
156     return Instruction::Sub;
157   case Instruction::Sub:
158     return Instruction::Add;
159   default:
160     return 0;
161   }
162 }
163
164 ///\returns bool representing if Opcode \p Op can be part
165 /// of an alternate sequence which can later be merged as
166 /// a ShuffleVector instruction.
167 static bool canCombineAsAltInst(unsigned Op) {
168   return Op == Instruction::FAdd || Op == Instruction::FSub ||
169          Op == Instruction::Sub || Op == Instruction::Add;
170 }
171
172 /// \returns ShuffleVector instruction if instructions in \p VL have
173 ///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
174 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
175 static unsigned isAltInst(ArrayRef<Value *> VL) {
176   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
177   unsigned Opcode = I0->getOpcode();
178   unsigned AltOpcode = getAltOpcode(Opcode);
179   for (int i = 1, e = VL.size(); i < e; i++) {
180     Instruction *I = dyn_cast<Instruction>(VL[i]);
181     if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
182       return 0;
183   }
184   return Instruction::ShuffleVector;
185 }
186
187 /// \returns The opcode if all of the Instructions in \p VL have the same
188 /// opcode, or zero.
189 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
190   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
191   if (!I0)
192     return 0;
193   unsigned Opcode = I0->getOpcode();
194   for (int i = 1, e = VL.size(); i < e; i++) {
195     Instruction *I = dyn_cast<Instruction>(VL[i]);
196     if (!I || Opcode != I->getOpcode()) {
197       if (canCombineAsAltInst(Opcode) && i == 1)
198         return isAltInst(VL);
199       return 0;
200     }
201   }
202   return Opcode;
203 }
204
205 /// Get the intersection (logical and) of all of the potential IR flags
206 /// of each scalar operation (VL) that will be converted into a vector (I).
207 /// Flag set: NSW, NUW, exact, and all of fast-math.
208 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
209   if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
210     if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
211       // Intersection is initialized to the 0th scalar,
212       // so start counting from index '1'.
213       for (int i = 1, e = VL.size(); i < e; ++i) {
214         if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
215           Intersection->andIRFlags(Scalar);
216       }
217       VecOp->copyIRFlags(Intersection);
218     }
219   }
220 }
221
222 /// \returns The type that all of the values in \p VL have or null if there
223 /// are different types.
224 static Type* getSameType(ArrayRef<Value *> VL) {
225   Type *Ty = VL[0]->getType();
226   for (int i = 1, e = VL.size(); i < e; i++)
227     if (VL[i]->getType() != Ty)
228       return nullptr;
229
230   return Ty;
231 }
232
233 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
234 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
235   assert(Opcode == Instruction::ExtractElement ||
236          Opcode == Instruction::ExtractValue);
237   if (Opcode == Instruction::ExtractElement) {
238     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
239     return CI && CI->getZExtValue() == Idx;
240   } else {
241     ExtractValueInst *EI = cast<ExtractValueInst>(E);
242     return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
243   }
244 }
245
246 /// \returns True if in-tree use also needs extract. This refers to
247 /// possible scalar operand in vectorized instruction.
248 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
249                                     TargetLibraryInfo *TLI) {
250
251   unsigned Opcode = UserInst->getOpcode();
252   switch (Opcode) {
253   case Instruction::Load: {
254     LoadInst *LI = cast<LoadInst>(UserInst);
255     return (LI->getPointerOperand() == Scalar);
256   }
257   case Instruction::Store: {
258     StoreInst *SI = cast<StoreInst>(UserInst);
259     return (SI->getPointerOperand() == Scalar);
260   }
261   case Instruction::Call: {
262     CallInst *CI = cast<CallInst>(UserInst);
263     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
264     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
265       return (CI->getArgOperand(1) == Scalar);
266     }
267   }
268   default:
269     return false;
270   }
271 }
272
273 /// \returns the AA location that is being access by the instruction.
274 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
275   if (StoreInst *SI = dyn_cast<StoreInst>(I))
276     return MemoryLocation::get(SI);
277   if (LoadInst *LI = dyn_cast<LoadInst>(I))
278     return MemoryLocation::get(LI);
279   return MemoryLocation();
280 }
281
282 /// \returns True if the instruction is not a volatile or atomic load/store.
283 static bool isSimple(Instruction *I) {
284   if (LoadInst *LI = dyn_cast<LoadInst>(I))
285     return LI->isSimple();
286   if (StoreInst *SI = dyn_cast<StoreInst>(I))
287     return SI->isSimple();
288   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
289     return !MI->isVolatile();
290   return true;
291 }
292
293 namespace llvm {
294 namespace slpvectorizer {
295 /// Bottom Up SLP Vectorizer.
296 class BoUpSLP {
297 public:
298   typedef SmallVector<Value *, 8> ValueList;
299   typedef SmallVector<Instruction *, 16> InstrList;
300   typedef SmallPtrSet<Value *, 16> ValueSet;
301   typedef SmallVector<StoreInst *, 8> StoreList;
302
303   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
304           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
305           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
306           const DataLayout *DL)
307       : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
308         SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB),
309         DL(DL), Builder(Se->getContext()) {
310     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
311     // Use the vector register size specified by the target unless overridden
312     // by a command-line option.
313     // TODO: It would be better to limit the vectorization factor based on
314     //       data type rather than just register size. For example, x86 AVX has
315     //       256-bit registers, but it does not support integer operations
316     //       at that width (that requires AVX2).
317     if (MaxVectorRegSizeOption.getNumOccurrences())
318       MaxVecRegSize = MaxVectorRegSizeOption;
319     else
320       MaxVecRegSize = TTI->getRegisterBitWidth(true);
321
322     MinVecRegSize = MinVectorRegSizeOption;
323   }
324
325   /// \brief Vectorize the tree that starts with the elements in \p VL.
326   /// Returns the vectorized root.
327   Value *vectorizeTree();
328
329   /// \returns the cost incurred by unwanted spills and fills, caused by
330   /// holding live values over call sites.
331   int getSpillCost();
332
333   /// \returns the vectorization cost of the subtree that starts at \p VL.
334   /// A negative number means that this is profitable.
335   int getTreeCost();
336
337   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
338   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
339   void buildTree(ArrayRef<Value *> Roots,
340                  ArrayRef<Value *> UserIgnoreLst = None);
341
342   /// Clear the internal data structures that are created by 'buildTree'.
343   void deleteTree() {
344     VectorizableTree.clear();
345     ScalarToTreeEntry.clear();
346     MustGather.clear();
347     ExternalUses.clear();
348     NumLoadsWantToKeepOrder = 0;
349     NumLoadsWantToChangeOrder = 0;
350     for (auto &Iter : BlocksSchedules) {
351       BlockScheduling *BS = Iter.second.get();
352       BS->clear();
353     }
354     MinBWs.clear();
355   }
356
357   /// \brief Perform LICM and CSE on the newly generated gather sequences.
358   void optimizeGatherSequence();
359
360   /// \returns true if it is beneficial to reverse the vector order.
361   bool shouldReorder() const {
362     return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
363   }
364
365   /// \return The vector element size in bits to use when vectorizing the
366   /// expression tree ending at \p V. If V is a store, the size is the width of
367   /// the stored value. Otherwise, the size is the width of the largest loaded
368   /// value reaching V. This method is used by the vectorizer to calculate
369   /// vectorization factors.
370   unsigned getVectorElementSize(Value *V);
371
372   /// Compute the minimum type sizes required to represent the entries in a
373   /// vectorizable tree.
374   void computeMinimumValueSizes();
375
376   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
377   unsigned getMaxVecRegSize() const {
378     return MaxVecRegSize;
379   }
380
381   // \returns minimum vector register size as set by cl::opt.
382   unsigned getMinVecRegSize() const {
383     return MinVecRegSize;
384   }
385
386   /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
387   ///
388   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
389   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
390
391 private:
392   struct TreeEntry;
393
394   /// \returns the cost of the vectorizable entry.
395   int getEntryCost(TreeEntry *E);
396
397   /// This is the recursive part of buildTree.
398   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
399
400   /// \returns True if the ExtractElement/ExtractValue instructions in VL can
401   /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
402   bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const;
403
404   /// Vectorize a single entry in the tree.
405   Value *vectorizeTree(TreeEntry *E);
406
407   /// Vectorize a single entry in the tree, starting in \p VL.
408   Value *vectorizeTree(ArrayRef<Value *> VL);
409
410   /// \returns the pointer to the vectorized value if \p VL is already
411   /// vectorized, or NULL. They may happen in cycles.
412   Value *alreadyVectorized(ArrayRef<Value *> VL) const;
413
414   /// \returns the scalarization cost for this type. Scalarization in this
415   /// context means the creation of vectors from a group of scalars.
416   int getGatherCost(Type *Ty);
417
418   /// \returns the scalarization cost for this list of values. Assuming that
419   /// this subtree gets vectorized, we may need to extract the values from the
420   /// roots. This method calculates the cost of extracting the values.
421   int getGatherCost(ArrayRef<Value *> VL);
422
423   /// \brief Set the Builder insert point to one after the last instruction in
424   /// the bundle
425   void setInsertPointAfterBundle(ArrayRef<Value *> VL);
426
427   /// \returns a vector from a collection of scalars in \p VL.
428   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
429
430   /// \returns whether the VectorizableTree is fully vectorizable and will
431   /// be beneficial even the tree height is tiny.
432   bool isFullyVectorizableTinyTree();
433
434   /// \reorder commutative operands in alt shuffle if they result in
435   ///  vectorized code.
436   void reorderAltShuffleOperands(ArrayRef<Value *> VL,
437                                  SmallVectorImpl<Value *> &Left,
438                                  SmallVectorImpl<Value *> &Right);
439   /// \reorder commutative operands to get better probability of
440   /// generating vectorized code.
441   void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
442                                       SmallVectorImpl<Value *> &Left,
443                                       SmallVectorImpl<Value *> &Right);
444   struct TreeEntry {
445     TreeEntry() : Scalars(), VectorizedValue(nullptr),
446     NeedToGather(0) {}
447
448     /// \returns true if the scalars in VL are equal to this entry.
449     bool isSame(ArrayRef<Value *> VL) const {
450       assert(VL.size() == Scalars.size() && "Invalid size");
451       return std::equal(VL.begin(), VL.end(), Scalars.begin());
452     }
453
454     /// A vector of scalars.
455     ValueList Scalars;
456
457     /// The Scalars are vectorized into this value. It is initialized to Null.
458     Value *VectorizedValue;
459
460     /// Do we need to gather this sequence ?
461     bool NeedToGather;
462   };
463
464   /// Create a new VectorizableTree entry.
465   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
466     VectorizableTree.emplace_back();
467     int idx = VectorizableTree.size() - 1;
468     TreeEntry *Last = &VectorizableTree[idx];
469     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
470     Last->NeedToGather = !Vectorized;
471     if (Vectorized) {
472       for (int i = 0, e = VL.size(); i != e; ++i) {
473         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
474         ScalarToTreeEntry[VL[i]] = idx;
475       }
476     } else {
477       MustGather.insert(VL.begin(), VL.end());
478     }
479     return Last;
480   }
481
482   /// -- Vectorization State --
483   /// Holds all of the tree entries.
484   std::vector<TreeEntry> VectorizableTree;
485
486   /// Maps a specific scalar to its tree entry.
487   SmallDenseMap<Value*, int> ScalarToTreeEntry;
488
489   /// A list of scalars that we found that we need to keep as scalars.
490   ValueSet MustGather;
491
492   /// This POD struct describes one external user in the vectorized tree.
493   struct ExternalUser {
494     ExternalUser (Value *S, llvm::User *U, int L) :
495       Scalar(S), User(U), Lane(L){}
496     // Which scalar in our function.
497     Value *Scalar;
498     // Which user that uses the scalar.
499     llvm::User *User;
500     // Which lane does the scalar belong to.
501     int Lane;
502   };
503   typedef SmallVector<ExternalUser, 16> UserList;
504
505   /// Checks if two instructions may access the same memory.
506   ///
507   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
508   /// is invariant in the calling loop.
509   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
510                  Instruction *Inst2) {
511
512     // First check if the result is already in the cache.
513     AliasCacheKey key = std::make_pair(Inst1, Inst2);
514     Optional<bool> &result = AliasCache[key];
515     if (result.hasValue()) {
516       return result.getValue();
517     }
518     MemoryLocation Loc2 = getLocation(Inst2, AA);
519     bool aliased = true;
520     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
521       // Do the alias check.
522       aliased = AA->alias(Loc1, Loc2);
523     }
524     // Store the result in the cache.
525     result = aliased;
526     return aliased;
527   }
528
529   typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
530
531   /// Cache for alias results.
532   /// TODO: consider moving this to the AliasAnalysis itself.
533   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
534
535   /// Removes an instruction from its block and eventually deletes it.
536   /// It's like Instruction::eraseFromParent() except that the actual deletion
537   /// is delayed until BoUpSLP is destructed.
538   /// This is required to ensure that there are no incorrect collisions in the
539   /// AliasCache, which can happen if a new instruction is allocated at the
540   /// same address as a previously deleted instruction.
541   void eraseInstruction(Instruction *I) {
542     I->removeFromParent();
543     I->dropAllReferences();
544     DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
545   }
546
547   /// Temporary store for deleted instructions. Instructions will be deleted
548   /// eventually when the BoUpSLP is destructed.
549   SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
550
551   /// A list of values that need to extracted out of the tree.
552   /// This list holds pairs of (Internal Scalar : External User).
553   UserList ExternalUses;
554
555   /// Values used only by @llvm.assume calls.
556   SmallPtrSet<const Value *, 32> EphValues;
557
558   /// Holds all of the instructions that we gathered.
559   SetVector<Instruction *> GatherSeq;
560   /// A list of blocks that we are going to CSE.
561   SetVector<BasicBlock *> CSEBlocks;
562
563   /// Contains all scheduling relevant data for an instruction.
564   /// A ScheduleData either represents a single instruction or a member of an
565   /// instruction bundle (= a group of instructions which is combined into a
566   /// vector instruction).
567   struct ScheduleData {
568
569     // The initial value for the dependency counters. It means that the
570     // dependencies are not calculated yet.
571     enum { InvalidDeps = -1 };
572
573     ScheduleData()
574         : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
575           NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
576           Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
577           UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
578
579     void init(int BlockSchedulingRegionID) {
580       FirstInBundle = this;
581       NextInBundle = nullptr;
582       NextLoadStore = nullptr;
583       IsScheduled = false;
584       SchedulingRegionID = BlockSchedulingRegionID;
585       UnscheduledDepsInBundle = UnscheduledDeps;
586       clearDependencies();
587     }
588
589     /// Returns true if the dependency information has been calculated.
590     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
591
592     /// Returns true for single instructions and for bundle representatives
593     /// (= the head of a bundle).
594     bool isSchedulingEntity() const { return FirstInBundle == this; }
595
596     /// Returns true if it represents an instruction bundle and not only a
597     /// single instruction.
598     bool isPartOfBundle() const {
599       return NextInBundle != nullptr || FirstInBundle != this;
600     }
601
602     /// Returns true if it is ready for scheduling, i.e. it has no more
603     /// unscheduled depending instructions/bundles.
604     bool isReady() const {
605       assert(isSchedulingEntity() &&
606              "can't consider non-scheduling entity for ready list");
607       return UnscheduledDepsInBundle == 0 && !IsScheduled;
608     }
609
610     /// Modifies the number of unscheduled dependencies, also updating it for
611     /// the whole bundle.
612     int incrementUnscheduledDeps(int Incr) {
613       UnscheduledDeps += Incr;
614       return FirstInBundle->UnscheduledDepsInBundle += Incr;
615     }
616
617     /// Sets the number of unscheduled dependencies to the number of
618     /// dependencies.
619     void resetUnscheduledDeps() {
620       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
621     }
622
623     /// Clears all dependency information.
624     void clearDependencies() {
625       Dependencies = InvalidDeps;
626       resetUnscheduledDeps();
627       MemoryDependencies.clear();
628     }
629
630     void dump(raw_ostream &os) const {
631       if (!isSchedulingEntity()) {
632         os << "/ " << *Inst;
633       } else if (NextInBundle) {
634         os << '[' << *Inst;
635         ScheduleData *SD = NextInBundle;
636         while (SD) {
637           os << ';' << *SD->Inst;
638           SD = SD->NextInBundle;
639         }
640         os << ']';
641       } else {
642         os << *Inst;
643       }
644     }
645
646     Instruction *Inst;
647
648     /// Points to the head in an instruction bundle (and always to this for
649     /// single instructions).
650     ScheduleData *FirstInBundle;
651
652     /// Single linked list of all instructions in a bundle. Null if it is a
653     /// single instruction.
654     ScheduleData *NextInBundle;
655
656     /// Single linked list of all memory instructions (e.g. load, store, call)
657     /// in the block - until the end of the scheduling region.
658     ScheduleData *NextLoadStore;
659
660     /// The dependent memory instructions.
661     /// This list is derived on demand in calculateDependencies().
662     SmallVector<ScheduleData *, 4> MemoryDependencies;
663
664     /// This ScheduleData is in the current scheduling region if this matches
665     /// the current SchedulingRegionID of BlockScheduling.
666     int SchedulingRegionID;
667
668     /// Used for getting a "good" final ordering of instructions.
669     int SchedulingPriority;
670
671     /// The number of dependencies. Constitutes of the number of users of the
672     /// instruction plus the number of dependent memory instructions (if any).
673     /// This value is calculated on demand.
674     /// If InvalidDeps, the number of dependencies is not calculated yet.
675     ///
676     int Dependencies;
677
678     /// The number of dependencies minus the number of dependencies of scheduled
679     /// instructions. As soon as this is zero, the instruction/bundle gets ready
680     /// for scheduling.
681     /// Note that this is negative as long as Dependencies is not calculated.
682     int UnscheduledDeps;
683
684     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
685     /// single instructions.
686     int UnscheduledDepsInBundle;
687
688     /// True if this instruction is scheduled (or considered as scheduled in the
689     /// dry-run).
690     bool IsScheduled;
691   };
692
693 #ifndef NDEBUG
694   friend inline raw_ostream &operator<<(raw_ostream &os,
695                                         const BoUpSLP::ScheduleData &SD) {
696     SD.dump(os);
697     return os;
698   }
699 #endif
700
701   /// Contains all scheduling data for a basic block.
702   ///
703   struct BlockScheduling {
704
705     BlockScheduling(BasicBlock *BB)
706         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
707           ScheduleStart(nullptr), ScheduleEnd(nullptr),
708           FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
709           ScheduleRegionSize(0),
710           ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
711           // Make sure that the initial SchedulingRegionID is greater than the
712           // initial SchedulingRegionID in ScheduleData (which is 0).
713           SchedulingRegionID(1) {}
714
715     void clear() {
716       ReadyInsts.clear();
717       ScheduleStart = nullptr;
718       ScheduleEnd = nullptr;
719       FirstLoadStoreInRegion = nullptr;
720       LastLoadStoreInRegion = nullptr;
721
722       // Reduce the maximum schedule region size by the size of the
723       // previous scheduling run.
724       ScheduleRegionSizeLimit -= ScheduleRegionSize;
725       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
726         ScheduleRegionSizeLimit = MinScheduleRegionSize;
727       ScheduleRegionSize = 0;
728
729       // Make a new scheduling region, i.e. all existing ScheduleData is not
730       // in the new region yet.
731       ++SchedulingRegionID;
732     }
733
734     ScheduleData *getScheduleData(Value *V) {
735       ScheduleData *SD = ScheduleDataMap[V];
736       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
737         return SD;
738       return nullptr;
739     }
740
741     bool isInSchedulingRegion(ScheduleData *SD) {
742       return SD->SchedulingRegionID == SchedulingRegionID;
743     }
744
745     /// Marks an instruction as scheduled and puts all dependent ready
746     /// instructions into the ready-list.
747     template <typename ReadyListType>
748     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
749       SD->IsScheduled = true;
750       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
751
752       ScheduleData *BundleMember = SD;
753       while (BundleMember) {
754         // Handle the def-use chain dependencies.
755         for (Use &U : BundleMember->Inst->operands()) {
756           ScheduleData *OpDef = getScheduleData(U.get());
757           if (OpDef && OpDef->hasValidDependencies() &&
758               OpDef->incrementUnscheduledDeps(-1) == 0) {
759             // There are no more unscheduled dependencies after decrementing,
760             // so we can put the dependent instruction into the ready list.
761             ScheduleData *DepBundle = OpDef->FirstInBundle;
762             assert(!DepBundle->IsScheduled &&
763                    "already scheduled bundle gets ready");
764             ReadyList.insert(DepBundle);
765             DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
766           }
767         }
768         // Handle the memory dependencies.
769         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
770           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
771             // There are no more unscheduled dependencies after decrementing,
772             // so we can put the dependent instruction into the ready list.
773             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
774             assert(!DepBundle->IsScheduled &&
775                    "already scheduled bundle gets ready");
776             ReadyList.insert(DepBundle);
777             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
778           }
779         }
780         BundleMember = BundleMember->NextInBundle;
781       }
782     }
783
784     /// Put all instructions into the ReadyList which are ready for scheduling.
785     template <typename ReadyListType>
786     void initialFillReadyList(ReadyListType &ReadyList) {
787       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
788         ScheduleData *SD = getScheduleData(I);
789         if (SD->isSchedulingEntity() && SD->isReady()) {
790           ReadyList.insert(SD);
791           DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
792         }
793       }
794     }
795
796     /// Checks if a bundle of instructions can be scheduled, i.e. has no
797     /// cyclic dependencies. This is only a dry-run, no instructions are
798     /// actually moved at this stage.
799     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
800
801     /// Un-bundles a group of instructions.
802     void cancelScheduling(ArrayRef<Value *> VL);
803
804     /// Extends the scheduling region so that V is inside the region.
805     /// \returns true if the region size is within the limit.
806     bool extendSchedulingRegion(Value *V);
807
808     /// Initialize the ScheduleData structures for new instructions in the
809     /// scheduling region.
810     void initScheduleData(Instruction *FromI, Instruction *ToI,
811                           ScheduleData *PrevLoadStore,
812                           ScheduleData *NextLoadStore);
813
814     /// Updates the dependency information of a bundle and of all instructions/
815     /// bundles which depend on the original bundle.
816     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
817                                BoUpSLP *SLP);
818
819     /// Sets all instruction in the scheduling region to un-scheduled.
820     void resetSchedule();
821
822     BasicBlock *BB;
823
824     /// Simple memory allocation for ScheduleData.
825     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
826
827     /// The size of a ScheduleData array in ScheduleDataChunks.
828     int ChunkSize;
829
830     /// The allocator position in the current chunk, which is the last entry
831     /// of ScheduleDataChunks.
832     int ChunkPos;
833
834     /// Attaches ScheduleData to Instruction.
835     /// Note that the mapping survives during all vectorization iterations, i.e.
836     /// ScheduleData structures are recycled.
837     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
838
839     struct ReadyList : SmallVector<ScheduleData *, 8> {
840       void insert(ScheduleData *SD) { push_back(SD); }
841     };
842
843     /// The ready-list for scheduling (only used for the dry-run).
844     ReadyList ReadyInsts;
845
846     /// The first instruction of the scheduling region.
847     Instruction *ScheduleStart;
848
849     /// The first instruction _after_ the scheduling region.
850     Instruction *ScheduleEnd;
851
852     /// The first memory accessing instruction in the scheduling region
853     /// (can be null).
854     ScheduleData *FirstLoadStoreInRegion;
855
856     /// The last memory accessing instruction in the scheduling region
857     /// (can be null).
858     ScheduleData *LastLoadStoreInRegion;
859
860     /// The current size of the scheduling region.
861     int ScheduleRegionSize;
862
863     /// The maximum size allowed for the scheduling region.
864     int ScheduleRegionSizeLimit;
865
866     /// The ID of the scheduling region. For a new vectorization iteration this
867     /// is incremented which "removes" all ScheduleData from the region.
868     int SchedulingRegionID;
869   };
870
871   /// Attaches the BlockScheduling structures to basic blocks.
872   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
873
874   /// Performs the "real" scheduling. Done before vectorization is actually
875   /// performed in a basic block.
876   void scheduleBlock(BlockScheduling *BS);
877
878   /// List of users to ignore during scheduling and that don't need extracting.
879   ArrayRef<Value *> UserIgnoreList;
880
881   // Number of load-bundles, which contain consecutive loads.
882   int NumLoadsWantToKeepOrder;
883
884   // Number of load-bundles of size 2, which are consecutive loads if reversed.
885   int NumLoadsWantToChangeOrder;
886
887   // Analysis and block reference.
888   Function *F;
889   ScalarEvolution *SE;
890   TargetTransformInfo *TTI;
891   TargetLibraryInfo *TLI;
892   AliasAnalysis *AA;
893   LoopInfo *LI;
894   DominatorTree *DT;
895   AssumptionCache *AC;
896   DemandedBits *DB;
897   const DataLayout *DL;
898   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
899   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
900   /// Instruction builder to construct the vectorized tree.
901   IRBuilder<> Builder;
902
903   /// A map of scalar integer values to the smallest bit width with which they
904   /// can legally be represented.
905   MapVector<Value *, uint64_t> MinBWs;
906 };
907
908 } // end namespace llvm
909 } // end namespace slpvectorizer
910
911 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
912                         ArrayRef<Value *> UserIgnoreLst) {
913   deleteTree();
914   UserIgnoreList = UserIgnoreLst;
915   if (!getSameType(Roots))
916     return;
917   buildTree_rec(Roots, 0);
918
919   // Collect the values that we need to extract from the tree.
920   for (TreeEntry &EIdx : VectorizableTree) {
921     TreeEntry *Entry = &EIdx;
922
923     // For each lane:
924     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
925       Value *Scalar = Entry->Scalars[Lane];
926
927       // No need to handle users of gathered values.
928       if (Entry->NeedToGather)
929         continue;
930
931       for (User *U : Scalar->users()) {
932         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
933
934         Instruction *UserInst = dyn_cast<Instruction>(U);
935         if (!UserInst)
936           continue;
937
938         // Skip in-tree scalars that become vectors
939         if (ScalarToTreeEntry.count(U)) {
940           int Idx = ScalarToTreeEntry[U];
941           TreeEntry *UseEntry = &VectorizableTree[Idx];
942           Value *UseScalar = UseEntry->Scalars[0];
943           // Some in-tree scalars will remain as scalar in vectorized
944           // instructions. If that is the case, the one in Lane 0 will
945           // be used.
946           if (UseScalar != U ||
947               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
948             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
949                          << ".\n");
950             assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
951             continue;
952           }
953         }
954
955         // Ignore users in the user ignore list.
956         if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
957             UserIgnoreList.end())
958           continue;
959
960         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
961               Lane << " from " << *Scalar << ".\n");
962         ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
963       }
964     }
965   }
966 }
967
968
969 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
970   bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy;
971   bool isAltShuffle = false;
972   assert(SameTy && "Invalid types!");
973
974   if (Depth == RecursionMaxDepth) {
975     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
976     newTreeEntry(VL, false);
977     return;
978   }
979
980   // Don't handle vectors.
981   if (VL[0]->getType()->isVectorTy()) {
982     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
983     newTreeEntry(VL, false);
984     return;
985   }
986
987   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
988     if (SI->getValueOperand()->getType()->isVectorTy()) {
989       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
990       newTreeEntry(VL, false);
991       return;
992     }
993   unsigned Opcode = getSameOpcode(VL);
994
995   // Check that this shuffle vector refers to the alternate
996   // sequence of opcodes.
997   if (Opcode == Instruction::ShuffleVector) {
998     Instruction *I0 = dyn_cast<Instruction>(VL[0]);
999     unsigned Op = I0->getOpcode();
1000     if (Op != Instruction::ShuffleVector)
1001       isAltShuffle = true;
1002   }
1003
1004   // If all of the operands are identical or constant we have a simple solution.
1005   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
1006     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1007     newTreeEntry(VL, false);
1008     return;
1009   }
1010
1011   // We now know that this is a vector of instructions of the same type from
1012   // the same block.
1013
1014   // Don't vectorize ephemeral values.
1015   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1016     if (EphValues.count(VL[i])) {
1017       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1018             ") is ephemeral.\n");
1019       newTreeEntry(VL, false);
1020       return;
1021     }
1022   }
1023
1024   // Check if this is a duplicate of another entry.
1025   if (ScalarToTreeEntry.count(VL[0])) {
1026     int Idx = ScalarToTreeEntry[VL[0]];
1027     TreeEntry *E = &VectorizableTree[Idx];
1028     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1029       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
1030       if (E->Scalars[i] != VL[i]) {
1031         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1032         newTreeEntry(VL, false);
1033         return;
1034       }
1035     }
1036     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
1037     return;
1038   }
1039
1040   // Check that none of the instructions in the bundle are already in the tree.
1041   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1042     if (ScalarToTreeEntry.count(VL[i])) {
1043       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1044             ") is already in tree.\n");
1045       newTreeEntry(VL, false);
1046       return;
1047     }
1048   }
1049
1050   // If any of the scalars is marked as a value that needs to stay scalar then
1051   // we need to gather the scalars.
1052   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1053     if (MustGather.count(VL[i])) {
1054       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1055       newTreeEntry(VL, false);
1056       return;
1057     }
1058   }
1059
1060   // Check that all of the users of the scalars that we want to vectorize are
1061   // schedulable.
1062   Instruction *VL0 = cast<Instruction>(VL[0]);
1063   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
1064
1065   if (!DT->isReachableFromEntry(BB)) {
1066     // Don't go into unreachable blocks. They may contain instructions with
1067     // dependency cycles which confuse the final scheduling.
1068     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1069     newTreeEntry(VL, false);
1070     return;
1071   }
1072
1073   // Check that every instructions appears once in this bundle.
1074   for (unsigned i = 0, e = VL.size(); i < e; ++i)
1075     for (unsigned j = i+1; j < e; ++j)
1076       if (VL[i] == VL[j]) {
1077         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1078         newTreeEntry(VL, false);
1079         return;
1080       }
1081
1082   auto &BSRef = BlocksSchedules[BB];
1083   if (!BSRef) {
1084     BSRef = llvm::make_unique<BlockScheduling>(BB);
1085   }
1086   BlockScheduling &BS = *BSRef.get();
1087
1088   if (!BS.tryScheduleBundle(VL, this)) {
1089     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1090     assert((!BS.getScheduleData(VL[0]) ||
1091             !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
1092            "tryScheduleBundle should cancelScheduling on failure");
1093     newTreeEntry(VL, false);
1094     return;
1095   }
1096   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1097
1098   switch (Opcode) {
1099     case Instruction::PHI: {
1100       PHINode *PH = dyn_cast<PHINode>(VL0);
1101
1102       // Check for terminator values (e.g. invoke).
1103       for (unsigned j = 0; j < VL.size(); ++j)
1104         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1105           TerminatorInst *Term = dyn_cast<TerminatorInst>(
1106               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1107           if (Term) {
1108             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1109             BS.cancelScheduling(VL);
1110             newTreeEntry(VL, false);
1111             return;
1112           }
1113         }
1114
1115       newTreeEntry(VL, true);
1116       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1117
1118       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1119         ValueList Operands;
1120         // Prepare the operand vector.
1121         for (Value *j : VL)
1122           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
1123               PH->getIncomingBlock(i)));
1124
1125         buildTree_rec(Operands, Depth + 1);
1126       }
1127       return;
1128     }
1129     case Instruction::ExtractValue:
1130     case Instruction::ExtractElement: {
1131       bool Reuse = canReuseExtract(VL, Opcode);
1132       if (Reuse) {
1133         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
1134       } else {
1135         BS.cancelScheduling(VL);
1136       }
1137       newTreeEntry(VL, Reuse);
1138       return;
1139     }
1140     case Instruction::Load: {
1141       // Check that a vectorized load would load the same memory as a scalar
1142       // load.
1143       // For example we don't want vectorize loads that are smaller than 8 bit.
1144       // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
1145       // loading/storing it as an i8 struct. If we vectorize loads/stores from
1146       // such a struct we read/write packed bits disagreeing with the
1147       // unvectorized version.
1148       Type *ScalarTy = VL[0]->getType();
1149
1150       if (DL->getTypeSizeInBits(ScalarTy) !=
1151           DL->getTypeAllocSizeInBits(ScalarTy)) {
1152         BS.cancelScheduling(VL);
1153         newTreeEntry(VL, false);
1154         DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1155         return;
1156       }
1157       // Check if the loads are consecutive or of we need to swizzle them.
1158       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1159         LoadInst *L = cast<LoadInst>(VL[i]);
1160         if (!L->isSimple()) {
1161           BS.cancelScheduling(VL);
1162           newTreeEntry(VL, false);
1163           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1164           return;
1165         }
1166
1167         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1168           if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) {
1169             ++NumLoadsWantToChangeOrder;
1170           }
1171           BS.cancelScheduling(VL);
1172           newTreeEntry(VL, false);
1173           DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1174           return;
1175         }
1176       }
1177       ++NumLoadsWantToKeepOrder;
1178       newTreeEntry(VL, true);
1179       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1180       return;
1181     }
1182     case Instruction::ZExt:
1183     case Instruction::SExt:
1184     case Instruction::FPToUI:
1185     case Instruction::FPToSI:
1186     case Instruction::FPExt:
1187     case Instruction::PtrToInt:
1188     case Instruction::IntToPtr:
1189     case Instruction::SIToFP:
1190     case Instruction::UIToFP:
1191     case Instruction::Trunc:
1192     case Instruction::FPTrunc:
1193     case Instruction::BitCast: {
1194       Type *SrcTy = VL0->getOperand(0)->getType();
1195       for (unsigned i = 0; i < VL.size(); ++i) {
1196         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1197         if (Ty != SrcTy || !isValidElementType(Ty)) {
1198           BS.cancelScheduling(VL);
1199           newTreeEntry(VL, false);
1200           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1201           return;
1202         }
1203       }
1204       newTreeEntry(VL, true);
1205       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1206
1207       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1208         ValueList Operands;
1209         // Prepare the operand vector.
1210         for (Value *j : VL)
1211           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1212
1213         buildTree_rec(Operands, Depth+1);
1214       }
1215       return;
1216     }
1217     case Instruction::ICmp:
1218     case Instruction::FCmp: {
1219       // Check that all of the compares have the same predicate.
1220       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1221       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
1222       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1223         CmpInst *Cmp = cast<CmpInst>(VL[i]);
1224         if (Cmp->getPredicate() != P0 ||
1225             Cmp->getOperand(0)->getType() != ComparedTy) {
1226           BS.cancelScheduling(VL);
1227           newTreeEntry(VL, false);
1228           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1229           return;
1230         }
1231       }
1232
1233       newTreeEntry(VL, true);
1234       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1235
1236       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1237         ValueList Operands;
1238         // Prepare the operand vector.
1239         for (Value *j : VL)
1240           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1241
1242         buildTree_rec(Operands, Depth+1);
1243       }
1244       return;
1245     }
1246     case Instruction::Select:
1247     case Instruction::Add:
1248     case Instruction::FAdd:
1249     case Instruction::Sub:
1250     case Instruction::FSub:
1251     case Instruction::Mul:
1252     case Instruction::FMul:
1253     case Instruction::UDiv:
1254     case Instruction::SDiv:
1255     case Instruction::FDiv:
1256     case Instruction::URem:
1257     case Instruction::SRem:
1258     case Instruction::FRem:
1259     case Instruction::Shl:
1260     case Instruction::LShr:
1261     case Instruction::AShr:
1262     case Instruction::And:
1263     case Instruction::Or:
1264     case Instruction::Xor: {
1265       newTreeEntry(VL, true);
1266       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1267
1268       // Sort operands of the instructions so that each side is more likely to
1269       // have the same opcode.
1270       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1271         ValueList Left, Right;
1272         reorderInputsAccordingToOpcode(VL, Left, Right);
1273         buildTree_rec(Left, Depth + 1);
1274         buildTree_rec(Right, Depth + 1);
1275         return;
1276       }
1277
1278       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1279         ValueList Operands;
1280         // Prepare the operand vector.
1281         for (Value *j : VL)
1282           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1283
1284         buildTree_rec(Operands, Depth+1);
1285       }
1286       return;
1287     }
1288     case Instruction::GetElementPtr: {
1289       // We don't combine GEPs with complicated (nested) indexing.
1290       for (unsigned j = 0; j < VL.size(); ++j) {
1291         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1292           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1293           BS.cancelScheduling(VL);
1294           newTreeEntry(VL, false);
1295           return;
1296         }
1297       }
1298
1299       // We can't combine several GEPs into one vector if they operate on
1300       // different types.
1301       Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1302       for (unsigned j = 0; j < VL.size(); ++j) {
1303         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1304         if (Ty0 != CurTy) {
1305           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1306           BS.cancelScheduling(VL);
1307           newTreeEntry(VL, false);
1308           return;
1309         }
1310       }
1311
1312       // We don't combine GEPs with non-constant indexes.
1313       for (unsigned j = 0; j < VL.size(); ++j) {
1314         auto Op = cast<Instruction>(VL[j])->getOperand(1);
1315         if (!isa<ConstantInt>(Op)) {
1316           DEBUG(
1317               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1318           BS.cancelScheduling(VL);
1319           newTreeEntry(VL, false);
1320           return;
1321         }
1322       }
1323
1324       newTreeEntry(VL, true);
1325       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1326       for (unsigned i = 0, e = 2; i < e; ++i) {
1327         ValueList Operands;
1328         // Prepare the operand vector.
1329         for (Value *j : VL)
1330           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1331
1332         buildTree_rec(Operands, Depth + 1);
1333       }
1334       return;
1335     }
1336     case Instruction::Store: {
1337       // Check if the stores are consecutive or of we need to swizzle them.
1338       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1339         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1340           BS.cancelScheduling(VL);
1341           newTreeEntry(VL, false);
1342           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1343           return;
1344         }
1345
1346       newTreeEntry(VL, true);
1347       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1348
1349       ValueList Operands;
1350       for (Value *j : VL)
1351         Operands.push_back(cast<Instruction>(j)->getOperand(0));
1352
1353       buildTree_rec(Operands, Depth + 1);
1354       return;
1355     }
1356     case Instruction::Call: {
1357       // Check if the calls are all to the same vectorizable intrinsic.
1358       CallInst *CI = cast<CallInst>(VL[0]);
1359       // Check if this is an Intrinsic call or something that can be
1360       // represented by an intrinsic call
1361       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1362       if (!isTriviallyVectorizable(ID)) {
1363         BS.cancelScheduling(VL);
1364         newTreeEntry(VL, false);
1365         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1366         return;
1367       }
1368       Function *Int = CI->getCalledFunction();
1369       Value *A1I = nullptr;
1370       if (hasVectorInstrinsicScalarOpd(ID, 1))
1371         A1I = CI->getArgOperand(1);
1372       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1373         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1374         if (!CI2 || CI2->getCalledFunction() != Int ||
1375             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
1376             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
1377           BS.cancelScheduling(VL);
1378           newTreeEntry(VL, false);
1379           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1380                        << "\n");
1381           return;
1382         }
1383         // ctlz,cttz and powi are special intrinsics whose second argument
1384         // should be same in order for them to be vectorized.
1385         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1386           Value *A1J = CI2->getArgOperand(1);
1387           if (A1I != A1J) {
1388             BS.cancelScheduling(VL);
1389             newTreeEntry(VL, false);
1390             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1391                          << " argument "<< A1I<<"!=" << A1J
1392                          << "\n");
1393             return;
1394           }
1395         }
1396         // Verify that the bundle operands are identical between the two calls.
1397         if (CI->hasOperandBundles() &&
1398             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
1399                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
1400                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
1401           BS.cancelScheduling(VL);
1402           newTreeEntry(VL, false);
1403           DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
1404                        << *VL[i] << '\n');
1405           return;
1406         }
1407       }
1408
1409       newTreeEntry(VL, true);
1410       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1411         ValueList Operands;
1412         // Prepare the operand vector.
1413         for (Value *j : VL) {
1414           CallInst *CI2 = dyn_cast<CallInst>(j);
1415           Operands.push_back(CI2->getArgOperand(i));
1416         }
1417         buildTree_rec(Operands, Depth + 1);
1418       }
1419       return;
1420     }
1421     case Instruction::ShuffleVector: {
1422       // If this is not an alternate sequence of opcode like add-sub
1423       // then do not vectorize this instruction.
1424       if (!isAltShuffle) {
1425         BS.cancelScheduling(VL);
1426         newTreeEntry(VL, false);
1427         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1428         return;
1429       }
1430       newTreeEntry(VL, true);
1431       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1432
1433       // Reorder operands if reordering would enable vectorization.
1434       if (isa<BinaryOperator>(VL0)) {
1435         ValueList Left, Right;
1436         reorderAltShuffleOperands(VL, Left, Right);
1437         buildTree_rec(Left, Depth + 1);
1438         buildTree_rec(Right, Depth + 1);
1439         return;
1440       }
1441
1442       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1443         ValueList Operands;
1444         // Prepare the operand vector.
1445         for (Value *j : VL)
1446           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1447
1448         buildTree_rec(Operands, Depth + 1);
1449       }
1450       return;
1451     }
1452     default:
1453       BS.cancelScheduling(VL);
1454       newTreeEntry(VL, false);
1455       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1456       return;
1457   }
1458 }
1459
1460 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
1461   unsigned N;
1462   Type *EltTy;
1463   auto *ST = dyn_cast<StructType>(T);
1464   if (ST) {
1465     N = ST->getNumElements();
1466     EltTy = *ST->element_begin();
1467   } else {
1468     N = cast<ArrayType>(T)->getNumElements();
1469     EltTy = cast<ArrayType>(T)->getElementType();
1470   }
1471   if (!isValidElementType(EltTy))
1472     return 0;
1473   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
1474   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
1475     return 0;
1476   if (ST) {
1477     // Check that struct is homogeneous.
1478     for (const auto *Ty : ST->elements())
1479       if (Ty != EltTy)
1480         return 0;
1481   }
1482   return N;
1483 }
1484
1485 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const {
1486   assert(Opcode == Instruction::ExtractElement ||
1487          Opcode == Instruction::ExtractValue);
1488   assert(Opcode == getSameOpcode(VL) && "Invalid opcode");
1489   // Check if all of the extracts come from the same vector and from the
1490   // correct offset.
1491   Value *VL0 = VL[0];
1492   Instruction *E0 = cast<Instruction>(VL0);
1493   Value *Vec = E0->getOperand(0);
1494
1495   // We have to extract from a vector/aggregate with the same number of elements.
1496   unsigned NElts;
1497   if (Opcode == Instruction::ExtractValue) {
1498     const DataLayout &DL = E0->getModule()->getDataLayout();
1499     NElts = canMapToVector(Vec->getType(), DL);
1500     if (!NElts)
1501       return false;
1502     // Check if load can be rewritten as load of vector.
1503     LoadInst *LI = dyn_cast<LoadInst>(Vec);
1504     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
1505       return false;
1506   } else {
1507     NElts = Vec->getType()->getVectorNumElements();
1508   }
1509
1510   if (NElts != VL.size())
1511     return false;
1512
1513   // Check that all of the indices extract from the correct offset.
1514   if (!matchExtractIndex(E0, 0, Opcode))
1515     return false;
1516
1517   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1518     Instruction *E = cast<Instruction>(VL[i]);
1519     if (!matchExtractIndex(E, i, Opcode))
1520       return false;
1521     if (E->getOperand(0) != Vec)
1522       return false;
1523   }
1524
1525   return true;
1526 }
1527
1528 int BoUpSLP::getEntryCost(TreeEntry *E) {
1529   ArrayRef<Value*> VL = E->Scalars;
1530
1531   Type *ScalarTy = VL[0]->getType();
1532   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1533     ScalarTy = SI->getValueOperand()->getType();
1534   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1535
1536   // If we have computed a smaller type for the expression, update VecTy so
1537   // that the costs will be accurate.
1538   if (MinBWs.count(VL[0]))
1539     VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]),
1540                             VL.size());
1541
1542   if (E->NeedToGather) {
1543     if (allConstant(VL))
1544       return 0;
1545     if (isSplat(VL)) {
1546       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1547     }
1548     return getGatherCost(E->Scalars);
1549   }
1550   unsigned Opcode = getSameOpcode(VL);
1551   assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
1552   Instruction *VL0 = cast<Instruction>(VL[0]);
1553   switch (Opcode) {
1554     case Instruction::PHI: {
1555       return 0;
1556     }
1557     case Instruction::ExtractValue:
1558     case Instruction::ExtractElement: {
1559       if (canReuseExtract(VL, Opcode)) {
1560         int DeadCost = 0;
1561         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1562           Instruction *E = cast<Instruction>(VL[i]);
1563           if (E->hasOneUse())
1564             // Take credit for instruction that will become dead.
1565             DeadCost +=
1566                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1567         }
1568         return -DeadCost;
1569       }
1570       return getGatherCost(VecTy);
1571     }
1572     case Instruction::ZExt:
1573     case Instruction::SExt:
1574     case Instruction::FPToUI:
1575     case Instruction::FPToSI:
1576     case Instruction::FPExt:
1577     case Instruction::PtrToInt:
1578     case Instruction::IntToPtr:
1579     case Instruction::SIToFP:
1580     case Instruction::UIToFP:
1581     case Instruction::Trunc:
1582     case Instruction::FPTrunc:
1583     case Instruction::BitCast: {
1584       Type *SrcTy = VL0->getOperand(0)->getType();
1585
1586       // Calculate the cost of this instruction.
1587       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1588                                                          VL0->getType(), SrcTy);
1589
1590       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1591       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1592       return VecCost - ScalarCost;
1593     }
1594     case Instruction::FCmp:
1595     case Instruction::ICmp:
1596     case Instruction::Select: {
1597       // Calculate the cost of this instruction.
1598       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1599       int ScalarCost = VecTy->getNumElements() *
1600           TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1601       int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1602       return VecCost - ScalarCost;
1603     }
1604     case Instruction::Add:
1605     case Instruction::FAdd:
1606     case Instruction::Sub:
1607     case Instruction::FSub:
1608     case Instruction::Mul:
1609     case Instruction::FMul:
1610     case Instruction::UDiv:
1611     case Instruction::SDiv:
1612     case Instruction::FDiv:
1613     case Instruction::URem:
1614     case Instruction::SRem:
1615     case Instruction::FRem:
1616     case Instruction::Shl:
1617     case Instruction::LShr:
1618     case Instruction::AShr:
1619     case Instruction::And:
1620     case Instruction::Or:
1621     case Instruction::Xor: {
1622       // Certain instructions can be cheaper to vectorize if they have a
1623       // constant second vector operand.
1624       TargetTransformInfo::OperandValueKind Op1VK =
1625           TargetTransformInfo::OK_AnyValue;
1626       TargetTransformInfo::OperandValueKind Op2VK =
1627           TargetTransformInfo::OK_UniformConstantValue;
1628       TargetTransformInfo::OperandValueProperties Op1VP =
1629           TargetTransformInfo::OP_None;
1630       TargetTransformInfo::OperandValueProperties Op2VP =
1631           TargetTransformInfo::OP_None;
1632
1633       // If all operands are exactly the same ConstantInt then set the
1634       // operand kind to OK_UniformConstantValue.
1635       // If instead not all operands are constants, then set the operand kind
1636       // to OK_AnyValue. If all operands are constants but not the same,
1637       // then set the operand kind to OK_NonUniformConstantValue.
1638       ConstantInt *CInt = nullptr;
1639       for (unsigned i = 0; i < VL.size(); ++i) {
1640         const Instruction *I = cast<Instruction>(VL[i]);
1641         if (!isa<ConstantInt>(I->getOperand(1))) {
1642           Op2VK = TargetTransformInfo::OK_AnyValue;
1643           break;
1644         }
1645         if (i == 0) {
1646           CInt = cast<ConstantInt>(I->getOperand(1));
1647           continue;
1648         }
1649         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1650             CInt != cast<ConstantInt>(I->getOperand(1)))
1651           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1652       }
1653       // FIXME: Currently cost of model modification for division by power of
1654       // 2 is handled for X86 and AArch64. Add support for other targets.
1655       if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
1656           CInt->getValue().isPowerOf2())
1657         Op2VP = TargetTransformInfo::OP_PowerOf2;
1658
1659       int ScalarCost = VecTy->getNumElements() *
1660                        TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK,
1661                                                    Op2VK, Op1VP, Op2VP);
1662       int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
1663                                                 Op1VP, Op2VP);
1664       return VecCost - ScalarCost;
1665     }
1666     case Instruction::GetElementPtr: {
1667       TargetTransformInfo::OperandValueKind Op1VK =
1668           TargetTransformInfo::OK_AnyValue;
1669       TargetTransformInfo::OperandValueKind Op2VK =
1670           TargetTransformInfo::OK_UniformConstantValue;
1671
1672       int ScalarCost =
1673           VecTy->getNumElements() *
1674           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1675       int VecCost =
1676           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1677
1678       return VecCost - ScalarCost;
1679     }
1680     case Instruction::Load: {
1681       // Cost of wide load - cost of scalar loads.
1682       unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
1683       int ScalarLdCost = VecTy->getNumElements() *
1684             TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0);
1685       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
1686                                            VecTy, alignment, 0);
1687       return VecLdCost - ScalarLdCost;
1688     }
1689     case Instruction::Store: {
1690       // We know that we can merge the stores. Calculate the cost.
1691       unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
1692       int ScalarStCost = VecTy->getNumElements() *
1693             TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0);
1694       int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
1695                                            VecTy, alignment, 0);
1696       return VecStCost - ScalarStCost;
1697     }
1698     case Instruction::Call: {
1699       CallInst *CI = cast<CallInst>(VL0);
1700       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1701
1702       // Calculate the cost of the scalar and vector calls.
1703       SmallVector<Type*, 4> ScalarTys, VecTys;
1704       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1705         ScalarTys.push_back(CI->getArgOperand(op)->getType());
1706         VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1707                                          VecTy->getNumElements()));
1708       }
1709
1710       FastMathFlags FMF;
1711       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
1712         FMF = FPMO->getFastMathFlags();
1713
1714       int ScalarCallCost = VecTy->getNumElements() *
1715           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
1716
1717       int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF);
1718
1719       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1720             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
1721             << " for " << *CI << "\n");
1722
1723       return VecCallCost - ScalarCallCost;
1724     }
1725     case Instruction::ShuffleVector: {
1726       TargetTransformInfo::OperandValueKind Op1VK =
1727           TargetTransformInfo::OK_AnyValue;
1728       TargetTransformInfo::OperandValueKind Op2VK =
1729           TargetTransformInfo::OK_AnyValue;
1730       int ScalarCost = 0;
1731       int VecCost = 0;
1732       for (Value *i : VL) {
1733         Instruction *I = cast<Instruction>(i);
1734         if (!I)
1735           break;
1736         ScalarCost +=
1737             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1738       }
1739       // VecCost is equal to sum of the cost of creating 2 vectors
1740       // and the cost of creating shuffle.
1741       Instruction *I0 = cast<Instruction>(VL[0]);
1742       VecCost =
1743           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1744       Instruction *I1 = cast<Instruction>(VL[1]);
1745       VecCost +=
1746           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1747       VecCost +=
1748           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1749       return VecCost - ScalarCost;
1750     }
1751     default:
1752       llvm_unreachable("Unknown instruction");
1753   }
1754 }
1755
1756 bool BoUpSLP::isFullyVectorizableTinyTree() {
1757   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1758         VectorizableTree.size() << " is fully vectorizable .\n");
1759
1760   // We only handle trees of height 2.
1761   if (VectorizableTree.size() != 2)
1762     return false;
1763
1764   // Handle splat and all-constants stores.
1765   if (!VectorizableTree[0].NeedToGather &&
1766       (allConstant(VectorizableTree[1].Scalars) ||
1767        isSplat(VectorizableTree[1].Scalars)))
1768     return true;
1769
1770   // Gathering cost would be too much for tiny trees.
1771   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1772     return false;
1773
1774   return true;
1775 }
1776
1777 int BoUpSLP::getSpillCost() {
1778   // Walk from the bottom of the tree to the top, tracking which values are
1779   // live. When we see a call instruction that is not part of our tree,
1780   // query TTI to see if there is a cost to keeping values live over it
1781   // (for example, if spills and fills are required).
1782   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
1783   int Cost = 0;
1784
1785   SmallPtrSet<Instruction*, 4> LiveValues;
1786   Instruction *PrevInst = nullptr;
1787
1788   for (const auto &N : VectorizableTree) {
1789     Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
1790     if (!Inst)
1791       continue;
1792
1793     if (!PrevInst) {
1794       PrevInst = Inst;
1795       continue;
1796     }
1797
1798     // Update LiveValues.
1799     LiveValues.erase(PrevInst);
1800     for (auto &J : PrevInst->operands()) {
1801       if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
1802         LiveValues.insert(cast<Instruction>(&*J));
1803     }
1804
1805     DEBUG(
1806       dbgs() << "SLP: #LV: " << LiveValues.size();
1807       for (auto *X : LiveValues)
1808         dbgs() << " " << X->getName();
1809       dbgs() << ", Looking at ";
1810       Inst->dump();
1811       );
1812
1813     // Now find the sequence of instructions between PrevInst and Inst.
1814     BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
1815         PrevInstIt(PrevInst->getIterator());
1816     --PrevInstIt;
1817     while (InstIt != PrevInstIt) {
1818       if (PrevInstIt == PrevInst->getParent()->rend()) {
1819         PrevInstIt = Inst->getParent()->rbegin();
1820         continue;
1821       }
1822
1823       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
1824         SmallVector<Type*, 4> V;
1825         for (auto *II : LiveValues)
1826           V.push_back(VectorType::get(II->getType(), BundleWidth));
1827         Cost += TTI->getCostOfKeepingLiveOverCall(V);
1828       }
1829
1830       ++PrevInstIt;
1831     }
1832
1833     PrevInst = Inst;
1834   }
1835
1836   return Cost;
1837 }
1838
1839 int BoUpSLP::getTreeCost() {
1840   int Cost = 0;
1841   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1842         VectorizableTree.size() << ".\n");
1843
1844   // We only vectorize tiny trees if it is fully vectorizable.
1845   if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1846     if (VectorizableTree.empty()) {
1847       assert(!ExternalUses.size() && "We should not have any external users");
1848     }
1849     return INT_MAX;
1850   }
1851
1852   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1853
1854   for (TreeEntry &TE : VectorizableTree) {
1855     int C = getEntryCost(&TE);
1856     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1857                  << *TE.Scalars[0] << ".\n");
1858     Cost += C;
1859   }
1860
1861   SmallSet<Value *, 16> ExtractCostCalculated;
1862   int ExtractCost = 0;
1863   for (ExternalUser &EU : ExternalUses) {
1864     // We only add extract cost once for the same scalar.
1865     if (!ExtractCostCalculated.insert(EU.Scalar).second)
1866       continue;
1867
1868     // Uses by ephemeral values are free (because the ephemeral value will be
1869     // removed prior to code generation, and so the extraction will be
1870     // removed as well).
1871     if (EphValues.count(EU.User))
1872       continue;
1873
1874     // If we plan to rewrite the tree in a smaller type, we will need to sign
1875     // extend the extracted value back to the original type. Here, we account
1876     // for the extract and the added cost of the sign extend if needed.
1877     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
1878     auto *ScalarRoot = VectorizableTree[0].Scalars[0];
1879     if (MinBWs.count(ScalarRoot)) {
1880       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]);
1881       VecTy = VectorType::get(MinTy, BundleWidth);
1882       ExtractCost += TTI->getExtractWithExtendCost(
1883           Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane);
1884     } else {
1885       ExtractCost +=
1886           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
1887     }
1888   }
1889
1890   int SpillCost = getSpillCost();
1891   Cost += SpillCost + ExtractCost;
1892
1893   DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n"
1894                << "SLP: Extract Cost = " << ExtractCost << ".\n"
1895                << "SLP: Total Cost = " << Cost << ".\n");
1896   return Cost;
1897 }
1898
1899 int BoUpSLP::getGatherCost(Type *Ty) {
1900   int Cost = 0;
1901   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1902     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1903   return Cost;
1904 }
1905
1906 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1907   // Find the type of the operands in VL.
1908   Type *ScalarTy = VL[0]->getType();
1909   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1910     ScalarTy = SI->getValueOperand()->getType();
1911   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1912   // Find the cost of inserting/extracting values from the vector.
1913   return getGatherCost(VecTy);
1914 }
1915
1916 // Reorder commutative operations in alternate shuffle if the resulting vectors
1917 // are consecutive loads. This would allow us to vectorize the tree.
1918 // If we have something like-
1919 // load a[0] - load b[0]
1920 // load b[1] + load a[1]
1921 // load a[2] - load b[2]
1922 // load a[3] + load b[3]
1923 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
1924 // code.
1925 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
1926                                         SmallVectorImpl<Value *> &Left,
1927                                         SmallVectorImpl<Value *> &Right) {
1928   // Push left and right operands of binary operation into Left and Right
1929   for (Value *i : VL) {
1930     Left.push_back(cast<Instruction>(i)->getOperand(0));
1931     Right.push_back(cast<Instruction>(i)->getOperand(1));
1932   }
1933
1934   // Reorder if we have a commutative operation and consecutive access
1935   // are on either side of the alternate instructions.
1936   for (unsigned j = 0; j < VL.size() - 1; ++j) {
1937     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
1938       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
1939         Instruction *VL1 = cast<Instruction>(VL[j]);
1940         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1941         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
1942           std::swap(Left[j], Right[j]);
1943           continue;
1944         } else if (VL2->isCommutative() &&
1945                    isConsecutiveAccess(L, L1, *DL, *SE)) {
1946           std::swap(Left[j + 1], Right[j + 1]);
1947           continue;
1948         }
1949         // else unchanged
1950       }
1951     }
1952     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
1953       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
1954         Instruction *VL1 = cast<Instruction>(VL[j]);
1955         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1956         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
1957           std::swap(Left[j], Right[j]);
1958           continue;
1959         } else if (VL2->isCommutative() &&
1960                    isConsecutiveAccess(L, L1, *DL, *SE)) {
1961           std::swap(Left[j + 1], Right[j + 1]);
1962           continue;
1963         }
1964         // else unchanged
1965       }
1966     }
1967   }
1968 }
1969
1970 // Return true if I should be commuted before adding it's left and right
1971 // operands to the arrays Left and Right.
1972 //
1973 // The vectorizer is trying to either have all elements one side being
1974 // instruction with the same opcode to enable further vectorization, or having
1975 // a splat to lower the vectorizing cost.
1976 static bool shouldReorderOperands(int i, Instruction &I,
1977                                   SmallVectorImpl<Value *> &Left,
1978                                   SmallVectorImpl<Value *> &Right,
1979                                   bool AllSameOpcodeLeft,
1980                                   bool AllSameOpcodeRight, bool SplatLeft,
1981                                   bool SplatRight) {
1982   Value *VLeft = I.getOperand(0);
1983   Value *VRight = I.getOperand(1);
1984   // If we have "SplatRight", try to see if commuting is needed to preserve it.
1985   if (SplatRight) {
1986     if (VRight == Right[i - 1])
1987       // Preserve SplatRight
1988       return false;
1989     if (VLeft == Right[i - 1]) {
1990       // Commuting would preserve SplatRight, but we don't want to break
1991       // SplatLeft either, i.e. preserve the original order if possible.
1992       // (FIXME: why do we care?)
1993       if (SplatLeft && VLeft == Left[i - 1])
1994         return false;
1995       return true;
1996     }
1997   }
1998   // Symmetrically handle Right side.
1999   if (SplatLeft) {
2000     if (VLeft == Left[i - 1])
2001       // Preserve SplatLeft
2002       return false;
2003     if (VRight == Left[i - 1])
2004       return true;
2005   }
2006
2007   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
2008   Instruction *IRight = dyn_cast<Instruction>(VRight);
2009
2010   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
2011   // it and not the right, in this case we want to commute.
2012   if (AllSameOpcodeRight) {
2013     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
2014     if (IRight && RightPrevOpcode == IRight->getOpcode())
2015       // Do not commute, a match on the right preserves AllSameOpcodeRight
2016       return false;
2017     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
2018       // We have a match and may want to commute, but first check if there is
2019       // not also a match on the existing operands on the Left to preserve
2020       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
2021       // (FIXME: why do we care?)
2022       if (AllSameOpcodeLeft && ILeft &&
2023           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
2024         return false;
2025       return true;
2026     }
2027   }
2028   // Symmetrically handle Left side.
2029   if (AllSameOpcodeLeft) {
2030     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2031     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2032       return false;
2033     if (IRight && LeftPrevOpcode == IRight->getOpcode())
2034       return true;
2035   }
2036   return false;
2037 }
2038
2039 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2040                                              SmallVectorImpl<Value *> &Left,
2041                                              SmallVectorImpl<Value *> &Right) {
2042
2043   if (VL.size()) {
2044     // Peel the first iteration out of the loop since there's nothing
2045     // interesting to do anyway and it simplifies the checks in the loop.
2046     auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
2047     auto VRight = cast<Instruction>(VL[0])->getOperand(1);
2048     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2049       // Favor having instruction to the right. FIXME: why?
2050       std::swap(VLeft, VRight);
2051     Left.push_back(VLeft);
2052     Right.push_back(VRight);
2053   }
2054
2055   // Keep track if we have instructions with all the same opcode on one side.
2056   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2057   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2058   // Keep track if we have one side with all the same value (broadcast).
2059   bool SplatLeft = true;
2060   bool SplatRight = true;
2061
2062   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2063     Instruction *I = cast<Instruction>(VL[i]);
2064     assert(I->isCommutative() && "Can only process commutative instruction");
2065     // Commute to favor either a splat or maximizing having the same opcodes on
2066     // one side.
2067     if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
2068                               AllSameOpcodeRight, SplatLeft, SplatRight)) {
2069       Left.push_back(I->getOperand(1));
2070       Right.push_back(I->getOperand(0));
2071     } else {
2072       Left.push_back(I->getOperand(0));
2073       Right.push_back(I->getOperand(1));
2074     }
2075     // Update Splat* and AllSameOpcode* after the insertion.
2076     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2077     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2078     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2079                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
2080                          cast<Instruction>(Left[i])->getOpcode());
2081     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2082                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
2083                           cast<Instruction>(Right[i])->getOpcode());
2084   }
2085
2086   // If one operand end up being broadcast, return this operand order.
2087   if (SplatRight || SplatLeft)
2088     return;
2089
2090   // Finally check if we can get longer vectorizable chain by reordering
2091   // without breaking the good operand order detected above.
2092   // E.g. If we have something like-
2093   // load a[0]  load b[0]
2094   // load b[1]  load a[1]
2095   // load a[2]  load b[2]
2096   // load a[3]  load b[3]
2097   // Reordering the second load b[1]  load a[1] would allow us to vectorize
2098   // this code and we still retain AllSameOpcode property.
2099   // FIXME: This load reordering might break AllSameOpcode in some rare cases
2100   // such as-
2101   // add a[0],c[0]  load b[0]
2102   // add a[1],c[2]  load b[1]
2103   // b[2]           load b[2]
2104   // add a[3],c[3]  load b[3]
2105   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2106     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2107       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2108         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2109           std::swap(Left[j + 1], Right[j + 1]);
2110           continue;
2111         }
2112       }
2113     }
2114     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2115       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2116         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2117           std::swap(Left[j + 1], Right[j + 1]);
2118           continue;
2119         }
2120       }
2121     }
2122     // else unchanged
2123   }
2124 }
2125
2126 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
2127   Instruction *VL0 = cast<Instruction>(VL[0]);
2128   BasicBlock::iterator NextInst(VL0);
2129   ++NextInst;
2130   Builder.SetInsertPoint(VL0->getParent(), NextInst);
2131   Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
2132 }
2133
2134 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2135   Value *Vec = UndefValue::get(Ty);
2136   // Generate the 'InsertElement' instruction.
2137   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2138     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2139     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2140       GatherSeq.insert(Insrt);
2141       CSEBlocks.insert(Insrt->getParent());
2142
2143       // Add to our 'need-to-extract' list.
2144       if (ScalarToTreeEntry.count(VL[i])) {
2145         int Idx = ScalarToTreeEntry[VL[i]];
2146         TreeEntry *E = &VectorizableTree[Idx];
2147         // Find which lane we need to extract.
2148         int FoundLane = -1;
2149         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2150           // Is this the lane of the scalar that we are looking for ?
2151           if (E->Scalars[Lane] == VL[i]) {
2152             FoundLane = Lane;
2153             break;
2154           }
2155         }
2156         assert(FoundLane >= 0 && "Could not find the correct lane");
2157         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2158       }
2159     }
2160   }
2161
2162   return Vec;
2163 }
2164
2165 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
2166   SmallDenseMap<Value*, int>::const_iterator Entry
2167     = ScalarToTreeEntry.find(VL[0]);
2168   if (Entry != ScalarToTreeEntry.end()) {
2169     int Idx = Entry->second;
2170     const TreeEntry *En = &VectorizableTree[Idx];
2171     if (En->isSame(VL) && En->VectorizedValue)
2172       return En->VectorizedValue;
2173   }
2174   return nullptr;
2175 }
2176
2177 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2178   if (ScalarToTreeEntry.count(VL[0])) {
2179     int Idx = ScalarToTreeEntry[VL[0]];
2180     TreeEntry *E = &VectorizableTree[Idx];
2181     if (E->isSame(VL))
2182       return vectorizeTree(E);
2183   }
2184
2185   Type *ScalarTy = VL[0]->getType();
2186   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2187     ScalarTy = SI->getValueOperand()->getType();
2188   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2189
2190   return Gather(VL, VecTy);
2191 }
2192
2193 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2194   IRBuilder<>::InsertPointGuard Guard(Builder);
2195
2196   if (E->VectorizedValue) {
2197     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2198     return E->VectorizedValue;
2199   }
2200
2201   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2202   Type *ScalarTy = VL0->getType();
2203   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2204     ScalarTy = SI->getValueOperand()->getType();
2205   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2206
2207   if (E->NeedToGather) {
2208     setInsertPointAfterBundle(E->Scalars);
2209     return Gather(E->Scalars, VecTy);
2210   }
2211
2212   unsigned Opcode = getSameOpcode(E->Scalars);
2213
2214   switch (Opcode) {
2215     case Instruction::PHI: {
2216       PHINode *PH = dyn_cast<PHINode>(VL0);
2217       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2218       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2219       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2220       E->VectorizedValue = NewPhi;
2221
2222       // PHINodes may have multiple entries from the same block. We want to
2223       // visit every block once.
2224       SmallSet<BasicBlock*, 4> VisitedBBs;
2225
2226       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2227         ValueList Operands;
2228         BasicBlock *IBB = PH->getIncomingBlock(i);
2229
2230         if (!VisitedBBs.insert(IBB).second) {
2231           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2232           continue;
2233         }
2234
2235         // Prepare the operand vector.
2236         for (Value *V : E->Scalars)
2237           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2238
2239         Builder.SetInsertPoint(IBB->getTerminator());
2240         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2241         Value *Vec = vectorizeTree(Operands);
2242         NewPhi->addIncoming(Vec, IBB);
2243       }
2244
2245       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2246              "Invalid number of incoming values");
2247       return NewPhi;
2248     }
2249
2250     case Instruction::ExtractElement: {
2251       if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) {
2252         Value *V = VL0->getOperand(0);
2253         E->VectorizedValue = V;
2254         return V;
2255       }
2256       return Gather(E->Scalars, VecTy);
2257     }
2258     case Instruction::ExtractValue: {
2259       if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) {
2260         LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
2261         Builder.SetInsertPoint(LI);
2262         PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
2263         Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
2264         LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
2265         E->VectorizedValue = V;
2266         return propagateMetadata(V, E->Scalars);
2267       }
2268       return Gather(E->Scalars, VecTy);
2269     }
2270     case Instruction::ZExt:
2271     case Instruction::SExt:
2272     case Instruction::FPToUI:
2273     case Instruction::FPToSI:
2274     case Instruction::FPExt:
2275     case Instruction::PtrToInt:
2276     case Instruction::IntToPtr:
2277     case Instruction::SIToFP:
2278     case Instruction::UIToFP:
2279     case Instruction::Trunc:
2280     case Instruction::FPTrunc:
2281     case Instruction::BitCast: {
2282       ValueList INVL;
2283       for (Value *V : E->Scalars)
2284         INVL.push_back(cast<Instruction>(V)->getOperand(0));
2285
2286       setInsertPointAfterBundle(E->Scalars);
2287
2288       Value *InVec = vectorizeTree(INVL);
2289
2290       if (Value *V = alreadyVectorized(E->Scalars))
2291         return V;
2292
2293       CastInst *CI = dyn_cast<CastInst>(VL0);
2294       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2295       E->VectorizedValue = V;
2296       ++NumVectorInstructions;
2297       return V;
2298     }
2299     case Instruction::FCmp:
2300     case Instruction::ICmp: {
2301       ValueList LHSV, RHSV;
2302       for (Value *V : E->Scalars) {
2303         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2304         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2305       }
2306
2307       setInsertPointAfterBundle(E->Scalars);
2308
2309       Value *L = vectorizeTree(LHSV);
2310       Value *R = vectorizeTree(RHSV);
2311
2312       if (Value *V = alreadyVectorized(E->Scalars))
2313         return V;
2314
2315       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2316       Value *V;
2317       if (Opcode == Instruction::FCmp)
2318         V = Builder.CreateFCmp(P0, L, R);
2319       else
2320         V = Builder.CreateICmp(P0, L, R);
2321
2322       E->VectorizedValue = V;
2323       ++NumVectorInstructions;
2324       return V;
2325     }
2326     case Instruction::Select: {
2327       ValueList TrueVec, FalseVec, CondVec;
2328       for (Value *V : E->Scalars) {
2329         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2330         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2331         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2332       }
2333
2334       setInsertPointAfterBundle(E->Scalars);
2335
2336       Value *Cond = vectorizeTree(CondVec);
2337       Value *True = vectorizeTree(TrueVec);
2338       Value *False = vectorizeTree(FalseVec);
2339
2340       if (Value *V = alreadyVectorized(E->Scalars))
2341         return V;
2342
2343       Value *V = Builder.CreateSelect(Cond, True, False);
2344       E->VectorizedValue = V;
2345       ++NumVectorInstructions;
2346       return V;
2347     }
2348     case Instruction::Add:
2349     case Instruction::FAdd:
2350     case Instruction::Sub:
2351     case Instruction::FSub:
2352     case Instruction::Mul:
2353     case Instruction::FMul:
2354     case Instruction::UDiv:
2355     case Instruction::SDiv:
2356     case Instruction::FDiv:
2357     case Instruction::URem:
2358     case Instruction::SRem:
2359     case Instruction::FRem:
2360     case Instruction::Shl:
2361     case Instruction::LShr:
2362     case Instruction::AShr:
2363     case Instruction::And:
2364     case Instruction::Or:
2365     case Instruction::Xor: {
2366       ValueList LHSVL, RHSVL;
2367       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2368         reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
2369       else
2370         for (Value *V : E->Scalars) {
2371           LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
2372           RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
2373         }
2374
2375       setInsertPointAfterBundle(E->Scalars);
2376
2377       Value *LHS = vectorizeTree(LHSVL);
2378       Value *RHS = vectorizeTree(RHSVL);
2379
2380       if (LHS == RHS && isa<Instruction>(LHS)) {
2381         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
2382       }
2383
2384       if (Value *V = alreadyVectorized(E->Scalars))
2385         return V;
2386
2387       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2388       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2389       E->VectorizedValue = V;
2390       propagateIRFlags(E->VectorizedValue, E->Scalars);
2391       ++NumVectorInstructions;
2392
2393       if (Instruction *I = dyn_cast<Instruction>(V))
2394         return propagateMetadata(I, E->Scalars);
2395
2396       return V;
2397     }
2398     case Instruction::Load: {
2399       // Loads are inserted at the head of the tree because we don't want to
2400       // sink them all the way down past store instructions.
2401       setInsertPointAfterBundle(E->Scalars);
2402
2403       LoadInst *LI = cast<LoadInst>(VL0);
2404       Type *ScalarLoadTy = LI->getType();
2405       unsigned AS = LI->getPointerAddressSpace();
2406
2407       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2408                                             VecTy->getPointerTo(AS));
2409
2410       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2411       // ExternalUses list to make sure that an extract will be generated in the
2412       // future.
2413       if (ScalarToTreeEntry.count(LI->getPointerOperand()))
2414         ExternalUses.push_back(
2415             ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
2416
2417       unsigned Alignment = LI->getAlignment();
2418       LI = Builder.CreateLoad(VecPtr);
2419       if (!Alignment) {
2420         Alignment = DL->getABITypeAlignment(ScalarLoadTy);
2421       }
2422       LI->setAlignment(Alignment);
2423       E->VectorizedValue = LI;
2424       ++NumVectorInstructions;
2425       return propagateMetadata(LI, E->Scalars);
2426     }
2427     case Instruction::Store: {
2428       StoreInst *SI = cast<StoreInst>(VL0);
2429       unsigned Alignment = SI->getAlignment();
2430       unsigned AS = SI->getPointerAddressSpace();
2431
2432       ValueList ValueOp;
2433       for (Value *V : E->Scalars)
2434         ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2435
2436       setInsertPointAfterBundle(E->Scalars);
2437
2438       Value *VecValue = vectorizeTree(ValueOp);
2439       Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2440                                             VecTy->getPointerTo(AS));
2441       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2442
2443       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2444       // ExternalUses list to make sure that an extract will be generated in the
2445       // future.
2446       if (ScalarToTreeEntry.count(SI->getPointerOperand()))
2447         ExternalUses.push_back(
2448             ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
2449
2450       if (!Alignment) {
2451         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
2452       }
2453       S->setAlignment(Alignment);
2454       E->VectorizedValue = S;
2455       ++NumVectorInstructions;
2456       return propagateMetadata(S, E->Scalars);
2457     }
2458     case Instruction::GetElementPtr: {
2459       setInsertPointAfterBundle(E->Scalars);
2460
2461       ValueList Op0VL;
2462       for (Value *V : E->Scalars)
2463         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2464
2465       Value *Op0 = vectorizeTree(Op0VL);
2466
2467       std::vector<Value *> OpVecs;
2468       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2469            ++j) {
2470         ValueList OpVL;
2471         for (Value *V : E->Scalars)
2472           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2473
2474         Value *OpVec = vectorizeTree(OpVL);
2475         OpVecs.push_back(OpVec);
2476       }
2477
2478       Value *V = Builder.CreateGEP(
2479           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2480       E->VectorizedValue = V;
2481       ++NumVectorInstructions;
2482
2483       if (Instruction *I = dyn_cast<Instruction>(V))
2484         return propagateMetadata(I, E->Scalars);
2485
2486       return V;
2487     }
2488     case Instruction::Call: {
2489       CallInst *CI = cast<CallInst>(VL0);
2490       setInsertPointAfterBundle(E->Scalars);
2491       Function *FI;
2492       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
2493       Value *ScalarArg = nullptr;
2494       if (CI && (FI = CI->getCalledFunction())) {
2495         IID = FI->getIntrinsicID();
2496       }
2497       std::vector<Value *> OpVecs;
2498       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2499         ValueList OpVL;
2500         // ctlz,cttz and powi are special intrinsics whose second argument is
2501         // a scalar. This argument should not be vectorized.
2502         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2503           CallInst *CEI = cast<CallInst>(E->Scalars[0]);
2504           ScalarArg = CEI->getArgOperand(j);
2505           OpVecs.push_back(CEI->getArgOperand(j));
2506           continue;
2507         }
2508         for (Value *V : E->Scalars) {
2509           CallInst *CEI = cast<CallInst>(V);
2510           OpVL.push_back(CEI->getArgOperand(j));
2511         }
2512
2513         Value *OpVec = vectorizeTree(OpVL);
2514         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
2515         OpVecs.push_back(OpVec);
2516       }
2517
2518       Module *M = F->getParent();
2519       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2520       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
2521       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
2522       SmallVector<OperandBundleDef, 1> OpBundles;
2523       CI->getOperandBundlesAsDefs(OpBundles);
2524       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
2525
2526       // The scalar argument uses an in-tree scalar so we add the new vectorized
2527       // call to ExternalUses list to make sure that an extract will be
2528       // generated in the future.
2529       if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
2530         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
2531
2532       E->VectorizedValue = V;
2533       ++NumVectorInstructions;
2534       return V;
2535     }
2536     case Instruction::ShuffleVector: {
2537       ValueList LHSVL, RHSVL;
2538       assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
2539       reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
2540       setInsertPointAfterBundle(E->Scalars);
2541
2542       Value *LHS = vectorizeTree(LHSVL);
2543       Value *RHS = vectorizeTree(RHSVL);
2544
2545       if (Value *V = alreadyVectorized(E->Scalars))
2546         return V;
2547
2548       // Create a vector of LHS op1 RHS
2549       BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
2550       Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
2551
2552       // Create a vector of LHS op2 RHS
2553       Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
2554       BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
2555       Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
2556
2557       // Create shuffle to take alternate operations from the vector.
2558       // Also, gather up odd and even scalar ops to propagate IR flags to
2559       // each vector operation.
2560       ValueList OddScalars, EvenScalars;
2561       unsigned e = E->Scalars.size();
2562       SmallVector<Constant *, 8> Mask(e);
2563       for (unsigned i = 0; i < e; ++i) {
2564         if (i & 1) {
2565           Mask[i] = Builder.getInt32(e + i);
2566           OddScalars.push_back(E->Scalars[i]);
2567         } else {
2568           Mask[i] = Builder.getInt32(i);
2569           EvenScalars.push_back(E->Scalars[i]);
2570         }
2571       }
2572
2573       Value *ShuffleMask = ConstantVector::get(Mask);
2574       propagateIRFlags(V0, EvenScalars);
2575       propagateIRFlags(V1, OddScalars);
2576
2577       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
2578       E->VectorizedValue = V;
2579       ++NumVectorInstructions;
2580       if (Instruction *I = dyn_cast<Instruction>(V))
2581         return propagateMetadata(I, E->Scalars);
2582
2583       return V;
2584     }
2585     default:
2586     llvm_unreachable("unknown inst");
2587   }
2588   return nullptr;
2589 }
2590
2591 Value *BoUpSLP::vectorizeTree() {
2592
2593   // All blocks must be scheduled before any instructions are inserted.
2594   for (auto &BSIter : BlocksSchedules) {
2595     scheduleBlock(BSIter.second.get());
2596   }
2597
2598   Builder.SetInsertPoint(&F->getEntryBlock().front());
2599   auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
2600
2601   // If the vectorized tree can be rewritten in a smaller type, we truncate the
2602   // vectorized root. InstCombine will then rewrite the entire expression. We
2603   // sign extend the extracted values below.
2604   auto *ScalarRoot = VectorizableTree[0].Scalars[0];
2605   if (MinBWs.count(ScalarRoot)) {
2606     if (auto *I = dyn_cast<Instruction>(VectorRoot))
2607       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
2608     auto BundleWidth = VectorizableTree[0].Scalars.size();
2609     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]);
2610     auto *VecTy = VectorType::get(MinTy, BundleWidth);
2611     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
2612     VectorizableTree[0].VectorizedValue = Trunc;
2613   }
2614
2615   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
2616
2617   // Extract all of the elements with the external uses.
2618   for (const auto &ExternalUse : ExternalUses) {
2619     Value *Scalar = ExternalUse.Scalar;
2620     llvm::User *User = ExternalUse.User;
2621
2622     // Skip users that we already RAUW. This happens when one instruction
2623     // has multiple uses of the same value.
2624     if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
2625         Scalar->user_end())
2626       continue;
2627     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
2628
2629     int Idx = ScalarToTreeEntry[Scalar];
2630     TreeEntry *E = &VectorizableTree[Idx];
2631     assert(!E->NeedToGather && "Extracting from a gather list");
2632
2633     Value *Vec = E->VectorizedValue;
2634     assert(Vec && "Can't find vectorizable value");
2635
2636     Value *Lane = Builder.getInt32(ExternalUse.Lane);
2637     // Generate extracts for out-of-tree users.
2638     // Find the insertion point for the extractelement lane.
2639     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
2640       if (PHINode *PH = dyn_cast<PHINode>(User)) {
2641         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
2642           if (PH->getIncomingValue(i) == Scalar) {
2643             TerminatorInst *IncomingTerminator =
2644                 PH->getIncomingBlock(i)->getTerminator();
2645             if (isa<CatchSwitchInst>(IncomingTerminator)) {
2646               Builder.SetInsertPoint(VecI->getParent(),
2647                                      std::next(VecI->getIterator()));
2648             } else {
2649               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
2650             }
2651             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2652             if (MinBWs.count(ScalarRoot))
2653               Ex = Builder.CreateSExt(Ex, Scalar->getType());
2654             CSEBlocks.insert(PH->getIncomingBlock(i));
2655             PH->setOperand(i, Ex);
2656           }
2657         }
2658       } else {
2659         Builder.SetInsertPoint(cast<Instruction>(User));
2660         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2661         if (MinBWs.count(ScalarRoot))
2662           Ex = Builder.CreateSExt(Ex, Scalar->getType());
2663         CSEBlocks.insert(cast<Instruction>(User)->getParent());
2664         User->replaceUsesOfWith(Scalar, Ex);
2665      }
2666     } else {
2667       Builder.SetInsertPoint(&F->getEntryBlock().front());
2668       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2669       if (MinBWs.count(ScalarRoot))
2670         Ex = Builder.CreateSExt(Ex, Scalar->getType());
2671       CSEBlocks.insert(&F->getEntryBlock());
2672       User->replaceUsesOfWith(Scalar, Ex);
2673     }
2674
2675     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
2676   }
2677
2678   // For each vectorized value:
2679   for (TreeEntry &EIdx : VectorizableTree) {
2680     TreeEntry *Entry = &EIdx;
2681
2682     // For each lane:
2683     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2684       Value *Scalar = Entry->Scalars[Lane];
2685       // No need to handle users of gathered values.
2686       if (Entry->NeedToGather)
2687         continue;
2688
2689       assert(Entry->VectorizedValue && "Can't find vectorizable value");
2690
2691       Type *Ty = Scalar->getType();
2692       if (!Ty->isVoidTy()) {
2693 #ifndef NDEBUG
2694         for (User *U : Scalar->users()) {
2695           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
2696
2697           assert((ScalarToTreeEntry.count(U) ||
2698                   // It is legal to replace users in the ignorelist by undef.
2699                   (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
2700                    UserIgnoreList.end())) &&
2701                  "Replacing out-of-tree value with undef");
2702         }
2703 #endif
2704         Value *Undef = UndefValue::get(Ty);
2705         Scalar->replaceAllUsesWith(Undef);
2706       }
2707       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
2708       eraseInstruction(cast<Instruction>(Scalar));
2709     }
2710   }
2711
2712   Builder.ClearInsertionPoint();
2713
2714   return VectorizableTree[0].VectorizedValue;
2715 }
2716
2717 void BoUpSLP::optimizeGatherSequence() {
2718   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
2719         << " gather sequences instructions.\n");
2720   // LICM InsertElementInst sequences.
2721   for (Instruction *it : GatherSeq) {
2722     InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
2723
2724     if (!Insert)
2725       continue;
2726
2727     // Check if this block is inside a loop.
2728     Loop *L = LI->getLoopFor(Insert->getParent());
2729     if (!L)
2730       continue;
2731
2732     // Check if it has a preheader.
2733     BasicBlock *PreHeader = L->getLoopPreheader();
2734     if (!PreHeader)
2735       continue;
2736
2737     // If the vector or the element that we insert into it are
2738     // instructions that are defined in this basic block then we can't
2739     // hoist this instruction.
2740     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2741     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2742     if (CurrVec && L->contains(CurrVec))
2743       continue;
2744     if (NewElem && L->contains(NewElem))
2745       continue;
2746
2747     // We can hoist this instruction. Move it to the pre-header.
2748     Insert->moveBefore(PreHeader->getTerminator());
2749   }
2750
2751   // Make a list of all reachable blocks in our CSE queue.
2752   SmallVector<const DomTreeNode *, 8> CSEWorkList;
2753   CSEWorkList.reserve(CSEBlocks.size());
2754   for (BasicBlock *BB : CSEBlocks)
2755     if (DomTreeNode *N = DT->getNode(BB)) {
2756       assert(DT->isReachableFromEntry(N));
2757       CSEWorkList.push_back(N);
2758     }
2759
2760   // Sort blocks by domination. This ensures we visit a block after all blocks
2761   // dominating it are visited.
2762   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2763                    [this](const DomTreeNode *A, const DomTreeNode *B) {
2764     return DT->properlyDominates(A, B);
2765   });
2766
2767   // Perform O(N^2) search over the gather sequences and merge identical
2768   // instructions. TODO: We can further optimize this scan if we split the
2769   // instructions into different buckets based on the insert lane.
2770   SmallVector<Instruction *, 16> Visited;
2771   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2772     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
2773            "Worklist not sorted properly!");
2774     BasicBlock *BB = (*I)->getBlock();
2775     // For all instructions in blocks containing gather sequences:
2776     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2777       Instruction *In = &*it++;
2778       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2779         continue;
2780
2781       // Check if we can replace this instruction with any of the
2782       // visited instructions.
2783       for (Instruction *v : Visited) {
2784         if (In->isIdenticalTo(v) &&
2785             DT->dominates(v->getParent(), In->getParent())) {
2786           In->replaceAllUsesWith(v);
2787           eraseInstruction(In);
2788           In = nullptr;
2789           break;
2790         }
2791       }
2792       if (In) {
2793         assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
2794         Visited.push_back(In);
2795       }
2796     }
2797   }
2798   CSEBlocks.clear();
2799   GatherSeq.clear();
2800 }
2801
2802 // Groups the instructions to a bundle (which is then a single scheduling entity)
2803 // and schedules instructions until the bundle gets ready.
2804 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
2805                                                  BoUpSLP *SLP) {
2806   if (isa<PHINode>(VL[0]))
2807     return true;
2808
2809   // Initialize the instruction bundle.
2810   Instruction *OldScheduleEnd = ScheduleEnd;
2811   ScheduleData *PrevInBundle = nullptr;
2812   ScheduleData *Bundle = nullptr;
2813   bool ReSchedule = false;
2814   DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
2815
2816   // Make sure that the scheduling region contains all
2817   // instructions of the bundle.
2818   for (Value *V : VL) {
2819     if (!extendSchedulingRegion(V))
2820       return false;
2821   }
2822
2823   for (Value *V : VL) {
2824     ScheduleData *BundleMember = getScheduleData(V);
2825     assert(BundleMember &&
2826            "no ScheduleData for bundle member (maybe not in same basic block)");
2827     if (BundleMember->IsScheduled) {
2828       // A bundle member was scheduled as single instruction before and now
2829       // needs to be scheduled as part of the bundle. We just get rid of the
2830       // existing schedule.
2831       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
2832                    << " was already scheduled\n");
2833       ReSchedule = true;
2834     }
2835     assert(BundleMember->isSchedulingEntity() &&
2836            "bundle member already part of other bundle");
2837     if (PrevInBundle) {
2838       PrevInBundle->NextInBundle = BundleMember;
2839     } else {
2840       Bundle = BundleMember;
2841     }
2842     BundleMember->UnscheduledDepsInBundle = 0;
2843     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
2844
2845     // Group the instructions to a bundle.
2846     BundleMember->FirstInBundle = Bundle;
2847     PrevInBundle = BundleMember;
2848   }
2849   if (ScheduleEnd != OldScheduleEnd) {
2850     // The scheduling region got new instructions at the lower end (or it is a
2851     // new region for the first bundle). This makes it necessary to
2852     // recalculate all dependencies.
2853     // It is seldom that this needs to be done a second time after adding the
2854     // initial bundle to the region.
2855     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2856       ScheduleData *SD = getScheduleData(I);
2857       SD->clearDependencies();
2858     }
2859     ReSchedule = true;
2860   }
2861   if (ReSchedule) {
2862     resetSchedule();
2863     initialFillReadyList(ReadyInsts);
2864   }
2865
2866   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
2867                << BB->getName() << "\n");
2868
2869   calculateDependencies(Bundle, true, SLP);
2870
2871   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
2872   // means that there are no cyclic dependencies and we can schedule it.
2873   // Note that's important that we don't "schedule" the bundle yet (see
2874   // cancelScheduling).
2875   while (!Bundle->isReady() && !ReadyInsts.empty()) {
2876
2877     ScheduleData *pickedSD = ReadyInsts.back();
2878     ReadyInsts.pop_back();
2879
2880     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
2881       schedule(pickedSD, ReadyInsts);
2882     }
2883   }
2884   if (!Bundle->isReady()) {
2885     cancelScheduling(VL);
2886     return false;
2887   }
2888   return true;
2889 }
2890
2891 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
2892   if (isa<PHINode>(VL[0]))
2893     return;
2894
2895   ScheduleData *Bundle = getScheduleData(VL[0]);
2896   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
2897   assert(!Bundle->IsScheduled &&
2898          "Can't cancel bundle which is already scheduled");
2899   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
2900          "tried to unbundle something which is not a bundle");
2901
2902   // Un-bundle: make single instructions out of the bundle.
2903   ScheduleData *BundleMember = Bundle;
2904   while (BundleMember) {
2905     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
2906     BundleMember->FirstInBundle = BundleMember;
2907     ScheduleData *Next = BundleMember->NextInBundle;
2908     BundleMember->NextInBundle = nullptr;
2909     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
2910     if (BundleMember->UnscheduledDepsInBundle == 0) {
2911       ReadyInsts.insert(BundleMember);
2912     }
2913     BundleMember = Next;
2914   }
2915 }
2916
2917 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
2918   if (getScheduleData(V))
2919     return true;
2920   Instruction *I = dyn_cast<Instruction>(V);
2921   assert(I && "bundle member must be an instruction");
2922   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
2923   if (!ScheduleStart) {
2924     // It's the first instruction in the new region.
2925     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
2926     ScheduleStart = I;
2927     ScheduleEnd = I->getNextNode();
2928     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2929     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
2930     return true;
2931   }
2932   // Search up and down at the same time, because we don't know if the new
2933   // instruction is above or below the existing scheduling region.
2934   BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
2935   BasicBlock::reverse_iterator UpperEnd = BB->rend();
2936   BasicBlock::iterator DownIter(ScheduleEnd);
2937   BasicBlock::iterator LowerEnd = BB->end();
2938   for (;;) {
2939     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
2940       DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
2941       return false;
2942     }
2943
2944     if (UpIter != UpperEnd) {
2945       if (&*UpIter == I) {
2946         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
2947         ScheduleStart = I;
2948         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
2949         return true;
2950       }
2951       UpIter++;
2952     }
2953     if (DownIter != LowerEnd) {
2954       if (&*DownIter == I) {
2955         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
2956                          nullptr);
2957         ScheduleEnd = I->getNextNode();
2958         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2959         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
2960         return true;
2961       }
2962       DownIter++;
2963     }
2964     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
2965            "instruction not found in block");
2966   }
2967   return true;
2968 }
2969
2970 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
2971                                                 Instruction *ToI,
2972                                                 ScheduleData *PrevLoadStore,
2973                                                 ScheduleData *NextLoadStore) {
2974   ScheduleData *CurrentLoadStore = PrevLoadStore;
2975   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
2976     ScheduleData *SD = ScheduleDataMap[I];
2977     if (!SD) {
2978       // Allocate a new ScheduleData for the instruction.
2979       if (ChunkPos >= ChunkSize) {
2980         ScheduleDataChunks.push_back(
2981             llvm::make_unique<ScheduleData[]>(ChunkSize));
2982         ChunkPos = 0;
2983       }
2984       SD = &(ScheduleDataChunks.back()[ChunkPos++]);
2985       ScheduleDataMap[I] = SD;
2986       SD->Inst = I;
2987     }
2988     assert(!isInSchedulingRegion(SD) &&
2989            "new ScheduleData already in scheduling region");
2990     SD->init(SchedulingRegionID);
2991
2992     if (I->mayReadOrWriteMemory()) {
2993       // Update the linked list of memory accessing instructions.
2994       if (CurrentLoadStore) {
2995         CurrentLoadStore->NextLoadStore = SD;
2996       } else {
2997         FirstLoadStoreInRegion = SD;
2998       }
2999       CurrentLoadStore = SD;
3000     }
3001   }
3002   if (NextLoadStore) {
3003     if (CurrentLoadStore)
3004       CurrentLoadStore->NextLoadStore = NextLoadStore;
3005   } else {
3006     LastLoadStoreInRegion = CurrentLoadStore;
3007   }
3008 }
3009
3010 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
3011                                                      bool InsertInReadyList,
3012                                                      BoUpSLP *SLP) {
3013   assert(SD->isSchedulingEntity());
3014
3015   SmallVector<ScheduleData *, 10> WorkList;
3016   WorkList.push_back(SD);
3017
3018   while (!WorkList.empty()) {
3019     ScheduleData *SD = WorkList.back();
3020     WorkList.pop_back();
3021
3022     ScheduleData *BundleMember = SD;
3023     while (BundleMember) {
3024       assert(isInSchedulingRegion(BundleMember));
3025       if (!BundleMember->hasValidDependencies()) {
3026
3027         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
3028         BundleMember->Dependencies = 0;
3029         BundleMember->resetUnscheduledDeps();
3030
3031         // Handle def-use chain dependencies.
3032         for (User *U : BundleMember->Inst->users()) {
3033           if (isa<Instruction>(U)) {
3034             ScheduleData *UseSD = getScheduleData(U);
3035             if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3036               BundleMember->Dependencies++;
3037               ScheduleData *DestBundle = UseSD->FirstInBundle;
3038               if (!DestBundle->IsScheduled) {
3039                 BundleMember->incrementUnscheduledDeps(1);
3040               }
3041               if (!DestBundle->hasValidDependencies()) {
3042                 WorkList.push_back(DestBundle);
3043               }
3044             }
3045           } else {
3046             // I'm not sure if this can ever happen. But we need to be safe.
3047             // This lets the instruction/bundle never be scheduled and
3048             // eventually disable vectorization.
3049             BundleMember->Dependencies++;
3050             BundleMember->incrementUnscheduledDeps(1);
3051           }
3052         }
3053
3054         // Handle the memory dependencies.
3055         ScheduleData *DepDest = BundleMember->NextLoadStore;
3056         if (DepDest) {
3057           Instruction *SrcInst = BundleMember->Inst;
3058           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3059           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3060           unsigned numAliased = 0;
3061           unsigned DistToSrc = 1;
3062
3063           while (DepDest) {
3064             assert(isInSchedulingRegion(DepDest));
3065
3066             // We have two limits to reduce the complexity:
3067             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3068             //    SLP->isAliased (which is the expensive part in this loop).
3069             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3070             //    the whole loop (even if the loop is fast, it's quadratic).
3071             //    It's important for the loop break condition (see below) to
3072             //    check this limit even between two read-only instructions.
3073             if (DistToSrc >= MaxMemDepDistance ||
3074                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3075                      (numAliased >= AliasedCheckLimit ||
3076                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3077
3078               // We increment the counter only if the locations are aliased
3079               // (instead of counting all alias checks). This gives a better
3080               // balance between reduced runtime and accurate dependencies.
3081               numAliased++;
3082
3083               DepDest->MemoryDependencies.push_back(BundleMember);
3084               BundleMember->Dependencies++;
3085               ScheduleData *DestBundle = DepDest->FirstInBundle;
3086               if (!DestBundle->IsScheduled) {
3087                 BundleMember->incrementUnscheduledDeps(1);
3088               }
3089               if (!DestBundle->hasValidDependencies()) {
3090                 WorkList.push_back(DestBundle);
3091               }
3092             }
3093             DepDest = DepDest->NextLoadStore;
3094
3095             // Example, explaining the loop break condition: Let's assume our
3096             // starting instruction is i0 and MaxMemDepDistance = 3.
3097             //
3098             //                      +--------v--v--v
3099             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
3100             //             +--------^--^--^
3101             //
3102             // MaxMemDepDistance let us stop alias-checking at i3 and we add
3103             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3104             // Previously we already added dependencies from i3 to i6,i7,i8
3105             // (because of MaxMemDepDistance). As we added a dependency from
3106             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
3107             // and we can abort this loop at i6.
3108             if (DistToSrc >= 2 * MaxMemDepDistance)
3109                 break;
3110             DistToSrc++;
3111           }
3112         }
3113       }
3114       BundleMember = BundleMember->NextInBundle;
3115     }
3116     if (InsertInReadyList && SD->isReady()) {
3117       ReadyInsts.push_back(SD);
3118       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
3119     }
3120   }
3121 }
3122
3123 void BoUpSLP::BlockScheduling::resetSchedule() {
3124   assert(ScheduleStart &&
3125          "tried to reset schedule on block which has not been scheduled");
3126   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3127     ScheduleData *SD = getScheduleData(I);
3128     assert(isInSchedulingRegion(SD));
3129     SD->IsScheduled = false;
3130     SD->resetUnscheduledDeps();
3131   }
3132   ReadyInsts.clear();
3133 }
3134
3135 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
3136
3137   if (!BS->ScheduleStart)
3138     return;
3139
3140   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
3141
3142   BS->resetSchedule();
3143
3144   // For the real scheduling we use a more sophisticated ready-list: it is
3145   // sorted by the original instruction location. This lets the final schedule
3146   // be as  close as possible to the original instruction order.
3147   struct ScheduleDataCompare {
3148     bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
3149       return SD2->SchedulingPriority < SD1->SchedulingPriority;
3150     }
3151   };
3152   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3153
3154   // Ensure that all dependency data is updated and fill the ready-list with
3155   // initial instructions.
3156   int Idx = 0;
3157   int NumToSchedule = 0;
3158   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3159        I = I->getNextNode()) {
3160     ScheduleData *SD = BS->getScheduleData(I);
3161     assert(
3162         SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
3163         "scheduler and vectorizer have different opinion on what is a bundle");
3164     SD->FirstInBundle->SchedulingPriority = Idx++;
3165     if (SD->isSchedulingEntity()) {
3166       BS->calculateDependencies(SD, false, this);
3167       NumToSchedule++;
3168     }
3169   }
3170   BS->initialFillReadyList(ReadyInsts);
3171
3172   Instruction *LastScheduledInst = BS->ScheduleEnd;
3173
3174   // Do the "real" scheduling.
3175   while (!ReadyInsts.empty()) {
3176     ScheduleData *picked = *ReadyInsts.begin();
3177     ReadyInsts.erase(ReadyInsts.begin());
3178
3179     // Move the scheduled instruction(s) to their dedicated places, if not
3180     // there yet.
3181     ScheduleData *BundleMember = picked;
3182     while (BundleMember) {
3183       Instruction *pickedInst = BundleMember->Inst;
3184       if (LastScheduledInst->getNextNode() != pickedInst) {
3185         BS->BB->getInstList().remove(pickedInst);
3186         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
3187                                      pickedInst);
3188       }
3189       LastScheduledInst = pickedInst;
3190       BundleMember = BundleMember->NextInBundle;
3191     }
3192
3193     BS->schedule(picked, ReadyInsts);
3194     NumToSchedule--;
3195   }
3196   assert(NumToSchedule == 0 && "could not schedule all instructions");
3197
3198   // Avoid duplicate scheduling of the block.
3199   BS->ScheduleStart = nullptr;
3200 }
3201
3202 unsigned BoUpSLP::getVectorElementSize(Value *V) {
3203   // If V is a store, just return the width of the stored value without
3204   // traversing the expression tree. This is the common case.
3205   if (auto *Store = dyn_cast<StoreInst>(V))
3206     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
3207
3208   // If V is not a store, we can traverse the expression tree to find loads
3209   // that feed it. The type of the loaded value may indicate a more suitable
3210   // width than V's type. We want to base the vector element size on the width
3211   // of memory operations where possible.
3212   SmallVector<Instruction *, 16> Worklist;
3213   SmallPtrSet<Instruction *, 16> Visited;
3214   if (auto *I = dyn_cast<Instruction>(V))
3215     Worklist.push_back(I);
3216
3217   // Traverse the expression tree in bottom-up order looking for loads. If we
3218   // encounter an instruciton we don't yet handle, we give up.
3219   auto MaxWidth = 0u;
3220   auto FoundUnknownInst = false;
3221   while (!Worklist.empty() && !FoundUnknownInst) {
3222     auto *I = Worklist.pop_back_val();
3223     Visited.insert(I);
3224
3225     // We should only be looking at scalar instructions here. If the current
3226     // instruction has a vector type, give up.
3227     auto *Ty = I->getType();
3228     if (isa<VectorType>(Ty))
3229       FoundUnknownInst = true;
3230
3231     // If the current instruction is a load, update MaxWidth to reflect the
3232     // width of the loaded value.
3233     else if (isa<LoadInst>(I))
3234       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
3235
3236     // Otherwise, we need to visit the operands of the instruction. We only
3237     // handle the interesting cases from buildTree here. If an operand is an
3238     // instruction we haven't yet visited, we add it to the worklist.
3239     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
3240              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
3241       for (Use &U : I->operands())
3242         if (auto *J = dyn_cast<Instruction>(U.get()))
3243           if (!Visited.count(J))
3244             Worklist.push_back(J);
3245     }
3246
3247     // If we don't yet handle the instruction, give up.
3248     else
3249       FoundUnknownInst = true;
3250   }
3251
3252   // If we didn't encounter a memory access in the expression tree, or if we
3253   // gave up for some reason, just return the width of V.
3254   if (!MaxWidth || FoundUnknownInst)
3255     return DL->getTypeSizeInBits(V->getType());
3256
3257   // Otherwise, return the maximum width we found.
3258   return MaxWidth;
3259 }
3260
3261 // Determine if a value V in a vectorizable expression Expr can be demoted to a
3262 // smaller type with a truncation. We collect the values that will be demoted
3263 // in ToDemote and additional roots that require investigating in Roots.
3264 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
3265                                   SmallVectorImpl<Value *> &ToDemote,
3266                                   SmallVectorImpl<Value *> &Roots) {
3267
3268   // We can always demote constants.
3269   if (isa<Constant>(V)) {
3270     ToDemote.push_back(V);
3271     return true;
3272   }
3273
3274   // If the value is not an instruction in the expression with only one use, it
3275   // cannot be demoted.
3276   auto *I = dyn_cast<Instruction>(V);
3277   if (!I || !I->hasOneUse() || !Expr.count(I))
3278     return false;
3279
3280   switch (I->getOpcode()) {
3281
3282   // We can always demote truncations and extensions. Since truncations can
3283   // seed additional demotion, we save the truncated value.
3284   case Instruction::Trunc:
3285     Roots.push_back(I->getOperand(0));
3286   case Instruction::ZExt:
3287   case Instruction::SExt:
3288     break;
3289
3290   // We can demote certain binary operations if we can demote both of their
3291   // operands.
3292   case Instruction::Add:
3293   case Instruction::Sub:
3294   case Instruction::Mul:
3295   case Instruction::And:
3296   case Instruction::Or:
3297   case Instruction::Xor:
3298     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
3299         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
3300       return false;
3301     break;
3302
3303   // We can demote selects if we can demote their true and false values.
3304   case Instruction::Select: {
3305     SelectInst *SI = cast<SelectInst>(I);
3306     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
3307         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
3308       return false;
3309     break;
3310   }
3311
3312   // We can demote phis if we can demote all their incoming operands. Note that
3313   // we don't need to worry about cycles since we ensure single use above.
3314   case Instruction::PHI: {
3315     PHINode *PN = cast<PHINode>(I);
3316     for (Value *IncValue : PN->incoming_values())
3317       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
3318         return false;
3319     break;
3320   }
3321
3322   // Otherwise, conservatively give up.
3323   default:
3324     return false;
3325   }
3326
3327   // Record the value that we can demote.
3328   ToDemote.push_back(V);
3329   return true;
3330 }
3331
3332 void BoUpSLP::computeMinimumValueSizes() {
3333   // If there are no external uses, the expression tree must be rooted by a
3334   // store. We can't demote in-memory values, so there is nothing to do here.
3335   if (ExternalUses.empty())
3336     return;
3337
3338   // We only attempt to truncate integer expressions.
3339   auto &TreeRoot = VectorizableTree[0].Scalars;
3340   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
3341   if (!TreeRootIT)
3342     return;
3343
3344   // If the expression is not rooted by a store, these roots should have
3345   // external uses. We will rely on InstCombine to rewrite the expression in
3346   // the narrower type. However, InstCombine only rewrites single-use values.
3347   // This means that if a tree entry other than a root is used externally, it
3348   // must have multiple uses and InstCombine will not rewrite it. The code
3349   // below ensures that only the roots are used externally.
3350   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
3351   for (auto &EU : ExternalUses)
3352     if (!Expr.erase(EU.Scalar))
3353       return;
3354   if (!Expr.empty())
3355     return;
3356
3357   // Collect the scalar values of the vectorizable expression. We will use this
3358   // context to determine which values can be demoted. If we see a truncation,
3359   // we mark it as seeding another demotion.
3360   for (auto &Entry : VectorizableTree)
3361     Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
3362
3363   // Ensure the roots of the vectorizable tree don't form a cycle. They must
3364   // have a single external user that is not in the vectorizable tree.
3365   for (auto *Root : TreeRoot)
3366     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
3367       return;
3368
3369   // Conservatively determine if we can actually truncate the roots of the
3370   // expression. Collect the values that can be demoted in ToDemote and
3371   // additional roots that require investigating in Roots.
3372   SmallVector<Value *, 32> ToDemote;
3373   SmallVector<Value *, 4> Roots;
3374   for (auto *Root : TreeRoot)
3375     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
3376       return;
3377
3378   // The maximum bit width required to represent all the values that can be
3379   // demoted without loss of precision. It would be safe to truncate the roots
3380   // of the expression to this width.
3381   auto MaxBitWidth = 8u;
3382
3383   // We first check if all the bits of the roots are demanded. If they're not,
3384   // we can truncate the roots to this narrower type.
3385   for (auto *Root : TreeRoot) {
3386     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
3387     MaxBitWidth = std::max<unsigned>(
3388         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
3389   }
3390
3391   // If all the bits of the roots are demanded, we can try a little harder to
3392   // compute a narrower type. This can happen, for example, if the roots are
3393   // getelementptr indices. InstCombine promotes these indices to the pointer
3394   // width. Thus, all their bits are technically demanded even though the
3395   // address computation might be vectorized in a smaller type.
3396   //
3397   // We start by looking at each entry that can be demoted. We compute the
3398   // maximum bit width required to store the scalar by using ValueTracking to
3399   // compute the number of high-order bits we can truncate.
3400   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
3401     MaxBitWidth = 8u;
3402     for (auto *Scalar : ToDemote) {
3403       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT);
3404       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
3405       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
3406     }
3407   }
3408
3409   // Round MaxBitWidth up to the next power-of-two.
3410   if (!isPowerOf2_64(MaxBitWidth))
3411     MaxBitWidth = NextPowerOf2(MaxBitWidth);
3412
3413   // If the maximum bit width we compute is less than the with of the roots'
3414   // type, we can proceed with the narrowing. Otherwise, do nothing.
3415   if (MaxBitWidth >= TreeRootIT->getBitWidth())
3416     return;
3417
3418   // If we can truncate the root, we must collect additional values that might
3419   // be demoted as a result. That is, those seeded by truncations we will
3420   // modify.
3421   while (!Roots.empty())
3422     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
3423
3424   // Finally, map the values we can demote to the maximum bit with we computed.
3425   for (auto *Scalar : ToDemote)
3426     MinBWs[Scalar] = MaxBitWidth;
3427 }
3428
3429 namespace {
3430 /// The SLPVectorizer Pass.
3431 struct SLPVectorizer : public FunctionPass {
3432   SLPVectorizerPass Impl;
3433
3434   /// Pass identification, replacement for typeid
3435   static char ID;
3436
3437   explicit SLPVectorizer() : FunctionPass(ID) {
3438     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
3439   }
3440
3441
3442   bool doInitialization(Module &M) override {
3443     return false;
3444   }
3445
3446   bool runOnFunction(Function &F) override {
3447     if (skipFunction(F))
3448       return false;
3449
3450     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3451     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3452     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
3453     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
3454     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3455     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3456     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3457     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3458     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
3459
3460     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB);
3461   }
3462
3463   void getAnalysisUsage(AnalysisUsage &AU) const override {
3464     FunctionPass::getAnalysisUsage(AU);
3465     AU.addRequired<AssumptionCacheTracker>();
3466     AU.addRequired<ScalarEvolutionWrapperPass>();
3467     AU.addRequired<AAResultsWrapperPass>();
3468     AU.addRequired<TargetTransformInfoWrapperPass>();
3469     AU.addRequired<LoopInfoWrapperPass>();
3470     AU.addRequired<DominatorTreeWrapperPass>();
3471     AU.addRequired<DemandedBitsWrapperPass>();
3472     AU.addPreserved<LoopInfoWrapperPass>();
3473     AU.addPreserved<DominatorTreeWrapperPass>();
3474     AU.addPreserved<AAResultsWrapperPass>();
3475     AU.addPreserved<GlobalsAAWrapperPass>();
3476     AU.setPreservesCFG();
3477   }
3478 };
3479 } // end anonymous namespace
3480
3481 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
3482   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
3483   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
3484   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
3485   auto *AA = &AM.getResult<AAManager>(F);
3486   auto *LI = &AM.getResult<LoopAnalysis>(F);
3487   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
3488   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
3489   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
3490
3491   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB);
3492   if (!Changed)
3493     return PreservedAnalyses::all();
3494   PreservedAnalyses PA;
3495   PA.preserve<LoopAnalysis>();
3496   PA.preserve<DominatorTreeAnalysis>();
3497   PA.preserve<AAManager>();
3498   PA.preserve<GlobalsAA>();
3499   return PA;
3500 }
3501
3502 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
3503                                 TargetTransformInfo *TTI_,
3504                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
3505                                 LoopInfo *LI_, DominatorTree *DT_,
3506                                 AssumptionCache *AC_, DemandedBits *DB_) {
3507   SE = SE_;
3508   TTI = TTI_;
3509   TLI = TLI_;
3510   AA = AA_;
3511   LI = LI_;
3512   DT = DT_;
3513   AC = AC_;
3514   DB = DB_;
3515   DL = &F.getParent()->getDataLayout();
3516
3517   Stores.clear();
3518   GEPs.clear();
3519   bool Changed = false;
3520
3521   // If the target claims to have no vector registers don't attempt
3522   // vectorization.
3523   if (!TTI->getNumberOfRegisters(true))
3524     return false;
3525
3526   // Don't vectorize when the attribute NoImplicitFloat is used.
3527   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
3528     return false;
3529
3530   DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
3531
3532   // Use the bottom up slp vectorizer to construct chains that start with
3533   // store instructions.
3534   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL);
3535
3536   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
3537   // delete instructions.
3538
3539   // Scan the blocks in the function in post order.
3540   for (auto BB : post_order(&F.getEntryBlock())) {
3541     collectSeedInstructions(BB);
3542
3543     // Vectorize trees that end at stores.
3544     if (!Stores.empty()) {
3545       DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
3546                    << " underlying objects.\n");
3547       Changed |= vectorizeStoreChains(R);
3548     }
3549
3550     // Vectorize trees that end at reductions.
3551     Changed |= vectorizeChainsInBlock(BB, R);
3552
3553     // Vectorize the index computations of getelementptr instructions. This
3554     // is primarily intended to catch gather-like idioms ending at
3555     // non-consecutive loads.
3556     if (!GEPs.empty()) {
3557       DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
3558                    << " underlying objects.\n");
3559       Changed |= vectorizeGEPIndices(BB, R);
3560     }
3561   }
3562
3563   if (Changed) {
3564     R.optimizeGatherSequence();
3565     DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
3566     DEBUG(verifyFunction(F));
3567   }
3568   return Changed;
3569 }
3570
3571 /// \brief Check that the Values in the slice in VL array are still existent in
3572 /// the WeakVH array.
3573 /// Vectorization of part of the VL array may cause later values in the VL array
3574 /// to become invalid. We track when this has happened in the WeakVH array.
3575 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
3576                                unsigned SliceBegin, unsigned SliceSize) {
3577   VL = VL.slice(SliceBegin, SliceSize);
3578   VH = VH.slice(SliceBegin, SliceSize);
3579   return !std::equal(VL.begin(), VL.end(), VH.begin());
3580 }
3581
3582 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain,
3583                                             int CostThreshold, BoUpSLP &R,
3584                                             unsigned VecRegSize) {
3585   unsigned ChainLen = Chain.size();
3586   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
3587         << "\n");
3588   unsigned Sz = R.getVectorElementSize(Chain[0]);
3589   unsigned VF = VecRegSize / Sz;
3590
3591   if (!isPowerOf2_32(Sz) || VF < 2)
3592     return false;
3593
3594   // Keep track of values that were deleted by vectorizing in the loop below.
3595   SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
3596
3597   bool Changed = false;
3598   // Look for profitable vectorizable trees at all offsets, starting at zero.
3599   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
3600     if (i + VF > e)
3601       break;
3602
3603     // Check that a previous iteration of this loop did not delete the Value.
3604     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
3605       continue;
3606
3607     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
3608           << "\n");
3609     ArrayRef<Value *> Operands = Chain.slice(i, VF);
3610
3611     R.buildTree(Operands);
3612     R.computeMinimumValueSizes();
3613
3614     int Cost = R.getTreeCost();
3615
3616     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
3617     if (Cost < CostThreshold) {
3618       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
3619       R.vectorizeTree();
3620
3621       // Move to the next bundle.
3622       i += VF - 1;
3623       Changed = true;
3624     }
3625   }
3626
3627   return Changed;
3628 }
3629
3630 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
3631                                         int costThreshold, BoUpSLP &R) {
3632   SetVector<StoreInst *> Heads, Tails;
3633   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
3634
3635   // We may run into multiple chains that merge into a single chain. We mark the
3636   // stores that we vectorized so that we don't visit the same store twice.
3637   BoUpSLP::ValueSet VectorizedStores;
3638   bool Changed = false;
3639
3640   // Do a quadratic search on all of the given stores and find
3641   // all of the pairs of stores that follow each other.
3642   SmallVector<unsigned, 16> IndexQueue;
3643   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
3644     IndexQueue.clear();
3645     // If a store has multiple consecutive store candidates, search Stores
3646     // array according to the sequence: from i+1 to e, then from i-1 to 0.
3647     // This is because usually pairing with immediate succeeding or preceding
3648     // candidate create the best chance to find slp vectorization opportunity.
3649     unsigned j = 0;
3650     for (j = i + 1; j < e; ++j)
3651       IndexQueue.push_back(j);
3652     for (j = i; j > 0; --j)
3653       IndexQueue.push_back(j - 1);
3654
3655     for (auto &k : IndexQueue) {
3656       if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) {
3657         Tails.insert(Stores[k]);
3658         Heads.insert(Stores[i]);
3659         ConsecutiveChain[Stores[i]] = Stores[k];
3660         break;
3661       }
3662     }
3663   }
3664
3665   // For stores that start but don't end a link in the chain:
3666   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
3667        it != e; ++it) {
3668     if (Tails.count(*it))
3669       continue;
3670
3671     // We found a store instr that starts a chain. Now follow the chain and try
3672     // to vectorize it.
3673     BoUpSLP::ValueList Operands;
3674     StoreInst *I = *it;
3675     // Collect the chain into a list.
3676     while (Tails.count(I) || Heads.count(I)) {
3677       if (VectorizedStores.count(I))
3678         break;
3679       Operands.push_back(I);
3680       // Move to the next value in the chain.
3681       I = ConsecutiveChain[I];
3682     }
3683
3684     // FIXME: Is division-by-2 the correct step? Should we assert that the
3685     // register size is a power-of-2?
3686     for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) {
3687       if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
3688         // Mark the vectorized stores so that we don't vectorize them again.
3689         VectorizedStores.insert(Operands.begin(), Operands.end());
3690         Changed = true;
3691         break;
3692       }
3693     }
3694   }
3695
3696   return Changed;
3697 }
3698
3699 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
3700
3701   // Initialize the collections. We will make a single pass over the block.
3702   Stores.clear();
3703   GEPs.clear();
3704
3705   // Visit the store and getelementptr instructions in BB and organize them in
3706   // Stores and GEPs according to the underlying objects of their pointer
3707   // operands.
3708   for (Instruction &I : *BB) {
3709
3710     // Ignore store instructions that are volatile or have a pointer operand
3711     // that doesn't point to a scalar type.
3712     if (auto *SI = dyn_cast<StoreInst>(&I)) {
3713       if (!SI->isSimple())
3714         continue;
3715       if (!isValidElementType(SI->getValueOperand()->getType()))
3716         continue;
3717       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
3718     }
3719
3720     // Ignore getelementptr instructions that have more than one index, a
3721     // constant index, or a pointer operand that doesn't point to a scalar
3722     // type.
3723     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3724       auto Idx = GEP->idx_begin()->get();
3725       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
3726         continue;
3727       if (!isValidElementType(Idx->getType()))
3728         continue;
3729       if (GEP->getType()->isVectorTy())
3730         continue;
3731       GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
3732     }
3733   }
3734 }
3735
3736 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
3737   if (!A || !B)
3738     return false;
3739   Value *VL[] = { A, B };
3740   return tryToVectorizeList(VL, R, None, true);
3741 }
3742
3743 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3744                                            ArrayRef<Value *> BuildVector,
3745                                            bool allowReorder) {
3746   if (VL.size() < 2)
3747     return false;
3748
3749   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
3750
3751   // Check that all of the parts are scalar instructions of the same type.
3752   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
3753   if (!I0)
3754     return false;
3755
3756   unsigned Opcode0 = I0->getOpcode();
3757
3758   // FIXME: Register size should be a parameter to this function, so we can
3759   // try different vectorization factors.
3760   unsigned Sz = R.getVectorElementSize(I0);
3761   unsigned VF = R.getMinVecRegSize() / Sz;
3762
3763   for (Value *V : VL) {
3764     Type *Ty = V->getType();
3765     if (!isValidElementType(Ty))
3766       return false;
3767     Instruction *Inst = dyn_cast<Instruction>(V);
3768     if (!Inst || Inst->getOpcode() != Opcode0)
3769       return false;
3770   }
3771
3772   bool Changed = false;
3773
3774   // Keep track of values that were deleted by vectorizing in the loop below.
3775   SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
3776
3777   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3778     unsigned OpsWidth = 0;
3779
3780     if (i + VF > e)
3781       OpsWidth = e - i;
3782     else
3783       OpsWidth = VF;
3784
3785     if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
3786       break;
3787
3788     // Check that a previous iteration of this loop did not delete the Value.
3789     if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
3790       continue;
3791
3792     DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
3793                  << "\n");
3794     ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
3795
3796     ArrayRef<Value *> BuildVectorSlice;
3797     if (!BuildVector.empty())
3798       BuildVectorSlice = BuildVector.slice(i, OpsWidth);
3799
3800     R.buildTree(Ops, BuildVectorSlice);
3801     // TODO: check if we can allow reordering also for other cases than
3802     // tryToVectorizePair()
3803     if (allowReorder && R.shouldReorder()) {
3804       assert(Ops.size() == 2);
3805       assert(BuildVectorSlice.empty());
3806       Value *ReorderedOps[] = { Ops[1], Ops[0] };
3807       R.buildTree(ReorderedOps, None);
3808     }
3809     R.computeMinimumValueSizes();
3810     int Cost = R.getTreeCost();
3811
3812     if (Cost < -SLPCostThreshold) {
3813       DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
3814       Value *VectorizedRoot = R.vectorizeTree();
3815
3816       // Reconstruct the build vector by extracting the vectorized root. This
3817       // way we handle the case where some elements of the vector are undefined.
3818       //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
3819       if (!BuildVectorSlice.empty()) {
3820         // The insert point is the last build vector instruction. The vectorized
3821         // root will precede it. This guarantees that we get an instruction. The
3822         // vectorized tree could have been constant folded.
3823         Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
3824         unsigned VecIdx = 0;
3825         for (auto &V : BuildVectorSlice) {
3826           IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
3827                                       ++BasicBlock::iterator(InsertAfter));
3828           Instruction *I = cast<Instruction>(V);
3829           assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
3830           Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
3831               VectorizedRoot, Builder.getInt32(VecIdx++)));
3832           I->setOperand(1, Extract);
3833           I->removeFromParent();
3834           I->insertAfter(Extract);
3835           InsertAfter = I;
3836         }
3837       }
3838       // Move to the next bundle.
3839       i += VF - 1;
3840       Changed = true;
3841     }
3842   }
3843
3844   return Changed;
3845 }
3846
3847 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
3848   if (!V)
3849     return false;
3850
3851   // Try to vectorize V.
3852   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
3853     return true;
3854
3855   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
3856   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
3857   // Try to skip B.
3858   if (B && B->hasOneUse()) {
3859     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
3860     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
3861     if (tryToVectorizePair(A, B0, R)) {
3862       return true;
3863     }
3864     if (tryToVectorizePair(A, B1, R)) {
3865       return true;
3866     }
3867   }
3868
3869   // Try to skip A.
3870   if (A && A->hasOneUse()) {
3871     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
3872     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
3873     if (tryToVectorizePair(A0, B, R)) {
3874       return true;
3875     }
3876     if (tryToVectorizePair(A1, B, R)) {
3877       return true;
3878     }
3879   }
3880   return 0;
3881 }
3882
3883 /// \brief Generate a shuffle mask to be used in a reduction tree.
3884 ///
3885 /// \param VecLen The length of the vector to be reduced.
3886 /// \param NumEltsToRdx The number of elements that should be reduced in the
3887 ///        vector.
3888 /// \param IsPairwise Whether the reduction is a pairwise or splitting
3889 ///        reduction. A pairwise reduction will generate a mask of
3890 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
3891 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
3892 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
3893 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
3894                                    bool IsPairwise, bool IsLeft,
3895                                    IRBuilder<> &Builder) {
3896   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
3897
3898   SmallVector<Constant *, 32> ShuffleMask(
3899       VecLen, UndefValue::get(Builder.getInt32Ty()));
3900
3901   if (IsPairwise)
3902     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
3903     for (unsigned i = 0; i != NumEltsToRdx; ++i)
3904       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
3905   else
3906     // Move the upper half of the vector to the lower half.
3907     for (unsigned i = 0; i != NumEltsToRdx; ++i)
3908       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
3909
3910   return ConstantVector::get(ShuffleMask);
3911 }
3912
3913
3914 /// Model horizontal reductions.
3915 ///
3916 /// A horizontal reduction is a tree of reduction operations (currently add and
3917 /// fadd) that has operations that can be put into a vector as its leaf.
3918 /// For example, this tree:
3919 ///
3920 /// mul mul mul mul
3921 ///  \  /    \  /
3922 ///   +       +
3923 ///    \     /
3924 ///       +
3925 /// This tree has "mul" as its reduced values and "+" as its reduction
3926 /// operations. A reduction might be feeding into a store or a binary operation
3927 /// feeding a phi.
3928 ///    ...
3929 ///    \  /
3930 ///     +
3931 ///     |
3932 ///  phi +=
3933 ///
3934 ///  Or:
3935 ///    ...
3936 ///    \  /
3937 ///     +
3938 ///     |
3939 ///   *p =
3940 ///
3941 class HorizontalReduction {
3942   SmallVector<Value *, 16> ReductionOps;
3943   SmallVector<Value *, 32> ReducedVals;
3944
3945   BinaryOperator *ReductionRoot;
3946   PHINode *ReductionPHI;
3947
3948   /// The opcode of the reduction.
3949   unsigned ReductionOpcode;
3950   /// The opcode of the values we perform a reduction on.
3951   unsigned ReducedValueOpcode;
3952   /// Should we model this reduction as a pairwise reduction tree or a tree that
3953   /// splits the vector in halves and adds those halves.
3954   bool IsPairwiseReduction;
3955
3956 public:
3957   /// The width of one full horizontal reduction operation.
3958   unsigned ReduxWidth;
3959
3960   /// Minimal width of available vector registers. It's used to determine
3961   /// ReduxWidth.
3962   unsigned MinVecRegSize;
3963
3964   HorizontalReduction(unsigned MinVecRegSize)
3965       : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
3966         ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0),
3967         MinVecRegSize(MinVecRegSize) {}
3968
3969   /// \brief Try to find a reduction tree.
3970   bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
3971     assert((!Phi ||
3972             std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
3973            "Thi phi needs to use the binary operator");
3974
3975     // We could have a initial reductions that is not an add.
3976     //  r *= v1 + v2 + v3 + v4
3977     // In such a case start looking for a tree rooted in the first '+'.
3978     if (Phi) {
3979       if (B->getOperand(0) == Phi) {
3980         Phi = nullptr;
3981         B = dyn_cast<BinaryOperator>(B->getOperand(1));
3982       } else if (B->getOperand(1) == Phi) {
3983         Phi = nullptr;
3984         B = dyn_cast<BinaryOperator>(B->getOperand(0));
3985       }
3986     }
3987
3988     if (!B)
3989       return false;
3990
3991     Type *Ty = B->getType();
3992     if (!isValidElementType(Ty))
3993       return false;
3994
3995     const DataLayout &DL = B->getModule()->getDataLayout();
3996     ReductionOpcode = B->getOpcode();
3997     ReducedValueOpcode = 0;
3998     // FIXME: Register size should be a parameter to this function, so we can
3999     // try different vectorization factors.
4000     ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
4001     ReductionRoot = B;
4002     ReductionPHI = Phi;
4003
4004     if (ReduxWidth < 4)
4005       return false;
4006
4007     // We currently only support adds.
4008     if (ReductionOpcode != Instruction::Add &&
4009         ReductionOpcode != Instruction::FAdd)
4010       return false;
4011
4012     // Post order traverse the reduction tree starting at B. We only handle true
4013     // trees containing only binary operators or selects.
4014     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
4015     Stack.push_back(std::make_pair(B, 0));
4016     while (!Stack.empty()) {
4017       Instruction *TreeN = Stack.back().first;
4018       unsigned EdgeToVist = Stack.back().second++;
4019       bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
4020
4021       // Only handle trees in the current basic block.
4022       if (TreeN->getParent() != B->getParent())
4023         return false;
4024
4025       // Each tree node needs to have one user except for the ultimate
4026       // reduction.
4027       if (!TreeN->hasOneUse() && TreeN != B)
4028         return false;
4029
4030       // Postorder vist.
4031       if (EdgeToVist == 2 || IsReducedValue) {
4032         if (IsReducedValue) {
4033           // Make sure that the opcodes of the operations that we are going to
4034           // reduce match.
4035           if (!ReducedValueOpcode)
4036             ReducedValueOpcode = TreeN->getOpcode();
4037           else if (ReducedValueOpcode != TreeN->getOpcode())
4038             return false;
4039           ReducedVals.push_back(TreeN);
4040         } else {
4041           // We need to be able to reassociate the adds.
4042           if (!TreeN->isAssociative())
4043             return false;
4044           ReductionOps.push_back(TreeN);
4045         }
4046         // Retract.
4047         Stack.pop_back();
4048         continue;
4049       }
4050
4051       // Visit left or right.
4052       Value *NextV = TreeN->getOperand(EdgeToVist);
4053       // We currently only allow BinaryOperator's and SelectInst's as reduction
4054       // values in our tree.
4055       if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV))
4056         Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0));
4057       else if (NextV != Phi)
4058         return false;
4059     }
4060     return true;
4061   }
4062
4063   /// \brief Attempt to vectorize the tree found by
4064   /// matchAssociativeReduction.
4065   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
4066     if (ReducedVals.empty())
4067       return false;
4068
4069     unsigned NumReducedVals = ReducedVals.size();
4070     if (NumReducedVals < ReduxWidth)
4071       return false;
4072
4073     Value *VectorizedTree = nullptr;
4074     IRBuilder<> Builder(ReductionRoot);
4075     FastMathFlags Unsafe;
4076     Unsafe.setUnsafeAlgebra();
4077     Builder.setFastMathFlags(Unsafe);
4078     unsigned i = 0;
4079
4080     for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
4081       V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
4082       V.computeMinimumValueSizes();
4083
4084       // Estimate cost.
4085       int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
4086       if (Cost >= -SLPCostThreshold)
4087         break;
4088
4089       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
4090                    << ". (HorRdx)\n");
4091
4092       // Vectorize a tree.
4093       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
4094       Value *VectorizedRoot = V.vectorizeTree();
4095
4096       // Emit a reduction.
4097       Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
4098       if (VectorizedTree) {
4099         Builder.SetCurrentDebugLocation(Loc);
4100         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
4101                                      ReducedSubTree, "bin.rdx");
4102       } else
4103         VectorizedTree = ReducedSubTree;
4104     }
4105
4106     if (VectorizedTree) {
4107       // Finish the reduction.
4108       for (; i < NumReducedVals; ++i) {
4109         Builder.SetCurrentDebugLocation(
4110           cast<Instruction>(ReducedVals[i])->getDebugLoc());
4111         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
4112                                      ReducedVals[i]);
4113       }
4114       // Update users.
4115       if (ReductionPHI) {
4116         assert(ReductionRoot && "Need a reduction operation");
4117         ReductionRoot->setOperand(0, VectorizedTree);
4118         ReductionRoot->setOperand(1, ReductionPHI);
4119       } else
4120         ReductionRoot->replaceAllUsesWith(VectorizedTree);
4121     }
4122     return VectorizedTree != nullptr;
4123   }
4124
4125   unsigned numReductionValues() const {
4126     return ReducedVals.size();
4127   }
4128
4129 private:
4130   /// \brief Calculate the cost of a reduction.
4131   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
4132     Type *ScalarTy = FirstReducedVal->getType();
4133     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
4134
4135     int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
4136     int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
4137
4138     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
4139     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
4140
4141     int ScalarReduxCost =
4142         ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
4143
4144     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
4145                  << " for reduction that starts with " << *FirstReducedVal
4146                  << " (It is a "
4147                  << (IsPairwiseReduction ? "pairwise" : "splitting")
4148                  << " reduction)\n");
4149
4150     return VecReduxCost - ScalarReduxCost;
4151   }
4152
4153   static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
4154                             Value *R, const Twine &Name = "") {
4155     if (Opcode == Instruction::FAdd)
4156       return Builder.CreateFAdd(L, R, Name);
4157     return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
4158   }
4159
4160   /// \brief Emit a horizontal reduction of the vectorized value.
4161   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
4162     assert(VectorizedValue && "Need to have a vectorized tree node");
4163     assert(isPowerOf2_32(ReduxWidth) &&
4164            "We only handle power-of-two reductions for now");
4165
4166     Value *TmpVec = VectorizedValue;
4167     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
4168       if (IsPairwiseReduction) {
4169         Value *LeftMask =
4170           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
4171         Value *RightMask =
4172           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
4173
4174         Value *LeftShuf = Builder.CreateShuffleVector(
4175           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
4176         Value *RightShuf = Builder.CreateShuffleVector(
4177           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
4178           "rdx.shuf.r");
4179         TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
4180                              "bin.rdx");
4181       } else {
4182         Value *UpperHalf =
4183           createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
4184         Value *Shuf = Builder.CreateShuffleVector(
4185           TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
4186         TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
4187       }
4188     }
4189
4190     // The result is in the first element of the vector.
4191     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
4192   }
4193 };
4194
4195 /// \brief Recognize construction of vectors like
4196 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
4197 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
4198 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
4199 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
4200 ///
4201 /// Returns true if it matches
4202 ///
4203 static bool findBuildVector(InsertElementInst *FirstInsertElem,
4204                             SmallVectorImpl<Value *> &BuildVector,
4205                             SmallVectorImpl<Value *> &BuildVectorOpds) {
4206   if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
4207     return false;
4208
4209   InsertElementInst *IE = FirstInsertElem;
4210   while (true) {
4211     BuildVector.push_back(IE);
4212     BuildVectorOpds.push_back(IE->getOperand(1));
4213
4214     if (IE->use_empty())
4215       return false;
4216
4217     InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
4218     if (!NextUse)
4219       return true;
4220
4221     // If this isn't the final use, make sure the next insertelement is the only
4222     // use. It's OK if the final constructed vector is used multiple times
4223     if (!IE->hasOneUse())
4224       return false;
4225
4226     IE = NextUse;
4227   }
4228
4229   return false;
4230 }
4231
4232 /// \brief Like findBuildVector, but looks backwards for construction of aggregate.
4233 ///
4234 /// \return true if it matches.
4235 static bool findBuildAggregate(InsertValueInst *IV,
4236                                SmallVectorImpl<Value *> &BuildVector,
4237                                SmallVectorImpl<Value *> &BuildVectorOpds) {
4238   if (!IV->hasOneUse())
4239     return false;
4240   Value *V = IV->getAggregateOperand();
4241   if (!isa<UndefValue>(V)) {
4242     InsertValueInst *I = dyn_cast<InsertValueInst>(V);
4243     if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds))
4244       return false;
4245   }
4246   BuildVector.push_back(IV);
4247   BuildVectorOpds.push_back(IV->getInsertedValueOperand());
4248   return true;
4249 }
4250
4251 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
4252   return V->getType() < V2->getType();
4253 }
4254
4255 /// \brief Try and get a reduction value from a phi node.
4256 ///
4257 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
4258 /// if they come from either \p ParentBB or a containing loop latch.
4259 ///
4260 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
4261 /// if not possible.
4262 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
4263                                 BasicBlock *ParentBB, LoopInfo *LI) {
4264   // There are situations where the reduction value is not dominated by the
4265   // reduction phi. Vectorizing such cases has been reported to cause
4266   // miscompiles. See PR25787.
4267   auto DominatedReduxValue = [&](Value *R) {
4268     return (
4269         dyn_cast<Instruction>(R) &&
4270         DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
4271   };
4272
4273   Value *Rdx = nullptr;
4274
4275   // Return the incoming value if it comes from the same BB as the phi node.
4276   if (P->getIncomingBlock(0) == ParentBB) {
4277     Rdx = P->getIncomingValue(0);
4278   } else if (P->getIncomingBlock(1) == ParentBB) {
4279     Rdx = P->getIncomingValue(1);
4280   }
4281
4282   if (Rdx && DominatedReduxValue(Rdx))
4283     return Rdx;
4284
4285   // Otherwise, check whether we have a loop latch to look at.
4286   Loop *BBL = LI->getLoopFor(ParentBB);
4287   if (!BBL)
4288     return nullptr;
4289   BasicBlock *BBLatch = BBL->getLoopLatch();
4290   if (!BBLatch)
4291     return nullptr;
4292
4293   // There is a loop latch, return the incoming value if it comes from
4294   // that. This reduction pattern occassionaly turns up.
4295   if (P->getIncomingBlock(0) == BBLatch) {
4296     Rdx = P->getIncomingValue(0);
4297   } else if (P->getIncomingBlock(1) == BBLatch) {
4298     Rdx = P->getIncomingValue(1);
4299   }
4300
4301   if (Rdx && DominatedReduxValue(Rdx))
4302     return Rdx;
4303
4304   return nullptr;
4305 }
4306
4307 /// \brief Attempt to reduce a horizontal reduction.
4308 /// If it is legal to match a horizontal reduction feeding
4309 /// the phi node P with reduction operators BI, then check if it
4310 /// can be done.
4311 /// \returns true if a horizontal reduction was matched and reduced.
4312 /// \returns false if a horizontal reduction was not matched.
4313 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI,
4314                                         BoUpSLP &R, TargetTransformInfo *TTI,
4315                                         unsigned MinRegSize) {
4316   if (!ShouldVectorizeHor)
4317     return false;
4318
4319   HorizontalReduction HorRdx(MinRegSize);
4320   if (!HorRdx.matchAssociativeReduction(P, BI))
4321     return false;
4322
4323   // If there is a sufficient number of reduction values, reduce
4324   // to a nearby power-of-2. Can safely generate oversized
4325   // vectors and rely on the backend to split them to legal sizes.
4326   HorRdx.ReduxWidth =
4327     std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues()));
4328
4329   return HorRdx.tryToReduce(R, TTI);
4330 }
4331
4332 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
4333   bool Changed = false;
4334   SmallVector<Value *, 4> Incoming;
4335   SmallSet<Value *, 16> VisitedInstrs;
4336
4337   bool HaveVectorizedPhiNodes = true;
4338   while (HaveVectorizedPhiNodes) {
4339     HaveVectorizedPhiNodes = false;
4340
4341     // Collect the incoming values from the PHIs.
4342     Incoming.clear();
4343     for (Instruction &I : *BB) {
4344       PHINode *P = dyn_cast<PHINode>(&I);
4345       if (!P)
4346         break;
4347
4348       if (!VisitedInstrs.count(P))
4349         Incoming.push_back(P);
4350     }
4351
4352     // Sort by type.
4353     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
4354
4355     // Try to vectorize elements base on their type.
4356     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
4357                                            E = Incoming.end();
4358          IncIt != E;) {
4359
4360       // Look for the next elements with the same type.
4361       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
4362       while (SameTypeIt != E &&
4363              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
4364         VisitedInstrs.insert(*SameTypeIt);
4365         ++SameTypeIt;
4366       }
4367
4368       // Try to vectorize them.
4369       unsigned NumElts = (SameTypeIt - IncIt);
4370       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
4371       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
4372         // Success start over because instructions might have been changed.
4373         HaveVectorizedPhiNodes = true;
4374         Changed = true;
4375         break;
4376       }
4377
4378       // Start over at the next instruction of a different type (or the end).
4379       IncIt = SameTypeIt;
4380     }
4381   }
4382
4383   VisitedInstrs.clear();
4384
4385   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
4386     // We may go through BB multiple times so skip the one we have checked.
4387     if (!VisitedInstrs.insert(&*it).second)
4388       continue;
4389
4390     if (isa<DbgInfoIntrinsic>(it))
4391       continue;
4392
4393     // Try to vectorize reductions that use PHINodes.
4394     if (PHINode *P = dyn_cast<PHINode>(it)) {
4395       // Check that the PHI is a reduction PHI.
4396       if (P->getNumIncomingValues() != 2)
4397         return Changed;
4398
4399       Value *Rdx = getReductionValue(DT, P, BB, LI);
4400
4401       // Check if this is a Binary Operator.
4402       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
4403       if (!BI)
4404         continue;
4405
4406       // Try to match and vectorize a horizontal reduction.
4407       if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) {
4408         Changed = true;
4409         it = BB->begin();
4410         e = BB->end();
4411         continue;
4412       }
4413
4414      Value *Inst = BI->getOperand(0);
4415       if (Inst == P)
4416         Inst = BI->getOperand(1);
4417
4418       if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
4419         // We would like to start over since some instructions are deleted
4420         // and the iterator may become invalid value.
4421         Changed = true;
4422         it = BB->begin();
4423         e = BB->end();
4424         continue;
4425       }
4426
4427       continue;
4428     }
4429
4430     if (ShouldStartVectorizeHorAtStore)
4431       if (StoreInst *SI = dyn_cast<StoreInst>(it))
4432         if (BinaryOperator *BinOp =
4433                 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
4434           if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI,
4435                                           R.getMinVecRegSize()) ||
4436               tryToVectorize(BinOp, R)) {
4437             Changed = true;
4438             it = BB->begin();
4439             e = BB->end();
4440             continue;
4441           }
4442         }
4443
4444     // Try to vectorize horizontal reductions feeding into a return.
4445     if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
4446       if (RI->getNumOperands() != 0)
4447         if (BinaryOperator *BinOp =
4448                 dyn_cast<BinaryOperator>(RI->getOperand(0))) {
4449           DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
4450           if (tryToVectorizePair(BinOp->getOperand(0),
4451                                  BinOp->getOperand(1), R)) {
4452             Changed = true;
4453             it = BB->begin();
4454             e = BB->end();
4455             continue;
4456           }
4457         }
4458
4459     // Try to vectorize trees that start at compare instructions.
4460     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
4461       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
4462         Changed = true;
4463         // We would like to start over since some instructions are deleted
4464         // and the iterator may become invalid value.
4465         it = BB->begin();
4466         e = BB->end();
4467         continue;
4468       }
4469
4470       for (int i = 0; i < 2; ++i) {
4471         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
4472           if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
4473             Changed = true;
4474             // We would like to start over since some instructions are deleted
4475             // and the iterator may become invalid value.
4476             it = BB->begin();
4477             e = BB->end();
4478             break;
4479           }
4480         }
4481       }
4482       continue;
4483     }
4484
4485     // Try to vectorize trees that start at insertelement instructions.
4486     if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
4487       SmallVector<Value *, 16> BuildVector;
4488       SmallVector<Value *, 16> BuildVectorOpds;
4489       if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
4490         continue;
4491
4492       // Vectorize starting with the build vector operands ignoring the
4493       // BuildVector instructions for the purpose of scheduling and user
4494       // extraction.
4495       if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
4496         Changed = true;
4497         it = BB->begin();
4498         e = BB->end();
4499       }
4500
4501       continue;
4502     }
4503
4504     // Try to vectorize trees that start at insertvalue instructions feeding into
4505     // a store.
4506     if (StoreInst *SI = dyn_cast<StoreInst>(it)) {
4507       if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) {
4508         const DataLayout &DL = BB->getModule()->getDataLayout();
4509         if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) {
4510           SmallVector<Value *, 16> BuildVector;
4511           SmallVector<Value *, 16> BuildVectorOpds;
4512           if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds))
4513             continue;
4514
4515           DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n");
4516           if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) {
4517             Changed = true;
4518             it = BB->begin();
4519             e = BB->end();
4520           }
4521           continue;
4522         }
4523       }
4524     }
4525   }
4526
4527   return Changed;
4528 }
4529
4530 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
4531   auto Changed = false;
4532   for (auto &Entry : GEPs) {
4533
4534     // If the getelementptr list has fewer than two elements, there's nothing
4535     // to do.
4536     if (Entry.second.size() < 2)
4537       continue;
4538
4539     DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
4540                  << Entry.second.size() << ".\n");
4541
4542     // We process the getelementptr list in chunks of 16 (like we do for
4543     // stores) to minimize compile-time.
4544     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
4545       auto Len = std::min<unsigned>(BE - BI, 16);
4546       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
4547
4548       // Initialize a set a candidate getelementptrs. Note that we use a
4549       // SetVector here to preserve program order. If the index computations
4550       // are vectorizable and begin with loads, we want to minimize the chance
4551       // of having to reorder them later.
4552       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
4553
4554       // Some of the candidates may have already been vectorized after we
4555       // initially collected them. If so, the WeakVHs will have nullified the
4556       // values, so remove them from the set of candidates.
4557       Candidates.remove(nullptr);
4558
4559       // Remove from the set of candidates all pairs of getelementptrs with
4560       // constant differences. Such getelementptrs are likely not good
4561       // candidates for vectorization in a bottom-up phase since one can be
4562       // computed from the other. We also ensure all candidate getelementptr
4563       // indices are unique.
4564       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
4565         auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
4566         if (!Candidates.count(GEPI))
4567           continue;
4568         auto *SCEVI = SE->getSCEV(GEPList[I]);
4569         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
4570           auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
4571           auto *SCEVJ = SE->getSCEV(GEPList[J]);
4572           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
4573             Candidates.remove(GEPList[I]);
4574             Candidates.remove(GEPList[J]);
4575           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
4576             Candidates.remove(GEPList[J]);
4577           }
4578         }
4579       }
4580
4581       // We break out of the above computation as soon as we know there are
4582       // fewer than two candidates remaining.
4583       if (Candidates.size() < 2)
4584         continue;
4585
4586       // Add the single, non-constant index of each candidate to the bundle. We
4587       // ensured the indices met these constraints when we originally collected
4588       // the getelementptrs.
4589       SmallVector<Value *, 16> Bundle(Candidates.size());
4590       auto BundleIndex = 0u;
4591       for (auto *V : Candidates) {
4592         auto *GEP = cast<GetElementPtrInst>(V);
4593         auto *GEPIdx = GEP->idx_begin()->get();
4594         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
4595         Bundle[BundleIndex++] = GEPIdx;
4596       }
4597
4598       // Try and vectorize the indices. We are currently only interested in
4599       // gather-like cases of the form:
4600       //
4601       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
4602       //
4603       // where the loads of "a", the loads of "b", and the subtractions can be
4604       // performed in parallel. It's likely that detecting this pattern in a
4605       // bottom-up phase will be simpler and less costly than building a
4606       // full-blown top-down phase beginning at the consecutive loads.
4607       Changed |= tryToVectorizeList(Bundle, R);
4608     }
4609   }
4610   return Changed;
4611 }
4612
4613 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
4614   bool Changed = false;
4615   // Attempt to sort and vectorize each of the store-groups.
4616   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
4617        ++it) {
4618     if (it->second.size() < 2)
4619       continue;
4620
4621     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
4622           << it->second.size() << ".\n");
4623
4624     // Process the stores in chunks of 16.
4625     // TODO: The limit of 16 inhibits greater vectorization factors.
4626     //       For example, AVX2 supports v32i8. Increasing this limit, however,
4627     //       may cause a significant compile-time increase.
4628     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
4629       unsigned Len = std::min<unsigned>(CE - CI, 16);
4630       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
4631                                  -SLPCostThreshold, R);
4632     }
4633   }
4634   return Changed;
4635 }
4636
4637 char SLPVectorizer::ID = 0;
4638 static const char lv_name[] = "SLP Vectorizer";
4639 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
4640 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4641 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4642 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4643 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4644 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4645 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
4646 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
4647
4648 namespace llvm {
4649 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
4650 }