]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libc/stdlib/random.c
zfs: merge openzfs/zfs@e13538856
[FreeBSD/FreeBSD.git] / lib / libc / stdlib / random.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1983, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #if defined(LIBC_SCCS) && !defined(lint)
33 static char sccsid[] = "@(#)random.c    8.2 (Berkeley) 5/19/95";
34 #endif /* LIBC_SCCS and not lint */
35 #include <sys/cdefs.h>
36 #include "namespace.h"
37 #include <sys/param.h>
38 #include <sys/sysctl.h>
39 #include <errno.h>
40 #include <stdint.h>
41 #include <stdlib.h>
42 #include "un-namespace.h"
43
44 #include "random.h"
45
46 /*
47  * random.c:
48  *
49  * An improved random number generation package.  In addition to the standard
50  * rand()/srand() like interface, this package also has a special state info
51  * interface.  The initstate() routine is called with a seed, an array of
52  * bytes, and a count of how many bytes are being passed in; this array is
53  * then initialized to contain information for random number generation with
54  * that much state information.  Good sizes for the amount of state
55  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
56  * calling the setstate() routine with the same array as was initiallized
57  * with initstate().  By default, the package runs with 128 bytes of state
58  * information and generates far better random numbers than a linear
59  * congruential generator.  If the amount of state information is less than
60  * 32 bytes, a simple linear congruential R.N.G. is used.
61  *
62  * Internally, the state information is treated as an array of uint32_t's; the
63  * zeroeth element of the array is the type of R.N.G. being used (small
64  * integer); the remainder of the array is the state information for the
65  * R.N.G.  Thus, 32 bytes of state information will give 7 ints worth of
66  * state information, which will allow a degree seven polynomial.  (Note:
67  * the zeroeth word of state information also has some other information
68  * stored in it -- see setstate() for details).
69  *
70  * The random number generation technique is a linear feedback shift register
71  * approach, employing trinomials (since there are fewer terms to sum up that
72  * way).  In this approach, the least significant bit of all the numbers in
73  * the state table will act as a linear feedback shift register, and will
74  * have period 2^deg - 1 (where deg is the degree of the polynomial being
75  * used, assuming that the polynomial is irreducible and primitive).  The
76  * higher order bits will have longer periods, since their values are also
77  * influenced by pseudo-random carries out of the lower bits.  The total
78  * period of the generator is approximately deg*(2**deg - 1); thus doubling
79  * the amount of state information has a vast influence on the period of the
80  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
81  * large deg, when the period of the shift is the dominant factor.
82  * With deg equal to seven, the period is actually much longer than the
83  * 7*(2**7 - 1) predicted by this formula.
84  *
85  * Modified 28 December 1994 by Jacob S. Rosenberg.
86  * The following changes have been made:
87  * All references to the type u_int have been changed to unsigned long.
88  * All references to type int have been changed to type long.  Other
89  * cleanups have been made as well.  A warning for both initstate and
90  * setstate has been inserted to the effect that on Sparc platforms
91  * the 'arg_state' variable must be forced to begin on word boundaries.
92  * This can be easily done by casting a long integer array to char *.
93  * The overall logic has been left STRICTLY alone.  This software was
94  * tested on both a VAX and Sun SpacsStation with exactly the same
95  * results.  The new version and the original give IDENTICAL results.
96  * The new version is somewhat faster than the original.  As the
97  * documentation says:  "By default, the package runs with 128 bytes of
98  * state information and generates far better random numbers than a linear
99  * congruential generator.  If the amount of state information is less than
100  * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of
101  * 128 bytes, this new version runs about 19 percent faster and for a 16
102  * byte buffer it is about 5 percent faster.
103  */
104
105 #define NSHUFF 50       /* to drop some "seed -> 1st value" linearity */
106
107 static const int degrees[MAX_TYPES] =   { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
108 static const int seps[MAX_TYPES] =      { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
109 static const int breaks[MAX_TYPES] = {
110         BREAK_0, BREAK_1, BREAK_2, BREAK_3, BREAK_4
111 };
112
113 /*
114  * Initially, everything is set up as if from:
115  *
116  *      initstate(1, randtbl, 128);
117  *
118  * Note that this initialization takes advantage of the fact that srandom()
119  * advances the front and rear pointers 10*rand_deg times, and hence the
120  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
121  * element of the state information, which contains info about the current
122  * position of the rear pointer is just
123  *
124  *      MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
125  */
126 static struct __random_state implicit = {
127         .rst_randtbl = {
128                 TYPE_3,
129                 0x2cf41758, 0x27bb3711, 0x4916d4d1, 0x7b02f59f, 0x9b8e28eb, 0xc0e80269,
130                 0x696f5c16, 0x878f1ff5, 0x52d9c07f, 0x916a06cd, 0xb50b3a20, 0x2776970a,
131                 0xee4eb2a6, 0xe94640ec, 0xb1d65612, 0x9d1ed968, 0x1043f6b7, 0xa3432a76,
132                 0x17eacbb9, 0x3c09e2eb, 0x4f8c2b3,  0x708a1f57, 0xee341814, 0x95d0e4d2,
133                 0xb06f216c, 0x8bd2e72e, 0x8f7c38d7, 0xcfc6a8fc, 0x2a59495,  0xa20d2a69,
134                 0xe29d12d1
135         },
136
137         /*
138          * fptr and rptr are two pointers into the state info, a front and a rear
139          * pointer.  These two pointers are always rand_sep places aparts, as they
140          * cycle cyclically through the state information.  (Yes, this does mean we
141          * could get away with just one pointer, but the code for random() is more
142          * efficient this way).  The pointers are left positioned as they would be
143          * from the call
144          *
145          *      initstate(1, randtbl, 128);
146          *
147          * (The position of the rear pointer, rptr, is really 0 (as explained above
148          * in the initialization of randtbl) because the state table pointer is set
149          * to point to randtbl[1] (as explained below).
150          */
151         .rst_fptr = &implicit.rst_randtbl[SEP_3 + 1],
152         .rst_rptr = &implicit.rst_randtbl[1],
153
154         /*
155          * The following things are the pointer to the state information table, the
156          * type of the current generator, the degree of the current polynomial being
157          * used, and the separation between the two pointers.  Note that for efficiency
158          * of random(), we remember the first location of the state information, not
159          * the zeroeth.  Hence it is valid to access state[-1], which is used to
160          * store the type of the R.N.G.  Also, we remember the last location, since
161          * this is more efficient than indexing every time to find the address of
162          * the last element to see if the front and rear pointers have wrapped.
163          */
164         .rst_state = &implicit.rst_randtbl[1],
165         .rst_type = TYPE_3,
166         .rst_deg = DEG_3,
167         .rst_sep = SEP_3,
168         .rst_end_ptr = &implicit.rst_randtbl[DEG_3 + 1],
169 };
170
171 /*
172  * This is the same low quality PRNG used in rand(3) in FreeBSD 12 and prior.
173  * It may be sufficient for distributing bits and expanding a small seed
174  * integer into a larger state.
175  */
176 static inline uint32_t
177 parkmiller32(uint32_t ctx)
178 {
179 /*
180  * Compute x = (7^5 * x) mod (2^31 - 1)
181  * wihout overflowing 31 bits:
182  *      (2^31 - 1) = 127773 * (7^5) + 2836
183  * From "Random number generators: good ones are hard to find",
184  * Park and Miller, Communications of the ACM, vol. 31, no. 10,
185  * October 1988, p. 1195.
186  */
187         int32_t hi, lo, x;
188
189         /* Transform to [1, 0x7ffffffe] range. */
190         x = (ctx % 0x7ffffffe) + 1;
191         hi = x / 127773;
192         lo = x % 127773;
193         x = 16807 * lo - 2836 * hi;
194         if (x < 0)
195                 x += 0x7fffffff;
196         /* Transform to [0, 0x7ffffffd] range. */
197         return (x - 1);
198 }
199
200 /*
201  * srandom:
202  *
203  * Initialize the random number generator based on the given seed.  If the
204  * type is the trivial no-state-information type, just remember the seed.
205  * Otherwise, initializes state[] based on the given "seed" via a linear
206  * congruential generator.  Then, the pointers are set to known locations
207  * that are exactly rand_sep places apart.  Lastly, it cycles the state
208  * information a given number of times to get rid of any initial dependencies
209  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
210  * for default usage relies on values produced by this routine.
211  */
212 void
213 srandom_r(struct __random_state *estate, unsigned x)
214 {
215         int i, lim;
216
217         estate->rst_state[0] = (uint32_t)x;
218         if (estate->rst_type == TYPE_0)
219                 lim = NSHUFF;
220         else {
221                 for (i = 1; i < estate->rst_deg; i++)
222                         estate->rst_state[i] =
223                             parkmiller32(estate->rst_state[i - 1]);
224                 estate->rst_fptr = &estate->rst_state[estate->rst_sep];
225                 estate->rst_rptr = &estate->rst_state[0];
226                 lim = 10 * estate->rst_deg;
227         }
228         for (i = 0; i < lim; i++)
229                 (void)random_r(estate);
230 }
231
232 void
233 srandom(unsigned x)
234 {
235         srandom_r(&implicit, x);
236 }
237
238 /*
239  * srandomdev:
240  *
241  * Many programs choose the seed value in a totally predictable manner.
242  * This often causes problems.  We seed the generator using pseudo-random
243  * data from the kernel.
244  *
245  * Note that this particular seeding procedure can generate states
246  * which are impossible to reproduce by calling srandom() with any
247  * value, since the succeeding terms in the state buffer are no longer
248  * derived from the LC algorithm applied to a fixed seed.
249  */
250 void
251 srandomdev_r(struct __random_state *estate)
252 {
253         int mib[2];
254         size_t expected, len;
255
256         if (estate->rst_type == TYPE_0)
257                 len = sizeof(estate->rst_state[0]);
258         else
259                 len = estate->rst_deg * sizeof(estate->rst_state[0]);
260         expected = len;
261
262         mib[0] = CTL_KERN;
263         mib[1] = KERN_ARND;
264         if (sysctl(mib, 2, estate->rst_state, &len, NULL, 0) == -1 ||
265             len != expected) {
266                 /*
267                  * The sysctl cannot fail. If it does fail on some FreeBSD
268                  * derivative or after some future change, just abort so that
269                  * the problem will be found and fixed. abort is not normally
270                  * suitable for a library but makes sense here.
271                  */
272                 abort();
273         }
274
275         if (estate->rst_type != TYPE_0) {
276                 estate->rst_fptr = &estate->rst_state[estate->rst_sep];
277                 estate->rst_rptr = &estate->rst_state[0];
278         }
279 }
280
281 void
282 srandomdev(void)
283 {
284         srandomdev_r(&implicit);
285 }
286
287 /*
288  * initstate_r:
289  *
290  * Initialize the state information in the given array of n bytes for future
291  * random number generation.  Based on the number of bytes we are given, and
292  * the break values for the different R.N.G.'s, we choose the best (largest)
293  * one we can and set things up for it.  srandom() is then called to
294  * initialize the state information.
295  *
296  * Returns zero on success, or an error number on failure.
297  *
298  * Note: There is no need for a setstate_r(); just use a new context.
299  */
300 int
301 initstate_r(struct __random_state *estate, unsigned seed, uint32_t *arg_state,
302     size_t sz)
303 {
304         if (sz < BREAK_0)
305                 return (EINVAL);
306
307         if (sz < BREAK_1) {
308                 estate->rst_type = TYPE_0;
309                 estate->rst_deg = DEG_0;
310                 estate->rst_sep = SEP_0;
311         } else if (sz < BREAK_2) {
312                 estate->rst_type = TYPE_1;
313                 estate->rst_deg = DEG_1;
314                 estate->rst_sep = SEP_1;
315         } else if (sz < BREAK_3) {
316                 estate->rst_type = TYPE_2;
317                 estate->rst_deg = DEG_2;
318                 estate->rst_sep = SEP_2;
319         } else if (sz < BREAK_4) {
320                 estate->rst_type = TYPE_3;
321                 estate->rst_deg = DEG_3;
322                 estate->rst_sep = SEP_3;
323         } else {
324                 estate->rst_type = TYPE_4;
325                 estate->rst_deg = DEG_4;
326                 estate->rst_sep = SEP_4;
327         }
328         estate->rst_state = arg_state + 1;
329         estate->rst_end_ptr = &estate->rst_state[estate->rst_deg];
330         srandom_r(estate, seed);
331         return (0);
332 }
333
334 /*
335  * initstate:
336  *
337  * Note: the first thing we do is save the current state, if any, just like
338  * setstate() so that it doesn't matter when initstate is called.
339  *
340  * Note that on return from initstate_r(), we set state[-1] to be the type
341  * multiplexed with the current value of the rear pointer; this is so
342  * successive calls to initstate() won't lose this information and will be able
343  * to restart with setstate().
344  *
345  * Returns a pointer to the old state.
346  *
347  * Despite the misleading "char *" type, arg_state must alias an array of
348  * 32-bit unsigned integer values.  Naturally, such an array is 32-bit aligned.
349  * Usually objects are naturally aligned to at least 32-bits on all platforms,
350  * but if you treat the provided 'state' as char* you may inadvertently
351  * misalign it.  Don't do that.
352  */
353 char *
354 initstate(unsigned int seed, char *arg_state, size_t n)
355 {
356         char *ostate = (char *)(&implicit.rst_state[-1]);
357         uint32_t *int_arg_state = (uint32_t *)arg_state;
358         int error;
359
360         /*
361          * Persist rptr offset and rst_type in the first word of the prior
362          * state we are replacing.
363          */
364         if (implicit.rst_type == TYPE_0)
365                 implicit.rst_state[-1] = implicit.rst_type;
366         else
367                 implicit.rst_state[-1] = MAX_TYPES *
368                     (implicit.rst_rptr - implicit.rst_state) +
369                     implicit.rst_type;
370
371         error = initstate_r(&implicit, seed, int_arg_state, n);
372         if (error != 0)
373                 return (NULL);
374
375         /*
376          * Persist rptr offset and rst_type of the new state in its first word.
377          */
378         if (implicit.rst_type == TYPE_0)
379                 int_arg_state[0] = implicit.rst_type;
380         else
381                 int_arg_state[0] = MAX_TYPES *
382                     (implicit.rst_rptr - implicit.rst_state) +
383                     implicit.rst_type;
384
385         return (ostate);
386 }
387
388 /*
389  * setstate:
390  *
391  * Restore the state from the given state array.
392  *
393  * Note: it is important that we also remember the locations of the pointers
394  * in the current state information, and restore the locations of the pointers
395  * from the old state information.  This is done by multiplexing the pointer
396  * location into the zeroeth word of the state information.
397  *
398  * Note that due to the order in which things are done, it is OK to call
399  * setstate() with the same state as the current state.
400  *
401  * Returns a pointer to the old state information.
402  *
403  * Note: The Sparc platform requires that arg_state begin on an int
404  * word boundary; otherwise a bus error will occur. Even so, lint will
405  * complain about mis-alignment, but you should disregard these messages.
406  */
407 char *
408 setstate(char *arg_state)
409 {
410         uint32_t *new_state = (uint32_t *)arg_state;
411         uint32_t type = new_state[0] % MAX_TYPES;
412         uint32_t rear = new_state[0] / MAX_TYPES;
413         char *ostate = (char *)(&implicit.rst_state[-1]);
414
415         if (type != TYPE_0 && rear >= degrees[type])
416                 return (NULL);
417         if (implicit.rst_type == TYPE_0)
418                 implicit.rst_state[-1] = implicit.rst_type;
419         else
420                 implicit.rst_state[-1] = MAX_TYPES *
421                     (implicit.rst_rptr - implicit.rst_state) +
422                     implicit.rst_type;
423         implicit.rst_type = type;
424         implicit.rst_deg = degrees[type];
425         implicit.rst_sep = seps[type];
426         implicit.rst_state = new_state + 1;
427         if (implicit.rst_type != TYPE_0) {
428                 implicit.rst_rptr = &implicit.rst_state[rear];
429                 implicit.rst_fptr = &implicit.rst_state[
430                     (rear + implicit.rst_sep) % implicit.rst_deg];
431         }
432         implicit.rst_end_ptr = &implicit.rst_state[implicit.rst_deg];
433         return (ostate);
434 }
435
436 /*
437  * random:
438  *
439  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
440  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
441  * the same in all the other cases due to all the global variables that have
442  * been set up.  The basic operation is to add the number at the rear pointer
443  * into the one at the front pointer.  Then both pointers are advanced to
444  * the next location cyclically in the table.  The value returned is the sum
445  * generated, reduced to 31 bits by throwing away the "least random" low bit.
446  *
447  * Note: the code takes advantage of the fact that both the front and
448  * rear pointers can't wrap on the same call by not testing the rear
449  * pointer if the front one has wrapped.
450  *
451  * Returns a 31-bit random number.
452  */
453 long
454 random_r(struct __random_state *estate)
455 {
456         uint32_t i;
457         uint32_t *f, *r;
458
459         if (estate->rst_type == TYPE_0) {
460                 i = estate->rst_state[0];
461                 i = parkmiller32(i);
462                 estate->rst_state[0] = i;
463         } else {
464                 /*
465                  * Use local variables rather than static variables for speed.
466                  */
467                 f = estate->rst_fptr;
468                 r = estate->rst_rptr;
469                 *f += *r;
470                 i = *f >> 1;    /* chucking least random bit */
471                 if (++f >= estate->rst_end_ptr) {
472                         f = estate->rst_state;
473                         ++r;
474                 }
475                 else if (++r >= estate->rst_end_ptr) {
476                         r = estate->rst_state;
477                 }
478
479                 estate->rst_fptr = f;
480                 estate->rst_rptr = r;
481         }
482         return ((long)i);
483 }
484
485 long
486 random(void)
487 {
488         return (random_r(&implicit));
489 }
490
491 struct __random_state *
492 allocatestate(unsigned type)
493 {
494         size_t asize;
495
496         /* No point using this interface to get the Park-Miller LCG. */
497         if (type < TYPE_1)
498                 abort();
499         /* Clamp to widest supported variant. */
500         if (type > (MAX_TYPES - 1))
501                 type = (MAX_TYPES - 1);
502
503         asize = sizeof(struct __random_state) + (size_t)breaks[type];
504         return (malloc(asize));
505 }