]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libdevstat/devstat.c
amd64: use register macros for gdb_cpu_getreg()
[FreeBSD/FreeBSD.git] / lib / libdevstat / devstat.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1997, 1998 Kenneth D. Merry.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/types.h>
35 #include <sys/sysctl.h>
36 #include <sys/errno.h>
37 #include <sys/resource.h>
38 #include <sys/queue.h>
39
40 #include <ctype.h>
41 #include <err.h>
42 #include <fcntl.h>
43 #include <limits.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <stdarg.h>
48 #include <kvm.h>
49 #include <nlist.h>
50
51 #include "devstat.h"
52
53 int
54 compute_stats(struct devstat *current, struct devstat *previous,
55               long double etime, u_int64_t *total_bytes,
56               u_int64_t *total_transfers, u_int64_t *total_blocks,
57               long double *kb_per_transfer, long double *transfers_per_second,
58               long double *mb_per_second, long double *blocks_per_second,
59               long double *ms_per_transaction);
60
61 typedef enum {
62         DEVSTAT_ARG_NOTYPE,
63         DEVSTAT_ARG_UINT64,
64         DEVSTAT_ARG_LD,
65         DEVSTAT_ARG_SKIP
66 } devstat_arg_type;
67
68 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
69
70 /*
71  * Table to match descriptive strings with device types.  These are in
72  * order from most common to least common to speed search time.
73  */
74 struct devstat_match_table match_table[] = {
75         {"da",          DEVSTAT_TYPE_DIRECT,    DEVSTAT_MATCH_TYPE},
76         {"cd",          DEVSTAT_TYPE_CDROM,     DEVSTAT_MATCH_TYPE},
77         {"scsi",        DEVSTAT_TYPE_IF_SCSI,   DEVSTAT_MATCH_IF},
78         {"ide",         DEVSTAT_TYPE_IF_IDE,    DEVSTAT_MATCH_IF},
79         {"other",       DEVSTAT_TYPE_IF_OTHER,  DEVSTAT_MATCH_IF},
80         {"worm",        DEVSTAT_TYPE_WORM,      DEVSTAT_MATCH_TYPE},
81         {"sa",          DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
82         {"pass",        DEVSTAT_TYPE_PASS,      DEVSTAT_MATCH_PASS},
83         {"optical",     DEVSTAT_TYPE_OPTICAL,   DEVSTAT_MATCH_TYPE},
84         {"array",       DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE},
85         {"changer",     DEVSTAT_TYPE_CHANGER,   DEVSTAT_MATCH_TYPE},
86         {"scanner",     DEVSTAT_TYPE_SCANNER,   DEVSTAT_MATCH_TYPE},
87         {"printer",     DEVSTAT_TYPE_PRINTER,   DEVSTAT_MATCH_TYPE},
88         {"floppy",      DEVSTAT_TYPE_FLOPPY,    DEVSTAT_MATCH_TYPE},
89         {"proc",        DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE},
90         {"comm",        DEVSTAT_TYPE_COMM,      DEVSTAT_MATCH_TYPE},
91         {"enclosure",   DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE},
92         {NULL,          0,                      0}
93 };
94
95 struct devstat_args {
96         devstat_metric          metric;
97         devstat_arg_type        argtype;
98 } devstat_arg_list[] = {
99         { DSM_NONE, DEVSTAT_ARG_NOTYPE },
100         { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
101         { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
102         { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
103         { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
104         { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
105         { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
106         { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
107         { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
108         { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
109         { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
110         { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
111         { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
112         { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
113         { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
114         { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
115         { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
116         { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
117         { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
118         { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
119         { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
120         { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
121         { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
122         { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
123         { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
124         { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
125         { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
126         { DSM_SKIP, DEVSTAT_ARG_SKIP },
127         { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
128         { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
129         { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
130         { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
131         { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132         { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
133         { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
134         { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
135         { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
136         { DSM_BUSY_PCT, DEVSTAT_ARG_LD },
137         { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
138         { DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
139         { DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
140         { DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
141         { DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
142         { DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
143         { DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
144 };
145
146 static const char *namelist[] = {
147 #define X_NUMDEVS       0
148         "_devstat_num_devs",
149 #define X_GENERATION    1
150         "_devstat_generation",
151 #define X_VERSION       2
152         "_devstat_version",
153 #define X_DEVICE_STATQ  3
154         "_device_statq",
155 #define X_TIME_UPTIME   4
156         "_time_uptime",
157 #define X_END           5
158 };
159
160 /*
161  * Local function declarations.
162  */
163 static int compare_select(const void *arg1, const void *arg2);
164 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
165 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
166 static char *get_devstat_kvm(kvm_t *kd);
167
168 #define KREADNL(kd, var, val) \
169         readkmem_nl(kd, namelist[var], &val, sizeof(val))
170
171 int
172 devstat_getnumdevs(kvm_t *kd)
173 {
174         size_t numdevsize;
175         int numdevs;
176
177         numdevsize = sizeof(int);
178
179         /*
180          * Find out how many devices we have in the system.
181          */
182         if (kd == NULL) {
183                 if (sysctlbyname("kern.devstat.numdevs", &numdevs,
184                                  &numdevsize, NULL, 0) == -1) {
185                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
186                                  "%s: error getting number of devices\n"
187                                  "%s: %s", __func__, __func__, 
188                                  strerror(errno));
189                         return(-1);
190                 } else
191                         return(numdevs);
192         } else {
193
194                 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
195                         return(-1);
196                 else
197                         return(numdevs);
198         }
199 }
200
201 /*
202  * This is an easy way to get the generation number, but the generation is
203  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
204  * Because this generation sysctl is separate from the statistics sysctl,
205  * the device list and the generation could change between the time that
206  * this function is called and the device list is retrieved.
207  */
208 long
209 devstat_getgeneration(kvm_t *kd)
210 {
211         size_t gensize;
212         long generation;
213
214         gensize = sizeof(long);
215
216         /*
217          * Get the current generation number.
218          */
219         if (kd == NULL) {
220                 if (sysctlbyname("kern.devstat.generation", &generation, 
221                                  &gensize, NULL, 0) == -1) {
222                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
223                                  "%s: error getting devstat generation\n%s: %s",
224                                  __func__, __func__, strerror(errno));
225                         return(-1);
226                 } else
227                         return(generation);
228         } else {
229                 if (KREADNL(kd, X_GENERATION, generation) == -1)
230                         return(-1);
231                 else
232                         return(generation);
233         }
234 }
235
236 /*
237  * Get the current devstat version.  The return value of this function
238  * should be compared with DEVSTAT_VERSION, which is defined in
239  * sys/devicestat.h.  This will enable userland programs to determine
240  * whether they are out of sync with the kernel.
241  */
242 int
243 devstat_getversion(kvm_t *kd)
244 {
245         size_t versize;
246         int version;
247
248         versize = sizeof(int);
249
250         /*
251          * Get the current devstat version.
252          */
253         if (kd == NULL) {
254                 if (sysctlbyname("kern.devstat.version", &version, &versize,
255                                  NULL, 0) == -1) {
256                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
257                                  "%s: error getting devstat version\n%s: %s",
258                                  __func__, __func__, strerror(errno));
259                         return(-1);
260                 } else
261                         return(version);
262         } else {
263                 if (KREADNL(kd, X_VERSION, version) == -1)
264                         return(-1);
265                 else
266                         return(version);
267         }
268 }
269
270 /*
271  * Check the devstat version we know about against the devstat version the
272  * kernel knows about.  If they don't match, print an error into the
273  * devstat error buffer, and return -1.  If they match, return 0.
274  */
275 int
276 devstat_checkversion(kvm_t *kd)
277 {
278         int buflen, res, retval = 0, version;
279
280         version = devstat_getversion(kd);
281
282         if (version != DEVSTAT_VERSION) {
283                 /*
284                  * If getversion() returns an error (i.e. -1), then it
285                  * has printed an error message in the buffer.  Therefore,
286                  * we need to add a \n to the end of that message before we
287                  * print our own message in the buffer.
288                  */
289                 if (version == -1)
290                         buflen = strlen(devstat_errbuf);
291                 else
292                         buflen = 0;
293
294                 res = snprintf(devstat_errbuf + buflen,
295                                DEVSTAT_ERRBUF_SIZE - buflen,
296                                "%s%s: userland devstat version %d is not "
297                                "the same as the kernel\n%s: devstat "
298                                "version %d\n", version == -1 ? "\n" : "",
299                                __func__, DEVSTAT_VERSION, __func__, version);
300
301                 if (res < 0)
302                         devstat_errbuf[buflen] = '\0';
303
304                 buflen = strlen(devstat_errbuf);
305                 if (version < DEVSTAT_VERSION)
306                         res = snprintf(devstat_errbuf + buflen,
307                                        DEVSTAT_ERRBUF_SIZE - buflen,
308                                        "%s: libdevstat newer than kernel\n",
309                                        __func__);
310                 else
311                         res = snprintf(devstat_errbuf + buflen,
312                                        DEVSTAT_ERRBUF_SIZE - buflen,
313                                        "%s: kernel newer than libdevstat\n",
314                                        __func__);
315
316                 if (res < 0)
317                         devstat_errbuf[buflen] = '\0';
318
319                 retval = -1;
320         }
321
322         return(retval);
323 }
324
325 /*
326  * Get the current list of devices and statistics, and the current
327  * generation number.
328  * 
329  * Return values:
330  * -1  -- error
331  *  0  -- device list is unchanged
332  *  1  -- device list has changed
333  */
334 int
335 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
336 {
337         int error;
338         size_t dssize;
339         long oldgeneration;
340         int retval = 0;
341         struct devinfo *dinfo;
342         struct timespec ts;
343
344         dinfo = stats->dinfo;
345
346         if (dinfo == NULL) {
347                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
348                          "%s: stats->dinfo was NULL", __func__);
349                 return(-1);
350         }
351
352         oldgeneration = dinfo->generation;
353
354         if (kd == NULL) {
355                 clock_gettime(CLOCK_MONOTONIC, &ts);
356                 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
357
358                 /* If this is our first time through, mem_ptr will be null. */
359                 if (dinfo->mem_ptr == NULL) {
360                         /*
361                          * Get the number of devices.  If it's negative, it's an
362                          * error.  Don't bother setting the error string, since
363                          * getnumdevs() has already done that for us.
364                          */
365                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
366                                 return(-1);
367                         
368                         /*
369                          * The kern.devstat.all sysctl returns the current 
370                          * generation number, as well as all the devices.  
371                          * So we need four bytes more.
372                          */
373                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
374                                  sizeof(long);
375                         dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
376                         if (dinfo->mem_ptr == NULL) {
377                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
378                                          "%s: Cannot allocate memory for mem_ptr element",
379                                          __func__);
380                                 return(-1);
381                         }
382                 } else
383                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
384                                  sizeof(long);
385
386                 /*
387                  * Request all of the devices.  We only really allow for one
388                  * ENOMEM failure.  It would, of course, be possible to just go
389                  * in a loop and keep reallocing the device structure until we
390                  * don't get ENOMEM back.  I'm not sure it's worth it, though.
391                  * If devices are being added to the system that quickly, maybe
392                  * the user can just wait until all devices are added.
393                  */
394                 for (;;) {
395                         error = sysctlbyname("kern.devstat.all",
396                                              dinfo->mem_ptr, 
397                                              &dssize, NULL, 0);
398                         if (error != -1 || errno != EBUSY)
399                                 break;
400                 }
401                 if (error == -1) {
402                         /*
403                          * If we get ENOMEM back, that means that there are 
404                          * more devices now, so we need to allocate more 
405                          * space for the device array.
406                          */
407                         if (errno == ENOMEM) {
408                                 /*
409                                  * No need to set the error string here, 
410                                  * devstat_getnumdevs() will do that if it fails.
411                                  */
412                                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
413                                         return(-1);
414
415                                 dssize = (dinfo->numdevs * 
416                                         sizeof(struct devstat)) + sizeof(long);
417                                 dinfo->mem_ptr = (u_int8_t *)
418                                         realloc(dinfo->mem_ptr, dssize);
419                                 if ((error = sysctlbyname("kern.devstat.all", 
420                                     dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
421                                         snprintf(devstat_errbuf,
422                                                  sizeof(devstat_errbuf),
423                                                  "%s: error getting device "
424                                                  "stats\n%s: %s", __func__,
425                                                  __func__, strerror(errno));
426                                         return(-1);
427                                 }
428                         } else {
429                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
430                                          "%s: error getting device stats\n"
431                                          "%s: %s", __func__, __func__,
432                                          strerror(errno));
433                                 return(-1);
434                         }
435                 } 
436
437         } else {
438                 if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
439                         return(-1);
440                 else
441                         stats->snap_time = ts.tv_sec;
442
443                 /* 
444                  * This is of course non-atomic, but since we are working
445                  * on a core dump, the generation is unlikely to change
446                  */
447                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
448                         return(-1);
449                 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
450                         return(-1);
451         }
452         /*
453          * The sysctl spits out the generation as the first four bytes,
454          * then all of the device statistics structures.
455          */
456         dinfo->generation = *(long *)dinfo->mem_ptr;
457
458         /*
459          * If the generation has changed, and if the current number of
460          * devices is not the same as the number of devices recorded in the
461          * devinfo structure, it is likely that the device list has shrunk.
462          * The reason that it is likely that the device list has shrunk in
463          * this case is that if the device list has grown, the sysctl above
464          * will return an ENOMEM error, and we will reset the number of
465          * devices and reallocate the device array.  If the second sysctl
466          * fails, we will return an error and therefore never get to this
467          * point.  If the device list has shrunk, the sysctl will not
468          * return an error since we have more space allocated than is
469          * necessary.  So, in the shrinkage case, we catch it here and
470          * reallocate the array so that we don't use any more space than is
471          * necessary.
472          */
473         if (oldgeneration != dinfo->generation) {
474                 if (devstat_getnumdevs(kd) != dinfo->numdevs) {
475                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
476                                 return(-1);
477                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
478                                 sizeof(long);
479                         dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
480                                                              dssize);
481                 }
482                 retval = 1;
483         }
484
485         dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
486
487         return(retval);
488 }
489
490 /*
491  * selectdevs():
492  *
493  * Devices are selected/deselected based upon the following criteria:
494  * - devices specified by the user on the command line
495  * - devices matching any device type expressions given on the command line
496  * - devices with the highest I/O, if 'top' mode is enabled
497  * - the first n unselected devices in the device list, if maxshowdevs
498  *   devices haven't already been selected and if the user has not
499  *   specified any devices on the command line and if we're in "add" mode.
500  *
501  * Input parameters:
502  * - device selection list (dev_select)
503  * - current number of devices selected (num_selected)
504  * - total number of devices in the selection list (num_selections)
505  * - devstat generation as of the last time selectdevs() was called
506  *   (select_generation)
507  * - current devstat generation (current_generation)
508  * - current list of devices and statistics (devices)
509  * - number of devices in the current device list (numdevs)
510  * - compiled version of the command line device type arguments (matches)
511  *   - This is optional.  If the number of devices is 0, this will be ignored.
512  *   - The matching code pays attention to the current selection mode.  So
513  *     if you pass in a matching expression, it will be evaluated based
514  *     upon the selection mode that is passed in.  See below for details.
515  * - number of device type matching expressions (num_matches)
516  *   - Set to 0 to disable the matching code.
517  * - list of devices specified on the command line by the user (dev_selections)
518  * - number of devices selected on the command line by the user
519  *   (num_dev_selections)
520  * - Our selection mode.  There are four different selection modes:
521  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
522  *        selected by the user or devices matching a pattern given by the
523  *        user will be selected in addition to devices that are already
524  *        selected.  Additional devices will be selected, up to maxshowdevs
525  *        number of devices. 
526  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
527  *        explicitly given by the user or devices matching a pattern
528  *        given by the user will be selected.  No other devices will be
529  *        selected.
530  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
531  *        only.  Basically, this will not de-select any devices that are
532  *        current selected, as only mode would, but it will also not
533  *        gratuitously select up to maxshowdevs devices as add mode would.
534  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
535  *        explicitly selected by the user or devices matching a pattern
536  *        given by the user will be de-selected.
537  * - maximum number of devices we can select (maxshowdevs)
538  * - flag indicating whether or not we're in 'top' mode (perf_select)
539  *
540  * Output data:
541  * - the device selection list may be modified and passed back out
542  * - the number of devices selected and the total number of items in the
543  *   device selection list may be changed
544  * - the selection generation may be changed to match the current generation
545  * 
546  * Return values:
547  * -1  -- error
548  *  0  -- selected devices are unchanged
549  *  1  -- selected devices changed
550  */
551 int
552 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
553                    int *num_selections, long *select_generation, 
554                    long current_generation, struct devstat *devices,
555                    int numdevs, struct devstat_match *matches, int num_matches,
556                    char **dev_selections, int num_dev_selections,
557                    devstat_select_mode select_mode, int maxshowdevs,
558                    int perf_select)
559 {
560         int i, j, k;
561         int init_selections = 0, init_selected_var = 0;
562         struct device_selection *old_dev_select = NULL;
563         int old_num_selections = 0, old_num_selected;
564         int selection_number = 0;
565         int changed = 0, found = 0;
566
567         if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
568                 return(-1);
569
570         /*
571          * We always want to make sure that we have as many dev_select
572          * entries as there are devices. 
573          */
574         /*
575          * In this case, we haven't selected devices before.
576          */
577         if (*dev_select == NULL) {
578                 *dev_select = (struct device_selection *)malloc(numdevs *
579                         sizeof(struct device_selection));
580                 *select_generation = current_generation;
581                 init_selections = 1;
582                 changed = 1;
583         /*
584          * In this case, we have selected devices before, but the device
585          * list has changed since we last selected devices, so we need to
586          * either enlarge or reduce the size of the device selection list.
587          * But delay the resizing until after copying the data to old_dev_select
588          * as to not lose any data in the case of reducing the size.
589          */
590         } else if (*num_selections != numdevs) {
591                 *select_generation = current_generation;
592                 init_selections = 1;
593         /*
594          * In this case, we've selected devices before, and the selection
595          * list is the same size as it was the last time, but the device
596          * list has changed.
597          */
598         } else if (*select_generation < current_generation) {
599                 *select_generation = current_generation;
600                 init_selections = 1;
601         }
602
603         if (*dev_select == NULL) {
604                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
605                          "%s: Cannot (re)allocate memory for dev_select argument",
606                          __func__);
607                 return(-1);
608         }
609
610         /*
611          * If we're in "only" mode, we want to clear out the selected
612          * variable since we're going to select exactly what the user wants
613          * this time through.
614          */
615         if (select_mode == DS_SELECT_ONLY)
616                 init_selected_var = 1;
617
618         /*
619          * In all cases, we want to back up the number of selected devices.
620          * It is a quick and accurate way to determine whether the selected
621          * devices have changed.
622          */
623         old_num_selected = *num_selected;
624
625         /*
626          * We want to make a backup of the current selection list if 
627          * the list of devices has changed, or if we're in performance 
628          * selection mode.  In both cases, we don't want to make a backup
629          * if we already know for sure that the list will be different.
630          * This is certainly the case if this is our first time through the
631          * selection code.
632          */
633         if (((init_selected_var != 0) || (init_selections != 0)
634          || (perf_select != 0)) && (changed == 0)){
635                 old_dev_select = (struct device_selection *)malloc(
636                     *num_selections * sizeof(struct device_selection));
637                 if (old_dev_select == NULL) {
638                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
639                                  "%s: Cannot allocate memory for selection list backup",
640                                  __func__);
641                         return(-1);
642                 }
643                 old_num_selections = *num_selections;
644                 bcopy(*dev_select, old_dev_select, 
645                     sizeof(struct device_selection) * *num_selections);
646         }
647
648         if (!changed && *num_selections != numdevs) {
649                 *dev_select = (struct device_selection *)reallocf(*dev_select,
650                         numdevs * sizeof(struct device_selection));
651         }
652
653         if (init_selections != 0) {
654                 bzero(*dev_select, sizeof(struct device_selection) * numdevs);
655
656                 for (i = 0; i < numdevs; i++) {
657                         (*dev_select)[i].device_number = 
658                                 devices[i].device_number;
659                         strncpy((*dev_select)[i].device_name,
660                                 devices[i].device_name,
661                                 DEVSTAT_NAME_LEN);
662                         (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
663                         (*dev_select)[i].unit_number = devices[i].unit_number;
664                         (*dev_select)[i].position = i;
665                 }
666                 *num_selections = numdevs;
667         } else if (init_selected_var != 0) {
668                 for (i = 0; i < numdevs; i++) 
669                         (*dev_select)[i].selected = 0;
670         }
671
672         /* we haven't gotten around to selecting anything yet.. */
673         if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
674          || (init_selected_var != 0))
675                 *num_selected = 0;
676
677         /*
678          * Look through any devices the user specified on the command line
679          * and see if they match known devices.  If so, select them.
680          */
681         for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
682                 char tmpstr[80];
683
684                 snprintf(tmpstr, sizeof(tmpstr), "%s%d",
685                          (*dev_select)[i].device_name,
686                          (*dev_select)[i].unit_number);
687                 for (j = 0; j < num_dev_selections; j++) {
688                         if (strcmp(tmpstr, dev_selections[j]) == 0) {
689                                 /*
690                                  * Here we do different things based on the
691                                  * mode we're in.  If we're in add or
692                                  * addonly mode, we only select this device
693                                  * if it hasn't already been selected.
694                                  * Otherwise, we would be unnecessarily
695                                  * changing the selection order and
696                                  * incrementing the selection count.  If
697                                  * we're in only mode, we unconditionally
698                                  * select this device, since in only mode
699                                  * any previous selections are erased and
700                                  * manually specified devices are the first
701                                  * ones to be selected.  If we're in remove
702                                  * mode, we de-select the specified device and
703                                  * decrement the selection count.
704                                  */
705                                 switch(select_mode) {
706                                 case DS_SELECT_ADD:
707                                 case DS_SELECT_ADDONLY:
708                                         if ((*dev_select)[i].selected)
709                                                 break;
710                                         /* FALLTHROUGH */
711                                 case DS_SELECT_ONLY:
712                                         (*dev_select)[i].selected =
713                                                 ++selection_number;
714                                         (*num_selected)++;
715                                         break;
716                                 case DS_SELECT_REMOVE:
717                                         (*dev_select)[i].selected = 0;
718                                         (*num_selected)--;
719                                         /*
720                                          * This isn't passed back out, we
721                                          * just use it to keep track of
722                                          * how many devices we've removed.
723                                          */
724                                         num_dev_selections--;
725                                         break;
726                                 }
727                                 break;
728                         }
729                 }
730         }
731
732         /*
733          * Go through the user's device type expressions and select devices
734          * accordingly.  We only do this if the number of devices already
735          * selected is less than the maximum number we can show.
736          */
737         for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
738                 /* We should probably indicate some error here */
739                 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
740                  || (matches[i].num_match_categories <= 0))
741                         continue;
742
743                 for (j = 0; j < numdevs; j++) {
744                         int num_match_categories;
745
746                         num_match_categories = matches[i].num_match_categories;
747
748                         /*
749                          * Determine whether or not the current device
750                          * matches the given matching expression.  This if
751                          * statement consists of three components:
752                          *   - the device type check
753                          *   - the device interface check
754                          *   - the passthrough check
755                          * If a the matching test is successful, it 
756                          * decrements the number of matching categories,
757                          * and if we've reached the last element that
758                          * needed to be matched, the if statement succeeds.
759                          * 
760                          */
761                         if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
762                           && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
763                                 (matches[i].device_type & DEVSTAT_TYPE_MASK))
764                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
765                            || (((matches[i].match_fields & 
766                                 DEVSTAT_MATCH_PASS) == 0)
767                             && ((devices[j].device_type &
768                                 DEVSTAT_TYPE_PASS) == 0)))
769                           && (--num_match_categories == 0)) 
770                          || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
771                           && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
772                                 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
773                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
774                            || (((matches[i].match_fields &
775                                 DEVSTAT_MATCH_PASS) == 0)
776                             && ((devices[j].device_type & 
777                                 DEVSTAT_TYPE_PASS) == 0)))
778                           && (--num_match_categories == 0))
779                          || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
780                           && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
781                           && (--num_match_categories == 0))) {
782
783                                 /*
784                                  * This is probably a non-optimal solution
785                                  * to the problem that the devices in the
786                                  * device list will not be in the same
787                                  * order as the devices in the selection
788                                  * array.
789                                  */
790                                 for (k = 0; k < numdevs; k++) {
791                                         if ((*dev_select)[k].position == j) {
792                                                 found = 1;
793                                                 break;
794                                         }
795                                 }
796
797                                 /*
798                                  * There shouldn't be a case where a device
799                                  * in the device list is not in the
800                                  * selection list...but it could happen.
801                                  */
802                                 if (found != 1) {
803                                         fprintf(stderr, "selectdevs: couldn't"
804                                                 " find %s%d in selection "
805                                                 "list\n",
806                                                 devices[j].device_name,
807                                                 devices[j].unit_number);
808                                         break;
809                                 }
810
811                                 /*
812                                  * We do different things based upon the
813                                  * mode we're in.  If we're in add or only
814                                  * mode, we go ahead and select this device
815                                  * if it hasn't already been selected.  If
816                                  * it has already been selected, we leave
817                                  * it alone so we don't mess up the
818                                  * selection ordering.  Manually specified
819                                  * devices have already been selected, and
820                                  * they have higher priority than pattern
821                                  * matched devices.  If we're in remove
822                                  * mode, we de-select the given device and
823                                  * decrement the selected count.
824                                  */
825                                 switch(select_mode) {
826                                 case DS_SELECT_ADD:
827                                 case DS_SELECT_ADDONLY:
828                                 case DS_SELECT_ONLY:
829                                         if ((*dev_select)[k].selected != 0)
830                                                 break;
831                                         (*dev_select)[k].selected =
832                                                 ++selection_number;
833                                         (*num_selected)++;
834                                         break;
835                                 case DS_SELECT_REMOVE:
836                                         (*dev_select)[k].selected = 0;
837                                         (*num_selected)--;
838                                         break;
839                                 }
840                         }
841                 }
842         }
843
844         /*
845          * Here we implement "top" mode.  Devices are sorted in the
846          * selection array based on two criteria:  whether or not they are
847          * selected (not selection number, just the fact that they are
848          * selected!) and the number of bytes in the "bytes" field of the
849          * selection structure.  The bytes field generally must be kept up
850          * by the user.  In the future, it may be maintained by library
851          * functions, but for now the user has to do the work.
852          *
853          * At first glance, it may seem wrong that we don't go through and
854          * select every device in the case where the user hasn't specified
855          * any devices or patterns.  In fact, though, it won't make any
856          * difference in the device sorting.  In that particular case (i.e.
857          * when we're in "add" or "only" mode, and the user hasn't
858          * specified anything) the first time through no devices will be
859          * selected, so the only criterion used to sort them will be their
860          * performance.  The second time through, and every time thereafter,
861          * all devices will be selected, so again selection won't matter.
862          */
863         if (perf_select != 0) {
864
865                 /* Sort the device array by throughput  */
866                 qsort(*dev_select, *num_selections,
867                       sizeof(struct device_selection),
868                       compare_select);
869
870                 if (*num_selected == 0) {
871                         /*
872                          * Here we select every device in the array, if it
873                          * isn't already selected.  Because the 'selected'
874                          * variable in the selection array entries contains
875                          * the selection order, the devstats routine can show
876                          * the devices that were selected first.
877                          */
878                         for (i = 0; i < *num_selections; i++) {
879                                 if ((*dev_select)[i].selected == 0) {
880                                         (*dev_select)[i].selected =
881                                                 ++selection_number;
882                                         (*num_selected)++;
883                                 }
884                         }
885                 } else {
886                         selection_number = 0;
887                         for (i = 0; i < *num_selections; i++) {
888                                 if ((*dev_select)[i].selected != 0) {
889                                         (*dev_select)[i].selected =
890                                                 ++selection_number;
891                                 }
892                         }
893                 }
894         }
895
896         /*
897          * If we're in the "add" selection mode and if we haven't already
898          * selected maxshowdevs number of devices, go through the array and
899          * select any unselected devices.  If we're in "only" mode, we
900          * obviously don't want to select anything other than what the user
901          * specifies.  If we're in "remove" mode, it probably isn't a good
902          * idea to go through and select any more devices, since we might
903          * end up selecting something that the user wants removed.  Through
904          * more complicated logic, we could actually figure this out, but
905          * that would probably require combining this loop with the various
906          * selections loops above.
907          */
908         if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
909                 for (i = 0; i < *num_selections; i++)
910                         if ((*dev_select)[i].selected == 0) {
911                                 (*dev_select)[i].selected = ++selection_number;
912                                 (*num_selected)++;
913                         }
914         }
915
916         /*
917          * Look at the number of devices that have been selected.  If it
918          * has changed, set the changed variable.  Otherwise, if we've
919          * made a backup of the selection list, compare it to the current
920          * selection list to see if the selected devices have changed.
921          */
922         if ((changed == 0) && (old_num_selected != *num_selected))
923                 changed = 1;
924         else if ((changed == 0) && (old_dev_select != NULL)) {
925                 /*
926                  * Now we go through the selection list and we look at
927                  * it three different ways.
928                  */
929                 for (i = 0; (i < *num_selections) && (changed == 0) && 
930                      (i < old_num_selections); i++) {
931                         /*
932                          * If the device at index i in both the new and old
933                          * selection arrays has the same device number and
934                          * selection status, it hasn't changed.  We
935                          * continue on to the next index.
936                          */
937                         if (((*dev_select)[i].device_number ==
938                              old_dev_select[i].device_number)
939                          && ((*dev_select)[i].selected == 
940                              old_dev_select[i].selected))
941                                 continue;
942
943                         /*
944                          * Now, if we're still going through the if
945                          * statement, the above test wasn't true.  So we
946                          * check here to see if the device at index i in
947                          * the current array is the same as the device at
948                          * index i in the old array.  If it is, that means
949                          * that its selection number has changed.  Set
950                          * changed to 1 and exit the loop.
951                          */
952                         else if ((*dev_select)[i].device_number ==
953                                   old_dev_select[i].device_number) {
954                                 changed = 1;
955                                 break;
956                         }
957                         /*
958                          * If we get here, then the device at index i in
959                          * the current array isn't the same device as the
960                          * device at index i in the old array.
961                          */
962                         else {
963                                 found = 0;
964
965                                 /*
966                                  * Search through the old selection array
967                                  * looking for a device with the same
968                                  * device number as the device at index i
969                                  * in the current array.  If the selection
970                                  * status is the same, then we mark it as
971                                  * found.  If the selection status isn't
972                                  * the same, we break out of the loop.
973                                  * Since found isn't set, changed will be
974                                  * set to 1 below.
975                                  */
976                                 for (j = 0; j < old_num_selections; j++) {
977                                         if (((*dev_select)[i].device_number ==
978                                               old_dev_select[j].device_number)
979                                          && ((*dev_select)[i].selected ==
980                                               old_dev_select[j].selected)){
981                                                 found = 1;
982                                                 break;
983                                         }
984                                         else if ((*dev_select)[i].device_number
985                                             == old_dev_select[j].device_number)
986                                                 break;
987                                 }
988                                 if (found == 0)
989                                         changed = 1;
990                         }
991                 }
992         }
993         if (old_dev_select != NULL)
994                 free(old_dev_select);
995
996         return(changed);
997 }
998
999 /*
1000  * Comparison routine for qsort() above.  Note that the comparison here is
1001  * backwards -- generally, it should return a value to indicate whether
1002  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
1003  * it returns the opposite is so that the selection array will be sorted in
1004  * order of decreasing performance.  We sort on two parameters.  The first
1005  * sort key is whether or not one or the other of the devices in question
1006  * has been selected.  If one of them has, and the other one has not, the
1007  * selected device is automatically more important than the unselected
1008  * device.  If neither device is selected, we judge the devices based upon
1009  * performance.
1010  */
1011 static int
1012 compare_select(const void *arg1, const void *arg2)
1013 {
1014         if ((((const struct device_selection *)arg1)->selected)
1015          && (((const struct device_selection *)arg2)->selected == 0))
1016                 return(-1);
1017         else if ((((const struct device_selection *)arg1)->selected == 0)
1018               && (((const struct device_selection *)arg2)->selected))
1019                 return(1);
1020         else if (((const struct device_selection *)arg2)->bytes <
1021                  ((const struct device_selection *)arg1)->bytes)
1022                 return(-1);
1023         else if (((const struct device_selection *)arg2)->bytes >
1024                  ((const struct device_selection *)arg1)->bytes)
1025                 return(1);
1026         else
1027                 return(0);
1028 }
1029
1030 /*
1031  * Take a string with the general format "arg1,arg2,arg3", and build a
1032  * device matching expression from it.
1033  */
1034 int
1035 devstat_buildmatch(char *match_str, struct devstat_match **matches,
1036                    int *num_matches)
1037 {
1038         char *tstr[5];
1039         char **tempstr;
1040         int num_args;
1041         int i, j;
1042
1043         /* We can't do much without a string to parse */
1044         if (match_str == NULL) {
1045                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1046                          "%s: no match expression", __func__);
1047                 return(-1);
1048         }
1049
1050         /*
1051          * Break the (comma delimited) input string out into separate strings.
1052          */
1053         for (tempstr = tstr, num_args  = 0; 
1054              (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1055                 if (**tempstr != '\0') {
1056                         num_args++;
1057                         if (++tempstr >= &tstr[5])
1058                                 break;
1059                 }
1060
1061         /* The user gave us too many type arguments */
1062         if (num_args > 3) {
1063                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1064                          "%s: too many type arguments", __func__);
1065                 return(-1);
1066         }
1067
1068         if (*num_matches == 0)
1069                 *matches = NULL;
1070
1071         *matches = (struct devstat_match *)reallocf(*matches,
1072                   sizeof(struct devstat_match) * (*num_matches + 1));
1073
1074         if (*matches == NULL) {
1075                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1076                          "%s: Cannot allocate memory for matches list", __func__);
1077                 return(-1);
1078         }
1079                           
1080         /* Make sure the current entry is clear */
1081         bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1082
1083         /*
1084          * Step through the arguments the user gave us and build a device
1085          * matching expression from them.
1086          */
1087         for (i = 0; i < num_args; i++) {
1088                 char *tempstr2, *tempstr3;
1089
1090                 /*
1091                  * Get rid of leading white space.
1092                  */
1093                 tempstr2 = tstr[i];
1094                 while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1095                         tempstr2++;
1096
1097                 /*
1098                  * Get rid of trailing white space.
1099                  */
1100                 tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1101
1102                 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1103                     && (isspace(*tempstr3))) {
1104                         *tempstr3 = '\0';
1105                         tempstr3--;
1106                 }
1107
1108                 /*
1109                  * Go through the match table comparing the user's
1110                  * arguments to known device types, interfaces, etc.  
1111                  */
1112                 for (j = 0; match_table[j].match_str != NULL; j++) {
1113                         /*
1114                          * We do case-insensitive matching, in case someone
1115                          * wants to enter "SCSI" instead of "scsi" or
1116                          * something like that.  Only compare as many 
1117                          * characters as are in the string in the match 
1118                          * table.  This should help if someone tries to use 
1119                          * a super-long match expression.  
1120                          */
1121                         if (strncasecmp(tempstr2, match_table[j].match_str,
1122                             strlen(match_table[j].match_str)) == 0) {
1123                                 /*
1124                                  * Make sure the user hasn't specified two
1125                                  * items of the same type, like "da" and
1126                                  * "cd".  One device cannot be both.
1127                                  */
1128                                 if (((*matches)[*num_matches].match_fields &
1129                                     match_table[j].match_field) != 0) {
1130                                         snprintf(devstat_errbuf,
1131                                                  sizeof(devstat_errbuf),
1132                                                  "%s: cannot have more than "
1133                                                  "one match item in a single "
1134                                                  "category", __func__);
1135                                         return(-1);
1136                                 }
1137                                 /*
1138                                  * If we've gotten this far, we have a
1139                                  * winner.  Set the appropriate fields in
1140                                  * the match entry.
1141                                  */
1142                                 (*matches)[*num_matches].match_fields |=
1143                                         match_table[j].match_field;
1144                                 (*matches)[*num_matches].device_type |=
1145                                         match_table[j].type;
1146                                 (*matches)[*num_matches].num_match_categories++;
1147                                 break;
1148                         }
1149                 }
1150                 /*
1151                  * We should have found a match in the above for loop.  If
1152                  * not, that means the user entered an invalid device type
1153                  * or interface.
1154                  */
1155                 if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1156                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1157                                  "%s: unknown match item \"%s\"", __func__,
1158                                  tstr[i]);
1159                         return(-1);
1160                 }
1161         }
1162
1163         (*num_matches)++;
1164
1165         return(0);
1166 }
1167
1168 /*
1169  * Compute a number of device statistics.  Only one field is mandatory, and
1170  * that is "current".  Everything else is optional.  The caller passes in
1171  * pointers to variables to hold the various statistics he desires.  If he
1172  * doesn't want a particular staistic, he should pass in a NULL pointer.
1173  * Return values:
1174  * 0   -- success
1175  * -1  -- failure
1176  */
1177 int
1178 compute_stats(struct devstat *current, struct devstat *previous,
1179               long double etime, u_int64_t *total_bytes,
1180               u_int64_t *total_transfers, u_int64_t *total_blocks,
1181               long double *kb_per_transfer, long double *transfers_per_second,
1182               long double *mb_per_second, long double *blocks_per_second,
1183               long double *ms_per_transaction)
1184 {
1185         return(devstat_compute_statistics(current, previous, etime,
1186                total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1187                total_bytes,
1188                total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1189                total_transfers,
1190                total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1191                total_blocks,
1192                kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1193                kb_per_transfer,
1194                transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1195                transfers_per_second,
1196                mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1197                mb_per_second,
1198                blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1199                blocks_per_second,
1200                ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1201                ms_per_transaction,
1202                DSM_NONE));
1203 }
1204
1205
1206 /* This is 1/2^64 */
1207 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1208
1209 long double
1210 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1211 {
1212         long double etime;
1213
1214         etime = cur_time->sec;
1215         etime += cur_time->frac * BINTIME_SCALE;
1216         if (prev_time != NULL) {
1217                 etime -= prev_time->sec;
1218                 etime -= prev_time->frac * BINTIME_SCALE;
1219         }
1220         return(etime);
1221 }
1222
1223 #define DELTA(field, index)                             \
1224         (current->field[(index)] - (previous ? previous->field[(index)] : 0))
1225
1226 #define DELTA_T(field)                                  \
1227         devstat_compute_etime(&current->field,          \
1228         (previous ? &previous->field : NULL))
1229
1230 int
1231 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1232                            long double etime, ...)
1233 {
1234         u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1235         u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1236         u_int64_t totaltransfersother, totalblocks, totalblocksread;
1237         u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1238         long double totalduration, totaldurationread, totaldurationwrite;
1239         long double totaldurationfree, totaldurationother;
1240         va_list ap;
1241         devstat_metric metric;
1242         u_int64_t *destu64;
1243         long double *destld;
1244         int retval;
1245
1246         retval = 0;
1247
1248         /*
1249          * current is the only mandatory field.
1250          */
1251         if (current == NULL) {
1252                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1253                          "%s: current stats structure was NULL", __func__);
1254                 return(-1);
1255         }
1256
1257         totalbytesread = DELTA(bytes, DEVSTAT_READ);
1258         totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1259         totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1260         totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1261
1262         totaltransfersread = DELTA(operations, DEVSTAT_READ);
1263         totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1264         totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1265         totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1266         totaltransfers = totaltransfersread + totaltransferswrite +
1267                          totaltransfersother + totaltransfersfree;
1268
1269         totalblocks = totalbytes;
1270         totalblocksread = totalbytesread;
1271         totalblockswrite = totalbyteswrite;
1272         totalblocksfree = totalbytesfree;
1273
1274         if (current->block_size > 0) {
1275                 totalblocks /= current->block_size;
1276                 totalblocksread /= current->block_size;
1277                 totalblockswrite /= current->block_size;
1278                 totalblocksfree /= current->block_size;
1279         } else {
1280                 totalblocks /= 512;
1281                 totalblocksread /= 512;
1282                 totalblockswrite /= 512;
1283                 totalblocksfree /= 512;
1284         }
1285
1286         totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1287         totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1288         totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1289         totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1290         totalduration = totaldurationread + totaldurationwrite +
1291             totaldurationfree + totaldurationother;
1292
1293         va_start(ap, etime);
1294
1295         while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1296
1297                 if (metric == DSM_NONE)
1298                         break;
1299
1300                 if (metric >= DSM_MAX) {
1301                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1302                                  "%s: metric %d is out of range", __func__,
1303                                  metric);
1304                         retval = -1;
1305                         goto bailout;
1306                 }
1307
1308                 switch (devstat_arg_list[metric].argtype) {
1309                 case DEVSTAT_ARG_UINT64:
1310                         destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1311                         break;
1312                 case DEVSTAT_ARG_LD:
1313                         destld = (long double *)va_arg(ap, long double *);
1314                         break;
1315                 case DEVSTAT_ARG_SKIP:
1316                         destld = (long double *)va_arg(ap, long double *);
1317                         break;
1318                 default:
1319                         retval = -1;
1320                         goto bailout;
1321                         break; /* NOTREACHED */
1322                 }
1323
1324                 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1325                         continue;
1326
1327                 switch (metric) {
1328                 case DSM_TOTAL_BYTES:
1329                         *destu64 = totalbytes;
1330                         break;
1331                 case DSM_TOTAL_BYTES_READ:
1332                         *destu64 = totalbytesread;
1333                         break;
1334                 case DSM_TOTAL_BYTES_WRITE:
1335                         *destu64 = totalbyteswrite;
1336                         break;
1337                 case DSM_TOTAL_BYTES_FREE:
1338                         *destu64 = totalbytesfree;
1339                         break;
1340                 case DSM_TOTAL_TRANSFERS:
1341                         *destu64 = totaltransfers;
1342                         break;
1343                 case DSM_TOTAL_TRANSFERS_READ:
1344                         *destu64 = totaltransfersread;
1345                         break;
1346                 case DSM_TOTAL_TRANSFERS_WRITE:
1347                         *destu64 = totaltransferswrite;
1348                         break;
1349                 case DSM_TOTAL_TRANSFERS_FREE:
1350                         *destu64 = totaltransfersfree;
1351                         break;
1352                 case DSM_TOTAL_TRANSFERS_OTHER:
1353                         *destu64 = totaltransfersother;
1354                         break;
1355                 case DSM_TOTAL_BLOCKS:
1356                         *destu64 = totalblocks;
1357                         break;
1358                 case DSM_TOTAL_BLOCKS_READ:
1359                         *destu64 = totalblocksread;
1360                         break;
1361                 case DSM_TOTAL_BLOCKS_WRITE:
1362                         *destu64 = totalblockswrite;
1363                         break;
1364                 case DSM_TOTAL_BLOCKS_FREE:
1365                         *destu64 = totalblocksfree;
1366                         break;
1367                 case DSM_KB_PER_TRANSFER:
1368                         *destld = totalbytes;
1369                         *destld /= 1024;
1370                         if (totaltransfers > 0)
1371                                 *destld /= totaltransfers;
1372                         else
1373                                 *destld = 0.0;
1374                         break;
1375                 case DSM_KB_PER_TRANSFER_READ:
1376                         *destld = totalbytesread;
1377                         *destld /= 1024;
1378                         if (totaltransfersread > 0)
1379                                 *destld /= totaltransfersread;
1380                         else
1381                                 *destld = 0.0;
1382                         break;
1383                 case DSM_KB_PER_TRANSFER_WRITE:
1384                         *destld = totalbyteswrite;
1385                         *destld /= 1024;
1386                         if (totaltransferswrite > 0)
1387                                 *destld /= totaltransferswrite;
1388                         else
1389                                 *destld = 0.0;
1390                         break;
1391                 case DSM_KB_PER_TRANSFER_FREE:
1392                         *destld = totalbytesfree;
1393                         *destld /= 1024;
1394                         if (totaltransfersfree > 0)
1395                                 *destld /= totaltransfersfree;
1396                         else
1397                                 *destld = 0.0;
1398                         break;
1399                 case DSM_TRANSFERS_PER_SECOND:
1400                         if (etime > 0.0) {
1401                                 *destld = totaltransfers;
1402                                 *destld /= etime;
1403                         } else
1404                                 *destld = 0.0;
1405                         break;
1406                 case DSM_TRANSFERS_PER_SECOND_READ:
1407                         if (etime > 0.0) {
1408                                 *destld = totaltransfersread;
1409                                 *destld /= etime;
1410                         } else
1411                                 *destld = 0.0;
1412                         break;
1413                 case DSM_TRANSFERS_PER_SECOND_WRITE:
1414                         if (etime > 0.0) {
1415                                 *destld = totaltransferswrite;
1416                                 *destld /= etime;
1417                         } else
1418                                 *destld = 0.0;
1419                         break;
1420                 case DSM_TRANSFERS_PER_SECOND_FREE:
1421                         if (etime > 0.0) {
1422                                 *destld = totaltransfersfree;
1423                                 *destld /= etime;
1424                         } else
1425                                 *destld = 0.0;
1426                         break;
1427                 case DSM_TRANSFERS_PER_SECOND_OTHER:
1428                         if (etime > 0.0) {
1429                                 *destld = totaltransfersother;
1430                                 *destld /= etime;
1431                         } else
1432                                 *destld = 0.0;
1433                         break;
1434                 case DSM_MB_PER_SECOND:
1435                         *destld = totalbytes;
1436                         *destld /= 1024 * 1024;
1437                         if (etime > 0.0)
1438                                 *destld /= etime;
1439                         else
1440                                 *destld = 0.0;
1441                         break;
1442                 case DSM_MB_PER_SECOND_READ:
1443                         *destld = totalbytesread;
1444                         *destld /= 1024 * 1024;
1445                         if (etime > 0.0)
1446                                 *destld /= etime;
1447                         else
1448                                 *destld = 0.0;
1449                         break;
1450                 case DSM_MB_PER_SECOND_WRITE:
1451                         *destld = totalbyteswrite;
1452                         *destld /= 1024 * 1024;
1453                         if (etime > 0.0)
1454                                 *destld /= etime;
1455                         else
1456                                 *destld = 0.0;
1457                         break;
1458                 case DSM_MB_PER_SECOND_FREE:
1459                         *destld = totalbytesfree;
1460                         *destld /= 1024 * 1024;
1461                         if (etime > 0.0)
1462                                 *destld /= etime;
1463                         else
1464                                 *destld = 0.0;
1465                         break;
1466                 case DSM_BLOCKS_PER_SECOND:
1467                         *destld = totalblocks;
1468                         if (etime > 0.0)
1469                                 *destld /= etime;
1470                         else
1471                                 *destld = 0.0;
1472                         break;
1473                 case DSM_BLOCKS_PER_SECOND_READ:
1474                         *destld = totalblocksread;
1475                         if (etime > 0.0)
1476                                 *destld /= etime;
1477                         else
1478                                 *destld = 0.0;
1479                         break;
1480                 case DSM_BLOCKS_PER_SECOND_WRITE:
1481                         *destld = totalblockswrite;
1482                         if (etime > 0.0)
1483                                 *destld /= etime;
1484                         else
1485                                 *destld = 0.0;
1486                         break;
1487                 case DSM_BLOCKS_PER_SECOND_FREE:
1488                         *destld = totalblocksfree;
1489                         if (etime > 0.0)
1490                                 *destld /= etime;
1491                         else
1492                                 *destld = 0.0;
1493                         break;
1494                 /*
1495                  * Some devstat callers update the duration and some don't.
1496                  * So this will only be accurate if they provide the
1497                  * duration. 
1498                  */
1499                 case DSM_MS_PER_TRANSACTION:
1500                         if (totaltransfers > 0) {
1501                                 *destld = totalduration;
1502                                 *destld /= totaltransfers;
1503                                 *destld *= 1000;
1504                         } else
1505                                 *destld = 0.0;
1506                         break;
1507                 case DSM_MS_PER_TRANSACTION_READ:
1508                         if (totaltransfersread > 0) {
1509                                 *destld = totaldurationread;
1510                                 *destld /= totaltransfersread;
1511                                 *destld *= 1000;
1512                         } else
1513                                 *destld = 0.0;
1514                         break;
1515                 case DSM_MS_PER_TRANSACTION_WRITE:
1516                         if (totaltransferswrite > 0) {
1517                                 *destld = totaldurationwrite;
1518                                 *destld /= totaltransferswrite;
1519                                 *destld *= 1000;
1520                         } else
1521                                 *destld = 0.0;
1522                         break;
1523                 case DSM_MS_PER_TRANSACTION_FREE:
1524                         if (totaltransfersfree > 0) {
1525                                 *destld = totaldurationfree;
1526                                 *destld /= totaltransfersfree;
1527                                 *destld *= 1000;
1528                         } else
1529                                 *destld = 0.0;
1530                         break;
1531                 case DSM_MS_PER_TRANSACTION_OTHER:
1532                         if (totaltransfersother > 0) {
1533                                 *destld = totaldurationother;
1534                                 *destld /= totaltransfersother;
1535                                 *destld *= 1000;
1536                         } else
1537                                 *destld = 0.0;
1538                         break;
1539                 case DSM_BUSY_PCT:
1540                         *destld = DELTA_T(busy_time);
1541                         if (*destld < 0)
1542                                 *destld = 0;
1543                         *destld /= etime;
1544                         *destld *= 100;
1545                         if (*destld < 0)
1546                                 *destld = 0;
1547                         break;
1548                 case DSM_QUEUE_LENGTH:
1549                         *destu64 = current->start_count - current->end_count;
1550                         break;
1551                 case DSM_TOTAL_DURATION:
1552                         *destld = totalduration;
1553                         break;
1554                 case DSM_TOTAL_DURATION_READ:
1555                         *destld = totaldurationread;
1556                         break;
1557                 case DSM_TOTAL_DURATION_WRITE:
1558                         *destld = totaldurationwrite;
1559                         break;
1560                 case DSM_TOTAL_DURATION_FREE:
1561                         *destld = totaldurationfree;
1562                         break;
1563                 case DSM_TOTAL_DURATION_OTHER:
1564                         *destld = totaldurationother;
1565                         break;
1566                 case DSM_TOTAL_BUSY_TIME:
1567                         *destld = DELTA_T(busy_time);
1568                         break;
1569 /*
1570  * XXX: comment out the default block to see if any case's are missing.
1571  */
1572 #if 1
1573                 default:
1574                         /*
1575                          * This shouldn't happen, since we should have
1576                          * caught any out of range metrics at the top of
1577                          * the loop.
1578                          */
1579                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1580                                  "%s: unknown metric %d", __func__, metric);
1581                         retval = -1;
1582                         goto bailout;
1583                         break; /* NOTREACHED */
1584 #endif
1585                 }
1586         }
1587
1588 bailout:
1589
1590         va_end(ap);
1591         return(retval);
1592 }
1593
1594 static int 
1595 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1596 {
1597
1598         if (kvm_read(kd, addr, buf, nbytes) == -1) {
1599                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1600                          "%s: error reading value (kvm_read): %s", __func__,
1601                          kvm_geterr(kd));
1602                 return(-1);
1603         }
1604         return(0);
1605 }
1606
1607 static int
1608 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1609 {
1610         struct nlist nl[2];
1611
1612         nl[0].n_name = (char *)name;
1613         nl[1].n_name = NULL;
1614
1615         if (kvm_nlist(kd, nl) == -1) {
1616                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1617                          "%s: error getting name list (kvm_nlist): %s",
1618                          __func__, kvm_geterr(kd));
1619                 return(-1);
1620         }
1621         return(readkmem(kd, nl[0].n_value, buf, nbytes));
1622 }
1623
1624 /*
1625  * This duplicates the functionality of the kernel sysctl handler for poking
1626  * through crash dumps.
1627  */
1628 static char *
1629 get_devstat_kvm(kvm_t *kd)
1630 {
1631         int i, wp;
1632         long gen;
1633         struct devstat *nds;
1634         struct devstat ds;
1635         struct devstatlist dhead;
1636         int num_devs;
1637         char *rv = NULL;
1638
1639         if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1640                 return(NULL);
1641         if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1642                 return(NULL);
1643
1644         nds = STAILQ_FIRST(&dhead);
1645         
1646         if ((rv = malloc(sizeof(gen))) == NULL) {
1647                 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1648                          "%s: out of memory (initial malloc failed)",
1649                          __func__);
1650                 return(NULL);
1651         }
1652         gen = devstat_getgeneration(kd);
1653         memcpy(rv, &gen, sizeof(gen));
1654         wp = sizeof(gen);
1655         /*
1656          * Now push out all the devices.
1657          */
1658         for (i = 0; (nds != NULL) && (i < num_devs);  
1659              nds = STAILQ_NEXT(nds, dev_links), i++) {
1660                 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1661                         free(rv);
1662                         return(NULL);
1663                 }
1664                 nds = &ds;
1665                 rv = (char *)reallocf(rv, sizeof(gen) + 
1666                                       sizeof(ds) * (i + 1));
1667                 if (rv == NULL) {
1668                         snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1669                                  "%s: out of memory (malloc failed)",
1670                                  __func__);
1671                         return(NULL);
1672                 }
1673                 memcpy(rv + wp, &ds, sizeof(ds));
1674                 wp += sizeof(ds);
1675         }
1676         return(rv);
1677 }