]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libdevstat/devstat.c
Make linux_ptrace() use linux_msg() instead of printf().
[FreeBSD/FreeBSD.git] / lib / libdevstat / devstat.c
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1997, 1998 Kenneth D. Merry.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <sys/types.h>
35 #include <sys/sysctl.h>
36 #include <sys/errno.h>
37 #include <sys/resource.h>
38 #include <sys/queue.h>
39
40 #include <ctype.h>
41 #include <err.h>
42 #include <fcntl.h>
43 #include <limits.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <stdarg.h>
48 #include <kvm.h>
49 #include <nlist.h>
50
51 #include "devstat.h"
52
53 int
54 compute_stats(struct devstat *current, struct devstat *previous,
55               long double etime, u_int64_t *total_bytes,
56               u_int64_t *total_transfers, u_int64_t *total_blocks,
57               long double *kb_per_transfer, long double *transfers_per_second,
58               long double *mb_per_second, long double *blocks_per_second,
59               long double *ms_per_transaction);
60
61 typedef enum {
62         DEVSTAT_ARG_NOTYPE,
63         DEVSTAT_ARG_UINT64,
64         DEVSTAT_ARG_LD,
65         DEVSTAT_ARG_SKIP
66 } devstat_arg_type;
67
68 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
69
70 /*
71  * Table to match descriptive strings with device types.  These are in
72  * order from most common to least common to speed search time.
73  */
74 struct devstat_match_table match_table[] = {
75         {"da",          DEVSTAT_TYPE_DIRECT,    DEVSTAT_MATCH_TYPE},
76         {"cd",          DEVSTAT_TYPE_CDROM,     DEVSTAT_MATCH_TYPE},
77         {"scsi",        DEVSTAT_TYPE_IF_SCSI,   DEVSTAT_MATCH_IF},
78         {"ide",         DEVSTAT_TYPE_IF_IDE,    DEVSTAT_MATCH_IF},
79         {"other",       DEVSTAT_TYPE_IF_OTHER,  DEVSTAT_MATCH_IF},
80         {"worm",        DEVSTAT_TYPE_WORM,      DEVSTAT_MATCH_TYPE},
81         {"sa",          DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
82         {"pass",        DEVSTAT_TYPE_PASS,      DEVSTAT_MATCH_PASS},
83         {"optical",     DEVSTAT_TYPE_OPTICAL,   DEVSTAT_MATCH_TYPE},
84         {"array",       DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE},
85         {"changer",     DEVSTAT_TYPE_CHANGER,   DEVSTAT_MATCH_TYPE},
86         {"scanner",     DEVSTAT_TYPE_SCANNER,   DEVSTAT_MATCH_TYPE},
87         {"printer",     DEVSTAT_TYPE_PRINTER,   DEVSTAT_MATCH_TYPE},
88         {"floppy",      DEVSTAT_TYPE_FLOPPY,    DEVSTAT_MATCH_TYPE},
89         {"proc",        DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE},
90         {"comm",        DEVSTAT_TYPE_COMM,      DEVSTAT_MATCH_TYPE},
91         {"enclosure",   DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE},
92         {NULL,          0,                      0}
93 };
94
95 struct devstat_args {
96         devstat_metric          metric;
97         devstat_arg_type        argtype;
98 } devstat_arg_list[] = {
99         { DSM_NONE, DEVSTAT_ARG_NOTYPE },
100         { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
101         { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
102         { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
103         { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
104         { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
105         { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
106         { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
107         { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
108         { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
109         { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
110         { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
111         { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
112         { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
113         { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
114         { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
115         { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
116         { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
117         { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
118         { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
119         { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
120         { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
121         { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
122         { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
123         { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
124         { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
125         { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
126         { DSM_SKIP, DEVSTAT_ARG_SKIP },
127         { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
128         { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
129         { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
130         { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
131         { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132         { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
133         { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
134         { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
135         { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
136         { DSM_BUSY_PCT, DEVSTAT_ARG_LD },
137         { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
138         { DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
139         { DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
140         { DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
141         { DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
142         { DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
143         { DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
144 };
145
146 static const char *namelist[] = {
147 #define X_NUMDEVS       0
148         "_devstat_num_devs",
149 #define X_GENERATION    1
150         "_devstat_generation",
151 #define X_VERSION       2
152         "_devstat_version",
153 #define X_DEVICE_STATQ  3
154         "_device_statq",
155 #define X_TIME_UPTIME   4
156         "_time_uptime",
157 #define X_END           5
158 };
159
160 /*
161  * Local function declarations.
162  */
163 static int compare_select(const void *arg1, const void *arg2);
164 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
165 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
166 static char *get_devstat_kvm(kvm_t *kd);
167
168 #define KREADNL(kd, var, val) \
169         readkmem_nl(kd, namelist[var], &val, sizeof(val))
170
171 int
172 devstat_getnumdevs(kvm_t *kd)
173 {
174         size_t numdevsize;
175         int numdevs;
176
177         numdevsize = sizeof(int);
178
179         /*
180          * Find out how many devices we have in the system.
181          */
182         if (kd == NULL) {
183                 if (sysctlbyname("kern.devstat.numdevs", &numdevs,
184                                  &numdevsize, NULL, 0) == -1) {
185                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
186                                  "%s: error getting number of devices\n"
187                                  "%s: %s", __func__, __func__, 
188                                  strerror(errno));
189                         return(-1);
190                 } else
191                         return(numdevs);
192         } else {
193
194                 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
195                         return(-1);
196                 else
197                         return(numdevs);
198         }
199 }
200
201 /*
202  * This is an easy way to get the generation number, but the generation is
203  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
204  * Because this generation sysctl is separate from the statistics sysctl,
205  * the device list and the generation could change between the time that
206  * this function is called and the device list is retrieved.
207  */
208 long
209 devstat_getgeneration(kvm_t *kd)
210 {
211         size_t gensize;
212         long generation;
213
214         gensize = sizeof(long);
215
216         /*
217          * Get the current generation number.
218          */
219         if (kd == NULL) {
220                 if (sysctlbyname("kern.devstat.generation", &generation, 
221                                  &gensize, NULL, 0) == -1) {
222                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
223                                  "%s: error getting devstat generation\n%s: %s",
224                                  __func__, __func__, strerror(errno));
225                         return(-1);
226                 } else
227                         return(generation);
228         } else {
229                 if (KREADNL(kd, X_GENERATION, generation) == -1)
230                         return(-1);
231                 else
232                         return(generation);
233         }
234 }
235
236 /*
237  * Get the current devstat version.  The return value of this function
238  * should be compared with DEVSTAT_VERSION, which is defined in
239  * sys/devicestat.h.  This will enable userland programs to determine
240  * whether they are out of sync with the kernel.
241  */
242 int
243 devstat_getversion(kvm_t *kd)
244 {
245         size_t versize;
246         int version;
247
248         versize = sizeof(int);
249
250         /*
251          * Get the current devstat version.
252          */
253         if (kd == NULL) {
254                 if (sysctlbyname("kern.devstat.version", &version, &versize,
255                                  NULL, 0) == -1) {
256                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
257                                  "%s: error getting devstat version\n%s: %s",
258                                  __func__, __func__, strerror(errno));
259                         return(-1);
260                 } else
261                         return(version);
262         } else {
263                 if (KREADNL(kd, X_VERSION, version) == -1)
264                         return(-1);
265                 else
266                         return(version);
267         }
268 }
269
270 /*
271  * Check the devstat version we know about against the devstat version the
272  * kernel knows about.  If they don't match, print an error into the
273  * devstat error buffer, and return -1.  If they match, return 0.
274  */
275 int
276 devstat_checkversion(kvm_t *kd)
277 {
278         int buflen, res, retval = 0, version;
279
280         version = devstat_getversion(kd);
281
282         if (version != DEVSTAT_VERSION) {
283                 /*
284                  * If getversion() returns an error (i.e. -1), then it
285                  * has printed an error message in the buffer.  Therefore,
286                  * we need to add a \n to the end of that message before we
287                  * print our own message in the buffer.
288                  */
289                 if (version == -1)
290                         buflen = strlen(devstat_errbuf);
291                 else
292                         buflen = 0;
293
294                 res = snprintf(devstat_errbuf + buflen,
295                                DEVSTAT_ERRBUF_SIZE - buflen,
296                                "%s%s: userland devstat version %d is not "
297                                "the same as the kernel\n%s: devstat "
298                                "version %d\n", version == -1 ? "\n" : "",
299                                __func__, DEVSTAT_VERSION, __func__, version);
300
301                 if (res < 0)
302                         devstat_errbuf[buflen] = '\0';
303
304                 buflen = strlen(devstat_errbuf);
305                 if (version < DEVSTAT_VERSION)
306                         res = snprintf(devstat_errbuf + buflen,
307                                        DEVSTAT_ERRBUF_SIZE - buflen,
308                                        "%s: libdevstat newer than kernel\n",
309                                        __func__);
310                 else
311                         res = snprintf(devstat_errbuf + buflen,
312                                        DEVSTAT_ERRBUF_SIZE - buflen,
313                                        "%s: kernel newer than libdevstat\n",
314                                        __func__);
315
316                 if (res < 0)
317                         devstat_errbuf[buflen] = '\0';
318
319                 retval = -1;
320         }
321
322         return(retval);
323 }
324
325 /*
326  * Get the current list of devices and statistics, and the current
327  * generation number.
328  * 
329  * Return values:
330  * -1  -- error
331  *  0  -- device list is unchanged
332  *  1  -- device list has changed
333  */
334 int
335 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
336 {
337         int error;
338         size_t dssize;
339         long oldgeneration;
340         int retval = 0;
341         struct devinfo *dinfo;
342         struct timespec ts;
343
344         dinfo = stats->dinfo;
345
346         if (dinfo == NULL) {
347                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
348                          "%s: stats->dinfo was NULL", __func__);
349                 return(-1);
350         }
351
352         oldgeneration = dinfo->generation;
353
354         if (kd == NULL) {
355                 clock_gettime(CLOCK_MONOTONIC, &ts);
356                 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
357
358                 /* If this is our first time through, mem_ptr will be null. */
359                 if (dinfo->mem_ptr == NULL) {
360                         /*
361                          * Get the number of devices.  If it's negative, it's an
362                          * error.  Don't bother setting the error string, since
363                          * getnumdevs() has already done that for us.
364                          */
365                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
366                                 return(-1);
367                         
368                         /*
369                          * The kern.devstat.all sysctl returns the current 
370                          * generation number, as well as all the devices.  
371                          * So we need four bytes more.
372                          */
373                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
374                                  sizeof(long);
375                         dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
376                         if (dinfo->mem_ptr == NULL) {
377                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
378                                          "%s: Cannot allocate memory for mem_ptr element",
379                                          __func__);
380                                 return(-1);
381                         }
382                 } else
383                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
384                                  sizeof(long);
385
386                 /*
387                  * Request all of the devices.  We only really allow for one
388                  * ENOMEM failure.  It would, of course, be possible to just go
389                  * in a loop and keep reallocing the device structure until we
390                  * don't get ENOMEM back.  I'm not sure it's worth it, though.
391                  * If devices are being added to the system that quickly, maybe
392                  * the user can just wait until all devices are added.
393                  */
394                 for (;;) {
395                         error = sysctlbyname("kern.devstat.all",
396                                              dinfo->mem_ptr, 
397                                              &dssize, NULL, 0);
398                         if (error != -1 || errno != EBUSY)
399                                 break;
400                 }
401                 if (error == -1) {
402                         /*
403                          * If we get ENOMEM back, that means that there are 
404                          * more devices now, so we need to allocate more 
405                          * space for the device array.
406                          */
407                         if (errno == ENOMEM) {
408                                 /*
409                                  * No need to set the error string here, 
410                                  * devstat_getnumdevs() will do that if it fails.
411                                  */
412                                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
413                                         return(-1);
414
415                                 dssize = (dinfo->numdevs * 
416                                         sizeof(struct devstat)) + sizeof(long);
417                                 dinfo->mem_ptr = (u_int8_t *)
418                                         realloc(dinfo->mem_ptr, dssize);
419                                 if ((error = sysctlbyname("kern.devstat.all", 
420                                     dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
421                                         snprintf(devstat_errbuf,
422                                                  sizeof(devstat_errbuf),
423                                                  "%s: error getting device "
424                                                  "stats\n%s: %s", __func__,
425                                                  __func__, strerror(errno));
426                                         return(-1);
427                                 }
428                         } else {
429                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
430                                          "%s: error getting device stats\n"
431                                          "%s: %s", __func__, __func__,
432                                          strerror(errno));
433                                 return(-1);
434                         }
435                 } 
436
437         } else {
438                 if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
439                         return(-1);
440                 else
441                         stats->snap_time = ts.tv_sec;
442
443                 /* 
444                  * This is of course non-atomic, but since we are working
445                  * on a core dump, the generation is unlikely to change
446                  */
447                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
448                         return(-1);
449                 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
450                         return(-1);
451         }
452         /*
453          * The sysctl spits out the generation as the first four bytes,
454          * then all of the device statistics structures.
455          */
456         dinfo->generation = *(long *)dinfo->mem_ptr;
457
458         /*
459          * If the generation has changed, and if the current number of
460          * devices is not the same as the number of devices recorded in the
461          * devinfo structure, it is likely that the device list has shrunk.
462          * The reason that it is likely that the device list has shrunk in
463          * this case is that if the device list has grown, the sysctl above
464          * will return an ENOMEM error, and we will reset the number of
465          * devices and reallocate the device array.  If the second sysctl
466          * fails, we will return an error and therefore never get to this
467          * point.  If the device list has shrunk, the sysctl will not
468          * return an error since we have more space allocated than is
469          * necessary.  So, in the shrinkage case, we catch it here and
470          * reallocate the array so that we don't use any more space than is
471          * necessary.
472          */
473         if (oldgeneration != dinfo->generation) {
474                 if (devstat_getnumdevs(kd) != dinfo->numdevs) {
475                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
476                                 return(-1);
477                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
478                                 sizeof(long);
479                         dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
480                                                              dssize);
481                 }
482                 retval = 1;
483         }
484
485         dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
486
487         return(retval);
488 }
489
490 /*
491  * selectdevs():
492  *
493  * Devices are selected/deselected based upon the following criteria:
494  * - devices specified by the user on the command line
495  * - devices matching any device type expressions given on the command line
496  * - devices with the highest I/O, if 'top' mode is enabled
497  * - the first n unselected devices in the device list, if maxshowdevs
498  *   devices haven't already been selected and if the user has not
499  *   specified any devices on the command line and if we're in "add" mode.
500  *
501  * Input parameters:
502  * - device selection list (dev_select)
503  * - current number of devices selected (num_selected)
504  * - total number of devices in the selection list (num_selections)
505  * - devstat generation as of the last time selectdevs() was called
506  *   (select_generation)
507  * - current devstat generation (current_generation)
508  * - current list of devices and statistics (devices)
509  * - number of devices in the current device list (numdevs)
510  * - compiled version of the command line device type arguments (matches)
511  *   - This is optional.  If the number of devices is 0, this will be ignored.
512  *   - The matching code pays attention to the current selection mode.  So
513  *     if you pass in a matching expression, it will be evaluated based
514  *     upon the selection mode that is passed in.  See below for details.
515  * - number of device type matching expressions (num_matches)
516  *   - Set to 0 to disable the matching code.
517  * - list of devices specified on the command line by the user (dev_selections)
518  * - number of devices selected on the command line by the user
519  *   (num_dev_selections)
520  * - Our selection mode.  There are four different selection modes:
521  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
522  *        selected by the user or devices matching a pattern given by the
523  *        user will be selected in addition to devices that are already
524  *        selected.  Additional devices will be selected, up to maxshowdevs
525  *        number of devices. 
526  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
527  *        explicitly given by the user or devices matching a pattern
528  *        given by the user will be selected.  No other devices will be
529  *        selected.
530  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
531  *        only.  Basically, this will not de-select any devices that are
532  *        current selected, as only mode would, but it will also not
533  *        gratuitously select up to maxshowdevs devices as add mode would.
534  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
535  *        explicitly selected by the user or devices matching a pattern
536  *        given by the user will be de-selected.
537  * - maximum number of devices we can select (maxshowdevs)
538  * - flag indicating whether or not we're in 'top' mode (perf_select)
539  *
540  * Output data:
541  * - the device selection list may be modified and passed back out
542  * - the number of devices selected and the total number of items in the
543  *   device selection list may be changed
544  * - the selection generation may be changed to match the current generation
545  * 
546  * Return values:
547  * -1  -- error
548  *  0  -- selected devices are unchanged
549  *  1  -- selected devices changed
550  */
551 int
552 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
553                    int *num_selections, long *select_generation, 
554                    long current_generation, struct devstat *devices,
555                    int numdevs, struct devstat_match *matches, int num_matches,
556                    char **dev_selections, int num_dev_selections,
557                    devstat_select_mode select_mode, int maxshowdevs,
558                    int perf_select)
559 {
560         int i, j, k;
561         int init_selections = 0, init_selected_var = 0;
562         struct device_selection *old_dev_select = NULL;
563         int old_num_selections = 0, old_num_selected;
564         int selection_number = 0;
565         int changed = 0, found = 0;
566
567         if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
568                 return(-1);
569
570         /*
571          * We always want to make sure that we have as many dev_select
572          * entries as there are devices. 
573          */
574         /*
575          * In this case, we haven't selected devices before.
576          */
577         if (*dev_select == NULL) {
578                 *dev_select = (struct device_selection *)malloc(numdevs *
579                         sizeof(struct device_selection));
580                 *select_generation = current_generation;
581                 init_selections = 1;
582                 changed = 1;
583         /*
584          * In this case, we have selected devices before, but the device
585          * list has changed since we last selected devices, so we need to
586          * either enlarge or reduce the size of the device selection list.
587          */
588         } else if (*num_selections != numdevs) {
589                 *dev_select = (struct device_selection *)reallocf(*dev_select,
590                         numdevs * sizeof(struct device_selection));
591                 *select_generation = current_generation;
592                 init_selections = 1;
593         /*
594          * In this case, we've selected devices before, and the selection
595          * list is the same size as it was the last time, but the device
596          * list has changed.
597          */
598         } else if (*select_generation < current_generation) {
599                 *select_generation = current_generation;
600                 init_selections = 1;
601         }
602
603         if (*dev_select == NULL) {
604                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
605                          "%s: Cannot (re)allocate memory for dev_select argument",
606                          __func__);
607                 return(-1);
608         }
609
610         /*
611          * If we're in "only" mode, we want to clear out the selected
612          * variable since we're going to select exactly what the user wants
613          * this time through.
614          */
615         if (select_mode == DS_SELECT_ONLY)
616                 init_selected_var = 1;
617
618         /*
619          * In all cases, we want to back up the number of selected devices.
620          * It is a quick and accurate way to determine whether the selected
621          * devices have changed.
622          */
623         old_num_selected = *num_selected;
624
625         /*
626          * We want to make a backup of the current selection list if 
627          * the list of devices has changed, or if we're in performance 
628          * selection mode.  In both cases, we don't want to make a backup
629          * if we already know for sure that the list will be different.
630          * This is certainly the case if this is our first time through the
631          * selection code.
632          */
633         if (((init_selected_var != 0) || (init_selections != 0)
634          || (perf_select != 0)) && (changed == 0)){
635                 old_dev_select = (struct device_selection *)malloc(
636                     *num_selections * sizeof(struct device_selection));
637                 if (old_dev_select == NULL) {
638                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
639                                  "%s: Cannot allocate memory for selection list backup",
640                                  __func__);
641                         return(-1);
642                 }
643                 old_num_selections = *num_selections;
644                 bcopy(*dev_select, old_dev_select, 
645                     sizeof(struct device_selection) * *num_selections);
646         }
647
648         if (init_selections != 0) {
649                 bzero(*dev_select, sizeof(struct device_selection) * numdevs);
650
651                 for (i = 0; i < numdevs; i++) {
652                         (*dev_select)[i].device_number = 
653                                 devices[i].device_number;
654                         strncpy((*dev_select)[i].device_name,
655                                 devices[i].device_name,
656                                 DEVSTAT_NAME_LEN);
657                         (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
658                         (*dev_select)[i].unit_number = devices[i].unit_number;
659                         (*dev_select)[i].position = i;
660                 }
661                 *num_selections = numdevs;
662         } else if (init_selected_var != 0) {
663                 for (i = 0; i < numdevs; i++) 
664                         (*dev_select)[i].selected = 0;
665         }
666
667         /* we haven't gotten around to selecting anything yet.. */
668         if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
669          || (init_selected_var != 0))
670                 *num_selected = 0;
671
672         /*
673          * Look through any devices the user specified on the command line
674          * and see if they match known devices.  If so, select them.
675          */
676         for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
677                 char tmpstr[80];
678
679                 snprintf(tmpstr, sizeof(tmpstr), "%s%d",
680                          (*dev_select)[i].device_name,
681                          (*dev_select)[i].unit_number);
682                 for (j = 0; j < num_dev_selections; j++) {
683                         if (strcmp(tmpstr, dev_selections[j]) == 0) {
684                                 /*
685                                  * Here we do different things based on the
686                                  * mode we're in.  If we're in add or
687                                  * addonly mode, we only select this device
688                                  * if it hasn't already been selected.
689                                  * Otherwise, we would be unnecessarily
690                                  * changing the selection order and
691                                  * incrementing the selection count.  If
692                                  * we're in only mode, we unconditionally
693                                  * select this device, since in only mode
694                                  * any previous selections are erased and
695                                  * manually specified devices are the first
696                                  * ones to be selected.  If we're in remove
697                                  * mode, we de-select the specified device and
698                                  * decrement the selection count.
699                                  */
700                                 switch(select_mode) {
701                                 case DS_SELECT_ADD:
702                                 case DS_SELECT_ADDONLY:
703                                         if ((*dev_select)[i].selected)
704                                                 break;
705                                         /* FALLTHROUGH */
706                                 case DS_SELECT_ONLY:
707                                         (*dev_select)[i].selected =
708                                                 ++selection_number;
709                                         (*num_selected)++;
710                                         break;
711                                 case DS_SELECT_REMOVE:
712                                         (*dev_select)[i].selected = 0;
713                                         (*num_selected)--;
714                                         /*
715                                          * This isn't passed back out, we
716                                          * just use it to keep track of
717                                          * how many devices we've removed.
718                                          */
719                                         num_dev_selections--;
720                                         break;
721                                 }
722                                 break;
723                         }
724                 }
725         }
726
727         /*
728          * Go through the user's device type expressions and select devices
729          * accordingly.  We only do this if the number of devices already
730          * selected is less than the maximum number we can show.
731          */
732         for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
733                 /* We should probably indicate some error here */
734                 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
735                  || (matches[i].num_match_categories <= 0))
736                         continue;
737
738                 for (j = 0; j < numdevs; j++) {
739                         int num_match_categories;
740
741                         num_match_categories = matches[i].num_match_categories;
742
743                         /*
744                          * Determine whether or not the current device
745                          * matches the given matching expression.  This if
746                          * statement consists of three components:
747                          *   - the device type check
748                          *   - the device interface check
749                          *   - the passthrough check
750                          * If a the matching test is successful, it 
751                          * decrements the number of matching categories,
752                          * and if we've reached the last element that
753                          * needed to be matched, the if statement succeeds.
754                          * 
755                          */
756                         if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
757                           && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
758                                 (matches[i].device_type & DEVSTAT_TYPE_MASK))
759                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
760                            || (((matches[i].match_fields & 
761                                 DEVSTAT_MATCH_PASS) == 0)
762                             && ((devices[j].device_type &
763                                 DEVSTAT_TYPE_PASS) == 0)))
764                           && (--num_match_categories == 0)) 
765                          || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
766                           && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
767                                 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
768                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
769                            || (((matches[i].match_fields &
770                                 DEVSTAT_MATCH_PASS) == 0)
771                             && ((devices[j].device_type & 
772                                 DEVSTAT_TYPE_PASS) == 0)))
773                           && (--num_match_categories == 0))
774                          || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
775                           && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
776                           && (--num_match_categories == 0))) {
777
778                                 /*
779                                  * This is probably a non-optimal solution
780                                  * to the problem that the devices in the
781                                  * device list will not be in the same
782                                  * order as the devices in the selection
783                                  * array.
784                                  */
785                                 for (k = 0; k < numdevs; k++) {
786                                         if ((*dev_select)[k].position == j) {
787                                                 found = 1;
788                                                 break;
789                                         }
790                                 }
791
792                                 /*
793                                  * There shouldn't be a case where a device
794                                  * in the device list is not in the
795                                  * selection list...but it could happen.
796                                  */
797                                 if (found != 1) {
798                                         fprintf(stderr, "selectdevs: couldn't"
799                                                 " find %s%d in selection "
800                                                 "list\n",
801                                                 devices[j].device_name,
802                                                 devices[j].unit_number);
803                                         break;
804                                 }
805
806                                 /*
807                                  * We do different things based upon the
808                                  * mode we're in.  If we're in add or only
809                                  * mode, we go ahead and select this device
810                                  * if it hasn't already been selected.  If
811                                  * it has already been selected, we leave
812                                  * it alone so we don't mess up the
813                                  * selection ordering.  Manually specified
814                                  * devices have already been selected, and
815                                  * they have higher priority than pattern
816                                  * matched devices.  If we're in remove
817                                  * mode, we de-select the given device and
818                                  * decrement the selected count.
819                                  */
820                                 switch(select_mode) {
821                                 case DS_SELECT_ADD:
822                                 case DS_SELECT_ADDONLY:
823                                 case DS_SELECT_ONLY:
824                                         if ((*dev_select)[k].selected != 0)
825                                                 break;
826                                         (*dev_select)[k].selected =
827                                                 ++selection_number;
828                                         (*num_selected)++;
829                                         break;
830                                 case DS_SELECT_REMOVE:
831                                         (*dev_select)[k].selected = 0;
832                                         (*num_selected)--;
833                                         break;
834                                 }
835                         }
836                 }
837         }
838
839         /*
840          * Here we implement "top" mode.  Devices are sorted in the
841          * selection array based on two criteria:  whether or not they are
842          * selected (not selection number, just the fact that they are
843          * selected!) and the number of bytes in the "bytes" field of the
844          * selection structure.  The bytes field generally must be kept up
845          * by the user.  In the future, it may be maintained by library
846          * functions, but for now the user has to do the work.
847          *
848          * At first glance, it may seem wrong that we don't go through and
849          * select every device in the case where the user hasn't specified
850          * any devices or patterns.  In fact, though, it won't make any
851          * difference in the device sorting.  In that particular case (i.e.
852          * when we're in "add" or "only" mode, and the user hasn't
853          * specified anything) the first time through no devices will be
854          * selected, so the only criterion used to sort them will be their
855          * performance.  The second time through, and every time thereafter,
856          * all devices will be selected, so again selection won't matter.
857          */
858         if (perf_select != 0) {
859
860                 /* Sort the device array by throughput  */
861                 qsort(*dev_select, *num_selections,
862                       sizeof(struct device_selection),
863                       compare_select);
864
865                 if (*num_selected == 0) {
866                         /*
867                          * Here we select every device in the array, if it
868                          * isn't already selected.  Because the 'selected'
869                          * variable in the selection array entries contains
870                          * the selection order, the devstats routine can show
871                          * the devices that were selected first.
872                          */
873                         for (i = 0; i < *num_selections; i++) {
874                                 if ((*dev_select)[i].selected == 0) {
875                                         (*dev_select)[i].selected =
876                                                 ++selection_number;
877                                         (*num_selected)++;
878                                 }
879                         }
880                 } else {
881                         selection_number = 0;
882                         for (i = 0; i < *num_selections; i++) {
883                                 if ((*dev_select)[i].selected != 0) {
884                                         (*dev_select)[i].selected =
885                                                 ++selection_number;
886                                 }
887                         }
888                 }
889         }
890
891         /*
892          * If we're in the "add" selection mode and if we haven't already
893          * selected maxshowdevs number of devices, go through the array and
894          * select any unselected devices.  If we're in "only" mode, we
895          * obviously don't want to select anything other than what the user
896          * specifies.  If we're in "remove" mode, it probably isn't a good
897          * idea to go through and select any more devices, since we might
898          * end up selecting something that the user wants removed.  Through
899          * more complicated logic, we could actually figure this out, but
900          * that would probably require combining this loop with the various
901          * selections loops above.
902          */
903         if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
904                 for (i = 0; i < *num_selections; i++)
905                         if ((*dev_select)[i].selected == 0) {
906                                 (*dev_select)[i].selected = ++selection_number;
907                                 (*num_selected)++;
908                         }
909         }
910
911         /*
912          * Look at the number of devices that have been selected.  If it
913          * has changed, set the changed variable.  Otherwise, if we've
914          * made a backup of the selection list, compare it to the current
915          * selection list to see if the selected devices have changed.
916          */
917         if ((changed == 0) && (old_num_selected != *num_selected))
918                 changed = 1;
919         else if ((changed == 0) && (old_dev_select != NULL)) {
920                 /*
921                  * Now we go through the selection list and we look at
922                  * it three different ways.
923                  */
924                 for (i = 0; (i < *num_selections) && (changed == 0) && 
925                      (i < old_num_selections); i++) {
926                         /*
927                          * If the device at index i in both the new and old
928                          * selection arrays has the same device number and
929                          * selection status, it hasn't changed.  We
930                          * continue on to the next index.
931                          */
932                         if (((*dev_select)[i].device_number ==
933                              old_dev_select[i].device_number)
934                          && ((*dev_select)[i].selected == 
935                              old_dev_select[i].selected))
936                                 continue;
937
938                         /*
939                          * Now, if we're still going through the if
940                          * statement, the above test wasn't true.  So we
941                          * check here to see if the device at index i in
942                          * the current array is the same as the device at
943                          * index i in the old array.  If it is, that means
944                          * that its selection number has changed.  Set
945                          * changed to 1 and exit the loop.
946                          */
947                         else if ((*dev_select)[i].device_number ==
948                                   old_dev_select[i].device_number) {
949                                 changed = 1;
950                                 break;
951                         }
952                         /*
953                          * If we get here, then the device at index i in
954                          * the current array isn't the same device as the
955                          * device at index i in the old array.
956                          */
957                         else {
958                                 found = 0;
959
960                                 /*
961                                  * Search through the old selection array
962                                  * looking for a device with the same
963                                  * device number as the device at index i
964                                  * in the current array.  If the selection
965                                  * status is the same, then we mark it as
966                                  * found.  If the selection status isn't
967                                  * the same, we break out of the loop.
968                                  * Since found isn't set, changed will be
969                                  * set to 1 below.
970                                  */
971                                 for (j = 0; j < old_num_selections; j++) {
972                                         if (((*dev_select)[i].device_number ==
973                                               old_dev_select[j].device_number)
974                                          && ((*dev_select)[i].selected ==
975                                               old_dev_select[j].selected)){
976                                                 found = 1;
977                                                 break;
978                                         }
979                                         else if ((*dev_select)[i].device_number
980                                             == old_dev_select[j].device_number)
981                                                 break;
982                                 }
983                                 if (found == 0)
984                                         changed = 1;
985                         }
986                 }
987         }
988         if (old_dev_select != NULL)
989                 free(old_dev_select);
990
991         return(changed);
992 }
993
994 /*
995  * Comparison routine for qsort() above.  Note that the comparison here is
996  * backwards -- generally, it should return a value to indicate whether
997  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
998  * it returns the opposite is so that the selection array will be sorted in
999  * order of decreasing performance.  We sort on two parameters.  The first
1000  * sort key is whether or not one or the other of the devices in question
1001  * has been selected.  If one of them has, and the other one has not, the
1002  * selected device is automatically more important than the unselected
1003  * device.  If neither device is selected, we judge the devices based upon
1004  * performance.
1005  */
1006 static int
1007 compare_select(const void *arg1, const void *arg2)
1008 {
1009         if ((((const struct device_selection *)arg1)->selected)
1010          && (((const struct device_selection *)arg2)->selected == 0))
1011                 return(-1);
1012         else if ((((const struct device_selection *)arg1)->selected == 0)
1013               && (((const struct device_selection *)arg2)->selected))
1014                 return(1);
1015         else if (((const struct device_selection *)arg2)->bytes <
1016                  ((const struct device_selection *)arg1)->bytes)
1017                 return(-1);
1018         else if (((const struct device_selection *)arg2)->bytes >
1019                  ((const struct device_selection *)arg1)->bytes)
1020                 return(1);
1021         else
1022                 return(0);
1023 }
1024
1025 /*
1026  * Take a string with the general format "arg1,arg2,arg3", and build a
1027  * device matching expression from it.
1028  */
1029 int
1030 devstat_buildmatch(char *match_str, struct devstat_match **matches,
1031                    int *num_matches)
1032 {
1033         char *tstr[5];
1034         char **tempstr;
1035         int num_args;
1036         int i, j;
1037
1038         /* We can't do much without a string to parse */
1039         if (match_str == NULL) {
1040                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1041                          "%s: no match expression", __func__);
1042                 return(-1);
1043         }
1044
1045         /*
1046          * Break the (comma delimited) input string out into separate strings.
1047          */
1048         for (tempstr = tstr, num_args  = 0; 
1049              (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1050                 if (**tempstr != '\0') {
1051                         num_args++;
1052                         if (++tempstr >= &tstr[5])
1053                                 break;
1054                 }
1055
1056         /* The user gave us too many type arguments */
1057         if (num_args > 3) {
1058                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1059                          "%s: too many type arguments", __func__);
1060                 return(-1);
1061         }
1062
1063         if (*num_matches == 0)
1064                 *matches = NULL;
1065
1066         *matches = (struct devstat_match *)reallocf(*matches,
1067                   sizeof(struct devstat_match) * (*num_matches + 1));
1068
1069         if (*matches == NULL) {
1070                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1071                          "%s: Cannot allocate memory for matches list", __func__);
1072                 return(-1);
1073         }
1074                           
1075         /* Make sure the current entry is clear */
1076         bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1077
1078         /*
1079          * Step through the arguments the user gave us and build a device
1080          * matching expression from them.
1081          */
1082         for (i = 0; i < num_args; i++) {
1083                 char *tempstr2, *tempstr3;
1084
1085                 /*
1086                  * Get rid of leading white space.
1087                  */
1088                 tempstr2 = tstr[i];
1089                 while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1090                         tempstr2++;
1091
1092                 /*
1093                  * Get rid of trailing white space.
1094                  */
1095                 tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1096
1097                 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1098                     && (isspace(*tempstr3))) {
1099                         *tempstr3 = '\0';
1100                         tempstr3--;
1101                 }
1102
1103                 /*
1104                  * Go through the match table comparing the user's
1105                  * arguments to known device types, interfaces, etc.  
1106                  */
1107                 for (j = 0; match_table[j].match_str != NULL; j++) {
1108                         /*
1109                          * We do case-insensitive matching, in case someone
1110                          * wants to enter "SCSI" instead of "scsi" or
1111                          * something like that.  Only compare as many 
1112                          * characters as are in the string in the match 
1113                          * table.  This should help if someone tries to use 
1114                          * a super-long match expression.  
1115                          */
1116                         if (strncasecmp(tempstr2, match_table[j].match_str,
1117                             strlen(match_table[j].match_str)) == 0) {
1118                                 /*
1119                                  * Make sure the user hasn't specified two
1120                                  * items of the same type, like "da" and
1121                                  * "cd".  One device cannot be both.
1122                                  */
1123                                 if (((*matches)[*num_matches].match_fields &
1124                                     match_table[j].match_field) != 0) {
1125                                         snprintf(devstat_errbuf,
1126                                                  sizeof(devstat_errbuf),
1127                                                  "%s: cannot have more than "
1128                                                  "one match item in a single "
1129                                                  "category", __func__);
1130                                         return(-1);
1131                                 }
1132                                 /*
1133                                  * If we've gotten this far, we have a
1134                                  * winner.  Set the appropriate fields in
1135                                  * the match entry.
1136                                  */
1137                                 (*matches)[*num_matches].match_fields |=
1138                                         match_table[j].match_field;
1139                                 (*matches)[*num_matches].device_type |=
1140                                         match_table[j].type;
1141                                 (*matches)[*num_matches].num_match_categories++;
1142                                 break;
1143                         }
1144                 }
1145                 /*
1146                  * We should have found a match in the above for loop.  If
1147                  * not, that means the user entered an invalid device type
1148                  * or interface.
1149                  */
1150                 if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1151                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1152                                  "%s: unknown match item \"%s\"", __func__,
1153                                  tstr[i]);
1154                         return(-1);
1155                 }
1156         }
1157
1158         (*num_matches)++;
1159
1160         return(0);
1161 }
1162
1163 /*
1164  * Compute a number of device statistics.  Only one field is mandatory, and
1165  * that is "current".  Everything else is optional.  The caller passes in
1166  * pointers to variables to hold the various statistics he desires.  If he
1167  * doesn't want a particular staistic, he should pass in a NULL pointer.
1168  * Return values:
1169  * 0   -- success
1170  * -1  -- failure
1171  */
1172 int
1173 compute_stats(struct devstat *current, struct devstat *previous,
1174               long double etime, u_int64_t *total_bytes,
1175               u_int64_t *total_transfers, u_int64_t *total_blocks,
1176               long double *kb_per_transfer, long double *transfers_per_second,
1177               long double *mb_per_second, long double *blocks_per_second,
1178               long double *ms_per_transaction)
1179 {
1180         return(devstat_compute_statistics(current, previous, etime,
1181                total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1182                total_bytes,
1183                total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1184                total_transfers,
1185                total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1186                total_blocks,
1187                kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1188                kb_per_transfer,
1189                transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1190                transfers_per_second,
1191                mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1192                mb_per_second,
1193                blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1194                blocks_per_second,
1195                ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1196                ms_per_transaction,
1197                DSM_NONE));
1198 }
1199
1200
1201 /* This is 1/2^64 */
1202 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1203
1204 long double
1205 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1206 {
1207         long double etime;
1208
1209         etime = cur_time->sec;
1210         etime += cur_time->frac * BINTIME_SCALE;
1211         if (prev_time != NULL) {
1212                 etime -= prev_time->sec;
1213                 etime -= prev_time->frac * BINTIME_SCALE;
1214         }
1215         return(etime);
1216 }
1217
1218 #define DELTA(field, index)                             \
1219         (current->field[(index)] - (previous ? previous->field[(index)] : 0))
1220
1221 #define DELTA_T(field)                                  \
1222         devstat_compute_etime(&current->field,          \
1223         (previous ? &previous->field : NULL))
1224
1225 int
1226 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1227                            long double etime, ...)
1228 {
1229         u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1230         u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1231         u_int64_t totaltransfersother, totalblocks, totalblocksread;
1232         u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1233         long double totalduration, totaldurationread, totaldurationwrite;
1234         long double totaldurationfree, totaldurationother;
1235         va_list ap;
1236         devstat_metric metric;
1237         u_int64_t *destu64;
1238         long double *destld;
1239         int retval;
1240
1241         retval = 0;
1242
1243         /*
1244          * current is the only mandatory field.
1245          */
1246         if (current == NULL) {
1247                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1248                          "%s: current stats structure was NULL", __func__);
1249                 return(-1);
1250         }
1251
1252         totalbytesread = DELTA(bytes, DEVSTAT_READ);
1253         totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1254         totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1255         totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1256
1257         totaltransfersread = DELTA(operations, DEVSTAT_READ);
1258         totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1259         totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1260         totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1261         totaltransfers = totaltransfersread + totaltransferswrite +
1262                          totaltransfersother + totaltransfersfree;
1263
1264         totalblocks = totalbytes;
1265         totalblocksread = totalbytesread;
1266         totalblockswrite = totalbyteswrite;
1267         totalblocksfree = totalbytesfree;
1268
1269         if (current->block_size > 0) {
1270                 totalblocks /= current->block_size;
1271                 totalblocksread /= current->block_size;
1272                 totalblockswrite /= current->block_size;
1273                 totalblocksfree /= current->block_size;
1274         } else {
1275                 totalblocks /= 512;
1276                 totalblocksread /= 512;
1277                 totalblockswrite /= 512;
1278                 totalblocksfree /= 512;
1279         }
1280
1281         totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1282         totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1283         totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1284         totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1285         totalduration = totaldurationread + totaldurationwrite +
1286             totaldurationfree + totaldurationother;
1287
1288         va_start(ap, etime);
1289
1290         while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1291
1292                 if (metric == DSM_NONE)
1293                         break;
1294
1295                 if (metric >= DSM_MAX) {
1296                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1297                                  "%s: metric %d is out of range", __func__,
1298                                  metric);
1299                         retval = -1;
1300                         goto bailout;
1301                 }
1302
1303                 switch (devstat_arg_list[metric].argtype) {
1304                 case DEVSTAT_ARG_UINT64:
1305                         destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1306                         break;
1307                 case DEVSTAT_ARG_LD:
1308                         destld = (long double *)va_arg(ap, long double *);
1309                         break;
1310                 case DEVSTAT_ARG_SKIP:
1311                         destld = (long double *)va_arg(ap, long double *);
1312                         break;
1313                 default:
1314                         retval = -1;
1315                         goto bailout;
1316                         break; /* NOTREACHED */
1317                 }
1318
1319                 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1320                         continue;
1321
1322                 switch (metric) {
1323                 case DSM_TOTAL_BYTES:
1324                         *destu64 = totalbytes;
1325                         break;
1326                 case DSM_TOTAL_BYTES_READ:
1327                         *destu64 = totalbytesread;
1328                         break;
1329                 case DSM_TOTAL_BYTES_WRITE:
1330                         *destu64 = totalbyteswrite;
1331                         break;
1332                 case DSM_TOTAL_BYTES_FREE:
1333                         *destu64 = totalbytesfree;
1334                         break;
1335                 case DSM_TOTAL_TRANSFERS:
1336                         *destu64 = totaltransfers;
1337                         break;
1338                 case DSM_TOTAL_TRANSFERS_READ:
1339                         *destu64 = totaltransfersread;
1340                         break;
1341                 case DSM_TOTAL_TRANSFERS_WRITE:
1342                         *destu64 = totaltransferswrite;
1343                         break;
1344                 case DSM_TOTAL_TRANSFERS_FREE:
1345                         *destu64 = totaltransfersfree;
1346                         break;
1347                 case DSM_TOTAL_TRANSFERS_OTHER:
1348                         *destu64 = totaltransfersother;
1349                         break;
1350                 case DSM_TOTAL_BLOCKS:
1351                         *destu64 = totalblocks;
1352                         break;
1353                 case DSM_TOTAL_BLOCKS_READ:
1354                         *destu64 = totalblocksread;
1355                         break;
1356                 case DSM_TOTAL_BLOCKS_WRITE:
1357                         *destu64 = totalblockswrite;
1358                         break;
1359                 case DSM_TOTAL_BLOCKS_FREE:
1360                         *destu64 = totalblocksfree;
1361                         break;
1362                 case DSM_KB_PER_TRANSFER:
1363                         *destld = totalbytes;
1364                         *destld /= 1024;
1365                         if (totaltransfers > 0)
1366                                 *destld /= totaltransfers;
1367                         else
1368                                 *destld = 0.0;
1369                         break;
1370                 case DSM_KB_PER_TRANSFER_READ:
1371                         *destld = totalbytesread;
1372                         *destld /= 1024;
1373                         if (totaltransfersread > 0)
1374                                 *destld /= totaltransfersread;
1375                         else
1376                                 *destld = 0.0;
1377                         break;
1378                 case DSM_KB_PER_TRANSFER_WRITE:
1379                         *destld = totalbyteswrite;
1380                         *destld /= 1024;
1381                         if (totaltransferswrite > 0)
1382                                 *destld /= totaltransferswrite;
1383                         else
1384                                 *destld = 0.0;
1385                         break;
1386                 case DSM_KB_PER_TRANSFER_FREE:
1387                         *destld = totalbytesfree;
1388                         *destld /= 1024;
1389                         if (totaltransfersfree > 0)
1390                                 *destld /= totaltransfersfree;
1391                         else
1392                                 *destld = 0.0;
1393                         break;
1394                 case DSM_TRANSFERS_PER_SECOND:
1395                         if (etime > 0.0) {
1396                                 *destld = totaltransfers;
1397                                 *destld /= etime;
1398                         } else
1399                                 *destld = 0.0;
1400                         break;
1401                 case DSM_TRANSFERS_PER_SECOND_READ:
1402                         if (etime > 0.0) {
1403                                 *destld = totaltransfersread;
1404                                 *destld /= etime;
1405                         } else
1406                                 *destld = 0.0;
1407                         break;
1408                 case DSM_TRANSFERS_PER_SECOND_WRITE:
1409                         if (etime > 0.0) {
1410                                 *destld = totaltransferswrite;
1411                                 *destld /= etime;
1412                         } else
1413                                 *destld = 0.0;
1414                         break;
1415                 case DSM_TRANSFERS_PER_SECOND_FREE:
1416                         if (etime > 0.0) {
1417                                 *destld = totaltransfersfree;
1418                                 *destld /= etime;
1419                         } else
1420                                 *destld = 0.0;
1421                         break;
1422                 case DSM_TRANSFERS_PER_SECOND_OTHER:
1423                         if (etime > 0.0) {
1424                                 *destld = totaltransfersother;
1425                                 *destld /= etime;
1426                         } else
1427                                 *destld = 0.0;
1428                         break;
1429                 case DSM_MB_PER_SECOND:
1430                         *destld = totalbytes;
1431                         *destld /= 1024 * 1024;
1432                         if (etime > 0.0)
1433                                 *destld /= etime;
1434                         else
1435                                 *destld = 0.0;
1436                         break;
1437                 case DSM_MB_PER_SECOND_READ:
1438                         *destld = totalbytesread;
1439                         *destld /= 1024 * 1024;
1440                         if (etime > 0.0)
1441                                 *destld /= etime;
1442                         else
1443                                 *destld = 0.0;
1444                         break;
1445                 case DSM_MB_PER_SECOND_WRITE:
1446                         *destld = totalbyteswrite;
1447                         *destld /= 1024 * 1024;
1448                         if (etime > 0.0)
1449                                 *destld /= etime;
1450                         else
1451                                 *destld = 0.0;
1452                         break;
1453                 case DSM_MB_PER_SECOND_FREE:
1454                         *destld = totalbytesfree;
1455                         *destld /= 1024 * 1024;
1456                         if (etime > 0.0)
1457                                 *destld /= etime;
1458                         else
1459                                 *destld = 0.0;
1460                         break;
1461                 case DSM_BLOCKS_PER_SECOND:
1462                         *destld = totalblocks;
1463                         if (etime > 0.0)
1464                                 *destld /= etime;
1465                         else
1466                                 *destld = 0.0;
1467                         break;
1468                 case DSM_BLOCKS_PER_SECOND_READ:
1469                         *destld = totalblocksread;
1470                         if (etime > 0.0)
1471                                 *destld /= etime;
1472                         else
1473                                 *destld = 0.0;
1474                         break;
1475                 case DSM_BLOCKS_PER_SECOND_WRITE:
1476                         *destld = totalblockswrite;
1477                         if (etime > 0.0)
1478                                 *destld /= etime;
1479                         else
1480                                 *destld = 0.0;
1481                         break;
1482                 case DSM_BLOCKS_PER_SECOND_FREE:
1483                         *destld = totalblocksfree;
1484                         if (etime > 0.0)
1485                                 *destld /= etime;
1486                         else
1487                                 *destld = 0.0;
1488                         break;
1489                 /*
1490                  * Some devstat callers update the duration and some don't.
1491                  * So this will only be accurate if they provide the
1492                  * duration. 
1493                  */
1494                 case DSM_MS_PER_TRANSACTION:
1495                         if (totaltransfers > 0) {
1496                                 *destld = totalduration;
1497                                 *destld /= totaltransfers;
1498                                 *destld *= 1000;
1499                         } else
1500                                 *destld = 0.0;
1501                         break;
1502                 case DSM_MS_PER_TRANSACTION_READ:
1503                         if (totaltransfersread > 0) {
1504                                 *destld = totaldurationread;
1505                                 *destld /= totaltransfersread;
1506                                 *destld *= 1000;
1507                         } else
1508                                 *destld = 0.0;
1509                         break;
1510                 case DSM_MS_PER_TRANSACTION_WRITE:
1511                         if (totaltransferswrite > 0) {
1512                                 *destld = totaldurationwrite;
1513                                 *destld /= totaltransferswrite;
1514                                 *destld *= 1000;
1515                         } else
1516                                 *destld = 0.0;
1517                         break;
1518                 case DSM_MS_PER_TRANSACTION_FREE:
1519                         if (totaltransfersfree > 0) {
1520                                 *destld = totaldurationfree;
1521                                 *destld /= totaltransfersfree;
1522                                 *destld *= 1000;
1523                         } else
1524                                 *destld = 0.0;
1525                         break;
1526                 case DSM_MS_PER_TRANSACTION_OTHER:
1527                         if (totaltransfersother > 0) {
1528                                 *destld = totaldurationother;
1529                                 *destld /= totaltransfersother;
1530                                 *destld *= 1000;
1531                         } else
1532                                 *destld = 0.0;
1533                         break;
1534                 case DSM_BUSY_PCT:
1535                         *destld = DELTA_T(busy_time);
1536                         if (*destld < 0)
1537                                 *destld = 0;
1538                         *destld /= etime;
1539                         *destld *= 100;
1540                         if (*destld < 0)
1541                                 *destld = 0;
1542                         break;
1543                 case DSM_QUEUE_LENGTH:
1544                         *destu64 = current->start_count - current->end_count;
1545                         break;
1546                 case DSM_TOTAL_DURATION:
1547                         *destld = totalduration;
1548                         break;
1549                 case DSM_TOTAL_DURATION_READ:
1550                         *destld = totaldurationread;
1551                         break;
1552                 case DSM_TOTAL_DURATION_WRITE:
1553                         *destld = totaldurationwrite;
1554                         break;
1555                 case DSM_TOTAL_DURATION_FREE:
1556                         *destld = totaldurationfree;
1557                         break;
1558                 case DSM_TOTAL_DURATION_OTHER:
1559                         *destld = totaldurationother;
1560                         break;
1561                 case DSM_TOTAL_BUSY_TIME:
1562                         *destld = DELTA_T(busy_time);
1563                         break;
1564 /*
1565  * XXX: comment out the default block to see if any case's are missing.
1566  */
1567 #if 1
1568                 default:
1569                         /*
1570                          * This shouldn't happen, since we should have
1571                          * caught any out of range metrics at the top of
1572                          * the loop.
1573                          */
1574                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1575                                  "%s: unknown metric %d", __func__, metric);
1576                         retval = -1;
1577                         goto bailout;
1578                         break; /* NOTREACHED */
1579 #endif
1580                 }
1581         }
1582
1583 bailout:
1584
1585         va_end(ap);
1586         return(retval);
1587 }
1588
1589 static int 
1590 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1591 {
1592
1593         if (kvm_read(kd, addr, buf, nbytes) == -1) {
1594                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1595                          "%s: error reading value (kvm_read): %s", __func__,
1596                          kvm_geterr(kd));
1597                 return(-1);
1598         }
1599         return(0);
1600 }
1601
1602 static int
1603 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1604 {
1605         struct nlist nl[2];
1606
1607         nl[0].n_name = (char *)name;
1608         nl[1].n_name = NULL;
1609
1610         if (kvm_nlist(kd, nl) == -1) {
1611                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1612                          "%s: error getting name list (kvm_nlist): %s",
1613                          __func__, kvm_geterr(kd));
1614                 return(-1);
1615         }
1616         return(readkmem(kd, nl[0].n_value, buf, nbytes));
1617 }
1618
1619 /*
1620  * This duplicates the functionality of the kernel sysctl handler for poking
1621  * through crash dumps.
1622  */
1623 static char *
1624 get_devstat_kvm(kvm_t *kd)
1625 {
1626         int i, wp;
1627         long gen;
1628         struct devstat *nds;
1629         struct devstat ds;
1630         struct devstatlist dhead;
1631         int num_devs;
1632         char *rv = NULL;
1633
1634         if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1635                 return(NULL);
1636         if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1637                 return(NULL);
1638
1639         nds = STAILQ_FIRST(&dhead);
1640         
1641         if ((rv = malloc(sizeof(gen))) == NULL) {
1642                 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1643                          "%s: out of memory (initial malloc failed)",
1644                          __func__);
1645                 return(NULL);
1646         }
1647         gen = devstat_getgeneration(kd);
1648         memcpy(rv, &gen, sizeof(gen));
1649         wp = sizeof(gen);
1650         /*
1651          * Now push out all the devices.
1652          */
1653         for (i = 0; (nds != NULL) && (i < num_devs);  
1654              nds = STAILQ_NEXT(nds, dev_links), i++) {
1655                 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1656                         free(rv);
1657                         return(NULL);
1658                 }
1659                 nds = &ds;
1660                 rv = (char *)reallocf(rv, sizeof(gen) + 
1661                                       sizeof(ds) * (i + 1));
1662                 if (rv == NULL) {
1663                         snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1664                                  "%s: out of memory (malloc failed)",
1665                                  __func__);
1666                         return(NULL);
1667                 }
1668                 memcpy(rv + wp, &ds, sizeof(ds));
1669                 wp += sizeof(ds);
1670         }
1671         return(rv);
1672 }