]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libdevstat/devstat.c
Merge branch 'releng/11.3' into releng-CDN/11.3
[FreeBSD/FreeBSD.git] / lib / libdevstat / devstat.c
1 /*
2  * Copyright (c) 1997, 1998 Kenneth D. Merry.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/resource.h>
36 #include <sys/queue.h>
37
38 #include <ctype.h>
39 #include <err.h>
40 #include <fcntl.h>
41 #include <limits.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <stdarg.h>
46 #include <kvm.h>
47 #include <nlist.h>
48
49 #include "devstat.h"
50
51 int
52 compute_stats(struct devstat *current, struct devstat *previous,
53               long double etime, u_int64_t *total_bytes,
54               u_int64_t *total_transfers, u_int64_t *total_blocks,
55               long double *kb_per_transfer, long double *transfers_per_second,
56               long double *mb_per_second, long double *blocks_per_second,
57               long double *ms_per_transaction);
58
59 typedef enum {
60         DEVSTAT_ARG_NOTYPE,
61         DEVSTAT_ARG_UINT64,
62         DEVSTAT_ARG_LD,
63         DEVSTAT_ARG_SKIP
64 } devstat_arg_type;
65
66 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
67
68 /*
69  * Table to match descriptive strings with device types.  These are in
70  * order from most common to least common to speed search time.
71  */
72 struct devstat_match_table match_table[] = {
73         {"da",          DEVSTAT_TYPE_DIRECT,    DEVSTAT_MATCH_TYPE},
74         {"cd",          DEVSTAT_TYPE_CDROM,     DEVSTAT_MATCH_TYPE},
75         {"scsi",        DEVSTAT_TYPE_IF_SCSI,   DEVSTAT_MATCH_IF},
76         {"ide",         DEVSTAT_TYPE_IF_IDE,    DEVSTAT_MATCH_IF},
77         {"other",       DEVSTAT_TYPE_IF_OTHER,  DEVSTAT_MATCH_IF},
78         {"worm",        DEVSTAT_TYPE_WORM,      DEVSTAT_MATCH_TYPE},
79         {"sa",          DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80         {"pass",        DEVSTAT_TYPE_PASS,      DEVSTAT_MATCH_PASS},
81         {"optical",     DEVSTAT_TYPE_OPTICAL,   DEVSTAT_MATCH_TYPE},
82         {"array",       DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE},
83         {"changer",     DEVSTAT_TYPE_CHANGER,   DEVSTAT_MATCH_TYPE},
84         {"scanner",     DEVSTAT_TYPE_SCANNER,   DEVSTAT_MATCH_TYPE},
85         {"printer",     DEVSTAT_TYPE_PRINTER,   DEVSTAT_MATCH_TYPE},
86         {"floppy",      DEVSTAT_TYPE_FLOPPY,    DEVSTAT_MATCH_TYPE},
87         {"proc",        DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE},
88         {"comm",        DEVSTAT_TYPE_COMM,      DEVSTAT_MATCH_TYPE},
89         {"enclosure",   DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE},
90         {NULL,          0,                      0}
91 };
92
93 struct devstat_args {
94         devstat_metric          metric;
95         devstat_arg_type        argtype;
96 } devstat_arg_list[] = {
97         { DSM_NONE, DEVSTAT_ARG_NOTYPE },
98         { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99         { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100         { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101         { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102         { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103         { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104         { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105         { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106         { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107         { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108         { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109         { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110         { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111         { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112         { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113         { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114         { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115         { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116         { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117         { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118         { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119         { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120         { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121         { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122         { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123         { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124         { DSM_SKIP, DEVSTAT_ARG_SKIP },
125         { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126         { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127         { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128         { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129         { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130         { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131         { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132         { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133         { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134         { DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135         { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136         { DSM_TOTAL_DURATION, DEVSTAT_ARG_LD },
137         { DSM_TOTAL_DURATION_READ, DEVSTAT_ARG_LD },
138         { DSM_TOTAL_DURATION_WRITE, DEVSTAT_ARG_LD },
139         { DSM_TOTAL_DURATION_FREE, DEVSTAT_ARG_LD },
140         { DSM_TOTAL_DURATION_OTHER, DEVSTAT_ARG_LD },
141         { DSM_TOTAL_BUSY_TIME, DEVSTAT_ARG_LD },
142 };
143
144 static const char *namelist[] = {
145 #define X_NUMDEVS       0
146         "_devstat_num_devs",
147 #define X_GENERATION    1
148         "_devstat_generation",
149 #define X_VERSION       2
150         "_devstat_version",
151 #define X_DEVICE_STATQ  3
152         "_device_statq",
153 #define X_TIME_UPTIME   4
154         "_time_uptime",
155 #define X_END           5
156 };
157
158 /*
159  * Local function declarations.
160  */
161 static int compare_select(const void *arg1, const void *arg2);
162 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
163 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
164 static char *get_devstat_kvm(kvm_t *kd);
165
166 #define KREADNL(kd, var, val) \
167         readkmem_nl(kd, namelist[var], &val, sizeof(val))
168
169 int
170 devstat_getnumdevs(kvm_t *kd)
171 {
172         size_t numdevsize;
173         int numdevs;
174
175         numdevsize = sizeof(int);
176
177         /*
178          * Find out how many devices we have in the system.
179          */
180         if (kd == NULL) {
181                 if (sysctlbyname("kern.devstat.numdevs", &numdevs,
182                                  &numdevsize, NULL, 0) == -1) {
183                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
184                                  "%s: error getting number of devices\n"
185                                  "%s: %s", __func__, __func__, 
186                                  strerror(errno));
187                         return(-1);
188                 } else
189                         return(numdevs);
190         } else {
191
192                 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
193                         return(-1);
194                 else
195                         return(numdevs);
196         }
197 }
198
199 /*
200  * This is an easy way to get the generation number, but the generation is
201  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
202  * Because this generation sysctl is separate from the statistics sysctl,
203  * the device list and the generation could change between the time that
204  * this function is called and the device list is retrieved.
205  */
206 long
207 devstat_getgeneration(kvm_t *kd)
208 {
209         size_t gensize;
210         long generation;
211
212         gensize = sizeof(long);
213
214         /*
215          * Get the current generation number.
216          */
217         if (kd == NULL) {
218                 if (sysctlbyname("kern.devstat.generation", &generation, 
219                                  &gensize, NULL, 0) == -1) {
220                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
221                                  "%s: error getting devstat generation\n%s: %s",
222                                  __func__, __func__, strerror(errno));
223                         return(-1);
224                 } else
225                         return(generation);
226         } else {
227                 if (KREADNL(kd, X_GENERATION, generation) == -1)
228                         return(-1);
229                 else
230                         return(generation);
231         }
232 }
233
234 /*
235  * Get the current devstat version.  The return value of this function
236  * should be compared with DEVSTAT_VERSION, which is defined in
237  * sys/devicestat.h.  This will enable userland programs to determine
238  * whether they are out of sync with the kernel.
239  */
240 int
241 devstat_getversion(kvm_t *kd)
242 {
243         size_t versize;
244         int version;
245
246         versize = sizeof(int);
247
248         /*
249          * Get the current devstat version.
250          */
251         if (kd == NULL) {
252                 if (sysctlbyname("kern.devstat.version", &version, &versize,
253                                  NULL, 0) == -1) {
254                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
255                                  "%s: error getting devstat version\n%s: %s",
256                                  __func__, __func__, strerror(errno));
257                         return(-1);
258                 } else
259                         return(version);
260         } else {
261                 if (KREADNL(kd, X_VERSION, version) == -1)
262                         return(-1);
263                 else
264                         return(version);
265         }
266 }
267
268 /*
269  * Check the devstat version we know about against the devstat version the
270  * kernel knows about.  If they don't match, print an error into the
271  * devstat error buffer, and return -1.  If they match, return 0.
272  */
273 int
274 devstat_checkversion(kvm_t *kd)
275 {
276         int buflen, res, retval = 0, version;
277
278         version = devstat_getversion(kd);
279
280         if (version != DEVSTAT_VERSION) {
281                 /*
282                  * If getversion() returns an error (i.e. -1), then it
283                  * has printed an error message in the buffer.  Therefore,
284                  * we need to add a \n to the end of that message before we
285                  * print our own message in the buffer.
286                  */
287                 if (version == -1)
288                         buflen = strlen(devstat_errbuf);
289                 else
290                         buflen = 0;
291
292                 res = snprintf(devstat_errbuf + buflen,
293                                DEVSTAT_ERRBUF_SIZE - buflen,
294                                "%s%s: userland devstat version %d is not "
295                                "the same as the kernel\n%s: devstat "
296                                "version %d\n", version == -1 ? "\n" : "",
297                                __func__, DEVSTAT_VERSION, __func__, version);
298
299                 if (res < 0)
300                         devstat_errbuf[buflen] = '\0';
301
302                 buflen = strlen(devstat_errbuf);
303                 if (version < DEVSTAT_VERSION)
304                         res = snprintf(devstat_errbuf + buflen,
305                                        DEVSTAT_ERRBUF_SIZE - buflen,
306                                        "%s: libdevstat newer than kernel\n",
307                                        __func__);
308                 else
309                         res = snprintf(devstat_errbuf + buflen,
310                                        DEVSTAT_ERRBUF_SIZE - buflen,
311                                        "%s: kernel newer than libdevstat\n",
312                                        __func__);
313
314                 if (res < 0)
315                         devstat_errbuf[buflen] = '\0';
316
317                 retval = -1;
318         }
319
320         return(retval);
321 }
322
323 /*
324  * Get the current list of devices and statistics, and the current
325  * generation number.
326  * 
327  * Return values:
328  * -1  -- error
329  *  0  -- device list is unchanged
330  *  1  -- device list has changed
331  */
332 int
333 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
334 {
335         int error;
336         size_t dssize;
337         long oldgeneration;
338         int retval = 0;
339         struct devinfo *dinfo;
340         struct timespec ts;
341
342         dinfo = stats->dinfo;
343
344         if (dinfo == NULL) {
345                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
346                          "%s: stats->dinfo was NULL", __func__);
347                 return(-1);
348         }
349
350         oldgeneration = dinfo->generation;
351
352         if (kd == NULL) {
353                 clock_gettime(CLOCK_MONOTONIC, &ts);
354                 stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
355
356                 /* If this is our first time through, mem_ptr will be null. */
357                 if (dinfo->mem_ptr == NULL) {
358                         /*
359                          * Get the number of devices.  If it's negative, it's an
360                          * error.  Don't bother setting the error string, since
361                          * getnumdevs() has already done that for us.
362                          */
363                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
364                                 return(-1);
365                         
366                         /*
367                          * The kern.devstat.all sysctl returns the current 
368                          * generation number, as well as all the devices.  
369                          * So we need four bytes more.
370                          */
371                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
372                                  sizeof(long);
373                         dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
374                         if (dinfo->mem_ptr == NULL) {
375                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
376                                          "%s: Cannot allocate memory for mem_ptr element",
377                                          __func__);
378                                 return(-1);
379                         }
380                 } else
381                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
382                                  sizeof(long);
383
384                 /*
385                  * Request all of the devices.  We only really allow for one
386                  * ENOMEM failure.  It would, of course, be possible to just go
387                  * in a loop and keep reallocing the device structure until we
388                  * don't get ENOMEM back.  I'm not sure it's worth it, though.
389                  * If devices are being added to the system that quickly, maybe
390                  * the user can just wait until all devices are added.
391                  */
392                 for (;;) {
393                         error = sysctlbyname("kern.devstat.all",
394                                              dinfo->mem_ptr, 
395                                              &dssize, NULL, 0);
396                         if (error != -1 || errno != EBUSY)
397                                 break;
398                 }
399                 if (error == -1) {
400                         /*
401                          * If we get ENOMEM back, that means that there are 
402                          * more devices now, so we need to allocate more 
403                          * space for the device array.
404                          */
405                         if (errno == ENOMEM) {
406                                 /*
407                                  * No need to set the error string here, 
408                                  * devstat_getnumdevs() will do that if it fails.
409                                  */
410                                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
411                                         return(-1);
412
413                                 dssize = (dinfo->numdevs * 
414                                         sizeof(struct devstat)) + sizeof(long);
415                                 dinfo->mem_ptr = (u_int8_t *)
416                                         realloc(dinfo->mem_ptr, dssize);
417                                 if ((error = sysctlbyname("kern.devstat.all", 
418                                     dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
419                                         snprintf(devstat_errbuf,
420                                                  sizeof(devstat_errbuf),
421                                                  "%s: error getting device "
422                                                  "stats\n%s: %s", __func__,
423                                                  __func__, strerror(errno));
424                                         return(-1);
425                                 }
426                         } else {
427                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
428                                          "%s: error getting device stats\n"
429                                          "%s: %s", __func__, __func__,
430                                          strerror(errno));
431                                 return(-1);
432                         }
433                 } 
434
435         } else {
436                 if (KREADNL(kd, X_TIME_UPTIME, ts.tv_sec) == -1)
437                         return(-1);
438                 else
439                         stats->snap_time = ts.tv_sec;
440
441                 /* 
442                  * This is of course non-atomic, but since we are working
443                  * on a core dump, the generation is unlikely to change
444                  */
445                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
446                         return(-1);
447                 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
448                         return(-1);
449         }
450         /*
451          * The sysctl spits out the generation as the first four bytes,
452          * then all of the device statistics structures.
453          */
454         dinfo->generation = *(long *)dinfo->mem_ptr;
455
456         /*
457          * If the generation has changed, and if the current number of
458          * devices is not the same as the number of devices recorded in the
459          * devinfo structure, it is likely that the device list has shrunk.
460          * The reason that it is likely that the device list has shrunk in
461          * this case is that if the device list has grown, the sysctl above
462          * will return an ENOMEM error, and we will reset the number of
463          * devices and reallocate the device array.  If the second sysctl
464          * fails, we will return an error and therefore never get to this
465          * point.  If the device list has shrunk, the sysctl will not
466          * return an error since we have more space allocated than is
467          * necessary.  So, in the shrinkage case, we catch it here and
468          * reallocate the array so that we don't use any more space than is
469          * necessary.
470          */
471         if (oldgeneration != dinfo->generation) {
472                 if (devstat_getnumdevs(kd) != dinfo->numdevs) {
473                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
474                                 return(-1);
475                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
476                                 sizeof(long);
477                         dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
478                                                              dssize);
479                 }
480                 retval = 1;
481         }
482
483         dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
484
485         return(retval);
486 }
487
488 /*
489  * selectdevs():
490  *
491  * Devices are selected/deselected based upon the following criteria:
492  * - devices specified by the user on the command line
493  * - devices matching any device type expressions given on the command line
494  * - devices with the highest I/O, if 'top' mode is enabled
495  * - the first n unselected devices in the device list, if maxshowdevs
496  *   devices haven't already been selected and if the user has not
497  *   specified any devices on the command line and if we're in "add" mode.
498  *
499  * Input parameters:
500  * - device selection list (dev_select)
501  * - current number of devices selected (num_selected)
502  * - total number of devices in the selection list (num_selections)
503  * - devstat generation as of the last time selectdevs() was called
504  *   (select_generation)
505  * - current devstat generation (current_generation)
506  * - current list of devices and statistics (devices)
507  * - number of devices in the current device list (numdevs)
508  * - compiled version of the command line device type arguments (matches)
509  *   - This is optional.  If the number of devices is 0, this will be ignored.
510  *   - The matching code pays attention to the current selection mode.  So
511  *     if you pass in a matching expression, it will be evaluated based
512  *     upon the selection mode that is passed in.  See below for details.
513  * - number of device type matching expressions (num_matches)
514  *   - Set to 0 to disable the matching code.
515  * - list of devices specified on the command line by the user (dev_selections)
516  * - number of devices selected on the command line by the user
517  *   (num_dev_selections)
518  * - Our selection mode.  There are four different selection modes:
519  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
520  *        selected by the user or devices matching a pattern given by the
521  *        user will be selected in addition to devices that are already
522  *        selected.  Additional devices will be selected, up to maxshowdevs
523  *        number of devices. 
524  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
525  *        explicitly given by the user or devices matching a pattern
526  *        given by the user will be selected.  No other devices will be
527  *        selected.
528  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
529  *        only.  Basically, this will not de-select any devices that are
530  *        current selected, as only mode would, but it will also not
531  *        gratuitously select up to maxshowdevs devices as add mode would.
532  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
533  *        explicitly selected by the user or devices matching a pattern
534  *        given by the user will be de-selected.
535  * - maximum number of devices we can select (maxshowdevs)
536  * - flag indicating whether or not we're in 'top' mode (perf_select)
537  *
538  * Output data:
539  * - the device selection list may be modified and passed back out
540  * - the number of devices selected and the total number of items in the
541  *   device selection list may be changed
542  * - the selection generation may be changed to match the current generation
543  * 
544  * Return values:
545  * -1  -- error
546  *  0  -- selected devices are unchanged
547  *  1  -- selected devices changed
548  */
549 int
550 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
551                    int *num_selections, long *select_generation, 
552                    long current_generation, struct devstat *devices,
553                    int numdevs, struct devstat_match *matches, int num_matches,
554                    char **dev_selections, int num_dev_selections,
555                    devstat_select_mode select_mode, int maxshowdevs,
556                    int perf_select)
557 {
558         int i, j, k;
559         int init_selections = 0, init_selected_var = 0;
560         struct device_selection *old_dev_select = NULL;
561         int old_num_selections = 0, old_num_selected;
562         int selection_number = 0;
563         int changed = 0, found = 0;
564
565         if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
566                 return(-1);
567
568         /*
569          * We always want to make sure that we have as many dev_select
570          * entries as there are devices. 
571          */
572         /*
573          * In this case, we haven't selected devices before.
574          */
575         if (*dev_select == NULL) {
576                 *dev_select = (struct device_selection *)malloc(numdevs *
577                         sizeof(struct device_selection));
578                 *select_generation = current_generation;
579                 init_selections = 1;
580                 changed = 1;
581         /*
582          * In this case, we have selected devices before, but the device
583          * list has changed since we last selected devices, so we need to
584          * either enlarge or reduce the size of the device selection list.
585          */
586         } else if (*num_selections != numdevs) {
587                 *dev_select = (struct device_selection *)reallocf(*dev_select,
588                         numdevs * sizeof(struct device_selection));
589                 *select_generation = current_generation;
590                 init_selections = 1;
591         /*
592          * In this case, we've selected devices before, and the selection
593          * list is the same size as it was the last time, but the device
594          * list has changed.
595          */
596         } else if (*select_generation < current_generation) {
597                 *select_generation = current_generation;
598                 init_selections = 1;
599         }
600
601         if (*dev_select == NULL) {
602                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
603                          "%s: Cannot (re)allocate memory for dev_select argument",
604                          __func__);
605                 return(-1);
606         }
607
608         /*
609          * If we're in "only" mode, we want to clear out the selected
610          * variable since we're going to select exactly what the user wants
611          * this time through.
612          */
613         if (select_mode == DS_SELECT_ONLY)
614                 init_selected_var = 1;
615
616         /*
617          * In all cases, we want to back up the number of selected devices.
618          * It is a quick and accurate way to determine whether the selected
619          * devices have changed.
620          */
621         old_num_selected = *num_selected;
622
623         /*
624          * We want to make a backup of the current selection list if 
625          * the list of devices has changed, or if we're in performance 
626          * selection mode.  In both cases, we don't want to make a backup
627          * if we already know for sure that the list will be different.
628          * This is certainly the case if this is our first time through the
629          * selection code.
630          */
631         if (((init_selected_var != 0) || (init_selections != 0)
632          || (perf_select != 0)) && (changed == 0)){
633                 old_dev_select = (struct device_selection *)malloc(
634                     *num_selections * sizeof(struct device_selection));
635                 if (old_dev_select == NULL) {
636                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
637                                  "%s: Cannot allocate memory for selection list backup",
638                                  __func__);
639                         return(-1);
640                 }
641                 old_num_selections = *num_selections;
642                 bcopy(*dev_select, old_dev_select, 
643                     sizeof(struct device_selection) * *num_selections);
644         }
645
646         if (init_selections != 0) {
647                 bzero(*dev_select, sizeof(struct device_selection) * numdevs);
648
649                 for (i = 0; i < numdevs; i++) {
650                         (*dev_select)[i].device_number = 
651                                 devices[i].device_number;
652                         strncpy((*dev_select)[i].device_name,
653                                 devices[i].device_name,
654                                 DEVSTAT_NAME_LEN);
655                         (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
656                         (*dev_select)[i].unit_number = devices[i].unit_number;
657                         (*dev_select)[i].position = i;
658                 }
659                 *num_selections = numdevs;
660         } else if (init_selected_var != 0) {
661                 for (i = 0; i < numdevs; i++) 
662                         (*dev_select)[i].selected = 0;
663         }
664
665         /* we haven't gotten around to selecting anything yet.. */
666         if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
667          || (init_selected_var != 0))
668                 *num_selected = 0;
669
670         /*
671          * Look through any devices the user specified on the command line
672          * and see if they match known devices.  If so, select them.
673          */
674         for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
675                 char tmpstr[80];
676
677                 snprintf(tmpstr, sizeof(tmpstr), "%s%d",
678                          (*dev_select)[i].device_name,
679                          (*dev_select)[i].unit_number);
680                 for (j = 0; j < num_dev_selections; j++) {
681                         if (strcmp(tmpstr, dev_selections[j]) == 0) {
682                                 /*
683                                  * Here we do different things based on the
684                                  * mode we're in.  If we're in add or
685                                  * addonly mode, we only select this device
686                                  * if it hasn't already been selected.
687                                  * Otherwise, we would be unnecessarily
688                                  * changing the selection order and
689                                  * incrementing the selection count.  If
690                                  * we're in only mode, we unconditionally
691                                  * select this device, since in only mode
692                                  * any previous selections are erased and
693                                  * manually specified devices are the first
694                                  * ones to be selected.  If we're in remove
695                                  * mode, we de-select the specified device and
696                                  * decrement the selection count.
697                                  */
698                                 switch(select_mode) {
699                                 case DS_SELECT_ADD:
700                                 case DS_SELECT_ADDONLY:
701                                         if ((*dev_select)[i].selected)
702                                                 break;
703                                         /* FALLTHROUGH */
704                                 case DS_SELECT_ONLY:
705                                         (*dev_select)[i].selected =
706                                                 ++selection_number;
707                                         (*num_selected)++;
708                                         break;
709                                 case DS_SELECT_REMOVE:
710                                         (*dev_select)[i].selected = 0;
711                                         (*num_selected)--;
712                                         /*
713                                          * This isn't passed back out, we
714                                          * just use it to keep track of
715                                          * how many devices we've removed.
716                                          */
717                                         num_dev_selections--;
718                                         break;
719                                 }
720                                 break;
721                         }
722                 }
723         }
724
725         /*
726          * Go through the user's device type expressions and select devices
727          * accordingly.  We only do this if the number of devices already
728          * selected is less than the maximum number we can show.
729          */
730         for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
731                 /* We should probably indicate some error here */
732                 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
733                  || (matches[i].num_match_categories <= 0))
734                         continue;
735
736                 for (j = 0; j < numdevs; j++) {
737                         int num_match_categories;
738
739                         num_match_categories = matches[i].num_match_categories;
740
741                         /*
742                          * Determine whether or not the current device
743                          * matches the given matching expression.  This if
744                          * statement consists of three components:
745                          *   - the device type check
746                          *   - the device interface check
747                          *   - the passthrough check
748                          * If a the matching test is successful, it 
749                          * decrements the number of matching categories,
750                          * and if we've reached the last element that
751                          * needed to be matched, the if statement succeeds.
752                          * 
753                          */
754                         if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
755                           && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
756                                 (matches[i].device_type & DEVSTAT_TYPE_MASK))
757                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
758                            || (((matches[i].match_fields & 
759                                 DEVSTAT_MATCH_PASS) == 0)
760                             && ((devices[j].device_type &
761                                 DEVSTAT_TYPE_PASS) == 0)))
762                           && (--num_match_categories == 0)) 
763                          || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
764                           && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
765                                 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
766                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
767                            || (((matches[i].match_fields &
768                                 DEVSTAT_MATCH_PASS) == 0)
769                             && ((devices[j].device_type & 
770                                 DEVSTAT_TYPE_PASS) == 0)))
771                           && (--num_match_categories == 0))
772                          || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
773                           && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
774                           && (--num_match_categories == 0))) {
775
776                                 /*
777                                  * This is probably a non-optimal solution
778                                  * to the problem that the devices in the
779                                  * device list will not be in the same
780                                  * order as the devices in the selection
781                                  * array.
782                                  */
783                                 for (k = 0; k < numdevs; k++) {
784                                         if ((*dev_select)[k].position == j) {
785                                                 found = 1;
786                                                 break;
787                                         }
788                                 }
789
790                                 /*
791                                  * There shouldn't be a case where a device
792                                  * in the device list is not in the
793                                  * selection list...but it could happen.
794                                  */
795                                 if (found != 1) {
796                                         fprintf(stderr, "selectdevs: couldn't"
797                                                 " find %s%d in selection "
798                                                 "list\n",
799                                                 devices[j].device_name,
800                                                 devices[j].unit_number);
801                                         break;
802                                 }
803
804                                 /*
805                                  * We do different things based upon the
806                                  * mode we're in.  If we're in add or only
807                                  * mode, we go ahead and select this device
808                                  * if it hasn't already been selected.  If
809                                  * it has already been selected, we leave
810                                  * it alone so we don't mess up the
811                                  * selection ordering.  Manually specified
812                                  * devices have already been selected, and
813                                  * they have higher priority than pattern
814                                  * matched devices.  If we're in remove
815                                  * mode, we de-select the given device and
816                                  * decrement the selected count.
817                                  */
818                                 switch(select_mode) {
819                                 case DS_SELECT_ADD:
820                                 case DS_SELECT_ADDONLY:
821                                 case DS_SELECT_ONLY:
822                                         if ((*dev_select)[k].selected != 0)
823                                                 break;
824                                         (*dev_select)[k].selected =
825                                                 ++selection_number;
826                                         (*num_selected)++;
827                                         break;
828                                 case DS_SELECT_REMOVE:
829                                         (*dev_select)[k].selected = 0;
830                                         (*num_selected)--;
831                                         break;
832                                 }
833                         }
834                 }
835         }
836
837         /*
838          * Here we implement "top" mode.  Devices are sorted in the
839          * selection array based on two criteria:  whether or not they are
840          * selected (not selection number, just the fact that they are
841          * selected!) and the number of bytes in the "bytes" field of the
842          * selection structure.  The bytes field generally must be kept up
843          * by the user.  In the future, it may be maintained by library
844          * functions, but for now the user has to do the work.
845          *
846          * At first glance, it may seem wrong that we don't go through and
847          * select every device in the case where the user hasn't specified
848          * any devices or patterns.  In fact, though, it won't make any
849          * difference in the device sorting.  In that particular case (i.e.
850          * when we're in "add" or "only" mode, and the user hasn't
851          * specified anything) the first time through no devices will be
852          * selected, so the only criterion used to sort them will be their
853          * performance.  The second time through, and every time thereafter,
854          * all devices will be selected, so again selection won't matter.
855          */
856         if (perf_select != 0) {
857
858                 /* Sort the device array by throughput  */
859                 qsort(*dev_select, *num_selections,
860                       sizeof(struct device_selection),
861                       compare_select);
862
863                 if (*num_selected == 0) {
864                         /*
865                          * Here we select every device in the array, if it
866                          * isn't already selected.  Because the 'selected'
867                          * variable in the selection array entries contains
868                          * the selection order, the devstats routine can show
869                          * the devices that were selected first.
870                          */
871                         for (i = 0; i < *num_selections; i++) {
872                                 if ((*dev_select)[i].selected == 0) {
873                                         (*dev_select)[i].selected =
874                                                 ++selection_number;
875                                         (*num_selected)++;
876                                 }
877                         }
878                 } else {
879                         selection_number = 0;
880                         for (i = 0; i < *num_selections; i++) {
881                                 if ((*dev_select)[i].selected != 0) {
882                                         (*dev_select)[i].selected =
883                                                 ++selection_number;
884                                 }
885                         }
886                 }
887         }
888
889         /*
890          * If we're in the "add" selection mode and if we haven't already
891          * selected maxshowdevs number of devices, go through the array and
892          * select any unselected devices.  If we're in "only" mode, we
893          * obviously don't want to select anything other than what the user
894          * specifies.  If we're in "remove" mode, it probably isn't a good
895          * idea to go through and select any more devices, since we might
896          * end up selecting something that the user wants removed.  Through
897          * more complicated logic, we could actually figure this out, but
898          * that would probably require combining this loop with the various
899          * selections loops above.
900          */
901         if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
902                 for (i = 0; i < *num_selections; i++)
903                         if ((*dev_select)[i].selected == 0) {
904                                 (*dev_select)[i].selected = ++selection_number;
905                                 (*num_selected)++;
906                         }
907         }
908
909         /*
910          * Look at the number of devices that have been selected.  If it
911          * has changed, set the changed variable.  Otherwise, if we've
912          * made a backup of the selection list, compare it to the current
913          * selection list to see if the selected devices have changed.
914          */
915         if ((changed == 0) && (old_num_selected != *num_selected))
916                 changed = 1;
917         else if ((changed == 0) && (old_dev_select != NULL)) {
918                 /*
919                  * Now we go through the selection list and we look at
920                  * it three different ways.
921                  */
922                 for (i = 0; (i < *num_selections) && (changed == 0) && 
923                      (i < old_num_selections); i++) {
924                         /*
925                          * If the device at index i in both the new and old
926                          * selection arrays has the same device number and
927                          * selection status, it hasn't changed.  We
928                          * continue on to the next index.
929                          */
930                         if (((*dev_select)[i].device_number ==
931                              old_dev_select[i].device_number)
932                          && ((*dev_select)[i].selected == 
933                              old_dev_select[i].selected))
934                                 continue;
935
936                         /*
937                          * Now, if we're still going through the if
938                          * statement, the above test wasn't true.  So we
939                          * check here to see if the device at index i in
940                          * the current array is the same as the device at
941                          * index i in the old array.  If it is, that means
942                          * that its selection number has changed.  Set
943                          * changed to 1 and exit the loop.
944                          */
945                         else if ((*dev_select)[i].device_number ==
946                                   old_dev_select[i].device_number) {
947                                 changed = 1;
948                                 break;
949                         }
950                         /*
951                          * If we get here, then the device at index i in
952                          * the current array isn't the same device as the
953                          * device at index i in the old array.
954                          */
955                         else {
956                                 found = 0;
957
958                                 /*
959                                  * Search through the old selection array
960                                  * looking for a device with the same
961                                  * device number as the device at index i
962                                  * in the current array.  If the selection
963                                  * status is the same, then we mark it as
964                                  * found.  If the selection status isn't
965                                  * the same, we break out of the loop.
966                                  * Since found isn't set, changed will be
967                                  * set to 1 below.
968                                  */
969                                 for (j = 0; j < old_num_selections; j++) {
970                                         if (((*dev_select)[i].device_number ==
971                                               old_dev_select[j].device_number)
972                                          && ((*dev_select)[i].selected ==
973                                               old_dev_select[j].selected)){
974                                                 found = 1;
975                                                 break;
976                                         }
977                                         else if ((*dev_select)[i].device_number
978                                             == old_dev_select[j].device_number)
979                                                 break;
980                                 }
981                                 if (found == 0)
982                                         changed = 1;
983                         }
984                 }
985         }
986         if (old_dev_select != NULL)
987                 free(old_dev_select);
988
989         return(changed);
990 }
991
992 /*
993  * Comparison routine for qsort() above.  Note that the comparison here is
994  * backwards -- generally, it should return a value to indicate whether
995  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
996  * it returns the opposite is so that the selection array will be sorted in
997  * order of decreasing performance.  We sort on two parameters.  The first
998  * sort key is whether or not one or the other of the devices in question
999  * has been selected.  If one of them has, and the other one has not, the
1000  * selected device is automatically more important than the unselected
1001  * device.  If neither device is selected, we judge the devices based upon
1002  * performance.
1003  */
1004 static int
1005 compare_select(const void *arg1, const void *arg2)
1006 {
1007         if ((((const struct device_selection *)arg1)->selected)
1008          && (((const struct device_selection *)arg2)->selected == 0))
1009                 return(-1);
1010         else if ((((const struct device_selection *)arg1)->selected == 0)
1011               && (((const struct device_selection *)arg2)->selected))
1012                 return(1);
1013         else if (((const struct device_selection *)arg2)->bytes <
1014                  ((const struct device_selection *)arg1)->bytes)
1015                 return(-1);
1016         else if (((const struct device_selection *)arg2)->bytes >
1017                  ((const struct device_selection *)arg1)->bytes)
1018                 return(1);
1019         else
1020                 return(0);
1021 }
1022
1023 /*
1024  * Take a string with the general format "arg1,arg2,arg3", and build a
1025  * device matching expression from it.
1026  */
1027 int
1028 devstat_buildmatch(char *match_str, struct devstat_match **matches,
1029                    int *num_matches)
1030 {
1031         char *tstr[5];
1032         char **tempstr;
1033         int num_args;
1034         int i, j;
1035
1036         /* We can't do much without a string to parse */
1037         if (match_str == NULL) {
1038                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1039                          "%s: no match expression", __func__);
1040                 return(-1);
1041         }
1042
1043         /*
1044          * Break the (comma delimited) input string out into separate strings.
1045          */
1046         for (tempstr = tstr, num_args  = 0; 
1047              (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1048                 if (**tempstr != '\0') {
1049                         num_args++;
1050                         if (++tempstr >= &tstr[5])
1051                                 break;
1052                 }
1053
1054         /* The user gave us too many type arguments */
1055         if (num_args > 3) {
1056                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1057                          "%s: too many type arguments", __func__);
1058                 return(-1);
1059         }
1060
1061         if (*num_matches == 0)
1062                 *matches = NULL;
1063
1064         *matches = (struct devstat_match *)reallocf(*matches,
1065                   sizeof(struct devstat_match) * (*num_matches + 1));
1066
1067         if (*matches == NULL) {
1068                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1069                          "%s: Cannot allocate memory for matches list", __func__);
1070                 return(-1);
1071         }
1072                           
1073         /* Make sure the current entry is clear */
1074         bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1075
1076         /*
1077          * Step through the arguments the user gave us and build a device
1078          * matching expression from them.
1079          */
1080         for (i = 0; i < num_args; i++) {
1081                 char *tempstr2, *tempstr3;
1082
1083                 /*
1084                  * Get rid of leading white space.
1085                  */
1086                 tempstr2 = tstr[i];
1087                 while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1088                         tempstr2++;
1089
1090                 /*
1091                  * Get rid of trailing white space.
1092                  */
1093                 tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1094
1095                 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1096                     && (isspace(*tempstr3))) {
1097                         *tempstr3 = '\0';
1098                         tempstr3--;
1099                 }
1100
1101                 /*
1102                  * Go through the match table comparing the user's
1103                  * arguments to known device types, interfaces, etc.  
1104                  */
1105                 for (j = 0; match_table[j].match_str != NULL; j++) {
1106                         /*
1107                          * We do case-insensitive matching, in case someone
1108                          * wants to enter "SCSI" instead of "scsi" or
1109                          * something like that.  Only compare as many 
1110                          * characters as are in the string in the match 
1111                          * table.  This should help if someone tries to use 
1112                          * a super-long match expression.  
1113                          */
1114                         if (strncasecmp(tempstr2, match_table[j].match_str,
1115                             strlen(match_table[j].match_str)) == 0) {
1116                                 /*
1117                                  * Make sure the user hasn't specified two
1118                                  * items of the same type, like "da" and
1119                                  * "cd".  One device cannot be both.
1120                                  */
1121                                 if (((*matches)[*num_matches].match_fields &
1122                                     match_table[j].match_field) != 0) {
1123                                         snprintf(devstat_errbuf,
1124                                                  sizeof(devstat_errbuf),
1125                                                  "%s: cannot have more than "
1126                                                  "one match item in a single "
1127                                                  "category", __func__);
1128                                         return(-1);
1129                                 }
1130                                 /*
1131                                  * If we've gotten this far, we have a
1132                                  * winner.  Set the appropriate fields in
1133                                  * the match entry.
1134                                  */
1135                                 (*matches)[*num_matches].match_fields |=
1136                                         match_table[j].match_field;
1137                                 (*matches)[*num_matches].device_type |=
1138                                         match_table[j].type;
1139                                 (*matches)[*num_matches].num_match_categories++;
1140                                 break;
1141                         }
1142                 }
1143                 /*
1144                  * We should have found a match in the above for loop.  If
1145                  * not, that means the user entered an invalid device type
1146                  * or interface.
1147                  */
1148                 if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1149                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1150                                  "%s: unknown match item \"%s\"", __func__,
1151                                  tstr[i]);
1152                         return(-1);
1153                 }
1154         }
1155
1156         (*num_matches)++;
1157
1158         return(0);
1159 }
1160
1161 /*
1162  * Compute a number of device statistics.  Only one field is mandatory, and
1163  * that is "current".  Everything else is optional.  The caller passes in
1164  * pointers to variables to hold the various statistics he desires.  If he
1165  * doesn't want a particular staistic, he should pass in a NULL pointer.
1166  * Return values:
1167  * 0   -- success
1168  * -1  -- failure
1169  */
1170 int
1171 compute_stats(struct devstat *current, struct devstat *previous,
1172               long double etime, u_int64_t *total_bytes,
1173               u_int64_t *total_transfers, u_int64_t *total_blocks,
1174               long double *kb_per_transfer, long double *transfers_per_second,
1175               long double *mb_per_second, long double *blocks_per_second,
1176               long double *ms_per_transaction)
1177 {
1178         return(devstat_compute_statistics(current, previous, etime,
1179                total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1180                total_bytes,
1181                total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1182                total_transfers,
1183                total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1184                total_blocks,
1185                kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1186                kb_per_transfer,
1187                transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1188                transfers_per_second,
1189                mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1190                mb_per_second,
1191                blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1192                blocks_per_second,
1193                ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1194                ms_per_transaction,
1195                DSM_NONE));
1196 }
1197
1198
1199 /* This is 1/2^64 */
1200 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1201
1202 long double
1203 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1204 {
1205         long double etime;
1206
1207         etime = cur_time->sec;
1208         etime += cur_time->frac * BINTIME_SCALE;
1209         if (prev_time != NULL) {
1210                 etime -= prev_time->sec;
1211                 etime -= prev_time->frac * BINTIME_SCALE;
1212         }
1213         return(etime);
1214 }
1215
1216 #define DELTA(field, index)                             \
1217         (current->field[(index)] - (previous ? previous->field[(index)] : 0))
1218
1219 #define DELTA_T(field)                                  \
1220         devstat_compute_etime(&current->field,          \
1221         (previous ? &previous->field : NULL))
1222
1223 int
1224 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1225                            long double etime, ...)
1226 {
1227         u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1228         u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1229         u_int64_t totaltransfersother, totalblocks, totalblocksread;
1230         u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1231         long double totalduration, totaldurationread, totaldurationwrite;
1232         long double totaldurationfree, totaldurationother;
1233         va_list ap;
1234         devstat_metric metric;
1235         u_int64_t *destu64;
1236         long double *destld;
1237         int retval;
1238
1239         retval = 0;
1240
1241         /*
1242          * current is the only mandatory field.
1243          */
1244         if (current == NULL) {
1245                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1246                          "%s: current stats structure was NULL", __func__);
1247                 return(-1);
1248         }
1249
1250         totalbytesread = DELTA(bytes, DEVSTAT_READ);
1251         totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1252         totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1253         totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1254
1255         totaltransfersread = DELTA(operations, DEVSTAT_READ);
1256         totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1257         totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1258         totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1259         totaltransfers = totaltransfersread + totaltransferswrite +
1260                          totaltransfersother + totaltransfersfree;
1261
1262         totalblocks = totalbytes;
1263         totalblocksread = totalbytesread;
1264         totalblockswrite = totalbyteswrite;
1265         totalblocksfree = totalbytesfree;
1266
1267         if (current->block_size > 0) {
1268                 totalblocks /= current->block_size;
1269                 totalblocksread /= current->block_size;
1270                 totalblockswrite /= current->block_size;
1271                 totalblocksfree /= current->block_size;
1272         } else {
1273                 totalblocks /= 512;
1274                 totalblocksread /= 512;
1275                 totalblockswrite /= 512;
1276                 totalblocksfree /= 512;
1277         }
1278
1279         totaldurationread = DELTA_T(duration[DEVSTAT_READ]);
1280         totaldurationwrite = DELTA_T(duration[DEVSTAT_WRITE]);
1281         totaldurationfree = DELTA_T(duration[DEVSTAT_FREE]);
1282         totaldurationother = DELTA_T(duration[DEVSTAT_NO_DATA]);
1283         totalduration = totaldurationread + totaldurationwrite +
1284             totaldurationfree + totaldurationother;
1285
1286         va_start(ap, etime);
1287
1288         while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1289
1290                 if (metric == DSM_NONE)
1291                         break;
1292
1293                 if (metric >= DSM_MAX) {
1294                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1295                                  "%s: metric %d is out of range", __func__,
1296                                  metric);
1297                         retval = -1;
1298                         goto bailout;
1299                 }
1300
1301                 switch (devstat_arg_list[metric].argtype) {
1302                 case DEVSTAT_ARG_UINT64:
1303                         destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1304                         break;
1305                 case DEVSTAT_ARG_LD:
1306                         destld = (long double *)va_arg(ap, long double *);
1307                         break;
1308                 case DEVSTAT_ARG_SKIP:
1309                         destld = (long double *)va_arg(ap, long double *);
1310                         break;
1311                 default:
1312                         retval = -1;
1313                         goto bailout;
1314                         break; /* NOTREACHED */
1315                 }
1316
1317                 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1318                         continue;
1319
1320                 switch (metric) {
1321                 case DSM_TOTAL_BYTES:
1322                         *destu64 = totalbytes;
1323                         break;
1324                 case DSM_TOTAL_BYTES_READ:
1325                         *destu64 = totalbytesread;
1326                         break;
1327                 case DSM_TOTAL_BYTES_WRITE:
1328                         *destu64 = totalbyteswrite;
1329                         break;
1330                 case DSM_TOTAL_BYTES_FREE:
1331                         *destu64 = totalbytesfree;
1332                         break;
1333                 case DSM_TOTAL_TRANSFERS:
1334                         *destu64 = totaltransfers;
1335                         break;
1336                 case DSM_TOTAL_TRANSFERS_READ:
1337                         *destu64 = totaltransfersread;
1338                         break;
1339                 case DSM_TOTAL_TRANSFERS_WRITE:
1340                         *destu64 = totaltransferswrite;
1341                         break;
1342                 case DSM_TOTAL_TRANSFERS_FREE:
1343                         *destu64 = totaltransfersfree;
1344                         break;
1345                 case DSM_TOTAL_TRANSFERS_OTHER:
1346                         *destu64 = totaltransfersother;
1347                         break;
1348                 case DSM_TOTAL_BLOCKS:
1349                         *destu64 = totalblocks;
1350                         break;
1351                 case DSM_TOTAL_BLOCKS_READ:
1352                         *destu64 = totalblocksread;
1353                         break;
1354                 case DSM_TOTAL_BLOCKS_WRITE:
1355                         *destu64 = totalblockswrite;
1356                         break;
1357                 case DSM_TOTAL_BLOCKS_FREE:
1358                         *destu64 = totalblocksfree;
1359                         break;
1360                 case DSM_KB_PER_TRANSFER:
1361                         *destld = totalbytes;
1362                         *destld /= 1024;
1363                         if (totaltransfers > 0)
1364                                 *destld /= totaltransfers;
1365                         else
1366                                 *destld = 0.0;
1367                         break;
1368                 case DSM_KB_PER_TRANSFER_READ:
1369                         *destld = totalbytesread;
1370                         *destld /= 1024;
1371                         if (totaltransfersread > 0)
1372                                 *destld /= totaltransfersread;
1373                         else
1374                                 *destld = 0.0;
1375                         break;
1376                 case DSM_KB_PER_TRANSFER_WRITE:
1377                         *destld = totalbyteswrite;
1378                         *destld /= 1024;
1379                         if (totaltransferswrite > 0)
1380                                 *destld /= totaltransferswrite;
1381                         else
1382                                 *destld = 0.0;
1383                         break;
1384                 case DSM_KB_PER_TRANSFER_FREE:
1385                         *destld = totalbytesfree;
1386                         *destld /= 1024;
1387                         if (totaltransfersfree > 0)
1388                                 *destld /= totaltransfersfree;
1389                         else
1390                                 *destld = 0.0;
1391                         break;
1392                 case DSM_TRANSFERS_PER_SECOND:
1393                         if (etime > 0.0) {
1394                                 *destld = totaltransfers;
1395                                 *destld /= etime;
1396                         } else
1397                                 *destld = 0.0;
1398                         break;
1399                 case DSM_TRANSFERS_PER_SECOND_READ:
1400                         if (etime > 0.0) {
1401                                 *destld = totaltransfersread;
1402                                 *destld /= etime;
1403                         } else
1404                                 *destld = 0.0;
1405                         break;
1406                 case DSM_TRANSFERS_PER_SECOND_WRITE:
1407                         if (etime > 0.0) {
1408                                 *destld = totaltransferswrite;
1409                                 *destld /= etime;
1410                         } else
1411                                 *destld = 0.0;
1412                         break;
1413                 case DSM_TRANSFERS_PER_SECOND_FREE:
1414                         if (etime > 0.0) {
1415                                 *destld = totaltransfersfree;
1416                                 *destld /= etime;
1417                         } else
1418                                 *destld = 0.0;
1419                         break;
1420                 case DSM_TRANSFERS_PER_SECOND_OTHER:
1421                         if (etime > 0.0) {
1422                                 *destld = totaltransfersother;
1423                                 *destld /= etime;
1424                         } else
1425                                 *destld = 0.0;
1426                         break;
1427                 case DSM_MB_PER_SECOND:
1428                         *destld = totalbytes;
1429                         *destld /= 1024 * 1024;
1430                         if (etime > 0.0)
1431                                 *destld /= etime;
1432                         else
1433                                 *destld = 0.0;
1434                         break;
1435                 case DSM_MB_PER_SECOND_READ:
1436                         *destld = totalbytesread;
1437                         *destld /= 1024 * 1024;
1438                         if (etime > 0.0)
1439                                 *destld /= etime;
1440                         else
1441                                 *destld = 0.0;
1442                         break;
1443                 case DSM_MB_PER_SECOND_WRITE:
1444                         *destld = totalbyteswrite;
1445                         *destld /= 1024 * 1024;
1446                         if (etime > 0.0)
1447                                 *destld /= etime;
1448                         else
1449                                 *destld = 0.0;
1450                         break;
1451                 case DSM_MB_PER_SECOND_FREE:
1452                         *destld = totalbytesfree;
1453                         *destld /= 1024 * 1024;
1454                         if (etime > 0.0)
1455                                 *destld /= etime;
1456                         else
1457                                 *destld = 0.0;
1458                         break;
1459                 case DSM_BLOCKS_PER_SECOND:
1460                         *destld = totalblocks;
1461                         if (etime > 0.0)
1462                                 *destld /= etime;
1463                         else
1464                                 *destld = 0.0;
1465                         break;
1466                 case DSM_BLOCKS_PER_SECOND_READ:
1467                         *destld = totalblocksread;
1468                         if (etime > 0.0)
1469                                 *destld /= etime;
1470                         else
1471                                 *destld = 0.0;
1472                         break;
1473                 case DSM_BLOCKS_PER_SECOND_WRITE:
1474                         *destld = totalblockswrite;
1475                         if (etime > 0.0)
1476                                 *destld /= etime;
1477                         else
1478                                 *destld = 0.0;
1479                         break;
1480                 case DSM_BLOCKS_PER_SECOND_FREE:
1481                         *destld = totalblocksfree;
1482                         if (etime > 0.0)
1483                                 *destld /= etime;
1484                         else
1485                                 *destld = 0.0;
1486                         break;
1487                 /*
1488                  * Some devstat callers update the duration and some don't.
1489                  * So this will only be accurate if they provide the
1490                  * duration. 
1491                  */
1492                 case DSM_MS_PER_TRANSACTION:
1493                         if (totaltransfers > 0) {
1494                                 *destld = totalduration;
1495                                 *destld /= totaltransfers;
1496                                 *destld *= 1000;
1497                         } else
1498                                 *destld = 0.0;
1499                         break;
1500                 case DSM_MS_PER_TRANSACTION_READ:
1501                         if (totaltransfersread > 0) {
1502                                 *destld = totaldurationread;
1503                                 *destld /= totaltransfersread;
1504                                 *destld *= 1000;
1505                         } else
1506                                 *destld = 0.0;
1507                         break;
1508                 case DSM_MS_PER_TRANSACTION_WRITE:
1509                         if (totaltransferswrite > 0) {
1510                                 *destld = totaldurationwrite;
1511                                 *destld /= totaltransferswrite;
1512                                 *destld *= 1000;
1513                         } else
1514                                 *destld = 0.0;
1515                         break;
1516                 case DSM_MS_PER_TRANSACTION_FREE:
1517                         if (totaltransfersfree > 0) {
1518                                 *destld = totaldurationfree;
1519                                 *destld /= totaltransfersfree;
1520                                 *destld *= 1000;
1521                         } else
1522                                 *destld = 0.0;
1523                         break;
1524                 case DSM_MS_PER_TRANSACTION_OTHER:
1525                         if (totaltransfersother > 0) {
1526                                 *destld = totaldurationother;
1527                                 *destld /= totaltransfersother;
1528                                 *destld *= 1000;
1529                         } else
1530                                 *destld = 0.0;
1531                         break;
1532                 case DSM_BUSY_PCT:
1533                         *destld = DELTA_T(busy_time);
1534                         if (*destld < 0)
1535                                 *destld = 0;
1536                         *destld /= etime;
1537                         *destld *= 100;
1538                         if (*destld < 0)
1539                                 *destld = 0;
1540                         break;
1541                 case DSM_QUEUE_LENGTH:
1542                         *destu64 = current->start_count - current->end_count;
1543                         break;
1544                 case DSM_TOTAL_DURATION:
1545                         *destld = totalduration;
1546                         break;
1547                 case DSM_TOTAL_DURATION_READ:
1548                         *destld = totaldurationread;
1549                         break;
1550                 case DSM_TOTAL_DURATION_WRITE:
1551                         *destld = totaldurationwrite;
1552                         break;
1553                 case DSM_TOTAL_DURATION_FREE:
1554                         *destld = totaldurationfree;
1555                         break;
1556                 case DSM_TOTAL_DURATION_OTHER:
1557                         *destld = totaldurationother;
1558                         break;
1559                 case DSM_TOTAL_BUSY_TIME:
1560                         *destld = DELTA_T(busy_time);
1561                         break;
1562 /*
1563  * XXX: comment out the default block to see if any case's are missing.
1564  */
1565 #if 1
1566                 default:
1567                         /*
1568                          * This shouldn't happen, since we should have
1569                          * caught any out of range metrics at the top of
1570                          * the loop.
1571                          */
1572                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1573                                  "%s: unknown metric %d", __func__, metric);
1574                         retval = -1;
1575                         goto bailout;
1576                         break; /* NOTREACHED */
1577 #endif
1578                 }
1579         }
1580
1581 bailout:
1582
1583         va_end(ap);
1584         return(retval);
1585 }
1586
1587 static int 
1588 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1589 {
1590
1591         if (kvm_read(kd, addr, buf, nbytes) == -1) {
1592                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1593                          "%s: error reading value (kvm_read): %s", __func__,
1594                          kvm_geterr(kd));
1595                 return(-1);
1596         }
1597         return(0);
1598 }
1599
1600 static int
1601 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1602 {
1603         struct nlist nl[2];
1604
1605         nl[0].n_name = (char *)name;
1606         nl[1].n_name = NULL;
1607
1608         if (kvm_nlist(kd, nl) == -1) {
1609                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1610                          "%s: error getting name list (kvm_nlist): %s",
1611                          __func__, kvm_geterr(kd));
1612                 return(-1);
1613         }
1614         return(readkmem(kd, nl[0].n_value, buf, nbytes));
1615 }
1616
1617 /*
1618  * This duplicates the functionality of the kernel sysctl handler for poking
1619  * through crash dumps.
1620  */
1621 static char *
1622 get_devstat_kvm(kvm_t *kd)
1623 {
1624         int i, wp;
1625         long gen;
1626         struct devstat *nds;
1627         struct devstat ds;
1628         struct devstatlist dhead;
1629         int num_devs;
1630         char *rv = NULL;
1631
1632         if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1633                 return(NULL);
1634         if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1635                 return(NULL);
1636
1637         nds = STAILQ_FIRST(&dhead);
1638         
1639         if ((rv = malloc(sizeof(gen))) == NULL) {
1640                 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1641                          "%s: out of memory (initial malloc failed)",
1642                          __func__);
1643                 return(NULL);
1644         }
1645         gen = devstat_getgeneration(kd);
1646         memcpy(rv, &gen, sizeof(gen));
1647         wp = sizeof(gen);
1648         /*
1649          * Now push out all the devices.
1650          */
1651         for (i = 0; (nds != NULL) && (i < num_devs);  
1652              nds = STAILQ_NEXT(nds, dev_links), i++) {
1653                 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1654                         free(rv);
1655                         return(NULL);
1656                 }
1657                 nds = &ds;
1658                 rv = (char *)reallocf(rv, sizeof(gen) + 
1659                                       sizeof(ds) * (i + 1));
1660                 if (rv == NULL) {
1661                         snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1662                                  "%s: out of memory (malloc failed)",
1663                                  __func__);
1664                         return(NULL);
1665                 }
1666                 memcpy(rv + wp, &ds, sizeof(ds));
1667                 wp += sizeof(ds);
1668         }
1669         return(rv);
1670 }